1
|
Li Y, Selvaraj V, Saravanan S, Abullais SS, Wankhade V. Exploring the osteogenic potential of chitosan-quercetin bio-conjugate: In vitro and in vivo investigations in osteoporosis models. Int J Biol Macromol 2024; 274:133492. [PMID: 38944072 DOI: 10.1016/j.ijbiomac.2024.133492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Anti-osteoporotic agents are clinically employed to improve bone health and prevent osteoporotic fractures. In the current study, we investigated the potential of chitosan-quercetin bio-conjugate as an anti-osteoporotic agent. The conjugate was prepared and characterized by FTIR and found notable interactions between chitosan and quercetin. Treating mouse MSCs with the bioconjugate in osteogenic conditions for a week led to elevated expression of differentiation markers Runx2, ALP, and Col-I, as determined by real-time PCR analysis. Evaluation at the cellular level using alizarin red staining demonstrated enhanced calcium deposition in MSCs following treatment with the bioconjugate. Likewise, ELISA analysis showed significantly elevated levels of secretory osteocalcin and osteonectin in groups treated with the conjugate. To broaden our comprehension, we utilized a zebrafish-based in vivo model of dexamethasone-induced osteoporosis to investigate bone regeneration. Toxicity profiling with zebrafish larvae confirmed the bio-conjugate's compatibility at a concentration of 25 μg/ml, underscoring the significance of finding the right dosage. Furthermore, in zebrafish models of osteoporosis, the bio-conjugate demonstrated significant potential for bone regeneration, as indicated by improved bone calcification, callus formation, and overall bone healing in a tail fin fracture model. Additionally, the study revealed that the bio-conjugate inhibited osteoclastic activity, leading to reduced TRAP activity and hydroxyproline release, suggesting its effectiveness in mitigating bone resorption. In conclusion, our research provides compelling evidence for the osteogenic capabilities of the chitosan-quercetin bio-conjugate, highlighting its promising applications in regenerative medicine and the treatment of conditions like osteoporosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Joint Surgery and Sports Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai - 600 036, Tamil Nadu, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Science, King Khalid University, College of Dentistry, Abha, Saudi Arabia
| | - Varsha Wankhade
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
2
|
Liu H, Zhang R, Wang W, Xia X, Xu Z, Xiang X. Inhibitory effects and mechanisms of phenolic compounds in rapeseed oil on advanced glycation end product formation in chemical and cellular models in vitro. Food Chem 2024; 447:139056. [PMID: 38513495 DOI: 10.1016/j.foodchem.2024.139056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Sinapic acid (SA), canolol (CAO) and canolol dimer (CAO dimer) are the main phenolic compounds in rapeseed oil. However, their possible efficacy against glycation remains unclear. This study aims to explore the impacts of these substances on the formation of advanced glycation end products (AGEs) based on chemical and cellular models in vitro. Based on fluorescence spectroscopy results, three chemical models of BSA-fructose, BSA-methylglyoxal (MGO), and arginine (Arg)-MGO showed that SA/CAO/CAO dimer could effectively reduce AGE formation but with different abilities. After SA/CAO/CAO dimer incubation, effective protection against BSA protein glycation was observed and three different MGO adducts were formed. In MGO-induced HUVEC cell models, only CAO and CAO dimer significantly inhibited oxidative stress and cell apoptosis, accompanied by the regulation of the Nrf2-HO-1 pathway. During the inhibition, 20 and 12 lipid mediators were reversed in the CAO and CAO dimer groups compared to the MGO group.
Collapse
Affiliation(s)
- Huihui Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ruiying Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wen Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Zhenxia Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
3
|
Francis EC, Kechris K, Johnson RK, Rawal S, Pathmasiri W, Rushing BR, Du X, Jansson T, Dabelea D, Sumner SJ, Perng W. Maternal Serum Metabolomics in Mid-Pregnancy Identifies Lipid Pathways as a Key Link to Offspring Obesity in Early Childhood. Int J Mol Sci 2024; 25:7620. [PMID: 39062861 PMCID: PMC11276882 DOI: 10.3390/ijms25147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Maternal metabolism during pregnancy shapes offspring health via in utero programming. In the Healthy Start study, we identified five subgroups of pregnant women based on conventional metabolic biomarkers: Reference (n = 360); High HDL-C (n = 289); Dyslipidemic-High TG (n = 149); Dyslipidemic-High FFA (n = 180); Insulin Resistant (IR)-Hyperglycemic (n = 87). These subgroups not only captured metabolic heterogeneity among pregnant participants but were also associated with offspring obesity in early childhood, even among women without obesity or diabetes. Here, we utilize metabolomics data to enrich characterization of the metabolic subgroups and identify key compounds driving between-group differences. We analyzed fasting blood samples from 1065 pregnant women at 18 gestational weeks using untargeted metabolomics. We used weighted gene correlation network analysis (WGCNA) to derive a global network based on the Reference subgroup and characterized distinct metabolite modules representative of the different metabolomic profiles. We used the mummichog algorithm for pathway enrichment and identified key compounds that differed across the subgroups. Eight metabolite modules representing pathways such as the carnitine-acylcarnitine translocase system, fatty acid biosynthesis and activation, and glycerophospholipid metabolism were identified. A module that included 189 compounds related to DHA peroxidation, oxidative stress, and sex hormone biosynthesis was elevated in the Insulin Resistant-Hyperglycemic vs. the Reference subgroup. This module was positively correlated with total cholesterol (R:0.10; p-value < 0.0001) and free fatty acids (R:0.07; p-value < 0.05). Oxidative stress and inflammatory pathways may underlie insulin resistance during pregnancy, even below clinical diabetes thresholds. These findings highlight potential therapeutic targets and strategies for pregnancy risk stratification and reveal mechanisms underlying the developmental origins of metabolic disease risk.
