1
|
Rajput A, Patil A, Kandhare P, Pawar A. Application of microneedle arrays in cosmetics: Promises, advances, and challenges. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2024; 24:100325. [DOI: 10.1016/j.medntd.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
2
|
Buya AB, Mahlangu P, Witika BA. From lab to industrial development of lipid nanocarriers using quality by design approach. Int J Pharm X 2024; 8:100266. [PMID: 39050378 PMCID: PMC11268122 DOI: 10.1016/j.ijpx.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Lipid nanocarriers have attracted a great deal of interest in the delivery of therapeutic molecules. Despite their many advantages, compliance with quality standards and reproducibility requirements still constrain their industrial production. The relatively high failure rate in lipid nanocarrier research and development can be attributed to immature bottom-up manufacturing practices, leading to suboptimal control of quality attributes. Recently, the pharmaceutical industry has moved toward quality-driven manufacturing, emphasizing the integration of product and process development through the principles of quality by design. Quality by design in the pharmaceutical industry involves a thorough understanding of the quality profile of the target product and involves an assessment of potential risks during the design and development phases of pharmaceutical dosage forms. By identifying essential quality characteristics, such as the active ingredients, excipients and manufacturing processes used during research and development, it becomes possible to effectively control these aspects throughout the life cycle of the drug. Successful commercialization of lipid nanocarriers can be achieved if large-scale challenges are addressed using the QbD approach. QbD has become an essential tool because of its advantages in improving processes and product quality. The application of the QbD approach to the development of lipid nanocarriers can provide comprehensive and remarkable knowledge enabling the manufacture of high-quality products with a high degree of regulatory flexibility. This article reviews the basic considerations of QbD and its application in the laboratory and large-scale development of lipid nanocarriers. Furthermore, it provides forward-looking guidance for the industrial production of lipid nanocarriers using the QbD approach.
Collapse
Affiliation(s)
- Aristote B. Buya
- Centre de Recherche en Sciences Humaines (CRESH), Ministère de la Recherche Scientifique et Innovation Technologique, Kinshasa XI, B.P. 212, Democratic Republic of the Congo
- University of Kinshasa, Faculty of Pharmaceutical Sciences, BP 212 Kinshasa XI, Democratic Republic of the Congo
| | - Phindile Mahlangu
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
3
|
Motawea A, Maria SN, Maria DN, Jablonski MM, Ibrahim MM. Genistein transfersome-embedded topical delivery system for skin melanoma treatment: in vitro and ex vivo evaluations. Drug Deliv 2024; 31:2372277. [PMID: 38952058 PMCID: PMC11221477 DOI: 10.1080/10717544.2024.2372277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Skin melanoma is considered the most dangerous form of skin cancer due to its association with high risk of metastasis, high mortality rate and high resistance to different treatment options. Genistein is a natural isoflavonoid with known chemotherapeutic activity. Unfortunately, it has low bioavailability due to its poor aqueous solubility and excessive metabolism. In the current study, genistein was incorporated into transferosomal hydrogel to improve its bioavailability. The prepared transferosomal formulations were characterized regarding: particle size; polydispersity index; zeta potential; encapsulation efficiency; TEM; FTIR; DSC; XRD; in vitro drug release; viscosity; pH; ex vivo anti-tumor activity on 3D skin melanoma spheroids and 1-year stability study at different storage temperatures. The optimized formulation has high encapsulation efficiency with an excellent particle size that will facilitate its penetration through the skin. The transfersomes have a spherical shape with sustained drug release profile. The anti-tumor activity evaluation of genistein transfersome revealed that genistein is a potent chemotherapeutic agent with enhanced penetration ability through the melanoma spheroids when incorporated into transfersomes. Stability study results demonstrate the high physical and chemical stability of our formulations. All these outcomes provide evidence that our genistein transferosomal hydrogel is a promising treatment option for skin melanoma.
Collapse
Affiliation(s)
- Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sara N. Maria
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Doaa N. Maria
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohamed Moustafa Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
4
|
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024; 16:1384. [PMID: 39598508 PMCID: PMC11597219 DOI: 10.3390/pharmaceutics16111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Dermatoses are among the most prevalent non-fatal conditions worldwide. Given this context, it is imperative to introduce safe and effective dermatological treatments to address the diverse needs and concerns of individuals. Transdermal delivery technology offers a promising alternative compared to traditional administration methods such as oral or injection routes. Therefore, this review focuses on the recent achievements of nanocarrier-based transdermal delivery technology for dermatological therapy, which summarizes diverse delivery strategies to enhance skin penetration using various nanocarriers including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, and polymeric nanocarrier according to the pathogenesis of common dermatoses. The fundamentals of transdermal delivery including skin physiology structure and routes of penetration are introduced. Moreover, mechanisms to enhance skin penetration due to the utilization of nanocarriers such as skin hydration, system deformability, disruption of the stratum corneum, surface charge, and tunable particle size are outlined as well.
Collapse
Affiliation(s)
- Yunxiang Kang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
| | - Sunxin Zhang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoqi Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziwei Yan
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guyuan Wu
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Tang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Sharma H, Anand A, Halagali P, Inamdar A, Pathak R, Taghizadeh‐Hesary F, Ashique S. Advancement of Nanoengineered Flavonoids for Chronic Metabolic Diseases. ROLE OF FLAVONOIDS IN CHRONIC METABOLIC DISEASES 2024:459-510. [DOI: 10.1002/9781394238071.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Atia HA, Shahien MM, Ibrahim S, Ahmed EH, Elariny HA, Abdallah MH. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating the Anti-Inflammatory Efficiency. Gels 2024; 10:525. [PMID: 39195054 DOI: 10.3390/gels10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Inflammation is a vascular response that occurs when the immune system responds to a range of stimuli including viruses, allergens, damaged cells, and toxic substances. Inflammation is accompanied by redness, heat, swelling, discomfort, and loss of function. Natural products have been shown to have considerable therapeutic benefits, and they are increasingly being regarded as feasible alternatives for clinical preventative, diagnostic, and treatment techniques. Natural products, in contrast to developed medications, not only contain a wide variety of structures, they also display a wide range of biological activities against a variety of disease states and molecular targets. This makes natural products appealing for development in the field of medicine. In spite of the progress that has been made in the application of natural products for clinical reasons, there are still factors that prevent them from reaching their full potential, including poor solubility and stability, as well limited efficacy and bioavailability. In order to address these problems, transdermal nanovesicular gel systems have emerged as a viable way to overcome the hurdles that are encountered in the therapeutic use of natural products. These systems have a number of significant advantages, including the ability to provide sustained and controlled release, a large specific surface area, improved solubility, stability, increased targeting capabilities and therapeutic effectiveness. Further data confirming the efficacy and safety of nanovesicles-gel systems in delivering natural products in preclinical models has been supplied by extensive investigations conducted both in vitro and in vivo. This study provides a summary of previous research as well as the development of novel nanovesicular gel formulations and their application through the skin with a particular emphasis on natural products used for treatment of inflammation.
Collapse
Affiliation(s)
- Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
7
|
Guy RH. Drug delivery to and through the skin. Drug Deliv Transl Res 2024; 14:2032-2040. [PMID: 38837116 PMCID: PMC11208237 DOI: 10.1007/s13346-024-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
Drug delivery technology has advanced significantly over >50 years, and has produced remarkable innovation, countless publications and conferences, and generations of talented and creative scientists. However, a critical review of the current state-of-the-art reveals that the translation of clever and sophisticated drug delivery technologies into products, which satisfy important, unmet medical needs and have been approved by the regulatory agencies, has - given the investment made in terms of time and money - been relatively limited. Here, this point of view is illustrated using a case study of technology for drug delivery into and through the skin and aims: to examine the historical development of this field and the current state-of-the-art; to understand why the translation of drug delivery technologies into products that improve clinical outcomes has been quite slow and inefficient; and to suggest how the impact of technology may be increased and the process of concept to approved product accelerated.
