1
|
Pan Y, Liu L, Mou X, Cai Y. Nanomedicine Strategies in Conquering and Utilizing the Cancer Hypoxia Environment. ACS NANO 2023; 17:20875-20924. [PMID: 37871328 DOI: 10.1021/acsnano.3c07763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cancer with a complex pathological process is a major disease to human welfare. Due to the imbalance between oxygen (O2) supply and consumption, hypoxia is a natural characteristic of most solid tumors and an important obstacle for cancer therapy, which is closely related to tumor proliferation, metastasis, and invasion. Various strategies to exploit the feature of tumor hypoxia have been developed in the past decade, which can be used to alleviate tumor hypoxia, or utilize the hypoxia for targeted delivery and diagnostic imaging. The strategies to alleviate tumor hypoxia include delivering O2, in situ O2 generation, reprogramming the tumor vascular system, decreasing O2 consumption, and inhibiting HIF-1 related pathways. On the other side, hypoxia can also be utilized for hypoxia-responsive chemical construction and hypoxia-active prodrug-based strategies. Taking advantage of hypoxia in the tumor region, a number of methods have been applied to identify and keep track of changes in tumor hypoxia. Herein, we thoroughly review the recent progress of nanomedicine strategies in both conquering and utilizing hypoxia to combat cancer and put forward the prospect of emerging nanomaterials for future clinical transformation, which hopes to provide perspectives in nanomaterials design.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Schroter A, Arnau Del Valle C, Marín MJ, Hirsch T. Bilayer-Coating Strategy for Hydrophobic Nanoparticles Providing Colloidal Stability, Functionality, and Surface Protection in Biological Media. Angew Chem Int Ed Engl 2023; 62:e202305165. [PMID: 37249482 DOI: 10.1002/anie.202305165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 05/31/2023]
Abstract
The surface chemistry of nanoparticles is a key step on the pathway from particle design towards applications in biologically relevant environments. Here, a bilayer-based strategy for the surface modification of hydrophobic nanoparticles is introduced that leads to excellent colloidal stability in aqueous environments and good protection against disintegration, while permitting surface functionalization via simple carbodiimide chemistry. We have demonstrated the excellent potential of this strategy using upconversion nanoparticles (UCNPs), initially coated with oleate and therefore dispersible only in organic solvents. The hydrophobic oleate capping is maintained and a bilayer is formed upon addition of excess oleate. The bilayer approach renders protection towards luminescence loss by water quenching, while the incorporation of additional molecules containing amino functions yields colloidal stability and facilitates the introduction of functionality. The biological relevance of the approach was confirmed with the use of two model dyes, a photosensitizer and a nitric oxide (NO) probe that, when attached to the surface of the UCNPs, retained their functionality to produce singlet oxygen and detect intracellular NO, respectively. We present a simple and fast strategy to protect and functionalize inorganic nanoparticles in biological media, which is important for controlled surface engineering of nanosized materials for theranostic applications.
Collapse
Affiliation(s)
- Alexandra Schroter
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
3
|
Site-specific labeling of antibodies with quantum dots could promote to retain the antigen binding capacity of antibodies. Food Chem 2023; 413:135655. [PMID: 36796266 DOI: 10.1016/j.foodchem.2023.135655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
A major concern with antibody labeling is the decreased antigen affinity binding capacity of antibodies, owing mainly to the randomly oriented binding of the marker. Herein, a universal approach for site-specific photocrosslinking of quantum dots (QDs) to the Fc-terminal of antibodies was investigated utilizing antibody Fc-terminal affinity proteins. Results showed that the QDs only bound to the heavy chain of the antibody. Further comparative tests confirmed that the site-specific directed labeling approach maximizes the retention of the antigen-binding capacity of the natural antibody. Compared with the commonly employed random orientation labeling approach, the directional labeling approach allows the labeled antibody showed 6 times greater binding affinity to antigen. QDs-labeled monoclonal antibodies were applied to fluorescent immunochromatographic test strips for the detection of shrimp tropomyosin (TM). The established procedure has a detection limit of 0.054 μg/mL. Thus, the site-specific labeling approach significantly improves the antigen binding capacity of the labeled antibody.
Collapse
|
4
|
Wang X, Guo W, Han J, Li J, Zhao Q, Mao Y, Wang S. Oral spatial-to-point cascade targeting "sugar-coated bullets" for precise and safe chemotherapy by intervention Warburg effect. Colloids Surf B Biointerfaces 2023; 222:113108. [PMID: 36586235 DOI: 10.1016/j.colsurfb.2022.113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Glycolysis plays a vital role in the development and progression of tumors. Inhibiting glycolysis via smart and safe methods serves as a promising target for cancer therapy. Here, an oral "sugar-coated bullet" aiming at intervening Warburg effect is designed by coating colloidal mesoporous silica nanoparticles (CMS) encapsulating glycolysis inhibitor shikonin (SHK) with dextran, namely DCMS/SHK. The solubility and drug-loading capacity of SHK were enhanced by the special structure of CMS. Besides, the tempting bullets possess the spatial-to-point cascade targeting ability in delivering SHK from the colonic lumen to colon cancer cells and finally to PKM2. After DCMS/SHK reaches the colon, the dextran is hydrolyzed by dextranase especially existing in the colon site to glucose and the carriers become glucose-coated nanoparticles. The glucose-cloak nanoparticles would be largely endocytosed by tumor cells and complete the efficient delivery of SHK. The encapsulated SHK can prevent the glycolysis of cancer cells and thus inhibit tumor growth effectively. This work presents an ingenious cascade colon-targeting strategy to treat colon cancer by destroying cell energy metabolism.
Collapse
Affiliation(s)
- Xiudan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Wen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jianan Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jia Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
5
|
de Freitas JVB, Reis AVF, Silva ADO, de Sousa ACC, Martins JRP, Nogueira KAB, da Silva Moreira T, Petrilli R, Eloy JO. Monoclonal Antibodies in Nanosystems as a Strategy for Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Drozdov AS, Komarova KS, Mochalova EN, Komedchikova EN, Shipunova VO, Nikitin MP. Fluorescent Magnetic Nanoparticles for Bioimaging through Biomimetic Surface Modification. Int J Mol Sci 2022; 24:ijms24010134. [PMID: 36613578 PMCID: PMC9820170 DOI: 10.3390/ijms24010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nanostructured materials and systems find various applications in biomedical fields. Hybrid organo-inorganic nanomaterials are intensively studied in a wide range of areas, from visualization to drug delivery or tissue engineering. One of the recent trends in material science is biomimetic approaches toward the synthesis or modification of functional nanosystems. Here, we describe an approach toward multifunctional nanomaterials through the biomimetic polymerization of dopamine derivatives. Magnetite nanoparticles were modified with a combination of dopamine conjugates to give multifunctional magneto-fluorescent nanocomposites in one synthetic step. The obtained material showed excellent biocompatibility at concentrations up to 200 μg/mL and an in vivo biodistribution profile typical for nanosized formulations. The synthesized systems were conjugated with antibodies against HER2 to improve their selectivity toward HER2-positive cancer cells. The produced material can be used for dual magneto-optical in vivo studies or targeted drug delivery. The applied synthetic strategy can be used for the creation of various multifunctional hybrid nanomaterials in mild conditions.
Collapse
Affiliation(s)
- Andrey S Drozdov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Kristina S Komarova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta N Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Elena N Komedchikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Victoria O Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
7
|
Xiao F, Li W, Xu H. Advances in magnetic nanoparticles for the separation of foodborne pathogens: Recognition, separation strategy, and application. Compr Rev Food Sci Food Saf 2022; 21:4478-4504. [PMID: 36037285 DOI: 10.1111/1541-4337.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/28/2023]
Abstract
Foodborne pathogens contamination is one of the main sources of food safety problems. Although the existing detection methods have been developed for a long time, the complexity of food samples is still the main factor affecting the detection time and sensitivity, and the rapid separation and enrichment of pathogens is still an objective to be studied. Magnetic separation strategy based on magnetic nanoparticles (MNPs) is considered to be an effective tool for rapid separation and enrichment of foodborne pathogens in food. Therefore, this study comprehensively reviews the development of MNPs in the separation of foodborne pathogens over the past decade. First, various biorecognition reagents for identification of foodborne pathogens and their modifications on the surface of MNPs are introduced. Then, the factors affecting the separation of foodborne pathogens, including the size of MNPs, modification methods, separation strategies and separation forms are discussed. Finally, the application of MNPs in integrated detection methods is reviewed. Moreover, current challenges and prospects of MNPs for the analysis of foodborne pathogens are discussed. Further research should focus on the design of multifunctional MNPs, the processing of large-scale samples, the simultaneous analysis of multiple targets, and the development of all-in-one small analytical device with separation and detection.
