1
|
Ndongwe T, Zhou AA, Ganga NP, Matawo N, Sibanda U, Chidziwa TV, Witika BA, Krause RWM, Matlou GG, Siwe-Noundou X. The use of nanomaterials as drug delivery systems and anticancer agents in the treatment of triple-negative breast cancer: an updated review (year 2005 to date). DISCOVER NANO 2024; 19:138. [PMID: 39225730 PMCID: PMC11372008 DOI: 10.1186/s11671-024-04089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterised by the lack or low expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. TNBC has a high recurrence rate, swiftly metastasizes, and has a high mortality rate. Subsequently, the increase in cases of TNBC has signaled the need for treatment strategies with improved drug delivery systems. New diagnostic approaches, chemical entities, formulations particular those in the nanometric range have emerged after extensive scientific research as alternative strategies for TNBC treatment. As compared to contemporary cancer therapy, nanoparticles offer peculiar tunable features namely small size, shape, electrical charge, magnetic and fluorescent properties. Specifically in targeted drug delivery, nanoparticles have been demonstrated to be highly efficient in encapsulating, functionalization, and conjugation. Presently, nanoparticles have ignited and transformed the approach in photodynamic therapy, bioimaging, use of theranostics and precision medicine delivery in breast cancer. Correspondingly, recent years have witnessed a drastic rise in literature pertaining to treatment of TNBC using nanomaterials. Subsequently, this manuscript aims to present a state-of-the-art of nanomaterials advance on TNBC treatment; the ubiquitous utility use of nanomaterials such as liposomes, dendrimers, solid lipid nanomaterials, gold nanomaterials and quantum dots as anticancer agents and drug delivery systems in TNBC.
Collapse
Affiliation(s)
- Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Angel-Alberta Zhou
- Department of Pharmacy, School of Health Science, University of KwaZulu Natal, Durban, South Africa
| | - Nelisa Paidamwoyo Ganga
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyaradzo Matawo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Unami Sibanda
- Pharmaceutics Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Tinotenda Vanessa Chidziwa
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Rui W M Krause
- Chemistry Department, Faculty of Science, Rhodes University, Grahamstown, South Africa
| | - Gauta Gold Matlou
- Electron Microscopy Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| |
Collapse
|
2
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
3
|
Gafar MA, Omolo CA, Elhassan E, Ibrahim UH, Govender T. Applications of peptides in nanosystems for diagnosing and managing bacterial sepsis. J Biomed Sci 2024; 31:40. [PMID: 38637839 PMCID: PMC11027418 DOI: 10.1186/s12929-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, P.O. Box 1996, Khartoum, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
4
|
Shah SKH, Modi U, Patel K, James A, N S, De S, Vasita R, Prabhakaran P. Site-selective post-modification of short α/γ hybrid foldamers: a powerful approach for molecular diversification towards biomedical applications. Biomater Sci 2023; 11:6210-6222. [PMID: 37526301 DOI: 10.1039/d3bm00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The extensive research work in the exhilarating area of foldamers (artificial oligomers possessing well-defined conformation in solution) has shown them to be promising candidates in biomedical research and materials science. The post-modification approach is successful in peptides, proteins, and polymers to modulate their functions. To the best of our knowledge, site-selective post-modification of a foldamer affording molecules with different pendant functional groups within a molecular scaffold has not yet been reported. We demonstrate for the first time that late-stage site-selective functionalization of short hybrid oligomers is an efficient approach to afford molecules with diverse functional groups. In this article, we report the design and synthesis of hybrid peptides with repeating units of leucine (Leu) and 5-amino salicylic acid (ASA), regioselective post-modification, conformational analyses (based on solution-state NMR, circular dichroism and computational studies) and morphological studies of the peptide nanostructures. As a proof-of-concept, we demonstrate the applications of differently modified peptides as drug delivery agents, imaging probes, and anticancer agents. The novel feature of the work is that the difference in reactivity of two phenolic OH groups in short biomimetic peptides was utilized to achieve site-selective post-modification. It is challenging to apply the same approach to short α-peptides having a poor folding tendency, and their post-functionalization may considerably affect their conformation.
Collapse
Affiliation(s)
| | - Unnati Modi
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India
| | - Sreerag N
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut 673635, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
5
|
Meng Q, Zhong S, Wang J, Gao Y, Cui X. Advances in chitosan-based microcapsules and their applications. Carbohydr Polym 2023; 300:120265. [DOI: 10.1016/j.carbpol.2022.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
6
|
Li M, Wang Z, Liu X, Song N, Song Y, Shi X, Liu J, Liu J, Yu Z. Adaptable peptide-based therapeutics modulating tumor microenvironment for combinatorial radio-immunotherapy. J Control Release 2021; 340:35-47. [PMID: 34699869 DOI: 10.1016/j.jconrel.2021.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022]
Abstract
Radiotherapy is one of the conventional tumor treatments, while its abscopal therapeutic efficacy is severely hampered by the immunosuppressive tumor microenvironment. To address this challenge, we herein report on the morphology-adaptable peptide-based therapeutics for efficiently reversing the immunosuppression in the combinatorial radio-immunotherapy through simultaneous checkpoint blocking and induction of immunogenic cell death. The peptide-based therapeutics were created via co-assembling a pentapeptide containing a 4-amino proline residue with its derivatives containing IDO-1 inhibitor NLG919. The resulting therapeutics underwent pH-adaptable morphological transformation between nanofibrils and nanoparticles and released NLG919 upon GSH cleavage. In vivo studies confirmed that the pH-adaptable morphologies of the therapeutics facilitated their tumor accumulation and retention at tumor sites compared to morphology-persistent counterparts, thus resulting in efficient delivery of IDO-1 inhibitors. Simultaneously treating the tumor-bearing mice with the therapeutics and external γ-ray radiation boosted the tumor immunogenicity via inducing ICD cascade of the tumor cells and reverse the immunosuppressive tumor microenvironment due to the inhibition of IDO-1 for depletion of tryptophan. Our findings strongly demonstrate that the morphology-adaptable peptide-based therapeutics exhibit the capability to reverse the immunosuppressive tumor microenvironment during irradiation, thus providing a new strategy for the combinatorial radio-immunotherapy.
Collapse
Affiliation(s)
- Mingming Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuefeng Shi
- School of Medicine, Nankai University, Tianjin, 300071, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
8
|
Alkanawati MS, Machtakova M, Landfester K, Thérien-Aubin H. Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules 2021; 22:2976-2984. [PMID: 34129319 PMCID: PMC8278386 DOI: 10.1021/acs.biomac.1c00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Responsive nanogel
systems are interesting for the drug delivery
of bioactive molecules due to their high stability in aqueous media.