Collapse
Affiliation(s)
- Richard H Guy
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, U.K..
| |
Collapse
|
8
|
Shalaby ES, Shalaby SI, AbouTaleb S. Cyclodextrin nano-organogels as a delivery vehicle for peppermint essential oil to enhance its physico-chemical properties and skin photoprotective performance. J DISPER SCI TECHNOL 2024:1-13. [DOI: 10.1080/01932691.2024.2382253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/07/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Eman S. Shalaby
- Pharmaceutical Technology Department, National Research Centre, Giza, Cairo, Egypt
| | - Samy I. Shalaby
- Animal Hygiene Department, National Research Centre, Giza, Cairo, Egypt
| | - Sally AbouTaleb
- Pharmaceutical Technology Department, National Research Centre, Giza, Cairo, Egypt
| |
Collapse
|
9
|
Guri-Lamce I, AlRokh Y, Kim Y, Maeshima R, Graham C, Hart SL, McGrath JA, Jacków-Malinowska J. Topical gene editing therapeutics using lipid nanoparticles: 'gene creams' for genetic skin diseases? Br J Dermatol 2024; 190:617-627. [PMID: 38149939 DOI: 10.1093/bjd/ljad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Patients living with inherited skin diseases have benefited from recent advances in DNA sequencing technologies that provide new or improved diagnostics. However, developing and delivering new treatments for the 'genodermatoses' remains challenging. The goal of creating topical preparations that can recover the inherent gene pathology remains largely aspirational. However, recent progress in two fields - the chemistry of topical delivery formulations (lipid nanoparticles) and the molecular biology of gene repair (CRISPR-Cas9, base and prime editing) - presents new opportunities to address this unmet need. In this review, we discuss how lipid nanoparticle delivery vehicles could be used to deliver gene-editing tools to formulate topical 'gene creams' suitable for the treatment of genodermatoses. We summarize the historical landscape of topical therapeutics and advances in gene editing that may herald an era of new therapies for patients with inherited skin disorders.
Collapse
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara AlRokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Youngah Kim
- St John's Institute of Dermatology, King's College London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
10
|
Bodnár K, Fehér P, Ujhelyi Z, Bácskay I, Józsa L. Recent Approaches for the Topical Treatment of Psoriasis Using Nanoparticles. Pharmaceutics 2024; 16:449. [PMID: 38675110 PMCID: PMC11054466 DOI: 10.3390/pharmaceutics16040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Psoriasis (PSO) is a chronic autoimmune skin condition characterized by the rapid and excessive growth of skin cells, which leads to the formation of thick, red, and scaly patches on the surface of the skin. These patches can be itchy and painful, and they may cause discomfort for patients affected by this condition. Therapies for psoriasis aim to alleviate symptoms, reduce inflammation, and slow down the excessive skin cell growth. Conventional topical treatment options are non-specific, have low efficacy and are associated with adverse effects, which is why researchers are investigating different delivery mechanisms. A novel approach to drug delivery using nanoparticles (NPs) shows promise in reducing toxicity and improving therapeutic efficacy. The unique properties of NPs, such as their small size and large surface area, make them attractive for targeted drug delivery, enhanced drug stability, and controlled release. In the context of PSO, NPs can be designed to deliver active ingredients with anti-inflammatory effect, immunosuppressants, or other therapeutic compounds directly to affected skin areas. These novel formulations offer improved access to the epidermis and facilitate better absorption, thus enhancing the therapeutic efficacy of conventional anti-psoriatic drugs. NPs increase the surface-to-volume ratio, resulting in enhanced penetration through the skin, including intracellular, intercellular, and trans-appendage routes. The present review aims to discuss the latest approaches for the topical therapy of PSO using NPs. It is intended to summarize the results of the in vitro and in vivo examinations carried out in the last few years regarding the effectiveness and safety of nanoparticles.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| |
Collapse
|
11
|
Lee DH, Lim S, Kwak SS, Kim J. Advancements in Skin-Mediated Drug Delivery: Mechanisms, Techniques, and Applications. Adv Healthc Mater 2024; 13:e2302375. [PMID: 38009520 PMCID: PMC11468599 DOI: 10.1002/adhm.202302375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Indexed: 11/29/2023]
Abstract
Skin-mediated drug delivery methods currently are receiving significant attention as a promising approach for the enhanced delivery of drugs through the skin. Skin-mediated drug delivery offers the potential to overcome the limitations of traditional drug delivery methods, including oral administration and intravenous injection. The challenges associated with drug permeation through layers of skin, which act as a major barrier, are explored, and strategies to overcome these limitations are discussed in detail. This review categorizes skin-mediated drug delivery methods based on the means of increasing drug permeation, and it provides a comprehensive overview of the mechanisms and techniques associated with these methods. In addition, recent advancements in the application of skin-mediated drug delivery are presented. The review also outlines the limitations of ongoing research and suggests future perspectives of studies regarding the skin-mediated delivery of drugs.
Collapse
Affiliation(s)
- Dong Ha Lee
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sunyoung Lim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sung Soo Kwak
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Joohee Kim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
12
|
Lu Y, Cheng B, Shan Y, Zhou S, Xu C, Fei Y, Pan J, Piao J, Li F, Zhu Z, Zheng H. Lyophilization enhances the stability of Panax notoginseng total saponins-loaded transfersomes without adverse effects on ex vivo/in vivo skin permeation. Int J Pharm 2024; 649:123668. [PMID: 38048891 DOI: 10.1016/j.ijpharm.2023.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Transfersomes (TFSs) have been extensively investigated to enhance transdermal drug delivery. As a colloidal dispersion system, TFSs are prone to problems such as particle aggregation and sedimentation, oxidation and decomposition of phospholipids. To enhance the stability of panax notoginseng saponins (PNS)-loaded transfersomes (PNS-TFSs) without adverse influences on their skin permeation, we prepared lyophilized PNS-loaded transfersomes (PNS-FD-TFSs), clarified their physicochemical characteristics and investigated their in vitro drug release, ex vivo skin permeation/deposition and in vivo pharmacokinetics. In this study, a simple, fast and controllable process was developed for preparing lyophilized PNS-TFSs. In the optimized PNS-FD-TFS formulation, sucrose and trehalose were added to the PNS-TFS dispersion with a mass ratio of trehalose, sucrose, and phospholipid of 3:2:1, and the mixture was frozen at -80 °C for 12 h followed by lyophilization at -45 °C and 5 Pa for 24 h. The optimized formulation of PNS-FD-TFSs was screened based on the appearance and reconstitution time of the lyophilized products, vesicle size, and PDI of the freshly reconstituted dispersions. It maintained stable physicochemical properties for at least 6 months at 4 °C. The vesicle size of PNS-FD-TFSs was below 100 nm and homogenous with a polydispersity index of 0.2 after reconstitution. The average encapsulation efficiencies of the five index saponins notoginsenoside R1 (NGR1), ginsenoside Rg1 (GRg1), ginsenoside Re (GRe), ginsenoside Rb1 (GRb1) and ginsenoside Rd (GRd) in PNS-FD-TFSs were 68.41 ± 5.77%, 68.95 ± 6.08%, 65.46 ± 10.95%, 91.50 ± 5.62% and 95.78 ± 1.70%, respectively. The reconstituted dispersions of PNS-FD-TFSs were similar to PNS-TFSs in in vitro release, ex vivo skin permeation, and deposition. The pharmacokinetic studies showed that, compared with the PNS liposomes (PNS-LPS), the PNS-FD-TFS-loaded drug could permeate through the skin and enter the blood rapidly. It can be concluded that the lyophilization process can effectively improve the stability of PNS-TFSs without compromising their transdermal absorption properties.