Collapse
Affiliation(s)
- Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
8
|
Rostami E. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Inorganic Nanocarriers: Surface Functionalization, Delivery Utility for Natural Therapeutics - A Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-96l963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inorganic nanocarriers for a decade have increased interest in nanotechnology research platform as versatile drug delivery materials. The utility of the inorganic nanocarriers for delivery of therapeutic agents is attributed to their unique properties such as magnetic, photocatalytic nature and the ability to exhibit surface functionalization. Herein, we review the surface functionalization and delivery utility for natural therapeutics exhibited by inorganic nanocarriers mostly focusing on their magnetic, photocatalytic and the plasmonic properties. The review also highlights the influence of electronic property of inorganic surface on functionalization of ligand based natural therapeutic agents. Improvement of stability and therapeutic potential by formation of nanocomposites are detailed. Furthermore, we suggest improvement strategies for stability and toxicity reduction of inorganic nanoparticles that would potentially make them useful for clinical application as therapeutic delivery tools for treatment of various diseases.
Collapse
|
10
|
Mohajeri S, Moayedi S, Azimi L, Akrami M, Rad-Malekshahi M, Fazeli MR, Fallah F, Haririan I. Nanobiosensor Based on Sugar Code-AuNPs Aggregation: A Key to Opening New Gates in Rapid Diagnosis of Streptococcal Pharyngitis. Front Bioeng Biotechnol 2022; 10:957271. [PMID: 35935503 PMCID: PMC9354983 DOI: 10.3389/fbioe.2022.957271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcal pharyngitis is mainly caused by Streptococcus pyogenes (GAS), which if left untreated can lead to rheumatic heart disease. The accurate diagnosis of streptococcal pharyngitis is a challenge for clinicians because several symptoms of streptococcal pharyngitis are similar to viral pharyngitis. There are some commercially available biosensors for the rapid diagnosis of streptococcal pharyngitis. Nevertheless, they are not widely used by physicians, mainly because of their high price and dependence on the instrument. Serotype M1 GAS is the most prevalent cause of streptococcal pharyngitis and binds to H-1 antigen, a sugar code found on oral epithelial cells. Here, we present a nanobiosensor based on aggregation of H-1 antigen-conjugated gold nanoparticles for the rapid, qualitative, and quantitative detection of M1 GAS, which is inspired by the sugar code-lectin interaction. It is noteworthy that M1 GAS was detected in a wide concentration range (1 × 103-1×106 CFU/ml) with a linear response and a short detection time of 20 min. Good reproducibility, easy-to-use, and relatively low production cost are among other attractive features of this nanobiosensor. This work provides a strategic roadmap for developing a new generation of biosensors via targeting the sugar code-lectin interaction in future studies.
Collapse
Affiliation(s)
- Sahar Mohajeri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Moayedi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wang Y, Wang X, Gao T, Lou C, Wang H, Liu Y, Cao A. Folding of Flexible Protein Fragments and Design of Nanoparticle-Based Artificial Antibody Targeting Lysozyme. J Phys Chem B 2022; 126:5045-5054. [PMID: 35763806 DOI: 10.1021/acs.jpcb.2c03200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is generally believed that a protein's sequence solely determines its native structure, but how the long- and short-range interactions jointly determine the native structure/conformation of the protein or every local fragment of the protein is still not fully understood. Since most protein fragments are unstructured on their own, direct observation of the folding of flexible protein fragments is very difficult. Interestingly, we show that it is possible to graft the complementary-determining regions (CDRs) of antibodies onto the surface of a gold nanoparticle (AuNP) to create AuNP-based artificial antibodies (denoted as Goldbodies), such as an antilysozyme Goldbody. Goldbodies can specifically recognize the corresponding antigens like the original natural antibodies do, but direct structural evidence for the refolding or restoration of native conformation of the grafted CDRs on AuNPs is still missing and in high demand. Herein we design a new Goldbody that targets an epitope on the lysozyme different from that of the previous antilysozyme Goldbody, and the one circle of helix in the CDR makes it possible to distinguish the unfolded conformation of the free CDR and its folded conformation on AuNPs by circular dichroism (CD) spectroscopy. The refolding of flexible protein fragments on NPs provides unique evidence and inspiration for understanding the fundamental principles of protein folding.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xinping Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Tiange Gao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chenxi Lou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
13
|
Jiao Y, Gao Y, Wang J, An H, Xiang Li Y, Zhang X. Intelligent porphyrin nano-delivery system for photostimulated and targeted inhibition of angiogenesis. Int J Pharm 2022; 621:121805. [DOI: 10.1016/j.ijpharm.2022.121805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 12/17/2022]
|
14
|
Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1809. [PMID: 36416028 PMCID: PMC9786906 DOI: 10.1002/wnan.1809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
Nucleic acid therapeutics can be used to control virtually every aspect of cell behavior and therefore have significant potential to treat genetic disorders, infectious diseases, and cancer. However, while clinically approved to treat a small number of diseases, the full potential of nucleic acid therapeutics is hampered by inefficient delivery. Nucleic acids are large, highly charged biomolecules that are sensitive to degradation and so the approaches to deliver these molecules differ significantly from traditional small molecule drugs. Current studies suggest less than 1% of the injected nucleic acid dose is delivered to the target cell in an active form. This inefficient delivery increases costs and limits their use to applications where a small amount of nucleic acid is sufficient. In this review, we focus on two of the major barriers to efficient nucleic acid delivery: (1) delivery to the target cell and (2) transport to the subcellular compartment where the nucleic acids are therapeutically active. We explore how nanoparticles can be modified with targeting ligands to increase accumulation in specific cells, and how the composition of the nanoparticle can be engineered to manipulate or disrupt cellular membranes and facilitate delivery to the optimal subcellular compartments. Finally, we highlight how with intelligent material design, nanoparticle delivery systems have been developed to deliver nucleic acids that silence aberrant genes, correct genetic mutations, and act as both therapeutic and prophylactic vaccines. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Lara M. Mollé
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Cameron H. Smyth
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
15
|
Lin T, Huang X, Guo L, Zhou S, Li X, Liu Y, Hu J, Chen X, Xiong Y. Boronate affinity-assisted oriented antibody conjugation on quantum dot nanobeads for improved detection performance in lateral flow immunoassay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Unravelling an amine-regulated crystallization crossover to prove single/multicore effects on the biomedical and environmental catalytic activity of magnetic iron oxide colloids. J Colloid Interface Sci 2021; 608:1585-1597. [PMID: 34742075 DOI: 10.1016/j.jcis.2021.10.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022]
Abstract
Elucidation of reaction mechanisms in forming nanostructures is relevant to obtain robust and affordable protocols that can lead to materials with enhanced properties and good reproducibility. Here, the formation of magnetic iron oxide monocrystalline nanoflowers in polyol solvents using N-methyldiethanolamine (NMDEA) as co-solvent has been shown to occur through a non-classical crystallization pathway. This pathway involves intermediate mesocrystals that, in addition, can be transformed into large single colloidal nanocrystals. Interestingly, the crossover of a non-classical crystallization pathway to a classical crystallization pathway can be induced by merely changing the NMDEA concentration. The key is the stability of a green rust-like intermediate complex that modulates the nucleation rate and growth of magnetite nanocrystals. The crossover separates two crystallization domains (classical and non-classical) and three basic configurations (mesocrystals, large and small colloidal nanocrystals). The above finding facilitated the synthesis of magnetic materials with different configurations to suit various engineering applications. Consequently, the effect of the single and multicore configurations of magnetic iron oxide on the biomedical (magnetic hyperthermia and enzyme immobilization) and catalytic activity (Fenton-like reactions and photo-Fenton-like processes driven by visible light irradiation) has been experimentally demonstrated.