The development of nanogels that are able to respond to biochemical
cues and compatible with the encapsulation and the release of large
and sensitive payloads remains challenging. Here, multistimuli-responsive
nanogels were synthesized using a bio-orthogonal and reversible reaction
and were designed for the selective release of encapsulated cargos
in a spatiotemporally controlled manner. The nanogels were composed
of a functionalized polysaccharide cross-linked with pH-responsive
hydrazone linkages. The effect of the pH value of the environment
on the nanogels was fully reversible, leading to a reversible control
of the release of the payloads and a “stop-and-go” release
profile. In addition to the pH-sensitive nature of the hydrazone network,
the dextran backbone can be degraded through enzymatic cleavage. Furthermore,
the cross-linkers were designed to be responsive to oxidoreductive
cues.
Disulfide groups, responsive to reducing environments, and thioketal
groups, responsive to oxidative environments, were integrated into
the nanogel network. The release of model payloads was investigated
in response to changes in the pH value of the environment or to the
presence of reducing or oxidizing agents.
Collapse
Affiliation(s)
| | - Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Dr, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
9
|
Xu X, Zhou X, Xiao B, Xu H, Hu D, Qian Y, Hu H, Zhou Z, Liu X, Gao J, Slater NKH, Shen Y, Tang J. Glutathione-Responsive Magnetic Nanoparticles for Highly Sensitive Diagnosis of Liver Metastases. NANO LETTERS 2021; 21:2199-2206. [PMID: 33600181 DOI: 10.1021/acs.nanolett.0c04967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liver metastasis (LM) occurs in various cancers, and its early and accurate diagnosis is of great importance. However, the detection of small LMs is still a great challenge because of the subtle differences between normal liver tissue and small metastases. Herein, we prepare glutathione (GSH)-responsive hyaluronic acid-coated iron oxide nanoparticles (HIONPs) for highly sensitive diagnosis of LMs through a facile one-pot method. HIONPs greatly enhance the signal of MRI in tumor metastases as T1 contrast agent (CA), whereas they substantially decrease the signal of liver as T2 CA as they aggregate into clusters upon the high GSH in liver. Consequently, MRI contrasted by HIONPs clearly distinguishes metastatic tumors (bright) from surrounding liver tissues (dark). HIONPs with superior LM contrasting capability and facile synthesis are very promising for clinical translation and indicate a new strategy to develop an ultrasensitive MRI CA for LM diagnosis that exploits high GSH level in the liver.
Collapse
Affiliation(s)
- Xiaodan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Bing Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yue Qian
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
10
|
Wang B, Guo C, Liu Y, Han G, Li Y, Zhang Y, Xu H, Chen D. Novel nano-pomegranates based on astragalus polysaccharides for targeting ERα-positive breast cancer and multidrug resistance. Drug Deliv 2021; 27:607-621. [PMID: 32308054 PMCID: PMC7191906 DOI: 10.1080/10717544.2020.1754529] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is an important method for treating breast cancer. However, multidrug resistance is one of the major challenges in breast cancer chemotherapy. There is an urgent need to develop novel, effective antitumor strategies that will perfect existing therapeutic regimens. In this study, the double-targeted nanocarrier, Quercetin-3'3-dithiodipropionic acid-Astragalus polysaccharides-Folic acid (QDAF), was successfully synthesized and self-assembled into a neoteric nano-targeted delivery strategy, named nano-pomegranates, and which were utilized to effectively inhibit multidrug resistance in estrogen receptor α (ERα)-positive breast tumor. The outstanding abilities of nano-pomegranates to release the drug in a reducing environment was determined by in vitro release assay. The cellular studies in MCF-7 cells were examined that nano-pomegranates have remarkable efficiencies of enhancing cellular uptake, inhibition and necrosis and apoptosis. In vivo antitumor experiments showed that nano-pomegranates have better anti-tumor effects and lower systemic toxicity than free Cur. In conclusion, nano-pomegranates have great potential in anti-breast cancer treatment.
Collapse
Affiliation(s)
- Bingjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Chunjing Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Yanhui Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, P. R. China
| | - Guangting Han
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, P. R. China
| | - Yi Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China.,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, P. R. China
| | - Yanchun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China.,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, P. R. China
| |
Collapse
|
11
|
Liu Y, Li Q, Bai Q, Jiang W. Advances of smart nano-drug delivery systems in osteosarcoma treatment. J Mater Chem B 2021; 9:5439-5450. [PMID: 34155495 DOI: 10.1039/d1tb00566a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology has recently become popular due to its potential for biomedical applications, especially for cancer treatment. Nanotechnology, featuring responsiveness to stimuli and stable drug release, has been widely used for the delivery of chemotherapeutic drugs, which are commonly used in the treatment of osteosarcoma. Smart stimuli-responsive nanotechnology is expected to improve the treatment of osteosarcoma. Herein, we focus on the latest research on nanomaterials in treating osteosarcoma that respond to internal and external stimuli. We also discuss nanocarriers with targeting ligands and the use of smart nanotechnology to partially reverse the multidrug resistance of osteosarcoma.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Qian Bai
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
12
|
|
13
|
Wang C, Qi P, Lu Y, Liu L, Zhang Y, Sheng Q, Wang T, Zhang M, Wang R, Song S. Bicomponent polymeric micelles for pH-controlled delivery of doxorubicin. Drug Deliv 2020; 27:344-357. [PMID: 32090637 PMCID: PMC7054969 DOI: 10.1080/10717544.2020.1726526] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/01/2023] Open
Abstract
Stimuli-responsive drug delivery systems (DDSs) are expected to realize site-specific drug release and kill cancer cells selectively. In this study, a pH-responsive micelle was designed utilizing the pH-sensitivity of borate bonds formed between dopamine and boronic acid. First, methyl (polyethylene glycol)-block-polycaprolactone (mPEG-PCL) was conjugated with 4-cyano-4-(thiobenzoylthio)pentanoic acid (CTP) to obtain a macroinitiator. Two different segments poly(dopamine methacrylamide) (PDMA) and poly(vinylphenylboronic acid) (PVBA) were then grafted to the end of mPEG-PCL. Two triblock copolymers, mPEG-PCL-PDMA and mPEG-PCL-PVBA, were then obtained by reversible addition-fragmentation transfer (RAFT) polymerization. These copolymers and their mixture self-assembled in aqueous solution to form micelles that were able to load hydrophobic anticancer drug doxorubicin (DOX). These two-component micelles were found to be pH-sensitive, in contrast to the one-component micelles. Furthermore, MTT studies showed that the micelles were almost nontoxic. The DOX-loaded micelles showed cytotoxicity equivalent to that of DOX at high concentration. In vivo antitumor experiments showed that this pH-sensitive polymeric micellar system had an enhanced therapeutic effect on tumors. These two-component boronate-based pH micelles are universally applicable to the delivery of anticancer drugs, showing great potential for cancer therapy.