Collapse
Affiliation(s)
- Yujie Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Bixin Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yujun Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Shanshan Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Chang Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yarong Fei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jialin Pan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jigang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Zhihong Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
13
|
Yuan T, Shen L, Dini D. Porosity-permeability tensor relationship of closely and randomly packed fibrous biomaterials and biological tissues: Application to the brain white matter. Acta Biomater 2024; 173:123-134. [PMID: 37979635 DOI: 10.1016/j.actbio.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
The constitutive model for the porosity-permeability relationship is a powerful tool to estimate and design the transport properties of porous materials, which has attracted significant attention for the advancement of novel materials. However, in comparison with other materials, biomaterials, especially natural and artificial tissues, have more complex microstructures e.g. high anisotropy, high randomness of cell/fibre dimensions/position and very low porosity. Consequently, a reliable microstructure-permeability relationship of fibrous biomaterials has proven elusive. To fill this gap, we start a mathematical derivation from the fundamental brain white matter (WM) formed by nerve fibres. This is augmented by a numerical characterisation and experimental validations to obtain an anisotropic permeability tensor of the brain WM as a function of the tissue porosity. A versatile microstructure generation software (MicroFiM) for fibrous biomaterial with complex microstructure and low porosity was built accordingly and made freely accessible here. Moreover, we propose an anisotropic poro-hyperelastic model enhanced by the newly defined porosity-permeability tensor relationship which precisely captures the tissues macro-scale permeability changes due to the microstructural deformation in an infusion scenario. The constitutive model, theories and protocols established in this study will both provide improved design strategies to tailor the transport properties of fibrous biomaterials and enable the non-invasive characterisation of the transport properties of biological tissues. This will lead to the provision of better patient-specific medical treatments, such as drug delivery. STATEMENT OF SIGNIFICANCE: Due to the microstructural complexity, a reliable microstructure-permeability relationship of fibrous biomaterials has proven elusive, which hinders our way of tuning the fluid transport property of the biomaterials by directly programming their microstructure. The same problem hinders non-invasive characterisations of fluid transport properties in biological tissues, which can significantly improve the efficiency of treatments e.g. drug delivery, directly from the tissues accessible microstructural information, e.g. porosity. Here, we developed a validated mathematical formulation to link the random microstructure to a fibrous material's macroscale permeability tensor. This will advance our capability to design complex biomaterials and make it possible to non-invasively characterise the permeability of living tissues for precise treatment planning. The newly established theory and protocol can be easily adapted to various types of fibrous biomaterials.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Li Shen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
14
|
Matharoo N, Mohd H, Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1918. [PMID: 37527953 DOI: 10.1002/wnan.1918] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/03/2023]
Abstract
The development of innovative approaches to deliver medications has been growing now for the last few decades and generates a growing interest in the dermatopharmaceutical field. Transdermal drug delivery in particular, remains an attractive alternative route for many therapeutics. However, due to the limitations posed by the barrier properties of the stratum corneum, the delivery of many pharmaceutical dosage forms remains a challenge. Most successful therapies using the transdermal route have been ones containing smaller lipophilic molecules with molecular weights of a few hundred Daltons. To overcome these limitations of size and lipophilicity of the drugs, transferosomes have emerged as a successful tool for transdermal delivery of a variety of therapeutics including hydrophilic actives, larger molecules, peptides, proteins, and nucleic acids. Transferosomes exhibit a flexible structure and higher surface hydrophilicity which both play a critical role in the transport of drugs and other solutes using hydration gradients as a driving force to deliver the molecules into and across the skin. This results in enhanced overall permeation as well as controlled release of the drug in the skin layers. Additionally, the physical-chemical properties of the transferosomes provide increased stability by preventing degradation of the actives by oxidation, light, and temperature. Here, we present the history of transferosomes from solid lipid nanoparticles and liposomes, their physical-chemical properties, dermal kinetics, and their recent advances as marketed dosage forms. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namrata Matharoo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hana Mohd
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Cammarano A, Dello Iacono S, Meglio C, Nicolais L. Advances in Transdermal Drug Delivery Systems: A Bibliometric and Patent Analysis. Pharmaceutics 2023; 15:2762. [PMID: 38140102 PMCID: PMC10747220 DOI: 10.3390/pharmaceutics15122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Transdermal drug delivery systems have become an intriguing research topic in healthcare technology and one of the most frequently developed pharmaceutical products in the global market. In recent years, researchers and pharmaceutical companies have made significant progress in developing new solutions in the field. This study sheds light on current trends, collaboration patterns, research hotspots, and emerging frontiers of transdermal drug delivery. Herein, a bibliometric and patent analysis of data recovered from Scopus and The Lens databases, respectively, is reported over the last 20 years. From 2000 to 2022, the annual global publications increased from 131 in 2000 to 659 in 2022. Researchers in the United States, China, and India produced the highest number of publications. Likewise, most patent applications have been filed in the USA, China, and Europe. The recovered patents are 7275, grouped into 2997 patent families, of which 314 were granted. This study could support the work of decision-makers, scientific managers, or scientists to create new business opportunities or save money, time, and intellectual capital, thereby defining when a research or technology project should be a priority or not.
Collapse
Affiliation(s)
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055 Portici, Italy
| | | | - Luigi Nicolais
- Materias Srl, Corso N. Protopisani 50, 80146 Naples, Italy
| |
Collapse
|
16
|
Nayak BS, Mohanty B, Mishra B, Roy H, Nandi S. Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system. Chem Biol Drug Des 2023; 102:653-667. [PMID: 37062593 DOI: 10.1111/cbdd.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The skin is a major route of drug administration. Despite the high surface area of the skin, drug delivery via the skin route is problematic due to its physiological obstacles. The formulation scientist has developed a vesicular system to enhance the skin's absorption of bioactive substances. Among numerous vesicular systems, concept of transethosomes (TEs) introduced in 2012 are being tested for drug delivery to the dermis. When transferosomes and ethosomes interact, TEs are produced. It consists of water, ethanol, phospholipids, and an edge activator. Ethanol and the edge activator increase the absorption of medication through the skin. In the presence of ethanol and an edge activator, skin permeability can increase. The advantages of TEs include increased patient compliance, bypassing first-pass metabolism, including non-toxic raw components, being a noninvasive method of drug delivery, being more stable, biocompatible, biodegradable, and administered in semisolid form. TEs can be produced through the use of hot, cold, mechanical dispersion, and conventional techniques. The morphology, shape, size, zeta potential, drug loading efficiency, vesicle yield, biophysical interactions, and stability of TEs define them. Recent studies reported successful transdermal distribution of antifungal, antiviral, anti-inflammatory, and cardiovascular bioactive while using ethosomes with significant deeper penetration in skin. The review extensively discussed various claims on TEs developed by researchers, patents, and marketed ethosomes. However, till today no patens being granted on TEs. There are still lingering difficulties related to ethanol-based TEs that require substantial research to fix.
Collapse
Affiliation(s)
| | | | - Bibaswan Mishra
- Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha, India
| | | | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Kashipur, Uttarakhand, India
| |
Collapse
|
17
|
Sabbagh F, Kim BS. Ex Vivo Transdermal Delivery of Nicotinamide Mononucleotide Using Polyvinyl Alcohol Microneedles. Polymers (Basel) 2023; 15:polym15092031. [PMID: 37177177 PMCID: PMC10181269 DOI: 10.3390/polym15092031] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide mononucleotide (NMN), which has recently been spotlighted as an anti-aging agent, is a precursor of the coenzyme nicotinamide adenine dinucleotide that plays an important role in intracellular redox reactions. NMN capsules for oral administration currently on the market have a problem in that they are almost fully metabolized in the stomach and liver and excreted as nicotinamide. Therefore, there is a need to develop a patient-friendly delivery method that can improve the bioavailability of NMN. For this purpose, various polyvinyl alcohol (PVA)-based microneedle patches were fabricated to develop a transdermal delivery system for NMN. First, the molecular weight effect of PVA on the shape and microstructure of microneedles was studied. After selecting the optimal molecular weight PVA, the swelling of the microneedles and the ex vivo release of NMN were studied. The effect of carboxymethyl cellulose (CMC) and dimethyl sulfoxide on NMN release was also investigated. The highest NMN release of 91.94% in 18 h was obtained using a 9.5 kDa molecular weight PVA microneedle containing NMN and CMC.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Beom-Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
18
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
19
|
Iachina I, Eriksson AH, Bertelsen M, Petersson K, Jansson J, Kemp P, Engell KM, Brewer JR, Nielsen KT. Dissolvable microneedles for transdermal drug delivery showing skin pentation and modified drug release. Eur J Pharm Sci 2023; 182:106371. [PMID: 36621615 DOI: 10.1016/j.ejps.2023.106371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Topical therapies for chronic skin diseases suffer from a low patient compliance due to the inconvenient treatment regimens of available products. Dissolvable microneedles (MN) with modified release offer an interesting possibility to increase the compliance by acting as a depot in the skin and thereby decreasing the dosing frequency. Furthermore, the bioavailability can be increased significantly by bypassing the barrier of the skin by the direct penetration of the MN into the skin. In this study the depot effect and skin penetration of an innovative dissolvable MN patch was assessed by insertion in ex vivo human skin and in vivo using minipigs. The MN patches are based on biodegradable polymers and the active pharmaceutical ingredients calcipotriol (Calci) and betamethasone-17-21-dipropionate (BDP) used to treat psoriasis. Using computed tomography (CT) and Coherent anti-Stokes Raman scattering (CARS) microscopy it was possible to visualize the skin penetration and follow the morphology of the MN as function of time in the skin. The depot effect was assessed by studying the modified in vitro release in an aqueous buffer and by comparing the drug release of a single application of a patch both ex vivo and in vivo to daily application of a marketed oleogel containing the same active pharmaceutical ingredients. The CT and CARS images showed efficient penetration of the MN patches into the upper dermis and a slow swelling process of the drug containing tip over a period of 8 days. Furthermore, CARS demonstrated that it can be used as a noninvasive technique with potential applicability in clinical settings. The in vitro release studies show a release of 54% over a time period of 30 days. The pharmacological relevance of MNs was confirmed in human skin explants and in vivo after single application and showed a similar response on calcipotriol and BDP mediated signaling events compared to daily application of the active oleogel. Altogether it was demonstrated that the MN can penetrate the skin and have the potential to provide a depot effect.