Collapse
|
17
|
Evaluation of the Targeting and Therapeutic Efficiency of Anti-EGFR Functionalised Nanoparticles in Head and Neck Cancer Cells for Use in NIR-II Optical Window. Pharmaceutics 2021; 13:pharmaceutics13101651. [PMID: 34683944 PMCID: PMC8537270 DOI: 10.3390/pharmaceutics13101651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Gold nanoparticles have been indicated for use in a diagnostic and/or therapeutic role in several cancer types. The use of gold nanorods (AuNRs) with a surface plasmon resonance (SPR) in the second near-infrared II (NIR-II) optical window promises deeper anatomical penetration through increased maximum permissible exposure and lower optical attenuation. In this study, the targeting and therapeutic efficiency of anti-epidermal growth factor receptor (EGFR)-antibody-functionalised AuNRs with an SPR at 1064 nm was evaluated in vitro. Four cell lines, KYSE-30, CAL-27, Hep-G2 and MCF-7, which either over- or under-expressed EGFR, were used once confirmed by flow cytometry and immunofluorescence. Optical microscopy demonstrated a significant difference (p < 0.0001) between targeted AuNRs (tAuNRs) and untargeted AuNRs (uAuNRs) in all four cancer cell lines. This study demonstrated that anti-EGFR functionalisation significantly increased the association of tAuNRs with each EGFR-positive cancer cell. Considering this, the MTT assay showed that photothermal therapy (PTT) significantly increased cancer cell death (>97%) in head and neck cancer cell line CAL-27 using tAuNRs but not uAuNRs, apoptosis being the major mechanism of cell death. This successful targeting and therapeutic outcome highlight the future use of tAuNRs for molecular photoacoustic imaging or tumour treatment through plasmonic photothermal therapy.
Collapse
|
18
|
Atabakhshi-Kashi M, Carril M, Mahdavi H, Parak WJ, Carrillo-Carrion C, Khajeh K. In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1906. [PMID: 34443736 PMCID: PMC8401737 DOI: 10.3390/nano11081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
Nanoparticles (NPs) functionalized with antibodies (Abs) on their surface are used in a wide range of bioapplications. Whereas the attachment of antibodies to single NPs to trigger the internalization in cells via receptor-mediated endocytosis has been widely studied, the conjugation of antibodies to larger NP assemblies has been much less explored. Taking into account that NP assemblies may be advantageous for some specific applications, the possibility of incorporating targeting ligands is quite important. Herein, we performed the effective conjugation of antibodies onto a fluorescent NP assembly, which consisted of fluorinated Quantum Dots (QD) self-assembled through fluorine-fluorine hydrophobic interactions. Cellular uptake studies by confocal microscopy and flow cytometry revealed that the NP assembly underwent the same uptake procedure as individual NPs; that is, the antibodies retained their targeting ability once attached to the nanoassembly, and the NP assembly preserved its intrinsic properties (i.e., fluorescence in the case of QD nanoassembly).
Collapse
Affiliation(s)
- Mona Atabakhshi-Kashi
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran 14115-175, Iran;
- Bioengineered Particles Group, CIC biomaGUNE, 20014 San Sebastian, Spain; (M.C.); (W.J.P.)
| | - Mónica Carril
- Bioengineered Particles Group, CIC biomaGUNE, 20014 San Sebastian, Spain; (M.C.); (W.J.P.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Instituto Biofisika UPV/EHU, CSIC, 48940 Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, UPV/EHU, 48940 Leioa, Spain
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, Tehran 14174-66191, Iran;
| | - Wolfgang J. Parak
- Bioengineered Particles Group, CIC biomaGUNE, 20014 San Sebastian, Spain; (M.C.); (W.J.P.)
- Fachbereich Physik and CHyN, Universität Hamburg, 22607 Hamburg, Germany
| | - Carolina Carrillo-Carrion
- Bioengineered Particles Group, CIC biomaGUNE, 20014 San Sebastian, Spain; (M.C.); (W.J.P.)
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Sevilla, Spain
| | - Khosro Khajeh
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran 14115-175, Iran;
| |
Collapse
|
19
|
Pereira RHA, Keijok WJ, Prado AR, de Oliveira JP, Guimarães MCC. Rapid and sensitive detection of ochratoxin A using antibody-conjugated gold nanoparticles based on Localized Surface Plasmon Resonance. Toxicon 2021; 199:139-144. [PMID: 34153309 DOI: 10.1016/j.toxicon.2021.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
The regulation of tolerable levels of ochratoxin A in food for human and animal consumption has been defined in some countries. To meet these levels, simpler, more efficient, and faster analytical methods are being developed to facilitate the identification of this dangerous contaminant in food. Here, we combined gold nanoparticles (AuNPs) with anti-ochratoxin A (OTA) IgG to detect elementary levels of OTA based on Localized Surface Plasmon Resonance. AuNPs were prepared with trisodium citrate and characterized by UV-visible spectroscopy, X-ray, dynamic light scattering, and transmission electron microscopy. The conjugation of AuNPs to IgG anti-OTA was confirmed by bathochromic shift (UV-vis) and RAMAN spectroscopy. The sensitivity of the nanosensor was investigated by measuring LSPR band λmax shifts. Our results suggest this assay is highly sensitive, with a lower detection limit of about 0.001 pg mL-1. The LSPR nanosensor reduced detection limits by roughly 10 times compared to other methods. We demonstrated that the approach investigated here is a rapid and sensitive method for OTA detection.
Collapse
Affiliation(s)
| | | | | | - Jairo Pinto de Oliveira
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitoria, ES, 29.040-090, Brazil
| | | |
Collapse
|
20
|
Petrilli R, Pinheiro DP, de Cássia Evangelista de Oliveira F, Galvão GF, Marques LGA, Lopez RFV, Pessoa C, Eloy JO. Immunoconjugates for Cancer Targeting: A Review of Antibody-Drug Conjugates and Antibody-Functionalized Nanoparticles. Curr Med Chem 2021; 28:2485-2520. [PMID: 32484100 DOI: 10.2174/0929867327666200525161359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Targeted therapy has been recently highlighted due to the reduction of side effects and improvement in overall efficacy and survival from different types of cancers. Considering the approval of many monoclonal antibodies in the last twenty years, cancer treatment can be accomplished by the combination of monoclonal antibodies and small molecule chemotherapeutics. Thus, strategies to combine both drugs in a single administration system are relevant in the clinic. In this context, two strategies are possible and will be further discussed in this review: antibody-drug conjugates (ADCs) and antibody-functionalized nanoparticles. First, it is important to better understand the possible molecular targets for cancer therapy, addressing different antigens that can selectively bind to antibodies. After selecting the best target, ADCs can be prepared by attaching a cytotoxic drug to an antibody able to target a cancer cell antigen. Briefly, an ADC will be formed by a monoclonal antibody (MAb), a cytotoxic molecule (cytotoxin) and a chemical linker. Usually, surface-exposed lysine or the thiol group of cysteine residues are used as anchor sites for linker-drug molecules. Another strategy that should be considered is antibody-functionalized nanoparticles. Basically, liposomes, polymeric and inorganic nanoparticles can be attached to specific antibodies for targeted therapy. Different conjugation strategies can be used, but nanoparticles coupling between maleimide and thiolated antibodies or activation with the addition of ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/ N-hydroxysuccinimide (NHS) (1:5) and further addition of the antibody are some of the most used strategies. Herein, molecular targets and conjugation strategies will be presented and discussed to better understand the in vitro and in vivo applications presented. Also, the clinical development of ADCs and antibody-conjugated nanoparticles are addressed in the clinical development section. Finally, due to the innovation related to the targeted therapy, it is convenient to analyze the impact on patenting and technology. Information related to the temporal evolution of the number of patents, distribution of patent holders and also the number of patents related to cancer types are presented and discussed. Thus, our aim is to provide an overview of the recent developments in immunoconjugates for cancer targeting and highlight the most important aspects for clinical relevance and innovation.