Collapse
Affiliation(s)
- Chunyun Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Peilan Qi
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Yan Lu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Lei Liu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Yanan Zhang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Qianli Sheng
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Tianshun Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Mengying Zhang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Rui Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Shiyong Song
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
14
|
Zhang W, Mo S, Liu M, Liu L, Yu L, Wang C. Rationally Designed Protein Building Blocks for Programmable Hierarchical Architectures. Front Chem 2020; 8:587975. [PMID: 33195088 PMCID: PMC7658299 DOI: 10.3389/fchem.2020.587975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023] Open
Abstract
Diverse natural/artificial proteins have been used as building blocks to construct a variety of well-ordered nanoscale structures over the past couple of decades. Sophisticated protein self-assemblies have attracted great scientific interests due to their potential applications in disease diagnosis, illness treatment, biomechanics, bio-optics and bio-electronics, etc. This review outlines recent efforts directed to the creation of structurally defined protein assemblies including one-dimensional (1D) strings/rings/tubules, two-dimensional (2D) planar sheets and three-dimensional (3D) polyhedral scaffolds. We elucidate various innovative strategies for manipulating proteins to self-assemble into desired architectures. The emergent applications of protein assemblies as versatile platforms in medicine and material science with improved performances have also been discussed.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Wu L, Sancaktar E. Effect of PET support membrane thickness on water permeation behavior of thermally responsive PNIPAM-g-PET membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Haider M, Elsherbeny A, Jagal J, Hubatová-Vacková A, Saad Ahmed I. Optimization and Evaluation of Poly(lactide- co-glycolide) Nanoparticles for Enhanced Cellular Uptake and Efficacy of Paclitaxel in the Treatment of Head and Neck Cancer. Pharmaceutics 2020; 12:E828. [PMID: 32872639 PMCID: PMC7559439 DOI: 10.3390/pharmaceutics12090828] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
The particle size (PS) and encapsulation efficiency (EE%) of drug-loaded nanoparticles (NPs) may inhibit their cellular uptake and lead to possible leakage of the drug into the systemic circulation at the tumor site. In this work, ultra-high paclitaxel-loaded poly(lactide-co-glycolide) NPs (PTX-PLGA-NPs) with ultra-small sizes were prepared and optimized by adopting the principles of quality by design (QbD) approach. The optimized PTX-PLGA-NPs showed ultra-small spherical particles of about 53 nm with EE% exceeding 90%, a relatively low polydispersity index (PDI) of 0.221, an effective surface charge of -10.1 mV, and a 10-fold increase in the in vitro drug release over 72 h relative to free drug. The cellular viability of pharynx carcinoma cells decreased by almost 50% in 24 h following treatment with optimized PTX-PLGA-NPs, compared to only 20% from the free drug. The intracellular uptake of PTX-PLGA-NPs was highly favored, and the antitumor activity of PTX was remarkably improved with a reduction in its half maximal inhibitory concentration (IC50), by almost 50% relative to free drug solution. These results suggest that the optimal critical formulation parameters, guided by QbD principles, could produce PLGA-NPs with remarkably high EE% and ultra-small PS, resulting in enhanced cellular uptake and efficacy of PTX.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Elsherbeny
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
| | - Anna Hubatová-Vacková
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628 Prague, Czech Republic;
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
| |
Collapse
|
17
|
Wang B, Zhang W, Zhou X, Liu M, Hou X, Cheng Z, Chen D. Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Deliv 2020; 26:1265-1279. [PMID: 31777307 PMCID: PMC6896416 DOI: 10.1080/10717544.2019.1693707] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, the novel carrier materials were screened to structure targeting nano-micelles (named ‘nano-dandelion’) for synchronous delivery of curcumin (Cur) and baicalin (Bai), which could effectively overcome the tumor resistance. Mannose (Man) was found to bind better to CD206 receptors on the surface of tumor-associated macrophages (TAMs), thereby increasing the number of nano-dandelion engulfed by TAMs. Furthermore, oligomeric hyaluronic acid (oHA) was able to target CD44 receptors, resulting in recruitment of a higher number of nano-dandelion to locate and engulf tumor cells. The disulfide bond (S–S) in 3,3′-dithiodipropionic acid (DA) could be broken by the high concentration of glutathione (GSH) in the tumor microenvironment (TME). Based on this, we selected DA to connect hydrophobic fragments (quercetin, Que) and oHA. A reduction-sensitive amphiphilic carrier material, quercetin–dithiodipropionic acid–oligomeric hyaluronic acid–mannose–ferulic acid (Que–S–S–oHA–Man–FA; QHMF) was fabricated and synthesized by 1H NMR. Next, QHMF self-assembled into nano-dandelion, i.e. encapsulated Cur and Bai in water. Critical experimental conditions in the preparation process of nano-dandelion that could affect its final properties were explored. Nano-dandelion with a small particle size (121.0 ± 15 nm) and good normal distribution (PI = 0.129) could easily enter tumor tissue through vascular barrier. In addition, nano-dandelion with a suitable surface potential (–20.33 ± 4.02 mV) could remain stable for a long duration. Furthermore, good cellular penetration and tumor cytotoxicity of nano-dandelion were demonstrated through in vitro cellular studies. Finally, effective antitumor activity and reduced side effects were confirmed through in vivo antitumor experiments in A549 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Bingjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| | - Wei Zhang
- Department of Radiotherapy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, PR China
| | - Xiudi Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China.,Department of Pharmacy, Binzhou People's Hospital, Binzhou, PR China
| | - Mengna Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| | - Xiaoya Hou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| | - Ziting Cheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| |
Collapse
|
18
|
Cai Y, Ran W, Zhai Y, Wang J, Zheng C, Li Y, Zhang P. Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomater Sci 2020; 8:1045-1057. [DOI: 10.1039/c9bm01380f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supramolecular peptide assemblies can mimic natural viruses and serve as well-defined, dynamic and multifunctional nanoplatforms for cancer immunotherapy, where the peptide segments act as antigens, adjuvants and carriers.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Wei Ran
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Junyang Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Chao Zheng
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
19
|
Liu Y, Sun C, Zhang G, Wu J, Huang L, Qiao J, Guan Q. Bio-responsive Bletilla striata polysaccharide-based micelles for enhancing intracellular docetaxel delivery. Int J Biol Macromol 2020; 142:277-287. [PMID: 31593738 DOI: 10.1016/j.ijbiomac.2019.09.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to design a pH- and redox-dual responsive Bletilla striata polysaccharide (BSP)-based copolymer to enhance anti-tumor drugs release at tumor sites and improve the therapeutic effect. The copolymer was synthesized using stearic acid (SA) and cystamine via a disulfide linkage and characterized using 1H-Nuclear Magnetic Resonance spectroscopy and Fourier Transform Infrared spectroscopy. The BSP-ss-SA copolymer could self-assemble into micelle in an aqueous environment and could encapsulate docetaxel therein. Its inhibitory effects on HepG2 cells and 4 T1 cells were determined. Besides, the anti-cancer effects in vivo and histopathological study of 4 T1-bearing tumor mice were also evaluated. Docetaxel-loaded BSP-ss-SA micelles showed significant pH-sensitive release behavior, supplying a greater drug release percentage in pH 5.0 media compared to pH 7.4 media. BSP-ss-SA micelles exhibited a clear redox-responsive release property in pH 7.4 media whereas the similar cumulative release percentage of docetaxel from BSP-ss-SA micelles in pH 5.0 media in the presence and absence of DL-dithiothreitol. The Docetaxel-loaded BSP-ss-SA micelles clearly inhibited the proliferation of HepG2 and 4 T1 cells compared with docetaxel solution. The results of MTT and histopathological study indicated that BSP-ss-SA copolymer exhibited good blood compatibility. The BSP-ss-SA copolymer may be used as carriers to deliver anti-tumor drugs to special tumor tissues.