Collapse
Affiliation(s)
- Ellen C. Francis
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Katerina Kechris
- Department of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO 80045, USA;
| | - Randi K. Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.); (W.P.)
| | - Shristi Rawal
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, NJ 07102, USA;
| | - Wimal Pathmasiri
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.P.); (B.R.R.)
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blake R. Rushing
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.P.); (B.R.R.)
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA;
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.); (W.P.)
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Susan J. Sumner
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.P.); (B.R.R.)
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.); (W.P.)
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Slotkowski R, VanOrmer M, Akbar A, Hahka T, Thompson M, Rapoza R, Ulu A, Thoene M, Lyden E, Mukherjee M, Yuil-Valdes A, Natarajan SK, Nordgren T, Hanson C, Berry AA. Bioactive metabolites of OMEGA-6 and OMEGA-3 fatty acids are associated with inflammatory cytokine concentrations in maternal and infant plasma at the time of delivery. Clin Nutr ESPEN 2024; 60:223-233. [PMID: 38479914 DOI: 10.1016/j.clnesp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND & AIMS Inflammation is necessary for a healthy pregnancy. However, unregulated or excessive inflammation during pregnancy is associated with severe maternal and infant morbidities, such as pre-eclampsia, abnormal infant neurodevelopment, or preterm birth. Inflammation is regulated in part by the bioactive metabolites of omega-6 (n-6) and omega-3 (n-3) fatty acids (FAs). N-6 FAs have been shown to promote pro-inflammatory cytokine environments in adults, while n-3 FAs have been shown to contribute to the resolution of inflammation; however, how these metabolites affect maternal and infant inflammation is still uncertain. The objective of this study was to predict the influence of n-6 and n-3 FA metabolites on inflammatory biomarkers in maternal and umbilical cord plasma at the time of delivery. METHODS Inflammatory biomarkers (IL-1β, IL-2, IL-6, IL-8, IL-10, and TNFα) for maternal and umbilical cord plasma samples in 39 maternal-infant dyads were analyzed via multi-analyte bead array. Metabolites of n-6 FAs (arachidonic acid and linoleic acid) and n-3 FAs (eicosapentaenoic acid and docosahexaenoic acid) were assayed via liquid chromatography-mass spectrometry. Linear regression models assessed relationships between maternal and infant inflammatory markers and metabolite plasma concentrations. RESULTS Increased plasma concentrations of maternal n-6 metabolites were predictive of elevated pro-inflammatory cytokine concentrations in mothers; similarly, higher plasma concentrations of umbilical cord n-6 FA metabolites were predictive of elevated pro-inflammatory cytokine concentrations in infants. Higher plasma concentrations of maternal n-6 FA metabolites were also predictive of elevated pro-inflammatory cytokines in infants, suggesting that maternal n-6 FA status has an intergenerational impact on the inflammatory status of the infant. In contrast, maternal and cord plasma concentrations of n-3 FA metabolites had a mixed effect on inflammatory status in mothers and infants, which may be due to the inadequate maternal dietary intake of n-3 FAs in our study population. CONCLUSIONS Our results reveal that maternal FA status may have an intergenerational impact on the inflammatory status of the infant. Additional research is needed to identify how dietary interventions that modify maternal FA intake prior to or during pregnancy may impact maternal and infant inflammatory status and associated long-term health outcomes.