Collapse
Affiliation(s)
- Irina Iachina
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - André H Eriksson
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Malene Bertelsen
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jörgen Jansson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Pernille Kemp
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karen M Engell
- Small Molecule Early Pharmaceutical Development, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Kim T Nielsen
- Advanced Analytical and Structural Chemistry, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark.
| |
Collapse
|
20
|
Interactions between DMPC Model Membranes, the Drug Naproxen, and the Saponin β-Aescin. Pharmaceutics 2023; 15:pharmaceutics15020379. [PMID: 36839701 PMCID: PMC9960855 DOI: 10.3390/pharmaceutics15020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
In this study, the interplay among the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as a model membrane, the nonsteroidal anti-inflammatory drug naproxen, and the saponin β-aescin are investigated. The naproxen amount was fixed to 10 mol%, and the saponin amount varies from 0.0 to 1.0 mol%. Both substances are common ingredients in pharmaceutics; therefore, it is important to obtain deeper knowledge of their impact on lipid membranes. The size and properties of the DMPC model membrane upon naproxen and aescin addition were characterized with differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS, WAXS), and photon correlation spectroscopy (PCS) in a temperature-dependent study. The interaction of all substances was dependent on the lipid phase state, which itself depends on the lipid's main phase transition temperature Tm. The incorporation of naproxen and aescin distorted the lipid membrane structure and lowers Tm. Below Tm, the DMPC-naproxen-aescin mixtures showed a vesicle structure, and the insertion of naproxen and aescin influenced neither the lipid chain-chain correlation distance nor the membrane thickness. Above Tm, the insertion of both molecules instead induced the formation of correlated bilayers and a decrease in the chain-chain correlation distance. The presented data clearly confirm the interaction of naproxen and aescin with DMPC model membranes. Moreover, the incorporation of both additives into the model membranes is evidenced.
Collapse
|
21
|
Donthi MR, Munnangi SR, Krishna KV, Saha RN, Singhvi G, Dubey SK. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15010164. [PMID: 36678794 PMCID: PMC9863395 DOI: 10.3390/pharmaceutics15010164] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Nano-emulgel is an emerging drug delivery system intended to enhance the therapeutic profile of lipophilic drugs. Lipophilic formulations have a variety of limitations, which includes poor solubility, unpredictable absorption, and low oral bioavailability. Nano-emulgel, an amalgamated preparation of different systems aims to deal with these limitations. The novel system prepared by the incorporation of nano-emulsion into gel improves stability and enables drug delivery for both immediate and controlled release. The focus on nano-emulgel has also increased due to its ability to achieve targeted delivery, ease of application, absence of gastrointestinal degradation or the first pass metabolism, and safety profile. This review focuses on the formulation components of nano-emulgel for topical drug delivery, pharmacokinetics and safety profiles.
Collapse
Affiliation(s)
- Mahipal Reddy Donthi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Siva Ram Munnangi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- R&D Healthcare Division Emami Ltd., 13, BT Road, Kolkata 700056, India
- Correspondence: ; Tel.: +91-8239703734
| |
Collapse
|
22
|
Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, Vallejos VMR, De Morais HLO. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022; 15:pharmaceutics15010099. [PMID: 36678729 PMCID: PMC9864876 DOI: 10.3390/pharmaceutics15010099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.
Collapse
Affiliation(s)
- Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34092940
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thais T. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Helane L. O. De Morais
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
23
|
Altamimi M, Hussain A, Mahdi WA, Imam SS, Alshammari MA, Alshehri S, Khan MR. Mechanistic Insights into Luteolin-Loaded Elastic Liposomes for Transdermal Delivery: HSPiP Predictive Parameters and Instrument-Based Evidence. ACS OMEGA 2022; 7:48202-48214. [PMID: 36591170 PMCID: PMC9798756 DOI: 10.1021/acsomega.2c06288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
We evaluated mechanistic insights into luteolin (LUT)-loaded elastic liposomes (OLEL1) permeated across rat skin. HSPiP software-based parameters, thermal analysis, infrared analysis, and morphological evaluations were employed to understand mechanistic observations of drug permeation and deposition. HSPiP provided HSP values (δd, δp, and δh) of OLEL1 (based on composition), LUT, excipients, and rat skin (literature value and by-default value). Rat skin was studied via Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) studies. The δd and δh estimation of the skin and phosphatidylcholine showed close relation in terms of δd and δh. Similarly, OLEL1 and the skin might interact with each other mainly through δd and δp forces as evidenced by the predicted values. The untreated skin showed characteristic stretching and vibrations as compared to lower frequencies caused by OLEL1. DSC showed changes in the thermal behavior of the skin after OLEL1 treatment as compared to the untreated skin. Visualization of these changes was evident under fluorescence microscopy and SEM for confirmed substantial reversible surface perturbation of the skin protein layer for improved vesicle permeation and subsequent internalization with the inner skin matrix. The AFM study confirmed the nanoscale surface roughness variation caused substantially by OLEL1 and OLEL1 placebo as compared to the untreated control and drug solution. Thus, the study clearly demonstrated mechanistic insights into LUT-loaded vesicles across rat skin for enhanced permeation and drug deposition.
Collapse
Affiliation(s)
- Mohammad
A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
- . Phone: +966564591584
| | - Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Musaad A. Alshammari
- Department
of Pharmacology, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department
of Pharmacology, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Lan X, Guo J, Li J, Qiang W, Du L, Zhou T, Li X, Wu Z, Yang J. Xanthan gum/oil body-microgel emulsions with enhanced transdermal absorption for accelerating wound healing. Int J Biol Macromol 2022; 222:1376-1387. [PMID: 36126813 DOI: 10.1016/j.ijbiomac.2022.09.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
The oil body comprises lipid droplets surrounded by a surface embedded with oil body-related proteins. To form a drug delivery system, an oleosin can be fused with foreign proteins and bound to the oil body surface. Here, safflower oil bodies carrying oleosin-human epidermal growth factor (hEGF) were mixed with xanthan gum to form self-assembled polymers, referred as an oil body microgel emulsion (OBEME) without any chemical crosslinking agent. The physicochemical properties of OBEME were evaluated and compared with those of natural lipid droplets. The electrostatic interaction between xanthan gum and oil bodies prevents excessive cross-linking and forms a uniform network structure. The basic properties of OBEME were characterized by scanning electron microscopy, cryo-scanning electron microscopy, rheology, and thermogravimetric analysis. The OBEME is an interconnected network and presents a smooth surface without any pores; it remains stable at room temperature for 90 days, and is not affected by low-speed centrifugation and repeated freeze-thaw cycles as indicated by particle size, potential, and fluorescence microscopy analyses. The OBEME enlarges the skin tissue gap, enhances skin permeability, and shows a good slow-release effect in the transdermal absorption test in vivo. It demonstrates a wound healing effect; further, it regulates the inflammatory response of full-layer skin wounds in rats, as well as accelerate angiogenesis, and promote re-epithelialization and remodeling. The OBEME as a bioactive molecule-carbohydrate complex can effectively accelerate skin regeneration and has great translational potential to provide low-cost alternative wound care treatments.