Collapse
Affiliation(s)
- Raquel Petrilli
- University for International Integration of the Afro-Brazilian Lusophony, Institute of Health Sciences, Ceara, Brazil
| | - Daniel Pascoalino Pinheiro
- Federal University of Ceara, College of Medicine, Department of Physiology and Pharmacology, Fortaleza, Ceara, Brazil
| | | | - Gabriela Fávero Galvão
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, Ribeirao Preto, SP, Brazil
| | - Lana Grasiela Alves Marques
- Institute of Communication and Scientific and Technological Information in Health, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, Ribeirao Preto, SP, Brazil
| | - Claudia Pessoa
- Federal University of Ceara, College of Medicine, Department of Physiology and Pharmacology, Fortaleza, Ceara, Brazil
| | - Josimar O Eloy
- Federal University of Ceará, College of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza, Ceara, Brazil
| |
Collapse
|
21
|
Brückner M, Simon J, Landfester K, Mailänder V. The conjugation strategy affects antibody orientation and targeting properties of nanocarriers. NANOSCALE 2021; 13:9816-9824. [PMID: 34031680 DOI: 10.1039/d0nr08191d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antibody-modified drug delivery systems in the nano-range have the ability to overcome current challenges for treating diseases due to their high specificity towards the targeted body region. However, no antibody-bound nanocarrier has been clinically approved to date. This missing clinical approval may be a result of the conjugation strategy that influences the spatial orientation of the attached antibody on the nanocarriers' surface. What is not missing, however, is a diverse selection of antibody to nanocarrier conjugation strategies that determine the success of an antibody functionalized drug delivery system. In this paper, two antibody conjugation strategies were compared by conjugating the surface of cross-linked starch iron oxide nanocarriers with specifically modified CD11c monoclonal antibodies. The antibody nanocarrier conjugates, synthesized either by the chemistry of thiol-maleimide coupling or copper-free click chemistry, were analyzed by flow cytometry to determine their binding affinity towards a murine dendritic cell line (DC2.4). In the cell uptake, different antibody amounts on the nanocarrier could induce a dendritic cell uptake for both conjugation strategies. However, blocking experiments further highlighted the importance of the orientation of the antibody on to the nanocarriers' surface. While the antibodies which were attached via the copper-free click chemistry were oriented, maleimide synthesized conjugates presented their antibodies randomly on the surface. Lastly, to evaluate the in vivo properties of the antibody modified nanocarriers, targeting experiments with mouse plasma were performed, and it was proven that the biomolecular corona does not diminish the targeting efficiency.
Collapse
Affiliation(s)
- Maximilian Brückner
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | | | | | | |
Collapse
|
22
|
Ye Q, Wang Y, Shen S, Xu C, Wang J. Biomaterials-Based Delivery of Therapeutic Antibodies for Cancer Therapy. Adv Healthc Mater 2021; 10:e2002139. [PMID: 33870637 DOI: 10.1002/adhm.202002139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/05/2021] [Indexed: 12/19/2022]
Abstract
Considerable breakthroughs in the treatment of malignant tumors using antibody drugs, especially immunomodulating monoclonal antibodies (mAbs), have been made in the past decade. Despite technological advancements in antibody design and manufacture, multiple challenges face antibody-mediated cancer therapy, such as instability in vivo, poor tumor penetration, limited response rate, and undesirable off-target cytotoxicity. In recent years, an increasing number of biomaterials-based delivery systems have been reported to enhance the antitumor efficacy of antibody drugs. This review summarizes the advances and breakthroughs in integrating biomaterials with therapeutic antibodies for enhanced cancer therapy. A brief introduction to the principal mechanism of antibody-based cancer therapy is first established, and then various antibody immobilization strategies are provided. Finally, the current state-of-the-art in biomaterials-based antibody delivery systems and their applications in cancer treatment are summarized, highlighting how the delivery systems augment the therapeutic efficacy of antibody drugs. The outlook and perspective on biomaterials-based delivery of antitumor antibodies are also discussed.
Collapse
Affiliation(s)
- Qian‐Ni Ye
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
| | - Yue Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Cong‐Fei Xu
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
23
|
Zamay TN, Prokopenko VS, Zamay SS, Lukyanenko KA, Kolovskaya OS, Orlov VA, Zamay GS, Galeev RG, Narodov AA, Kichkailo AS. Magnetic Nanodiscs-A New Promising Tool for Microsurgery of Malignant Neoplasms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1459. [PMID: 34072903 PMCID: PMC8227103 DOI: 10.3390/nano11061459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022]
Abstract
Magnetomechanical therapy is one of the most perspective directions in tumor microsurgery. According to the analysis of recent publications, it can be concluded that a nanoscalpel could become an instrument sufficient for cancer microsurgery. It should possess the following properties: (1) nano- or microsized; (2) affinity and specificity to the targets on tumor cells; (3) remote control. This nano- or microscalpel should include at least two components: (1) a physical nanostructure (particle, disc, plates) with the ability to transform the magnetic moment to mechanical torque; (2) a ligand-a molecule (antibody, aptamer, etc.) allowing the scalpel precisely target tumor cells. Literature analysis revealed that the most suitable nanoscalpel structures are anisotropic, magnetic micro- or nanodiscs with high-saturation magnetization and the absence of remanence, facilitating scalpel remote control via the magnetic field. Additionally, anisotropy enhances the transmigration of the discs to the tumor. To date, four types of magnetic microdiscs have been used for tumor destruction: synthetic antiferromagnetic P-SAF (perpendicular) and SAF (in-plane), vortex Py, and three-layer non-magnetic-ferromagnet-non-magnetic systems with flat quasi-dipole magnetic structures. In the current review, we discuss the biological effects of magnetic discs, the mechanisms of action, and the toxicity in alternating or rotating magnetic fields in vitro and in vivo. Based on the experimental data presented in the literature, we conclude that the targeted and remotely controlled magnetic field nanoscalpel is an effective and safe instrument for cancer therapy or theranostics.
Collapse
Affiliation(s)
- Tatiana N. Zamay
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Vladimir S. Prokopenko
- Institute of Physics and Informatics, Astafiev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk, Russia;
| | - Sergey S. Zamay
- Molecular Electronics Department, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia;
| | - Kirill A. Lukyanenko
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
| | - Olga S. Kolovskaya
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Vitaly A. Orlov
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia;
- Kirensky Institute of Physics Federal Research Center KSC Siberian Branch Russian Academy of Sciences, Akademgorodok 50, bld. 38, 660036 Krasnoyarsk, Russia
| | - Galina S. Zamay
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | | | - Andrey A. Narodov
- Traumatology Orthopedics and Neurosurgery Department, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia;
| | - Anna S. Kichkailo
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
24
|
Abad JM, Puertas S, Pérez D, Sánchez-Espinel C. Design and Development of Antibody Functionalized Gold Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2834-2840. [PMID: 33653448 DOI: 10.1166/jnn.2021.19057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antibody-functionalized gold nanoparticle constitutes a powerful interface biosystem for biomedical applications where the properties of gold nanoparticles and the specificity of antibody-antigen interactions are combined. This study provides insight into the key factors for the development of antibody functionalized gold nanoparticles focusing on the immobilization of the antibody. Here, we address an oriented antibody immobilization procedure on gold nanoparticles. It comprises chelatemodified gold nanoparticles that are designed for oriented immobilization of IgG antibodies (end on spatial orientation) through the metal-chelation to histidine-rich metal binding site in the heavy chain (Fc) of the antibody.