Collapse
Affiliation(s)
- Yuran Liu
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Cheng Sun
- Sinotherapeutics Inc., Shanghai 201210, China
| | - Guangyuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Ji Wu
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Long Huang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Jin Qiao
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Qingxiang Guan
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China.
| |
Collapse
|
20
|
Wang L, Hervault A, Southern P, Sandre O, Couillaud F, Thanh NTK. In vitro exploration of the synergistic effect of alternating magnetic field mediated thermo–chemotherapy with doxorubicin loaded dual pH- and thermo-responsive magnetic nanocomposite carriers. J Mater Chem B 2020; 8:10527-10539. [DOI: 10.1039/d0tb01983f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle induced hyperthermia has been considered as a promising approach for cancer treatment for decades.
Collapse
Affiliation(s)
- Lilin Wang
- Biophysics Group
- Department of Physics & Astronomy
- University College London
- London
- UK
| | - Aziliz Hervault
- Biophysics Group
- Department of Physics & Astronomy
- University College London
- London
- UK
| | - Paul Southern
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories
- London
- UK
- Department of Medical Physics and Biomedical Engineering
- University College London
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO)
- Univ. Bordeaux
- CNRS
- Bordeaux INP
- UMR 5629
| | - Franck Couillaud
- Molecular Imaging and Innovative Therapies (IMOTION)
- Univ. Bordeaux
- EA7435
- Bordeaux
- France
| | - Nguyen Thi Kim Thanh
- Biophysics Group
- Department of Physics & Astronomy
- University College London
- London
- UK
| |
Collapse
|
21
|
Wang J, Saha S, Schaal JL, Yousefpour P, Li X, Chilkoti A. Heuristics for the Optimal Presentation of Bioactive Peptides on Polypeptide Micelles. NANO LETTERS 2019; 19:7977-7987. [PMID: 31642326 DOI: 10.1021/acs.nanolett.9b03141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioactive peptides describe a very large group of compounds with diverse functions and wide applications, and their multivalent display by nanoparticles can maximize their activities. However, the lack of a universal nanoparticle platform and design rules for their optimal presentation limits the development and application of peptide ligand-decorated nanoparticles. To address this need, we developed a multivalent nanoparticle platform to study the impact of nanoparticle surface hydrophilicity and charge on peptide targeting and internalization by tumor cells. This system consists of micelles of a recombinant elastin-like polypeptide diblock copolymer (ELPBC) that present genetically encoded peptides at the micelle surface without perturbing the size, shape, stability, or peptide valency of the micelle, regardless of the peptide type. We created the largest extant set of 98 combinations of 15 tumor-homing peptides that are presented on the corona of this ELPBC micelle via 8 different peptide linkers that vary in their length and charge and also created control micelles that present the linker only. Analysis of the structure-function relationship of tumor cell targeting by this set of peptide-decorated nanoparticles enabled us to derive heuristics to optimize the delivery of peptides based on their physicochemical properties and to identify a peptide that is likely to be a widely useful ligand for targeting across nanoparticle types. This study shows that ELPBC micelles are a robust and convenient system for the presentation of diverse peptides and provides useful insights into the appropriate presentation of structurally diverse peptide ligands on nanoparticles based on their physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
22
|
Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2019; 69:249-267. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Cancer, being the most prevalent and resistant disease afflicting any gender, age or social status, is the ultimate challenge for the scientific community. The new generation therapeutics for cancer management has shifted the approach to personalized/precision medicine, making use of patient- and tumor-specific markers for specifying the targeted therapies for each patient. Peptides targeting these cancer-specific signatures hold enormous potential for cancer therapy and diagnosis. The rapid advancements in the combinatorial peptide libraries served as an impetus to the development of multifunctional peptide-based materials for targeted cancer therapy. The present review outlines benefits and shortcomings of peptides as cancer therapeutics and the potential of peptide modified nanomedicines for targeted delivery of anticancer agents.
Collapse
|
23
|
Chang R, Zou Q, Xing R, Yan X. Peptide‐Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rui Chang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
24
|
Nikfar Z, Shariatinia Z. The RGD tripeptide anticancer drug carrier: DFT computations and molecular dynamics simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Li D, Shi M, Bao C, Bao W, Zhang L, Jiao L, Li T, Li Y. Synergistically enhanced anticancer effect of codelivered curcumin and siPlk1 by stimuli-responsive α-lactalbumin nanospheres. Nanomedicine (Lond) 2019; 14:595-612. [PMID: 30806584 DOI: 10.2217/nnm-2018-0291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM To achieve enhanced anticancer efficacy by combined siPlk1 and curcumin (cur) therapy using α-lactalbumin (α-lac) nanocarrier delivery. MATERIALS & METHODS α-Lac was partially hydrolyzed into amphiphilic peptides, and then self-assembled into nanospheres (NS). Cur was loaded into their hydrophobic core during the self-assembly process. siPlk1-SH was cross-linked with the endogenous cysteines on the NS. CRGDK peptide was conjugated on NS to target integrins overexpressed in HeLa cells. RESULTS & CONCLUSION The Cur and siPlk1 coloaded NS formulations possessed an enhanced tumor targeting and antitumor properties. Drugs were responsively released from disulfide bonds cross-linked RGD-NS/Cur/siPlk1 corresponding to the high intracellular glutathione concentrations of cancer cells. Both in vitro cell viability experiments and in vivo antitumor evaluations demonstrated that the codelivered nanosphere platform exhibited excellent tumor targeting and synergistic antitumor efficacy.