Collapse
Affiliation(s)
- Xinxin Lan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jinnan Guo
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Weidong Qiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Tingting Zhou
- Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun 130000, China
| | - Xiaokun Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhuofu Wu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
25
|
Khan MI, Yaqoob S, Madni A, Akhtar MF, Sohail MF, Saleem A, Tahir N, Khan KUR, Qureshi OS. Development and In Vitro/ Ex Vivo Evaluation of Lecithin-Based Deformable Transfersomes and Transfersome-Based Gels for Combined Dermal Delivery of Meloxicam and Dexamethasone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8170318. [PMID: 36483631 PMCID: PMC9726271 DOI: 10.1155/2022/8170318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Transfersomes (TFS) are the promising carriers for transdermal delivery of various low and high molecular weight drugs, owing to their self-regulating and self-optimizing nature. Herein, we report synthesis and characterization of TFS loaded with meloxicam (MLX), an NSAID, and dexamethasone (DEX), a steroid, for simultaneous transdermal delivery. The different formulations of TFS containing varying amounts of lecithin, Span 80, and Tween 80 (TFS-1 to TFS-6) were successfully prepared by thin-film hydration method. The size of ranged between 248 and 273 nm, zeta potential values covering from -62.6 to -69.5 mV, polydispersity index (PDI) values in between 0.329 and 0.526, and entrapment efficiency of MLX and DEX ranged between 63-96% and 48-81%, respectively. Release experiments at pH 7.4 demonstrated higher cumulative drug release attained with Tween 80 compared to Span 80-based TFS. The scanning electron microscopy (SEM) of selected formulations -1 and TFS-3 revealed spherical shape of vesicles. Furthermore, three optimized transfersomal formulations (based on entrapment efficiency, TFS-1, TFS-3, and TFS-5) were incorporated into carbopol-940 gels coded as TF-G1, TF-G3, and TF-G5. These transfersomal gels were subjected to pH, spreadability, viscosity, homogeneity, skin irritation, in vitro drug release, and ex vivo skin permeation studies, and the results were compared with plain (nontransfersomal) gel having MLX and DEX. TFS released 71.72% to 81.87% MLX in 12 h; whereas, DEX release was quantified as 74.72% to 83.72% in same time. Nevertheless, TF-based gels showed slower drug release; 51.54% to 59.60% for MLX and 48.98% to 61.23% for DEX. The TF-G systems showed 85.87% permeation of MLX (TF-G1), 68.15% (TF-G3), and 68.94% (TF-G5); whereas, 78.59%, 70.54%, and 75.97% of DEX was permeated by TF-G1, TF-G3, and TF-G5, respectively. Kinetic modeling of release and permeation data indicated to follow Korsmeyer-Peppas model showing diffusion diffusion-based drug moment. Conversely, plain gel influx was found mere 26.18% and 22.94% for MLX and DEX, respectively. These results suggest that TF-G loaded with MLX and DEX can be proposed as an alternate drug carriers for improved transdermal flux that will certainly increase therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Samiya Yaqoob
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | |
Collapse
|
26
|
Zhang Y, Ma M, Chen L, Du X, Meng Z, Zhang H, Zheng Z, Chen J, Meng Q. A Biocompatible Liquid Pillar[n]arene-Based Drug Reservoir for Topical Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122621. [PMID: 36559115 PMCID: PMC9783689 DOI: 10.3390/pharmaceutics14122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Advanced external preparations that possess a sustained-release effect and integrate few irritant elements are urgently needed to satisfy the special requirements of topical administration in the clinic. Here, a series of liquid pillar[n]arene-bearing varying-length oligoethylene oxide chains (OEPns) were designed and synthesized. Following rheological property and biocompatibility investigations, pillar[6]arene with triethylene oxide substituents (TEP6) with satisfactory cavity size were screened as optimal candidate compounds. Then, a supramolecular liquid reservoir was constructed from host-guest complexes between TEP6 and econazole nitrate (ECN), an external antimicrobial agent without additional solvents. In vitro drug-release studies revealed that complexation by TEP6 could regulate the release rate of ECN and afford effective cumulative amounts. In vivo pharmacodynamic studies confirmed the formation of a supramolecular liquid reservoir contributed to the accelerated healing rate of a S. aureus-infected mouse wound model. Overall, these findings have provided the first insights into the construction of a supramolecular liquid reservoir for topical administration.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| |
Collapse
|
27
|
Chopra A, Gupta A. Skin as an immune organ and the site of biomimetic, non-invasive vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Quality by design (QbD) assisted Fabrication & evaluation of Simvastatin loaded Nano-Enabled thermogel for melanoma therapy. Int J Pharm 2022; 628:122270. [DOI: 10.1016/j.ijpharm.2022.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
29
|
Khalil LM, Abdallah OY, Elnaggar YS, El-Refaie WM. Novel dermal nanobilosomes with promising browning effect of adipose tissue for management of obesity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Fan Y, Lu Y, Cheng B, Wei Y, Wei Y, Piao J, Li F, Zheng H. Correlation between in vivo microdialysis pharmacokinetics and ex vivo permeation for sinomenine hydrochloride transfersomes with enhanced skin absorption. Int J Pharm 2022; 621:121789. [PMID: 35525469 DOI: 10.1016/j.ijpharm.2022.121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Transdermal drug delivery systems have drawn increasing attention in recent decades. Estimation of the correlation between ex vivo permeation and in vivo absorption (EVIVC) is an indispensable issue in the research and development of transdermal pharmaceutical products. In this paper, sinomenine hydrochloride (SH) transfersomes (SHTs) were prepared with sodium deoxycholate as edge activator, while SH liposomes (SHLs) were prepared as a control preparation. The transdermal permeation characteristics differences between them were explored by an ex vivo skin permeation experiment with Franz diffusion cell and an in vivo skin/blood pharmacokinetic experiment facilitated by double-sited microdialysis sampling technique. The curves of percentage absorbed versus time (absorption curves) under the skin and in the blood were plotted according to the percentages calculated by the deconvolution approach with the application of Wagner-Nelson model, and were correlated with the ex vivo permeation curves to evaluate a level A correlation, while a level C correlation evaluation was conducted based on the in vivo steady-state blood concentration (Css) and the ex vivo steady-state transdermal permeation rate. The ex vivo permeation test indicated that the cumulative transdermal permeated amount of SH at 36 h in SHTs was about 1.7 times of that in SHLs. The skin pharmacokinetic data showed that the Css and AUC0-t of SHTs were about 8.8 and 8.0 times of those of SHLs, respectively, and the MRT0-t of SHTs was shorter. The blood pharmacokinetic data showed that the Css and AUC0-t of SHTs were about 3.7 and 2.9 times of those of SHLs, respectively. The in vivo absorption curves were correlated well with the ex vivo permeation curves. The squares of correlation coefficient (R2) for SHTs and SHLs were 0.9153 and 0.9355 respectively in the skin, were 0.8536 and 0.7747 respectively in the blood. As to level C EVIVC, there was no significant difference between the predicted Css from ex vivo and the measured Cssin vivo. The transfersomes can be employed as effective vehicles to promote the transdermal absorption of SH, and it is feasible to predict the in vivo skin/blood pharmacokinetic properties of SHLs and SHTs based on the ex vivo skin permeation characteristics.
Collapse
Affiliation(s)
- Yuhang Fan
- Shool of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yujie Lu
- Shool of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Bixin Cheng
- Shool of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yan Wei
- Shool of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yinghui Wei
- Shool of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Jigang Piao
- Shool of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Fanzhu Li
- Shool of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Hangsheng Zheng
- Shool of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| |
Collapse
|
31
|
Fornasier M, Dessì F, Pireddu R, Sinico C, Carretti E, Murgia S. Lipid vesicular gels for topical administration of antioxidants. Colloids Surf B Biointerfaces 2022; 213:112388. [PMID: 35183999 DOI: 10.1016/j.colsurfb.2022.112388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
The application of a formulation on the skin represents an effective way to deliver bio-active molecules for therapeutical purposes. Moreover, the outermost skin layer, the stratum corneum, can be overcome by employing chemical permeation enhancers and edge activators as components. Several lipids can be considered as permeation enhancers, such as the ubiquitous monoolein, one of the most used building blocks for the preparation of lipid liquid crystalline nanoparticles which are applied as drug carriers for nanomedicine applications. Recent papers highlighted how bile salts can affect the phase behavior of monoolein to obtain drug carriers suitable for topical administration, given their role as edge activators into the formulation. Herein, the encapsulation of natural antioxidants (caffeic acid and ferulic acid) into lipid vesicular gels (LVGs) made by monoolein and sodium taurocholate (TC) in water was studied to produce formulations suitable for topical application. TC induces a bicontinuous cubic to multilamellar phase transition for monoolein in water at the given concentrations, and by increasing its content into the formulations, unilamellar LVGs are formed. The encapsulation of the two antioxidants did not affect significantly the structure of the gels. The oscillating rheological studies showed that ferulic acid has a structuring effect on the lipid matrix, in comparison with the empty dispersion and the one containing caffeic acid. These gels were then tested in vitro on new-born pig skin to evaluate their efficacy as drug carriers for topical administration, showing that caffeic acid is mostly retained in the gel whereas ferulic acid is released at a higher degree. The data herein reported provide some further information on the effect of bile salts on the lipid self-assembly to evaluate useful compositions for topical administration of natural antioxidants.