Collapse
Affiliation(s)
- José M Abad
- Nanoimmunotech, S.L. Edificio CITEXVI Fonte das Abelleiras s/n, Campus Universitario de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Sara Puertas
- Nanoimmunotech, S.L. Edificio CITEXVI Fonte das Abelleiras s/n, Campus Universitario de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Daniel Pérez
- Nanoimmunotech, S.L. Edificio CITEXVI Fonte das Abelleiras s/n, Campus Universitario de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Christian Sánchez-Espinel
- Nanoimmunotech, S.L. Edificio CITEXVI Fonte das Abelleiras s/n, Campus Universitario de Vigo, 36310 Vigo, Pontevedra, Spain
| |
Collapse
|
25
|
Busch RT, Karim F, Sun Y, Fry HC, Liu Y, Zhao C, Vasquez ES. Detection and Aggregation of Listeria Monocytogenes Using Polyclonal Antibody Gold-Coated Magnetic Nanoshells Surface-Enhanced Raman Spectroscopy Substrates. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.653744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic nanoshells with tailored surface chemistry can enhance bacterial detection and separation technologies. This work demonstrated a simple technique to detect, capture, and aggregate bacteria with the aid of end-functionalized polyclonal antibody gold-coated magnetic nanoshells (pAb-Lis-AuMNs) as surface-enhanced Raman spectroscopy (SERS) probes. Listeria monocytogenes were used as the pathogenic bacteria and the pAb-Lis-AuMNs, 300 nm diameter, were used as probes allowing facile magnetic separation and aggregation. An optimized covalent bioconjugation procedure between the magnetic nanoshells and the polyclonal antibody was performed at pH six via a carbodiimide crosslinking reaction. Spectroscopic and morphological characterization techniques confirmed the fabrication of stable pAb-Lis-AuMNs. The resulting pAb-Lis-AuMNs acted as a SERS probe for L. monocytogenes based on the targeted capture via surface binding interactions and magnetically induced aggregation. Label-free SERS measurements were recorded for the minimum detectable amount of L. monocytogenes based on the SERS intensity at the 1388 cm−1 Raman shift. L. monocytogenes concentrations exhibited detection limits in the range of 104–107 CFU ml−1, before and after aggregation. By fitting these concentrations, the limit of detection of this method was ∼103 CFU ml−1. Using a low-intensity magnetic field of 35 G, pAb-Lis-AuMNs aggregated L. monocytogenes as demonstrated with microscopy techniques, including SEM and optical microscopy. Overall, this work presents a label-free SERS probe method comprised of a surface-modified polyclonal antibody sub-micron magnetic nanoshell structures with high sensitivity and magnetic induced separation that could lead to the fabrication of multiple single-step sensors.
Collapse
|
26
|
Garbujo S, Galbiati E, Salvioni L, Mazzucchelli M, Frascotti G, Sun X, Megahed S, Feliu N, Prosperi D, Parak WJ, Colombo M. Functionalization of colloidal nanoparticles with a discrete number of ligands based on a "HALO-bioclick" reaction. Chem Commun (Camb) 2021; 56:11398-11401. [PMID: 32990290 DOI: 10.1039/d0cc04355a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A recombinant HALO-GFP fusion protein was designed and isolated to demonstrate the feasibility of controlling the number and orientation of protein ligands to be conjugated on colloidal gold nanoparticles. AuNPs functionalized with exactly one or exactly two GFP molecules exhibited fully preserved functionality of the protein. The method is very straightforward and generally provides highly bioactive nanoparticle-protein conjugates.
Collapse
Affiliation(s)
- Stefania Garbujo
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Magnetic horsetail plant ash (Fe3O4@HA): a novel, natural and highly efficient heterogeneous nanocatalyst for the green synthesis of 2,4,5-trisubstituted imidazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04420-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Gao S, Rojas-Vega F, Rocha-Martin J, Guisán JM. Oriented immobilization of antibodies through different surface regions containing amino groups: Selective immobilization through the bottom of the Fc region. Int J Biol Macromol 2021; 177:19-28. [PMID: 33607135 DOI: 10.1016/j.ijbiomac.2021.02.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Amino groups on the antibody surface (amino terminus and Lys) are very interesting conjugation targets due to their substantial quantities and selectivity toward various reactive groups. Oriented immobilization of antibodies via amino moieties on the Fc region instead of the antigen-binding fragment (Fab) is highly appreciated to conserve antigen-binding capacity. In this paper, targeting amino moieties on distinct regions, three antibody immobilization strategies were compared with the recognition ability of corresponding adsorbents. Our results demonstrate that oriented immobilization of antibodies onto heterofunctional chelate-epoxy support selectively involving Lys residues placed at the bottom of the Fc region, thus preserved the highest antigen recognition capacity (over 75% functionality). For homofunctional aldehyde support, immobilization at pH 10 demonstrates 50% remaining functionality due to the random orientation of tethered antibodies; while only 10% functionality remained when N-terminus were specifically conjugated at pH 8.5. With the rationalization of moieties density onto heterofunctional support, 2-fold recognition capacity was exhibited over randomly immobilization for antigens with higher size (β-galactosidase, 425 kDa vs. horseradish peroxidase, 40 kDa). Meanwhile, at least 97% of antigens with a varied concentration in diluted human serum were efficiently captured by the optimized chelate-epoxy support. Therefore, our antibody immobilization protocol proved the potential to be utilized as a promising candidate to capture voluminous antigens (large proteins and cells) in real samples.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Francisco Rojas-Vega
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
29
|
Lourenço BN, Pereira RF, Barrias CC, Fischbach C, Oliveira C, Granja PL. Engineering Modular Half-Antibody Conjugated Nanoparticles for Targeting CD44v6-Expressing Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:295. [PMID: 33498669 PMCID: PMC7912417 DOI: 10.3390/nano11020295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) remains a major cause of death worldwide mainly because of the late detection in advanced stage. Recently, we proposed CD44v6 as a relevant marker for early detection of GC, opening new avenues for GC-targeted theranostics. Here, we designed a modular nanoscale system that selectively targets CD44v6-expressing GC cells by the site-oriented conjugation of a new-engineered CD44v6 half-antibody fragment to maleimide-modified polystyrene nanoparticles (PNPs) via an efficient bioorthogonal thiol-Michael addition click chemistry. PNPs with optimal particle size (200 nm) for crossing a developed biomimetic CD44v6-associated GC stromal model were further modified with a heterobifunctional maleimide crosslinker and click conjugated to the novel CD44v6 half-antibody fragment, obtained by chemical reduction of full antibody, without affecting its bioactivity. Collectively, our results confirmed the specific targeting ability of CD44v6-PNPs to CD44v6-expressing cells (1.65-fold higher than controls), highlighting the potential of CD44v6 half-antibody conjugated nanoparticles as promising and clinically relevant tools for the early diagnosis and therapy of GC. Additionally, the rational design of our nanoscale system may be explored for the development of several other nanotechnology-based disease-targeted approaches.
Collapse
Affiliation(s)
- Bianca N. Lourenço
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.F.P.); (C.C.B.); (C.O.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.F.P.); (C.C.B.); (C.O.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Cristina C. Barrias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.F.P.); (C.C.B.); (C.O.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Carla Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.F.P.); (C.C.B.); (C.O.)
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Pedro L. Granja
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.F.P.); (C.C.B.); (C.O.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
30
|
Huang T, Li S, Fang J, Li F, Tu S. Antibody-activated trans-endothelial delivery of mesoporous organosilica nanomedicine augments tumor extravasation and anti-cancer immunotherapy. Bioact Mater 2021; 6:2158-2172. [PMID: 33511314 PMCID: PMC7815474 DOI: 10.1016/j.bioactmat.2020.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
Tumor vasculature constitutes a formidable hurdle for the efficient delivery of cancer nanomedicine into tumors. The leverage of passive pathway through inter-endothelial gaps in tumor blood vessels might account for limited extravasation of nanomedicine into tumor microenvironment (TME). Herein, Annexin A1 antibody-installed mesoporous organosilica nanoplatforms carrying immunotherapeutics of anti-PD-L1 antibody (aPD-L1) and Indoximod are developed to target at caveolar Annexin-A1 protein of luminal endothelial cells and to trigger the active trans-endothelial transcytosis of nanomedicine mediated by caveolae. Such strategy enables rapid nanomedicine extravasation across tumor endothelium and relatively extensive accumulation in tumor interstitium. aPD-L1 and Indoximod release from aPD/IND@MON-aANN in a reduction-responsive manner and synergistically facilitate the intratumoral infiltration of cytotoxic T lymphocytes and reverse the immunosuppressive TME, thus demonstrating substantial anti-tumor efficacy in subcutaneous 4T1 breast tumors and remarkable anti-metastatic capacity to extend the survival of 4T1 tumor metastasis model. Moreover, aPD/IND@MON-aANN nanomedicine also exhibits distinct superiority over the combination therapy of free drugs to potently attenuate the progression of urethane-induced orthotopic lung cancers. Collectively, aPD/IND@MON-aANN nanoplatforms with boosted delivery efficiency via antibody-activated trans-endothelial pathway and enhanced immunotherapeutic efficacy provides perspectives for the development of cancer nanomedicines. The nanomedicine overcomes tumor vascular barrier by active transcytosis via caveolae initiated by the conjugated aANXA1. The nanoplatform responsively releases aPD-L1 and Indoximod to synergistically improve the efficacy of immunotherapy. The nanomedicine shows anti-tumor capacity in mice breast cancers and lung cancers.