Collapse
Affiliation(s)
- Dan Li
- Beijing Advanced Innovation Center for Food Nutrition & Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Mengxuan Shi
- State Key Laboratory of Chemical Resource Engineering, College of Life Science & Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Cheng Bao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science & Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Weier Bao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science & Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Liwei Zhang
- Beijing Advanced Innovation Center for Food Nutrition & Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Lulu Jiao
- Beijing Advanced Innovation Center for Food Nutrition & Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Tao Li
- Beijing Advanced Innovation Center for Food Nutrition & Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition & Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
26
|
Ali R, Pal HA, Hameed R, Nazir A, Verma S. Controlled release of hydrogen sulfide significantly reduces ROS stress and increases dopamine levels in transgenic C. elegans. Chem Commun (Camb) 2019; 55:10142-10145. [DOI: 10.1039/c9cc05153h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel peptide based system has been developed that exhibits slow and sustained H2S release thereby reducing hydrogen peroxide-induced oxidative stress and increasing dopamine levels in a transgenic C. elegans model.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry and Centre for Nanoscience
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Hilal Ahmad Pal
- Department of Chemistry and Centre for Nanoscience
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sandeep Verma
- Department of Chemistry and Centre for Nanoscience
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
27
|
Qian Y, Wang Y, Jia F, Wang Z, Yue C, Zhang W, Hu Z, Wang W. Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials 2019; 188:96-106. [DOI: 10.1016/j.biomaterials.2018.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
|
28
|
Cui T, Li X, Shu Y, Huang X, Wang Y, Zhang W. Utilizing glutathione-triggered nanoparticles to enhance chemotherapy of lung cancer by reprograming the tumor microenvironment. Int J Pharm 2018; 552:16-26. [DOI: 10.1016/j.ijpharm.2018.09.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/07/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
|
29
|
Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:771-790. [PMID: 30815042 PMCID: PMC6383616 DOI: 10.1080/14686996.2018.1528850] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 05/17/2023]
Abstract
Nanotechnology has been extensively utilized in the design and development of powerful strategies for drug delivery and cancer theranostic. Nanoplatforms as a drug delivery system have many advantages such as in vivo imaging, combined drug delivery, extended circulation time, and systemic controlled release. The functional biomimetic drug delivery could be realized by incorporating stimuli-responsive (pH, temperature, redox potential, etc.) properties into the nanocarrier system, allowing them to bypass biological barriers and arrive at the targeted area. In this review, we discuss the role of internal stimuli-responsive nanocarrier system for imaging and drug delivery in cancer therapy. The development of internal stimuli-responsive nanoparticles is highlighted for precision drug delivery applications, with a particular focus on in vivo imaging, drug release performance, and therapeutic benefits.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hangru Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yun Zeng
- Department of Pharmacology, Xiamen Medical College, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Liang H, Liu X, Wang M. Immunotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitors in non-small-cell lung cancer treatment. Onco Targets Ther 2018; 11:6189-6196. [PMID: 30288054 PMCID: PMC6163004 DOI: 10.2147/ott.s178497] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In recent years, targeted therapy and immunotherapy have played important roles in the treatment of patients with non-small-cell lung cancer (NSCLC). Drugs that target epidermal growth factor receptor (EGFR) mutations (eg, gefitinib, erlotinib, icotinib, and osimertinib) are among the most commonly used targeted therapies. Afatinib is an irreversible second-generation EGFR-tyrosine kinase inhibitor (EGFR-TKI), and the LUX-Lung 3 trial demonstrated the superiority of afatinib to cisplatin and pemetrexed in the frontline treatment of treatment-naïve patients with advanced EGFR mutation adenocarcinoma of the lung. Although these drugs show significant therapeutic efficacy, most patients invariably experience disease progression resulting in death. Immunotherapy targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) has now been approved for the first-line treatment of patients with advanced NSCLC. These can produce sustained clinical responses by reversing negative regulators of T-cell function; however, immunotherapy response rates remain low, and only a few patients ultimately benefit from this approach. Here, we discuss the potential of EGFR-TKIs for inducing antitumor immunity and the feasibility of their combination with immunotherapy (including PD-1/PD-L1 inhibitors) in NSCLC patients and the associated challenges for clinical application.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Dongcheng District, Beijing 100730, China,
| | - Xiaoyan Liu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Dongcheng District, Beijing 100730, China,
| | - Mengzhao Wang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Dongcheng District, Beijing 100730, China,
| |
Collapse
|
31
|
Wang H, Zhu W, Liu J, Dong Z, Liu Z. pH-Responsive Nanoscale Covalent Organic Polymers as a Biodegradable Drug Carrier for Combined Photodynamic Chemotherapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14475-14482. [PMID: 29648447 DOI: 10.1021/acsami.8b02080] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Covalent organic polymers (COPs) are a promising class of cross-linked polymeric networks and porous structures composed of covalent organic molecules that attract extensive attention. Despite increasing interest in applying COPs for applications in nanomedicine, the pH-sensitive COPs that are able to sensitively respond to the slightly acidic tumor microenvironment for tumor-specific drug delivery and therapy remain to be explored to our best knowledge. Herein, a new style of pH-responsive COPs were prepared using acryloyl meso-tetra( p-hydroxyphenyl) porphine (acryloyl-THPP) to react with 4,4'-trimethylene dipiperidine to form the pH-responsive cross-linked biodegradable β-amino esters (BAEs). Amine-modified poly(ethylene glycol) (PEG) was then introduced to terminate the reaction and form the PEG shell. The formulated pH-responsive THPP-BAE-PEG COPs can be utilized to encapsulate anticancer drug doxorubicin (DOX) due to their porous structure. Upon intravenous injection, such DOX-loaded COPs show a prolonged blood circulation as well as an efficient tumor accumulation. Along with the pH-triggered drug release for chemotherapy, the singlet oxygen produced by THPP under light exposure for photodynamic therapy would further endow us a combined treatment strategy, which offers synergistic antitumor effects in our in vivo tumor model experiments. Our study illustrates that COPs fabricated with tumor microenvironment responsive linkers may be a promising type of materials for applications in cancer nanomedicine.