Collapse
Affiliation(s)
- Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy; Department of Chemical and Geological Sciences, University of Cagliari, s.s 554 bivio Sestu, Monserrato I-09042, Italy.
| | - Francesca Dessì
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy; Department of Chemical and Geological Sciences, University of Cagliari, s.s 554 bivio Sestu, Monserrato I-09042, Italy
| | - Rosa Pireddu
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, Cagliari I-09124, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, Cagliari I-09124, Italy
| | - Emiliano Carretti
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy; Chemistry Department "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino I-50019, Italy
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy; Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, Cagliari I-09124, Italy.
| |
Collapse
|
32
|
Cristiano MC, d’Avanzo N, Mancuso A, Tarsitano M, Barone A, Torella D, Paolino D, Fresta M. Ammonium Glycyrrhizinate and Bergamot Essential Oil Co-Loaded Ultradeformable Nanocarriers: An Effective Natural Nanomedicine for In Vivo Anti-Inflammatory Topical Therapies. Biomedicines 2022; 10:biomedicines10051039. [PMID: 35625775 PMCID: PMC9138283 DOI: 10.3390/biomedicines10051039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Bergamot essential oil (BEO) and Ammonium glycyrrhizinate (AG), naturally derived compounds, have remarkable anti-inflammatory properties, thus making them suitable candidates for the treatment of skin disorders. Despite this, their inadequate physicochemical properties strongly compromise their topical application. Ultradeformable nanocarriers containing both BEO and AG were used to allow their passage through the skin, thus maximizing their therapeutic activity. Physicochemical characterization studies were performed using Zetasizer Nano ZS and Turbiscan Lab®. The dialysis method was used to investigate the release profile of the active compounds. In vivo studies were performed on human healthy volunteers through the X-Rite spectrophotometer. The nanosystems showed suitable features for topical cutaneous administration in terms of mean size, surface charge, size distribution, and long-term stability/storability. The co-delivery of BEO and AG in the deformable systems improved both the release profile kinetic of ammonium glycyrrhizinate and deformability properties of the resulting nanosystems. The topical cutaneous administration on human volunteers confirmed the efficacy of the nanosystems. In detail, BEO and AG-co-loaded ultradeformable vesicles showed a superior activity compared to that recorded from the ones containing AG as a single agent. These results are promising and strongly encourage a potential topical application of AG/BEO co-loaded nanocarriers for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
| | - Nicola d’Avanzo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini n.31, 66100 Chieti, Italy;
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
| | - Martine Tarsitano
- Department of Health Science, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.T.); (M.F.)
| | - Antonella Barone
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
- Correspondence: ; Tel.: +39-0961-3694-211
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.T.); (M.F.)
| |
Collapse
|
33
|
Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022; 8:e08938. [PMID: 35198788 PMCID: PMC8851252 DOI: 10.1016/j.heliyon.2022.e08938] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/28/2022] Open
Abstract
The skin is a complex and multifunctional organ, in which the static versus dynamic balance is responsible for its constant adaptation to variations in the external environment that is continuously exposed. One of the most important functions of the skin is its ability to act as a protective barrier, against the entry of foreign substances and against the excessive loss of endogenous material. Human skin imposes physical, chemical and biological limitations on all types of permeating agents that can cross the epithelial barrier. For a molecule to be passively permeated through the skin, it must have properties, such as dimensions, molecular weight, pKa and hydrophilic-lipophilic gradient, appropriate to the anatomy and physiology of the skin. These requirements have limited the number of commercially available products for dermal and transdermal administration of drugs. To understand the mechanisms involved in the drug permeation process through the skin, the approach should be multidisciplinary in order to overcome biological and pharmacotechnical barriers. The study of the mechanisms involved in the permeation process, and the ways to control it, can make this route of drug administration cease to be a constant promise and become a reality. In this work, we address the physicochemical and biopharmaceutical aspects encountered in the pathway of drugs through the skin, and the potential added value of using solid lipid nanoparticles (SLN) and nanostructured lipid vectors (NLC) to drug permeation/penetration through this route. The technology and architecture for obtaining lipid nanoparticles are described in detail, namely the composition, production methods and the ability to release pharmacologically active substances, as well as the application of these systems in the vectorization of various pharmacologically active substances for dermal and transdermal applications. The characteristics of these systems in terms of dermal application are addressed, such as biocompatibility, occlusion, hydration, emollience and the penetration of pharmacologically active substances. The advantages of using these systems over conventional formulations are described and explored from a pharmaceutical point of view.
Collapse
|
34
|
Development, characterization and preclinical evaluation of nanosized liposomes of itraconazole for topical application: 32 full factorial design to estimate the relationship between formulation components. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan JZ, Zeb A. Transfersomes: a Revolutionary Nanosystem for Efficient Transdermal Drug Delivery. AAPS PharmSciTech 2021; 23:7. [PMID: 34853906 DOI: 10.1208/s12249-021-02166-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Transdermal delivery system has gained significance in drug delivery owing to its advantages over the conventional delivery systems. However, the barriers of stratum corneum along with skin irritation are its major limitations. Various physical and chemical techniques have been employed to alleviate these impediments. Among all these, transfersomes have shown potential for overcoming the associated limitations and successfully delivering therapeutic agents into systemic circulation. These amphipathic vesicles are composed of phospholipids and edge activators. Along with providing elasticity, edge activator also affects the vesicular size and entrapment efficiency of transfersomes. The mechanism behind the enhanced permeation of transfersomes through the skin involves their deformability and osmotic gradient across the application site. Permeation enhancers can further enhance their permeability. Biocompatibility; capacity for carrying hydrophilic, lipophilic as well as high molecular weight therapeutics; deformability; lesser toxicity; enhanced permeability; and scalability along with potential for surface modification, active targeting, and controlled release render them ideal designs for efficient drug delivery. The current review provides a brief account of the discovery, advantages, composition, synthesis, comparison with other cutaneous nano-drug delivery systems, applications, and recent developments in this area.
Collapse
|
36
|
Luteolin-Loaded Elastic Liposomes for Transdermal Delivery to Control Breast Cancer: In Vitro and Ex Vivo Evaluations. Pharmaceuticals (Basel) 2021; 14:ph14111143. [PMID: 34832925 PMCID: PMC8622977 DOI: 10.3390/ph14111143] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The study aimed to prepare and optimize luteolin (LUT)-loaded transdermal elastic liposomes (LEL1-LEL12), followed by in vitro and ex vivo evaluations of their ability to control breast cancer. Various surfactants (Span 60, Span 80, and Brij 35), and phosphatidyl choline (PC) as a lipid, were used to tailor various formulation as dictated by “Design Expert® software (DOE). These were characterized for size, polydispersity index (PDI), and zeta potential. The optimized formulation (OLEL1) was selected for comparative investigations (in vitro and ex vivo) against lipo (conventional liposomes) and drug suspension (DS). Moreover, the in vitro anticancer activity of OLEL1 was compared against a control using MCF-7 cell lines. Preliminary selection of the suitable PC: surfactant ratio for formulations F1–F9 showed relative advantages of Span 80. DOE suggested two block factorial designs with four center points to identify the design space and significant factors. OLEL1 was the most robust with high functional desirability (0.95), minimum size (202 nm), relatively high drug release, increased drug entrapment (92%), and improved permeation rate (~3270 µg/cm2) as compared with liposomes (~1536 µg/cm2) over 24 h. OLEL1 exhibited a 6.2- to 2.9-fold increase in permeation rate as compared with DS (drug solution). The permeation flux values of OLEL1, and lipo were found to be 136.3, 64 and 24.3 µg/h/cm2, respectively. The drug disposition values were 670 µg, 473 µg and 148 µg, for OLEL1, lipo and DS, respectively. Thus, ex vivo parameters were significantly better for OLEL1 compared with lipo and DS which is attributed to the flexibility and deformability of the optimized formulation. Furthermore, OLEL1 was evaluated for anticancer activity and showed maximized inhibition as compared with DS. Thus, elastic liposomes may be a promising approach for improved transdermal delivery of luteolin, as well as enhancing its therapeutic efficacy in controlling breast cancer.