Collapse
Affiliation(s)
- Tinglei Huang
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuang Li
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianchen Fang
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fuli Li
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuiping Tu
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Corresponding author.
| |
Collapse
|
31
|
Considerations for efficient surface functionalization of nanoparticles with a high molecular weight protein as targeting ligand. Eur J Pharm Sci 2020; 155:105520. [PMID: 32822809 DOI: 10.1016/j.ejps.2020.105520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Functionalization of nanoparticles with ligands is a powerful tool to achieve efficient targeting of receptors expressed on specific cell types. For optimal ligand-receptor interactions, the ligands should be attached on the nanoparticle surface in a predictable manner with specific orientations and density that preserve their bioactivity. While there are many publications on nanoparticles functionalized with small ligands that meet these requirements, achieving these conditions is particularly challenging for protein-based ligands of higher molecular weight. Proteins have complex and often fragile structures with numerous reactive residues, and they generally do not withstand harsh reaction conditions well. They are also prone to non-specific adsorption. Thus, conjugation strategies have to be considered carefully and optimized for each individual protein-based ligand as well as for the particle platform. In this study, we present a comprehensive approach for site-selective conjugation between aminated silica nanoparticles (SiNPs) and the single accessible thiol in human serum albumin (HSA) (66.5 kDa). We varied several reaction parameters including the density of amino groups on the particle surface, protein to amino group molar ratios, and linker length and evaluated their effect on colloidal stability, mode of protein attachment, protein density, and binding capacity of the tethered protein. We demonstrated that particle surface properties strongly impact covalent conjugation. For SiNPs with low amino group density (5,000 NH2/particle), only 25% of the available surface was covered with protein, and up to 90% of HSA was non-specifically adsorbed. Adjusting the molar ratio of HSA and lengthening the linker did not substantially increase the amount of covalently-attached ligand. In contrast, SiNPs with high amino group density (20,000 NH2/particle) showed high protein loading accompanied by low levels of non-specific adsorption. Using a short linker and 1:1 HSA to NH2 molar ratio resulted in 70% surface coverage with HSA molecules. The mode of attachment and protein density strongly impacted the functionality of the immobilized HSA. High non-specific adsorption resulted in the loss of its binding capacity, whereas predominately covalently-conjugated HSA showed binding affinities higher than that of soluble HSA and had a Kd value in the range of about 6 to 12 nM. Our findings indicate that reaction parameters should be carefully assessed to obtain site-selective and specifically oriented conjugation that maintains the protein's binding capacity. The approach presented here may serve as general instruction for the immobilization of high molecular weight targeting proteins to the surfaces of nanoparticles.
Collapse
|
32
|
CdSe/ZnS quantum dots exhibited nephrotoxicity through mediating oxidative damage and inflammatory response. Aging (Albany NY) 2020; 13:12194-12206. [PMID: 33201834 PMCID: PMC8109115 DOI: 10.18632/aging.103774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022]
Abstract
Objective: This study aimed to the evaluate the nephrotoxicity of CdSe/ZnS QDs in vitro and vivo, as well as investigate the underlying toxicity mechanisms. Results: In vitro experiments showed that compared with control cells, CdSe/ZnS QDs treatment significantly inhibited cell viability and promoted cell apoptosis in dose-dependent manner in NRK cells. Notably, CdSe/ZnS QDs treatment increased the contents of MDA and ROS, and decreased the activities of SOD, CAT and GSH-Px; however, the co-treatment of NAC and QDs relieved the oxidative damage of NRK cells. Moreover, in vivo experiments also revealed that CdSe/ZnS QDs treatment obviously increased kidney weight coefficient, damaged the kidney function, as well as induced inflammatory response and inhibited the activation of NRF2/Keap1 pathway in kidney tissues of mice. Conclusions: CdSe/ZnS QDs exhibited obvious nephrotoxicity by mediating oxidative damage and inflammatory response in vitro and in vivo via NRF2/Keap1 pathway. Methods: The characterization of CdSe/ZnS QDs was analyzed by transmission electron microscope, emission spectrum scanning, and dynamic light scattering. Rat kidney cells (NRK) were exposed to different doses of CdSe/ZnS QDs with or without N-acetylcysteine (NAC, antioxidant). Then, cellular uptake of CdSe/ZnS QDs was detected, and in vitro cytotoxicity was evaluated by MTT assay and TUNEL assay.
Collapse
|
33
|
Wang S, An J, Dong W, Wang X, Sheng J, Jia Y, He Y, Ma X, Wang J, Yu D, Jia X, Wang B, Yu W, Liu K, Zhao Y, Wu Y, Zhu W, Pan Y. Glucose-coated Berberine Nanodrug for Glioma Therapy through Mitochondrial Pathway. Int J Nanomedicine 2020; 15:7951-7965. [PMID: 33116511 PMCID: PMC7569050 DOI: 10.2147/ijn.s213079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Glioma is the primary malignant brain tumor with poor prognosis. Berberine (BBR) was the potential drug for anti-tumor in glioma cells. Based on its limitation of poor aqueous solubility and instability, little information of BBR nanoparticles is reported in glioma. Methods Different solutions including 5% glucose, 1*PBS, ddH2O, 0.9% NaCl, cell culture medium were selected, and only 5% glucose and ddH2O exhibited BBR-related nanoparticles. After heating for a longer time or adding a higher concentration of glucose solution, BBR nanoparticles were detected by TEM analysis. The uptake of BBR-Glu or BBR-Water nanoparticles were detected by immunofluorescence analysis for BBR autofluorescence. Cell viability was measured by MTT assay and Western blotting analysis. Apoptosis was performed with flow cytometric analysis and was detected by cleaved caspase-3 immuno-fluorescent staining. Cell cycle was used by flow cytometric analysis. Cytoskeleton was observed by confocal analysis using the neuron specific Class III ß-tubulin and ß-tubulin antibodies. Mitochondrial-related proteins were detected by Western blotting analyses and mito-tracker staining in live cells. Mitochondrion structures were observed by TEM analysis. ROS generation and ATP production were detected by related commercial kits. The tracking of BBR-Glu or BBR-Water nanoparticles into blood–brain barrier was observed in primary tumor-bearing models. The fluorescence of BBR was detected by confocal analyses in brains and gliomas. Results BBR-Glu nanoparticles became more homogenized and smaller with dose- and time-dependent manners. BBR-Glu nanoparticles were easily absorbed in glioma cells. The IC50 of BBR-Glu in U87 and U251 was far lower than that of BBR-Water. BBR-Glu performed better cytotoxicity, with higher G2/M phase arrest, decreased cell viability by targeting mitochondrion. In primary U87 glioma-bearing mice, BBR-Glu exhibited better imaging in brains and gliomas, indicating that more BBR moved across the blood–brain tumor barrier. Discussion BBR-Glu nanoparticles have better solubility and stability, providing a promising strategy in glioma precision treatment.
Collapse
Affiliation(s)
- Shubin Wang
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Juan An
- Department of Basic Research Medical Sciences, Qinghai University, Xining 810001, People's Republic of China
| | - Weiwei Dong
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing 100085, People's Republic of China
| | - Xin Wang
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Jianqiu Sheng
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Yan Jia
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Yuqi He
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Xianzong Ma
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Jiheng Wang
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Dedong Yu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Xiuqin Jia
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Bingyu Wang
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Wenbo Yu
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Kejia Liu
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Yuanyuan Zhao
- National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, People's Republic of China
| | - Yun Wu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Wei Zhu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Yuanming Pan
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China.,Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China.,National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, People's Republic of China
| |
Collapse
|
34
|
Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens Bioelectron 2020; 165:112370. [DOI: 10.1016/j.bios.2020.112370] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
35
|
Luo L, Liu YY, Gao T, Wang X, Chen J, Wang H, Liu Y, Cao A. Characterization of the Specific Interactions between Nanoparticles and Proteins at Residue-Resolution by Alanine Scanning Mutagenesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34514-34523. [PMID: 32672033 DOI: 10.1021/acsami.0c05994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The interaction between nanoparticles and proteins is a central problem in the nano-bio-fields. However, it is still a great challenge to characterize the specific interaction between nanoparticles and proteins in structural details. Using the Goldbodies, the artificial antibodies created by grafting complementary-determining regions (CDRs) of natural antibodies onto gold nanoparticles, as the models, we manage to identify the key residues of the CDR peptides on gold nanoparticles for the specific interactions by alanine scanning mutagenesis. Each and every residue of the CDR peptides on two Goldbodies (which specifically bind with hen egg white lysozyme and epidermal growth factor receptor, respectively) is mutated to alanine one by one, generating a total of 18 single-mutants of the two Goldbodies. Experimental results reveal that the key residues of the CDR peptides for the specific interactions between the two Goldbodies and the corresponding antigens are exactly the same as those in the natural antibodies, thus proving that the correct conformations of the CDRs of natural antibodies have been successfully reconstructed on AuNPs. This is the first residue-resolution structural illustration for the specific interaction between a designed nanoparticle and a protein.