Collapse
Affiliation(s)
- Hairong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Wenwen Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials, Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
32
|
Yao D, Li S, Zhu X, Wu J, Tian H. Tumor-cell targeting polydiacetylene micelles encapsulated with an antitumor drug for the treatment of ovarian cancer. Chem Commun (Camb) 2018; 53:1233-1236. [PMID: 27995230 DOI: 10.1039/c6cc08581d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peptide functionalized polydiacetylene (PDA) micelles encapsulated with camptothecin (CPT) kill ovarian cancer cells by the lysosome release of anticancer drug CPT. Moreover, the sub-30 nm PDA micelles penetrate efficiently into a tumor for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Defan Yao
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| | - Shang Li
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaomin Zhu
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| | - Junchen Wu
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| | - He Tian
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
33
|
Soler M, González-Bártulos M, Figueras E, Massaguer A, Feliu L, Planas M, Ribas X, Costas M. Delivering aminopyridine ligands into cancer cells through conjugation to the cell-penetrating peptide BP16. Org Biomol Chem 2018; 14:4061-70. [PMID: 27055538 DOI: 10.1039/c6ob00470a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide conjugates incorporating the N-based ligands (Me2)PyTACN or (S,S')-BPBP at the N- or the C-terminus of the cell-penetrating peptide were synthesized (PyTACN-BP16 (), BP16-PyTACN (), BPBP-BP16 (), and BP16-BPBP ()). Metal binding peptides bearing at the N-terminus the ligand, an additional Lys and a β-Ala were also prepared (PyTACN-βAK-BP16 () and BPBP-βAK-BP16 ()). Moreover, taking into account the clathrin-dependent endocytic mechanism of , the enzymatic cleavable tetrapeptide Gly-Phe-Leu-Gly was incorporated between the ligand and the N- or C-terminus of (BPBP-GFLG-BP16 () and BP16-GLFG-BPBP ()). Analysis of the cytotoxicity of all the peptide conjugates showed that: (i) the position of the ligand influenced the IC50 values, (ii) the incorporation of the βAla-Lys dipeptide rendered non active sequences, (iii) peptide conjugates derived from the (S,S')-BPBP ligand were more active than those bearing (Me2)PyTACN, and (iv) the introduction of the cleavable tetrapeptide significantly enhanced the activity of the BPBP conjugates (IC50 of 4.3 to 11.7 μM ( and ) compared to 26.0 to >50 μM (, and )). The most active peptide was BPBP-GFLG-BP16 () (IC50 of 4.3 to 5.0 μM). This high activity was attributed to its high internalization in MCF-7 cells, as shown by flow cytometry, and to the subsequent release of the ligand by the intracellular cleavage of the enzyme-labile spacer, as observed in cathepsin B enzymatic assays. Therefore, these results pave the way for the design of novel peptide conjugates to be used in pro-oxidant anticancer therapies.
Collapse
Affiliation(s)
- M Soler
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain. and LIPPSO, Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | - M González-Bártulos
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain. and Departament de Biologia, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | - E Figueras
- LIPPSO, Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | - A Massaguer
- Departament de Biologia, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | - L Feliu
- LIPPSO, Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | - M Planas
- LIPPSO, Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | - X Ribas
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | - M Costas
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| |
Collapse
|
34
|
Ye WL, Zhao YP, Cheng Y, Liu DZ, Cui H, Liu M, Zhang BL, Mei QB, Zhou SY. Bone metastasis target redox-responsive micell for the treatment of lung cancer bone metastasis and anti-bone resorption. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:380-391. [PMID: 29336169 DOI: 10.1080/21691401.2018.1426007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and -15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Wei-Liang Ye
- a Department of Pharmaceutics, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Yi-Pu Zhao
- a Department of Pharmaceutics, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Ying Cheng
- a Department of Pharmaceutics, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Dao-Zhou Liu
- a Department of Pharmaceutics, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Han Cui
- a Department of Pharmaceutics, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Miao Liu
- a Department of Pharmaceutics, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Bang-Le Zhang
- a Department of Pharmaceutics, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Qi-Bing Mei
- b Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine , Fourth Military Medical University , Xi'an , China
| | - Si-Yuan Zhou
- a Department of Pharmaceutics, School of Pharmacy , Fourth Military Medical University , Xi'an , China.,b Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
35
|
Dhandhukia JP, Shi P, Peddi S, Li Z, Aluri S, Ju Y, Brill D, Wang W, Janib SM, Lin YA, Liu S, Cui H, MacKay JA. Bifunctional Elastin-like Polypeptide Nanoparticles Bind Rapamycin and Integrins and Suppress Tumor Growth in Vivo. Bioconjug Chem 2017; 28:2715-2728. [PMID: 28937754 DOI: 10.1021/acs.bioconjchem.7b00469] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recombinant protein-polymer scaffolds such as elastin-like polypeptides (ELPs) offer drug-delivery opportunities including biocompatibility, monodispersity, and multifunctionality. We recently reported that the fusion of FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) increases rapamycin (Rapa) solubility, suppresses tumor growth in breast cancer xenografts, and reduces side effects observed with free-drug controls. This new report significantly advances this carrier strategy by demonstrating the coassembly of two different ELP diblock copolymers containing drug-loading and tumor-targeting domains. A new ELP nanoparticle (ISR) was synthesized that includes the canonical integrin-targeting ligand (Arg-Gly-Asp, RGD). FSI and ISR mixed in a 1:1 molar ratio coassemble into bifunctional nanoparticles containing both the FKBP domain for Rapa loading and the RGD ligand for integrin binding. Coassembled nanoparticles were evaluated for bifunctionality by performing in vitro cell-binding and drug-retention assays and in vivo MDA-MB-468 breast tumor regression and tumor-accumulation studies. The bifunctional nanoparticle demonstrated superior cell target binding and similar drug retention to FSI; however, it enhanced the formulation potency, such that tumor growth was suppressed at a 3-fold lower dose compared to an untargeted FSI-Rapa control. This data suggests that ELP-mediated scaffolds are useful tools for generating multifunctional nanomedicines with potential activity in cancer.