Collapse
|
37
|
Schlich M, Musazzi UM, Campani V, Biondi M, Franzé S, Lai F, De Rosa G, Sinico C, Cilurzo F. Design and development of topical liposomal formulations in a regulatory perspective. Drug Deliv Transl Res 2021; 12:1811-1828. [PMID: 34755281 PMCID: PMC8577404 DOI: 10.1007/s13346-021-01089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
The skin is the absorption site for drug substances intended to treat loco-regional diseases, although its barrier properties limit the permeation of drug molecules. The growing knowledge of the skin structure and its physiology have supported the design of innovative nanosystems (e.g. liposomal systems) to improve the absorption of poorly skin-permeable drugs. However, despite the dozens of clinical trials started, few topically applied liposomal systems have been authorized both in the EU and the USA. Indeed, the intrinsic complexity of the topically applied liposomal systems, the higher production costs, the lack of standardized methods and the more stringent guidelines for assessing their benefit/risk balance can be seen as causes of such inefficient translation. The present work aimed to provide an overview of the physicochemical and biopharmaceutical characterization methods that can be applied to topical liposomal systems intended to be marketed as medicinal products, and the current regulatory provisions. The discussion highlights how such methodologies can be relevant for defining the critical quality attributes of the final product, and they can be usefully applied based on the phase of the life cycle of a liposomal product: to guide the formulation studies in the early stages of development, to rationally design preclinical and clinical trials, to support the pharmaceutical quality control system and to sustain post-marketing variations. The provided information can help define harmonized quality standards able to overcome the case-by-case approach currently applied by regulatory agencies in assessing the benefit/risk of the topically applied liposomal systems.
Collapse
Affiliation(s)
- Michele Schlich
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy.,Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Virginia Campani
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Marco Biondi
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Francesco Lai
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Giuseppe De Rosa
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Chiara Sinico
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
38
|
Li J, Duan N, Song S, Nie D, Yu M, Wang J, Xi Z, Li J, Sheng Y, Xu C, Wei Y, Gan Y. Transfersomes improved delivery of ascorbic palmitate into the viable epidermis for enhanced treatment of melasma. Int J Pharm 2021; 608:121059. [PMID: 34474115 DOI: 10.1016/j.ijpharm.2021.121059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
Ascorbic palmitate (AP) is widely used in the topical pharmaceutical or cosmetic formulations for melasma treatment. However, the presence of the skin barriers makes it difficult for the highly lipophilic drug molecules to traverse the stratum corneum (SC) and diffuse into the viable epidermis (EP) to reach the melanocytes, thereby exerting suboptimal antimelasma effects. Herein, AP was encapsulated into the transfersomes (TFs), yielding AP-TFs. AP-TFs utilized the deformability of TFs to squeeze through the skin pores in the SC under the transepidermal hydration gradient forces, leading to 14.1-fold increase in AP accumulation to the EP. AP-TFs could slowly release the encapsulated AP, while whether the released AP or transfersomal AP showed comparable uptake into the melanocytes, thereby exerting similar inhibitory effects on tyrosinase activity and melanogenesis. Ultimately, in the rat melasma model, AP-TFs showed superior antimelasma efficacy to free AP, with effective relief of oxidative stress and inflammation in the skin. Moreover, AP-TFs did not induce skin irritation. Therefore, the study provides a safe and effective approach to elevating the delivery of highly lipophilic drugs to the EP for enhanced treatment of melasma.
Collapse
Affiliation(s)
- Junjun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Nianxiu Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sha Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Di Nie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Miaorong Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziyue Xi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingyi Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingjie Sheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200011, China.
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
39
|
A Needle-Free Jet Injection System for Controlled Release and Repeated Biopharmaceutical Delivery. Pharmaceutics 2021; 13:pharmaceutics13111770. [PMID: 34834185 PMCID: PMC8620904 DOI: 10.3390/pharmaceutics13111770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Swift vaccination is necessary as a response to disease outbreaks and pandemics; otherwise, the species under attack is at risk of a high fatality rate or even mass extinction. Statistics suggest that at least 16 billion injections are administered worldwide every year. Such a high rate of needle/syringe injection administration worldwide is alarming due to the risk of needle-stick injuries, disease spread due to cross-contamination and the reuse of needles, and the misuse of needles. In addition, there are production, handling, and disposal costs. Needle phobia is an additional issue faced by many recipients of injections with needles. In addition to a detailed literature review highlighting the need for needle-free injection systems, a compressed air-driven needle-free jet injection system with a hydro-pneumatic mechanism was designed and developed by employing an axiomatic design approach. The proposed injection system has higher flexibility, uninterrupted force generation, and provides the possibility of delivering repeated injections at different tissue depths from the dermis to the muscle (depending on the drug delivery requirements) by controlling the inlet compressed air pressure. The designed needle-free jet injector consists of two primary circuits: the pneumatic and the hydraulic circuit. The pneumatic circuit is responsible for driving, pressurizing, and repeatability. The hydraulic circuit precisely injects and contains the liquid jet, allowing us to control the volume of the liquid jet at elevated pressure by offering flexibility in the dose volume per injection. Finally, in this paper we report on the successful design and working model of an air-driven needle-free jet injector for 0.2–0.5 mL drug delivery by ex vivo experimental validation.
Collapse
|
40
|
Nanostructured Lipid Carriers for the Formulation of Topical Anti-Inflammatory Nanomedicines Based on Natural Substances. Pharmaceutics 2021; 13:pharmaceutics13091454. [PMID: 34575531 PMCID: PMC8472073 DOI: 10.3390/pharmaceutics13091454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The main function of the skin is to protect the body from the external environment. However, the skin can undergo inflammatory processes, due to genetic, hormonal, or environmental factors. When the defense system is overloaded, there is an increase in pro-inflammatory mediators and reactive oxygen species (ROS), which results in skin disorders. Among the substances used to treat these inflammatory processes, many natural substances with anti-inflammatory and antioxidant properties are being studied: nature is yet an abundant source to obtain diverse pharmacological actives. The treatment of skin diseases is usually focused on topical application, as it reduces the risk of systemic side effects and prevents drug degradation by first-pass metabolism. Thus, the properties of drug delivery vehicles can facilitate or inhibit its permeation. Due to the hydrophobic nature of the skin, a promising strategy to improve dermal drug penetration is the use of lipid-based nanoparticles, such as nanostructured lipid carriers (NLC). Therefore, in this review, we present NLC as a tool to improve dermal administration of natural substances with anti-inflammatory properties.
Collapse
|
41
|
Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release 2021; 337:589-611. [PMID: 34364919 DOI: 10.1016/j.jconrel.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Skin-cancer is the commonest malignancy affecting huge proportion of the population, reaching heights in terms of morbidity. The treatment strategies are presently focusing on surgery, radiation and chemotherapy, which eventually cause destruction to unaffected cells. To overcome this limitation, wide range of nanoscaled materials have been recognized as potential carriers for delivering selective response to cancerous cells and neoplasms. Nanotechnological approach has been tremendously exploited in several areas, owing to their functional nanometric dimensions. The alarming incidence of skin cancer engenders burdensome effects worldwide, which is further awakening innovational medicinal approaches, accompanying target specific drug delivery tools for coveted benefits to provide reduced toxicity and tackle proliferative episodes of skin cancer. The developed nanosystems for anti-cancer agents include liposomes, ethosomes, nanofibers, solid lipid nanoparticles and metallic nanoparticles, which exhibit pronounced outcomes for skin carcinoma. In this review, skin cancer with its sub-types is explained in nutshell, followed by compendium of specific nanotechnological tools presented, in addition to therapeutic applications of drug-loaded nano systems for skin cancer.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
42
|
Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021; 13:pharmaceutics13091408. [PMID: 34575484 PMCID: PMC8470546 DOI: 10.3390/pharmaceutics13091408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Nanosystems exhibit various innovative physico-chemical properties as well as a range of cosmetic functions, including increased skin retention for loaded compounds. The worldwide nano-market has therefore been consistently extensive in recent decades. This review summarizes the most important properties of nanosystems that are employed in cosmetics, including composition, functions and interactions with skin, with particular attention being paid to marketed products. Moreover, the worldwide regulatory landscape of nanomaterials used as cosmetic ingredients is considered, and the main safety concerns are indicated. In general, advanced physico-chemical characterization is preliminarily needed to assess the safety of nanomaterials for human health and the environment. However, there is currently a shortfall in global legislation as a universally accepted and unambiguous definition of a nanomaterial is still lacking. Therefore, each country follows its own regulations. Anyhow, the main safety concerns arise from the European context, which is the most restrictive. Accordingly, the poor dermal permeation of nanomaterials generally limits their potential toxic effects, which should be mainly ascribed to unwanted or accidental exposure routes.