Collapse
Affiliation(s)
- Lei Luo
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Tiange Gao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xinping Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jingqi Chen
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
36
|
Hristov DR, Pimentel AJ, Ujialele G, Hamad-Schifferli K. The Immunoprobe Aggregation State is Central to Dipstick Immunoassay Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34620-34629. [PMID: 32633115 DOI: 10.1021/acsami.0c08628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As new infectious disease outbreaks become more likely, it is important to be able to develop and deploy appropriate testing in time. Paper-based immunoassays are rapid, cheap, and easy to produce at scale and relatively user friendly but often suffer from low selectivity and sensitivity. Understanding the molecular mechanisms of paper immunoassays may help improve and hasten development and therefore production and market availability. Here, we study how the behavior of nanoparticle-antibody immunoprobes in paper dipstick immunoassays is impacted by synthesis strategy and surface chemistry architecture. We conjugate gold nanoparticles to polyclonal anti-immunoglobulin G (IgG) and anti-zika NS1 antibodies by electrostatic adsorption and N-hydroxysuccinimide (NHS) and hydrazide (Hz) chemistries. The immunoprobes were used in paper immunoassays and the effective affinity for the antigen was quantified from the test line intensities, as well as the distribution of the immunoprobes throughout the strips. The results show that nanoparticle colloidal stability, both post synthesis and during antigen binding, is a key factor and affects immunoassay results and performance, often through reduction or loss of signal.
Collapse
|
37
|
Zou MZ, Liu WL, Chen HS, Bai XF, Gao F, Ye JJ, Cheng H, Zhang XZ. Advances in nanomaterials for treatment of hypoxic tumor. Natl Sci Rev 2020; 8:nwaa160. [PMID: 34691571 PMCID: PMC8288333 DOI: 10.1093/nsr/nwaa160] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
The hypoxic tumor microenvironment is characterized by disordered vasculature and rapid proliferation of tumors, resulting from tumor invasion, progression and metastasis. The hypoxic conditions restrict efficiency of tumor therapies, such as chemotherapy, radiotherapy, phototherapy and immunotherapy, leading to serious results of tumor recurrence and high mortality. Recently, research has concentrated on developing functional nanomaterials to treat hypoxic tumors. In this review, we categorize such nanomaterials into (i) nanomaterials that elevate oxygen levels in tumors for enhanced oxygen-dependent tumor therapy and (ii) nanomaterials with diminished oxygen dependence for hypoxic tumor therapy. To elevate oxygen levels in tumors, oxygen-carrying nanomaterials, oxygen-generating nanomaterials and oxygen-economizing nanomaterials can be used. To diminish oxygen dependence of nanomaterials for hypoxic tumor therapy, therapeutic gas-generating nanomaterials and radical-generating nanomaterials can be used. The biocompatibility and therapeutic efficacy of these nanomaterials are discussed.
Collapse
Affiliation(s)
- Mei-Zhen Zou
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wen-Long Liu
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Han-Shi Chen
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xue-Feng Bai
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fan Gao
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jing-Jie Ye
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Han Cheng
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xian-Zheng Zhang
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
38
|
Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020; 156:188-213. [PMID: 32610061 PMCID: PMC8559718 DOI: 10.1016/j.addr.2020.06.020] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023]
Abstract
Inorganic nanoparticles provide multipurpose platforms for a broad range of delivery applications. Intrinsic nanoscopic properties provide access to unique magnetic and optical properties. Equally importantly, the structural and functional diversity of gold, silica, iron oxide, and lanthanide-based nanocarriers provide unrivalled control of nanostructural properties for effective transport of therapeutic cargos, overcoming biobarriers on the cellular and organismal level. Taken together, inorganic nanoparticles provide a key addition to the arsenal of delivery vectors for fighting disease and improving human health.
Collapse
Affiliation(s)
- David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
39
|
Castillo RR, Lozano D, Vallet-Regí M. Mesoporous Silica Nanoparticles as Carriers for Therapeutic Biomolecules. Pharmaceutics 2020; 12:E432. [PMID: 32392811 PMCID: PMC7284475 DOI: 10.3390/pharmaceutics12050432] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
The enormous versatility of mesoporous silica nanoparticles permits the creation of a large number of nanotherapeutic systems for the treatment of cancer and many other pathologies. In addition to the controlled release of small drugs, these materials allow a broad number of molecules of a very different nature and sizes. In this review, we focus on biogenic species with therapeutic abilities (proteins, peptides, nucleic acids, and glycans), as well as how nanotechnology, in particular silica-based materials, can help in establishing new and more efficient routes for their administration. Indeed, since the applicability of those combinations of mesoporous silica with bio(macro)molecules goes beyond cancer treatment, we address a classification based on the type of therapeutic action. Likewise, as illustrative content, we highlight the most typical issues and problems found in the preparation of those hybrid nanotherapeutic materials.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| |
Collapse
|
40
|
Smerkova K, Dolezelikova K, Bozdechova L, Heger Z, Zurek L, Adam V. Nanomaterials with active targeting as advanced antimicrobials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1636. [PMID: 32363802 DOI: 10.1002/wnan.1636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
With a growing health threat of bacterial resistance to antibiotics, the nanomaterials have been extensively studied as an alternative. It is assumed that antimicrobial nanomaterials can affect bacteria by several mechanisms simultaneously and thereby overcome antibiotic resistance. Another promising potential use is employing nanomaterials as nanocarriers for antibiotics in order to overcome bacterial defense mechanisms. The passive targeting of nanomaterials is the often used strategy for bacterial treatment, including intracellular infections of macrophages. Furthermore, the specific targeting enhances the efficacy of antimicrobials and reduces side effects. This review aims to discuss advantages, disadvantages, and challenges of nanomaterials in the context of the targeting strategies for antimicrobials as advanced tools for treatments of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lucie Bozdechova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
41
|
Aptamers Increase Biocompatibility and Reduce the Toxicity of Magnetic Nanoparticles Used in Biomedicine. Biomedicines 2020; 8:biomedicines8030059. [PMID: 32183370 PMCID: PMC7148517 DOI: 10.3390/biomedicines8030059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Aptamer-based approaches are very promising tools in nanomedicine. These small single-stranded DNA or RNA molecules are often used for the effective delivery and increasing biocompatibility of various therapeutic agents. Recently, magnetic nanoparticles (MNPs) have begun to be successfully applied in various fields of biomedicine. The use of MNPs is limited by their potential toxicity, which depends on their biocompatibility. The functionalization of MNPs by ligands increases biocompatibility by changing the charge and shape of MNPs, preventing opsonization, increasing the circulation time of MNPs in the blood, thus shielding iron ions and leading to the accumulation of MNPs only in the necessary organs. Among various ligands, aptamers, which are synthetic analogs of antibodies, turned out to be the most promising for the functionalization of MNPs. This review describes the factors that determine MNPs’ biocompatibility and affect their circulation time in the bloodstream, biodistribution in organs and tissues, and biodegradation. The work also covers the role of the aptamers in increasing MNPs’ biocompatibility and reducing toxicity.