Collapse
Affiliation(s)
- Rebecca Slotkowski
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA.
| | - Matthew VanOrmer
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Taija Hahka
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Maranda Thompson
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Rebekah Rapoza
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Arzu Ulu
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Melissa Thoene
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Elizabeth Lyden
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maheswari Mukherjee
- Diagnostic Cytology Program, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ana Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Tara Nordgren
- Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Corrine Hanson
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ann Anderson Berry
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| |
Collapse
|
5
|
Zhan Y, Li L, Guo C, Zhang Y, Zhao L, Tao Z, Zhang H, Chen S. MicroRNA-141-3p reduces pulmonary hypoxia/reoxygenation injury through suppression of Beclin-1-dependent autophagy. Aging (Albany NY) 2024; 16:1352-1373. [PMID: 38261732 PMCID: PMC10866419 DOI: 10.18632/aging.205430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/06/2023] [Indexed: 01/25/2024]
Abstract
Alterations in autophagy are involved in pulmonary hypoxia/reoxygenation (H/R)-induced injury. Here, we intended to explain the function of microRNA-141-3p (miR-141-3p) in regulating autophagy under the H/R condition. Rat pulmonary microvascular endothelial cells (PMVECs) were applied for H/R cell model establishment, followed by tracing of autophagy formation. SIRT1 plays a critical role in controlling the lifespan of yeast, flies, and mice. Interaction between SIRT1 and Beclin-1, an indicator protein for autophagy, and between miR-141-3p and SIRT1 was assayed with their roles in PMVEC injury. Autophagy of PMVECs was activated after hypoxia treatment and further activated after H/R treatment. The binding of miR-141-3p and SIRT1 was verified. In H/R-treated PMVECs, the binding of miR-141-3p and SIRT1 was reduced. Furthermore, SIRT1 acted as a deacetylase to stabilize the Beclin-1 protein, promoting autophagy and PMVEC injury. H/R rat models were established, and in vivo, experiments further confirmed that miR-141-3p regulated autophagy and lung injury in H/R rats through SIRT1/Beclin-1 axis. The current study highlighted that reduced miR-141-3p in H/R-treated PMVECs promoted deacetylation of Beclin-1 by SIRT1, thus causing PMVEC injury.
Collapse
Affiliation(s)
- Yanping Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Lei Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Chen Guo
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, P.R. China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Lili Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Zhe Tao
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Hua Zhang
- Nanchang University, Nanchang 330006, P.R. China
| | - Shibiao Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| |
Collapse
|
6
|
Suggestive evidence of CYP4F2 gene polymorphisms with HAPE susceptibility in the Chinese Han population. PLoS One 2023; 18:e0280136. [PMID: 36634101 PMCID: PMC9836295 DOI: 10.1371/journal.pone.0280136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
High altitude pulmonary edema (HAPE) is a common respiratory disease in the high altitude area, which is rapid and harmful. We firstly conducted a case-control study to assess the potential association of CYP4F2 gene polymorphisms with HAPE susceptibility in the Chinese Han population. The study recruited 238 patients with HAPE and 230 healthy controls in Northwest China. Genomic DNA was extracted from blood samples, and gene polymorphisms were detected using the Agena MassARRAY platform. Odds ratios (ORs), 95% confidence intervals (95% CIs), and P-value were used to evaluate the relationship between HAPE risk and CYP4F2 gene polymorphisms. Multi-factor dimension reduction (MDR) was used to assess the optimal interaction of CYP4F2 gene polymorphisms on HAPE risk. We found rs3093193 was shown to reduce the risk of HAPE (OR = 0.70, 95% CI = 0.52-0.93, P = 0.014), while rs12459936 was increased the susceptibility to HAPE (OR = 2.08, 95% CI = 1.33-3.26, P = 0.001). Age stratified analysis revealed that rs3093193 and rs12459936 were correlated with HAPE risk in people at age > 32 years old, and rs3093193 and rs3093110 were correlated with the HAPE risk in people at age ≤ 32 years old. Gender stratification analysis was found that rs3093193, rs12459936, and rs3093110 were all related to HAPE risk in males. A combination of rs12459936 and rs3093110 was the best multi-loci model with the highest testing accuracy. Our study is the first to provide the association between CYP4F2 gene polymorphisms and HAPE risk in the Chinese Han population.
Collapse
|
7
|
Chen YP, Wang KX, Cai JQ, Li Y, Yu HL, Wu Q, Meng W, Wang H, Yin CH, Wu J, Huang MB, Li R, Guan DG. Detecting Key Functional Components Group and Speculating the Potential Mechanism of Xiao-Xu-Ming Decoction in Treating Stroke. Front Cell Dev Biol 2022; 10:753425. [PMID: 35646921 PMCID: PMC9136080 DOI: 10.3389/fcell.2022.753425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.
Collapse
Affiliation(s)
- Yu-peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ke-xin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Mian-bo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Rong Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Dao-gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| |
Collapse
|