Collapse
|
43
|
Kalave S, Chatterjee B, Shah P, Misra A. Transdermal Delivery of Macromolecules Using Nano Lipid Carriers. Curr Pharm Des 2021; 27:4330-4340. [PMID: 34414868 DOI: 10.2174/1381612827666210820095330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
Skin being the largest external organ, offers an appealing procedure for transdermal drug delivery, so the drug needs to reach above the outermost layer of the skin, i.e., stratum corneum. Small molecular drug entities obeying the Lipinski rule, i.e., drugs having a molecular weight less than 500 Da, high lipophilicity, and optimum polarity, are favored enough to be used on the skin as therapeutics. Skin's barrier properties prevent the transport of macromolecules at pre-determined therapeutic rates. Notable advancements in macromolecules' transdermal delivery have occurred in recent years. Scientists have opted for liposomes, the use of electroporation, low-frequency ultrasound techniques, etc. Some of these have shown better delivery of macromolecules at clinically beneficial rates. These physical technologies involve complex mechanisms, which may irreversibly incur skin damage. Majorly, two types of lipid-based formulations, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), are widely investigated as transdermal delivery systems. In this review, the concepts, mechanisms, and applications of nanostructured lipid carriers used to transport macromolecules via transdermal routes are thoroughly reviewed and presented along with their clinical perspective.
Collapse
Affiliation(s)
- Sana Kalave
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Parth Shah
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Ambikanandan Misra
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| |
Collapse
|
44
|
Portugal I, Jain S, Severino P, Priefer R. Micro- and Nano-Based Transdermal Delivery Systems of Photosensitizing Drugs for the Treatment of Cutaneous Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14080772. [PMID: 34451868 PMCID: PMC8401127 DOI: 10.3390/ph14080772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy is one of the more unique cancer treatment options available in today’s arsenal against this devastating disease. It has historically been explored in cutaneous lesions due to the possibility of focal/specific effects and minimization of adverse events. Advances in drug delivery have mostly been based on biomaterials, such as liposomal and hybrid lipoidal vesicles, nanoemulsions, microneedling, and laser-assisted photosensitizer delivery systems. This review summarizes the most promising approaches to enhancing the photosensitizers’ transdermal delivery efficacy for the photodynamic treatment for cutaneous pre-cancerous lesions and skin cancers. Additionally, discussions on strategies and advantages in these approaches, as well as summarized challenges, perspectives, and translational potential for future applications, will be discussed.
Collapse
Affiliation(s)
- Isabella Portugal
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Brazil; (I.P.); (S.J.); (P.S.)
| | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Brazil; (I.P.); (S.J.); (P.S.)
| | - Patrícia Severino
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Brazil; (I.P.); (S.J.); (P.S.)
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences, University, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
45
|
Zhou H, Luo D, Chen D, Tan X, Bai X, Liu Z, Yang X, Liu W. Current Advances of Nanocarrier Technology-Based Active Cosmetic Ingredients for Beauty Applications. Clin Cosmet Investig Dermatol 2021; 14:867-887. [PMID: 34285534 PMCID: PMC8286087 DOI: 10.2147/ccid.s313429] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Nanocarrier technology has been effectively applied to the development of drug delivery systems to overcome the limitations of traditional preparation. Its application has been extended to various pharmaceutical fields from injection preparation to oral preparation and external preparation, and now it has appeared in the field of cosmetics for beauty applications. The widespread influence of nanocarrier in the cosmetics industry is due to the fact that nanocarrier can effectively promote the percutaneous penetration and significantly increase skin retention of active components in functional cosmetics. Meanwhile, nanocarrier can effectively improve the water dispersion of insoluble active cosmetic ingredients, enhance the stability of efficacy components and achieve the codelivery of diverse cosmetics active ingredients. In this review, we summarized the current progress of nanocarrier technology in the functional cosmetics, including the types and the routes of dermal/transdermal drug delivery nanocarriers used in the functional cosmetics, the mechanism of nanocarriers promoting the percutaneous penetration of active cosmetic ingredients, the application and efficacy evaluation of different active cosmetic ingredients in nanocarriers and discussing the potential risks to human. This will provide a useful reference for the further development of nanocarriers in the field of functional cosmetics.
Collapse
Affiliation(s)
- Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Dan Luo
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430075, Hubei, People's Republic of China
| | - Dan Chen
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430075, Hubei, People's Republic of China
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Xichen Bai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Zhi Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430075, Hubei, People's Republic of China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430075, Hubei, People's Republic of China
| |
Collapse
|
46
|
Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res 2021; 10:766-790. [PMID: 32170656 DOI: 10.1007/s13346-020-00744-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanomedicine is a rapidly emerging field with several breakthroughs in the therapeutic drug delivery application. The unique properties of the nanoscale delivery systems offer huge advantages to their payload such as solubilization, increased bioavailability, and improved pharmacokinetics with an overall goal of enhanced therapeutic index. Nanomedicine has the potential for integrating and enabling new therapeutic modalities. Several nanoparticle-based drug delivery systems have been granted approval for clinical use based on their outstanding clinical outcomes. Nanomedicine faces several challenges that hinder the realization of its full potential. In this review, we discuss the critical formulation- and biological-related quality features that significantly influence the performance of nanoparticulate systems in vivo. We also discuss the quality-by-design approach in the pharmaceutical manufacturing and its implementation in the nanomedicine. A deep understanding of these nanomedicine quality checkpoints and a systematic design that takes them into consideration will hopefully expedite the clinical translation process. Graphical abstract.
Collapse
|
47
|
Solubilization of Congo red into non-ionic bolaform sugar based surfactant: A multi spectroscopic approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Cardoso CO, Tolentino S, Gratieri T, Cunha-Filho M, Lopez RFV, Gelfuso GM. Topical Treatment for Scarring and Non-Scarring Alopecia: An Overview of the Current Evidence. Clin Cosmet Investig Dermatol 2021; 14:485-499. [PMID: 34012282 PMCID: PMC8126704 DOI: 10.2147/ccid.s284435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/25/2021] [Indexed: 12/22/2022]
Abstract
Alopecia is a clinical condition related to hair loss that can significantly affect both male and female adults' quality of life. Despite the high market demand, only few drugs are currently approved for alopecia treatment. Topical formulations still bring drawbacks, such as scalp irritation with frequent use, and low drug absorption to the site of action, which limits the efficacy. The most recent research points out that different formulation technology could circumvent the aforementioned flaws. Such technology includes incorporation of drugs in rigid or deformable nanoparticles, strategies involving physical, energetical and mechanical techniques, such as iontophoresis, sonophoresis, microneedling, and the use of solid effervescent granules to be hydrated at the moment of application in the scalp. In this paper, the progress of current research on topical formulations dedicated to the treatment of alopecia is reviewed and discussed.
Collapse
Affiliation(s)
- Camila O Cardoso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília, 70910-900, DF, Brazil
| | - Seila Tolentino
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília, 70910-900, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília, 70910-900, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília, 70910-900, DF, Brazil
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília, 70910-900, DF, Brazil
| |
Collapse
|
49
|
Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. J Nanobiotechnology 2021; 19:100. [PMID: 33836744 PMCID: PMC8035747 DOI: 10.1186/s12951-021-00833-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background Carvedilol, the anti-hypertensive drug, has poor bioavailability when administered orally. Ethosomes-mediated transdermal delivery is considered a potential route of administration to increase the bioavailability of carvedilol. The central composite design could be used as a tool to optimize ethosomal formulation. Thus, this study aims to optimize carvedilol-loaded ethosomes using central composite design, followed by incorporation of synthesized ethosomes into hydrogels for transdermal delivery of carvedilol. Results The optimized carvedilol-loaded ethosomes were spherical in shape. The optimized ethosomes had mean particle size of 130 ± 1.72 nm, entrapment efficiency of 99.12 ± 2.96%, cumulative drug release of 97.89 ± 3.7%, zeta potential of − 31 ± 1.8 mV, and polydispersity index of 0.230 ± 0.03. The in-vitro drug release showed sustained release of carvedilol from ethosomes and ethosomal hydrogel. Compared to free carvedilol-loaded hydrogel, the ethosomal gel showed increased penetration of carvedilol through the skin. Moreover, ethosomal hydrogels showed a gradual reduction in blood pressure for 24 h in rats. Conclusions Taken together, central composite design can be used for successful optimization of carvedilol-loaded ethosomes formulation, which can serve as the promising transdermal delivery system for carvedilol. Moreover the carvedilol-loaded ethosomal gel can extend the anti-hypertensive effect of carvedilol for a longer time, as compared to free carvedilol, suggesting its therapeutic potential in future clinics.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00833-4.
Collapse
|
50
|
Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00207-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|