Collapse
|
42
|
Wei Y, Gu X, Sun Y, Meng F, Storm G, Zhong Z. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J Control Release 2020; 319:407-415. [DOI: 10.1016/j.jconrel.2020.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
|
43
|
Selection and Characterization of CSFV-Specific Single-Domain Antibodies and Their Application along with Immunomagnetic Nanobeads and Quantum Dots. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3201630. [PMID: 32090077 PMCID: PMC7013354 DOI: 10.1155/2020/3201630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/11/2019] [Indexed: 11/17/2022]
Abstract
Outbreak of classical swine fever (CSF) results in high mortality and thus causes severe economic losses in the swine industry. Single-domain antibody (sdAb) is the smallest antigen-binding molecule derived from camelid heavy-chain antibodies and has the potential to be used as a molecular probe for detection of CSF virus (CSFV). In this study, two sdAb fragments against the E2 antigen of CSFV were obtained, expressed in vitro. The functional characteristics analysis indicated that the recombinant sdAbE2-1 and sdAbE2-2 have excellent binding activity, specificity, and high affinity with equilibrium constant value of 3.34 × 10−7 and 1.35 × 10−8 M to E2 protein. Then, sdAbE2s were conjugated with quantum dots (QD)/AF488 to synthesize two molecular probes for imaging CSFV distribution in cells. The sdAbE2-1 was also labeled with carboxyl-magnetic beads to construct immunomagnetic nanobeads (IMNBs) able to capture CSFV virions and recombinant E2 protein. QD/AF455-sdAbE2s probes colocalised with CSFV virions in swine testis cells, and IMNBs were used as a detection template and proved to bind specifically with CSFV virions and E2 protein. The selected sdAb fragments and sdAb-based molecular probes may be used for the rapid identification of CSFV during field outbreaks and for research on CSFV and host interactions.
Collapse
|
44
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
45
|
Martín-Gracia B, Martín-Barreiro A, Cuestas-Ayllón C, Grazú V, Line A, Llorente A, M. de la Fuente J, Moros M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J Mater Chem B 2020; 8:6710-6738. [DOI: 10.1039/d0tb00861c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selecting the appropriate nanoparticle, functionalization chemistry and sensing methodology can speed up the translation of liquid biopsies into the clinic.
Collapse
Affiliation(s)
- Beatriz Martín-Gracia
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Alba Martín-Barreiro
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | | | - Valeria Grazú
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Aija Line
- Latvian Biomedical Research and Study Centre
- Riga
- Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology
- Institute for Cancer Research
- Oslo University Hospital
- Oslo
- Norway
| | - Jesús M. de la Fuente
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - María Moros
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| |
Collapse
|
46
|
Liao YH, Lin CH, Cheng CY, Wong WC, Juo JY, Hsieh CL. Monovalent and Oriented Labeling of Gold Nanoprobes for the High-Resolution Tracking of a Single-Membrane Molecule. ACS NANO 2019; 13:10918-10928. [PMID: 31259529 DOI: 10.1021/acsnano.9b01176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Single-molecule tracking is a powerful method to study molecular dynamics in living systems including biological membranes. High-resolution single-molecule tracking requires a bright and stable signal, which has typically been facilitated by nanoparticles due to their superb optical properties. However, there are concerns about using a nanoparticle to label a single molecule because of its relatively large size and the possibility of cross-linking multiple target molecules, both of which could affect the original molecular dynamics. In this work, using various labeling schemes, we investigate the effects using nanoparticles to measure the diffusion of single-membrane molecules. By conjugating a low density of streptavidin (sAv) to gold nanoparticles (AuNPs) of different sizes (10, 15, 20, 30, and 40 nm), we isolate and quantify the effect of the particle size on the diffusion of biotinylated lipids in supported lipid bilayers (SLBs). We find that single sAv tends to cross-link two biotinylated lipids, leading to a much slower diffusion in SLBs. We further demonstrate a simple and robust strategy for the monovalent and oriented labeling of a single lipid molecule with a AuNP by using naturally dimeric rhizavidin (rAv) as a bridge, thus connecting the biotinylated nanoparticle surface and biotinylated target molecule. The rAv-AuNP conjugate demonstrates fast and free diffusion in SLBs (2-3 μm2/s for rAv-AuNP sizes of 10-40 nm), which is comparable to the diffusion of dye-labeled lipids, indicating that the adverse size and cross-linking effects are successfully avoided. We also note that the diffusion of dye-labeled lipids critically depends on the choice of dye, which could report different diffusion coefficients by about 20% (2.2 μm2/s of ATTO647N and 2.6 μm2/s of ATTO532). By comparing the diffusion of the uniformly and randomly oriented labeling of a single lipid molecule with a AuNP, we conclude that oriented labeling is favorable for measuring the diffusion of single-membrane molecules. Our work shows that the measured diffusion of the membrane molecule is highly sensitive to the molecular design of the cross-linker for labeling. The demonstrated approach of monovalent and oriented AuNP labeling provides the opportunity to study single-molecule membrane dynamics at much higher spatiotemporal resolutions and, most importantly, without labeling artifacts.
Collapse
Affiliation(s)
- Yi-Hung Liao
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , Taipei 10617 , Taiwan
| | - Chih-Hsiang Lin
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , Taipei 10617 , Taiwan
| | - Ching-Ya Cheng
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , Taipei 10617 , Taiwan
| | - Wai Cheng Wong
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , Taipei 10617 , Taiwan
| | - Jz-Yuan Juo
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , Taipei 10617 , Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS) , Academia Sinica , Taipei 10617 , Taiwan
| |
Collapse
|
47
|
Roy S, Liu Z, Sun X, Gharib M, Yan H, Huang Y, Megahed S, Schnabel M, Zhu D, Feliu N, Chakraborty I, Sanchez-Cano C, Alkilany AM, Parak WJ. Assembly and Degradation of Inorganic Nanoparticles in Biological Environments. Bioconjug Chem 2019; 30:2751-2762. [DOI: 10.1021/acs.bioconjchem.9b00645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sathi Roy
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Ziyao Liu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Xing Sun
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Mustafa Gharib
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Huijie Yan
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Yalan Huang
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Saad Megahed
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | | | - Dingcheng Zhu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Neus Feliu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | | | | | - Alaaldin M. Alkilany
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, 11931 Amman, Jordan
| | - Wolfgang J. Parak
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
- CIC Biomagune, 20014 San Sebastian, Spain
| |
Collapse
|
48
|
Li Q, Qiao X, Wang F, Li X, Yang J, Liu Y, Shi L, Liu D. Encapsulating a Single Nanoprobe in a Multifunctional Nanogel for High-Fidelity Imaging of Caspase Activity in Vivo. Anal Chem 2019; 91:13633-13638. [DOI: 10.1021/acs.analchem.9b02834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Zhang Z, Dong C, Yu G, Cheng W, Liang Y, Pan Y, Li H, Ji H. Smart and dual-targeted BSA nanomedicine with controllable release by high autolysosome levels. Colloids Surf B Biointerfaces 2019; 182:110325. [PMID: 31301582 DOI: 10.1016/j.colsurfb.2019.06.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Targeting modifications and smart responsiveness of nanomedicines can enable anticancer drugs to be selectively delivered to and controllably released in tumour cells or tissues, which can reduce the treatment's toxicity and side effects. Good biocompatibility is crucial for the clinical application of any nanomedicine. In this study, a double-targeting molecule, an RGD peptide- and 4-(2-aminoethyl) morpholine-modified, doxorubicin (DOX)-loaded bovine serum albumin (BSA) nanomedicine, that can be controllably released by the high levels of autophagic lysosomes in tumour cells was developed. The size of the spherical BSA nanoparticles is approximately 60 nm. In vitro experiments indicated that the RGD peptide- and 4-(2-aminoethyl) morpholine-modified, DOX-loaded BSA nanomedicine has a better therapeutic effect than free DOX. In vivo experiments suggested that the BSA nanomedicine can successfully suppress the progression of PC9 xenograft tumours. This phenomenon may be attributable to the endocytosis of a relatively large amount of nanomedicine and the effective release of the loaded chemotherapeutic agent, as induced by high levels of autolysosomes. Collectively, the results of this study provide a smart approach for increasing therapeutic efficacy using a double-targeting molecule-modified BSA nanomedicine.
Collapse
Affiliation(s)
- Zhanxia Zhang
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China.
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Guanzhen Yu
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Wei Cheng
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Yupei Liang
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Hegen Li
- National Clinical Research Base of Traditional Chinese Medicine, Tumor Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China.
| | - Hongbin Ji
- Key Laboratory of Systems Biology, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, 320 Yueyang Road, Shanghai, 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 320 Yueyang Road, Shanghai, 200031, China
| |
Collapse
|
50
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|