Collapse
Affiliation(s)
- Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Pu Shi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Zhe Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Suhaas Aluri
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Dab Brill
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Wan Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Siti M Janib
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Yi-An Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States.,Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering , Los Angeles, California 90089, United States
| |
Collapse
|
36
|
Pal HA, Mohapatra S, Gupta V, Ghosh S, Verma S. Self-assembling soft structures for intracellular NO release and promotion of neurite outgrowth. Chem Sci 2017; 8:6171-6175. [PMID: 28989648 PMCID: PMC5627600 DOI: 10.1039/c6sc05017d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/19/2017] [Indexed: 12/03/2022] Open
Abstract
Nitric oxide (NO), an endogenously produced free radical species, is an extremely important signalling molecule in several biochemical processes related to neurotransmission, neuronal communication, and vasodilation, to name a few. Other than relying on endogenous synthesis, intracellular NO delivery presents an interesting challenge to fully exploit the therapeutic potential of this gaseous molecule. We have applied a self-assembling peptide conjugate strategy to devise a construct carrying a NO-release arm, which can be activated under standard redox conditions. Consequently, a tryptophan-based peptide carrier was designed, which self-assembled in the solution phase to afford soft nanospherical structures, and released NO in Neuro2a cell line, resulting in neurite outgrowth.
Collapse
Affiliation(s)
- Hilal Ahmad Pal
- Department of Chemistry and Center for Environmental Science and Engineering , Indian Institute of Technology Kanpur , Kanpur 208016 , UP , India .
| | - Saswat Mohapatra
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology Kolkata , 4, Raja S. C. Mullick Road , Jadavpur 700032 , WB , India
| | - Varsha Gupta
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology Kolkata , 4, Raja S. C. Mullick Road , Jadavpur 700032 , WB , India
| | - Surajit Ghosh
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology Kolkata , 4, Raja S. C. Mullick Road , Jadavpur 700032 , WB , India
| | - Sandeep Verma
- Department of Chemistry and Center for Environmental Science and Engineering , Indian Institute of Technology Kanpur , Kanpur 208016 , UP , India .
| |
Collapse
|
37
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
38
|
Zhao YP, Ye WL, Liu DZ, Cui H, Cheng Y, Liu M, Zhang BL, Mei QB, Zhou SY. Redox and pH dual sensitive bone targeting nanoparticles to treat breast cancer bone metastases and inhibit bone resorption. NANOSCALE 2017; 9:6264-6277. [PMID: 28470315 DOI: 10.1039/c7nr00962c] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bone is an especially prone metastatic site for breast cancer, and to block the vicious cycle between bone resorption and tumor growth is an important strategy for the treatment of breast cancer bone metastasis. In this paper, pH- and redox-sensitive as well as breast cancer bone metastasis-targeting nanoparticles (DOX@ALN-(HA-PASP)CL) were prepared, and also their anti-tumor activity and anti-bone resorption effect were investigated in detail. The in vitro experimental results indicated that DOX released from DOX@ALN-(HA-PASP)CL exhibited a GSH-, DTT- and pH-dependent manner. Moreover, in an in vitro 3D breast cancer bone metastasis model, DOX@ALN-(HA-PASP)CL decreased bone resorption through inhibiting the proliferation of human breast cancer cells (MDA-MB-231 cells) and reducing the activity of osteoclasts. The in vivo experimental results indicated that a large amount of DOX was delivered to a breast cancer bone metastasis site after tumor-bearing mice were treated with DOX@ALN-(HA-PASP)CL; meanwhile, DOX@ALN-(HA-PASP)CL significantly decreased the tumor volume and bone resorption in tumor-bearing mice without causing obvious systemic toxicity. In conclusion, the in vitro and in vivo experimental results indicate that DOX@ALN-(HA-PASP)CL has great potential in the treatment of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Yi-Pu Zhao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen J, Guan X, Hu Y, Tian H, Chen X. Peptide-Based and Polypeptide-Based Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:32. [DOI: 10.1007/s41061-017-0115-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
40
|
Real-time near-infrared bioimaging of a receptor-targeted cytotoxic dendritic theranostic agent. Biomaterials 2017; 120:1-10. [DOI: 10.1016/j.biomaterials.2016.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022]
|
41
|
Thota CK, Yadav N, Chauhan VS. "A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide". Sci Rep 2016; 6:31167. [PMID: 27507432 PMCID: PMC4979021 DOI: 10.1038/srep31167] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/13/2016] [Indexed: 11/09/2022] Open
Abstract
Nanostructures including hydrogels based on peptides containing non protein amino acids are being considered as platform for drug delivery because of their inherent biocompatibility and additional proteolytic stability. Here we describe instantaneous self-assembly of a conformationally restricted dipeptide, LeuΔPhe, containing an α,β-dehydrophenylalanine residue into a highly stable and mechanically strong hydrogel, under mild physiological aqueous conditions. The gel successfully entrapped several hydrophobic and hydrophilic drug molecules and released them in a controlled manner. LeuΔPhe was highly biocompatible and easily injectable. Administration of an antineoplastic drug entrapped in the gel in tumor bearing mice significantly controlled growth of tumors. These characteristics make LeuΔPhe an attractive candidate for further development as a delivery platform for various biomedical applications.
Collapse
Affiliation(s)
- Chaitanya Kumar Thota
- International Centre for Genetic Engineering &Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Nitin Yadav
- International Centre for Genetic Engineering &Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Virander Singh Chauhan
- International Centre for Genetic Engineering &Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
42
|
Colzani B, Speranza G, Dorati R, Conti B, Modena T, Bruni G, Zagato E, Vermeulen L, Dakwar GR, Braeckmans K, Genta I. Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization. Int J Pharm 2016; 511:1112-23. [PMID: 27511710 DOI: 10.1016/j.ijpharm.2016.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 02/04/2023]
Abstract
Active drug targeting and controlled release of hydrophilic macromolecular drugs represent crucial points in designing efficient polymeric drug delivery nanoplatforms. In the present work EGFR-targeted polylactide-co-glycolide (PLGA) nanoparticles were made by a blend of two different PLGA-based polymers. The first, GE11-PLGA, in which PLGA was functionalized with GE11, a small peptide and EGFR allosteric ligand, able to give nanoparticles selective targeting features. The second polymer was a PEGylated PLGA (PEG-PLGA) aimed at improving nanoparticles hydrophilicity and stealth features. GE11 and GE11-PLGA were custom synthetized through a simple and inexpensive method. The nanoprecipitation technique was exploited for the preparation of polymeric nanoparticles composed by a 1:1weight ratio between GE11-PLGA and PEG-PLGA, obtaining smart nanoplatforms with proper size for parenteral administration (143.9±5.0nm). In vitro cellular uptake in EGFR-overexpressing cell line (A549) demonstrated an active internalization of GE11-functionalized nanoparticles. GE11-PLGA/PEG-PLGA blend nanoparticles were loaded with Myoglobin, a model hydrophilic macromolecule, reaching a good loading (2.42% respect to the theoretical 4.00% w/w) and a prolonged release over 60days. GE11-PLGA/PEG-PLGA blend nanoparticles showed good in vitro stability for 30days in physiological saline solution at 4°C and for 24h in pH 7.4 or pH 5.0 buffer at 37°C respectively, giving indications about potential storage and administration conditions. Furthermore ex vivo stability study in human plasma using fluorescence Single Particle Tracking (fSPT) assessed good GE11-PLGA/PEG-PLGA nanoparticles dimensional stability after 1 and 4h. Thanks to the versatility in polymeric composition and relative tunable nanoparticles features in terms of drug incorporation and release, GE11-PLGA/PEG-PLGA blend NPs can be considered highly promising as smart nanoparticulate platforms for the treatment of diseases characterized by EGFR overexpression by parenteral administration .
Collapse
Affiliation(s)
- Barbara Colzani
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, 19, Via Golgi, 20130, Milano, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Elisa Zagato
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Lotte Vermeulen
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000, Ghent, Belgium
| | - George R Dakwar
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy.
| |
Collapse
|
43
|
|
44
|
Preparation of a paclitaxel-loaded cationic nanoemulsome and its biodistribution via direct intratumoral injection. Colloids Surf B Biointerfaces 2016; 142:81-88. [DOI: 10.1016/j.colsurfb.2016.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
|
45
|
Al-Ahmady Z, Kostarelos K. Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics. Chem Rev 2016; 116:3883-918. [DOI: 10.1021/acs.chemrev.5b00578] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
- Manchester
Pharmacy School, University of Manchester, Stopford Building, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
46
|
Palao-Suay R, Gómez-Mascaraque L, Aguilar M, Vázquez-Lasa B, Román JS. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Soler M, González-Bártulos M, Figueras E, Ribas X, Costas M, Massaguer A, Planas M, Feliu L. Enzyme-triggered delivery of chlorambucil from conjugates based on the cell-penetrating peptide BP16. Org Biomol Chem 2015; 13:1470-80. [PMID: 25474438 DOI: 10.1039/c4ob01875c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The undecapeptide KKLFKKILKKL-NH2 (BP16) is a non-toxic cell-penetrating peptide (CPP) that is mainly internalized into cancer cells through a clathrin dependent endocytic mechanism and localizes in late endosomes. Moreover, this CPP is able to enhance the cellular uptake of chlorambucil (CLB) improving its cytotoxicity. In this work, we further explored the cell-penetrating properties of BP16 and those of its arginine analogue BP308. We investigated the influence on the cytotoxicity and on the cellular uptake of conjugating CLB at the N- or the C-terminal end of these undecapeptides. The effect of incorporating the cathepsin B-cleavable sequence Gly-Phe-Leu-Gly in CLB-BP16 and CLB-BP308 conjugates was also evaluated. The activity of CLB was significantly improved when conjugated at the N- or the C-terminus of BP16, or at the N-terminus of BP308. While CLB alone was not active (IC50 of 73.7 to >100 μM), the resulting conjugates displayed cytotoxic activity against CAPAN-1, MCF-7, PC-3, 1BR3G and SKMEL-28 cell lines with IC50 values ranging from 8.7 to 25.5 μM. These results were consistent with the internalization properties observed for the corresponding 5(6)-carboxyfluorescein-labeled conjugates. The presence of the tetrapeptide Gly-Phe-Leu-Gly at either the N- or the C-terminus of CLB-BP16 conjugates further increased the efficacy of CLB (IC50 of 3.6 to 16.2 μM), which could be attributed to its selective release in the lysosomal compartment. Enzymatic assays with cathepsin B showed the release of CLB-Gly-OH from these sequences within a short time. Therefore, the combination of BP16 with an enzymatic cleavable sequence can be used as a drug delivery system for the effective uptake and release of drugs in cancer cells.
Collapse
Affiliation(s)
- Marta Soler
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Brill DA, MacKay JA. Image-driven pharmacokinetics: nanomedicine concentration across space and time. Nanomedicine (Lond) 2015; 10:2861-79. [PMID: 26370694 DOI: 10.2217/nnm.15.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clinical pharmacokinetics (PK) primarily measures the concentration of drugs in the blood. For nanomedicines it may be more relevant to determine concentration within a target tissue. The emerging field of image-driven PK, which utilizes clinically accepted molecular imaging technology, empirically and noninvasively, measures concentration in multiple tissues. Image-driven PK represents the intersection of PK and biodistribution, combining to provide models of concentration across space and time. Image-driven PK can be used both as a research tool and in the clinic. This review explores the history of pharmacokinetics, technologies used in molecular imaging (especially positron emission tomography) and research using image-driven pharmacokinetic analysis. When standardized, image-driven PK may have significant implications in preclinical development as well as clinical optimization of targeted nanomedicines.
Collapse
Affiliation(s)
- Dab A Brill
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - J Andrew MacKay
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
49
|
Pastuszka MK, MacKay JA. Engineering structure and function using thermoresponsive biopolymers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:123-38. [PMID: 26112277 DOI: 10.1002/wnan.1350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 11/09/2022]
Abstract
Self-assembly enables exquisite control at the smallest scale and generates order among macromolecular-building blocks that remain too small to be manipulated individually. Environmental cues, such as heating, can trigger the organization of these materials from individual molecules to multipartixcle assemblies with a variety of compositions and functions. Synthetic as well as biological polymers have been engineered for these purposes; however, biological strategies can offer unparalleled control over the composition of these macromolecular-building blocks. Biologic polymers are macromolecules composed of monomeric units that can be precisely tailored at the genetic level; furthermore, they can often utilize endogenous biodegradation pathways, which may enhance their potential clinical applications. DNA (nucleotides), polysaccharides (carbohydrates), and proteins (amino acids) have all been engineered to self-assemble into nanostructures in response to a change in temperature. This focus article reviews the growing body of literature exploring temperature-dependent nano-assembly of these biological macromolecules, summarizes some of their physical properties, and discusses future directions.
Collapse
Affiliation(s)
- Martha K Pastuszka
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
50
|
Cheng YJ, Cheng H, Zhao X, Xu XD, Zhuo RX, He F. Self-assembled micelles of a multi-functional amphiphilic fusion (MFAF) peptide for targeted cancer therapy. Polym Chem 2015. [DOI: 10.1039/c5py00125k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new MFAF peptide was designed and prepared. The micelles of this MFAF peptide can efficiently use their tumor-targeting, membrane-penetrating and endosome-escaping functions to deliver the drug into targeted tumor cells, leading to the apoptosis of tumor cells.
Collapse
Affiliation(s)
- Yin-Jia Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Hong Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xin Zhao
- Center for Biomedical Engineering
- Department of Medicine
- Brigham and Women's Hospital
- Harvard Medical School
- Cambridge
| | - Xiao-Ding Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Feng He
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|