1
|
Scholpp S, Hoffmann L, Schätzlein E, Gries T, Emonts C, Blaeser A. Interlacing biology and engineering: An introduction to textiles and their application in tissue engineering. Mater Today Bio 2025; 31:101617. [PMID: 40124339 PMCID: PMC11926717 DOI: 10.1016/j.mtbio.2025.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering (TE) aims to provide personalized solutions for tissue loss caused by trauma, tumors, or congenital defects. While traditional methods like autologous and homologous tissue transplants face challenges such as donor shortages and risk of donor site morbidity, TE provides a viable alternative using scaffolds, cells, and biologically active molecules. Textiles represent a promising scaffold option for both in-vitro and in-situ TE applications. Textile engineering is a broad field and can be divided into fiber-based textiles and yarn-based textiles. In fiber-based textiles the textile fabric is produced in the same step as the fibers (e.g. non-wovens, electrospun mats and 3D-printed). For yarn-based textiles, yarns are produced from fibers or filaments first and then, a textile fabric is produced (e.g. woven, weft-knitted, warp-knitted and braided fabrics). The selection of textile scaffold technology depends on the target tissue, mechanical requirements, and fabrication methods, with each approach offering distinct advantages. Braided scaffolds, with their high tensile strength, are ideal for load-bearing tissues like tendons and ligaments, while their ability to form stable hollow lumens makes them suitable for vascular applications. Weaving, weft-, and warp-knitting provide tunable structural properties, with warp-knitting offering the greatest design flexibility. Spacer fabrics enable complex 3D architecture, benefiting applications such as skin grafts and multilayered tissues. Electrospinning, though highly effective in mimicking the ECM, is structurally limited. The complex interactions between materials, fiber properties, and textile technologies allows for scaffolds with a wide range of morphological and mechanical characteristics (e.g., tensile strength of woven textiles ranging from 0.64 to 180.4 N/mm2). With in-depth knowledge, textiles can be tailored to obtain specific mechanical properties as accurately as possible and aid the formation of functional tissue. However, as textile structures inherently differ from biological tissues, careful optimization is required to enhance cell behavior, mechanical performance, and clinical applicability. This review is intended for TE experts interested in using textiles as scaffolds and provides a detailed analysis of the available options, their characteristics and known applications. For this, first the major fiber formation methods are introduced, then subsequent used automated textile technologies are presented, highlighting their strengths and limitations. Finally, we analyze how these textile and fiber structures are utilized in TE, organized by the use of textiles in TE across major organ systems, including the nervous, skin, cardiovascular, respiratory, urinary, digestive, and musculoskeletal systems.
Collapse
Affiliation(s)
- S. Scholpp
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - L.A. Hoffmann
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - E. Schätzlein
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - T. Gries
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - C. Emonts
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - A. Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
Arabzadeh Bahri R, Peisepar M, Maleki S, Esmaeilpur Abianeh F, A Basti F, Kolahdooz A. Current evidence regarding alternative techniques for enterocystoplasty using regenerative medicine methods: a systematic review. Eur J Med Res 2024; 29:163. [PMID: 38475865 PMCID: PMC10929228 DOI: 10.1186/s40001-024-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Enterocystoplasty is the most commonly used treatment for bladder reconstruction. However, it has some major complications. In this study, we systematically reviewed the alternative techniques for enterocystoplasty using different scaffolds. A comprehensive search was conducted in PubMed, Embase, and Cochrane Library, and a total of 10 studies were included in this study. Five different scaffolds were evaluated, including small intestinal submucosa (SIS), biodegradable scaffolds seeded with autologous bladder muscle and urothelial cells, dura mater, human cadaveric bladder acellular matrix graft, and bovine pericardium. The overall results revealed that bladder reconstruction using regenerative medicine is an excellent alternative method to enterocystoplasty regarding the improvement of bladder capacity, bladder compliance, and maximum detrusor pressure; however, more large-scale studies are required.
Collapse
Affiliation(s)
- Razman Arabzadeh Bahri
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maral Peisepar
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Maleki
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Esmaeilpur Abianeh
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Basti
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Ali Kolahdooz
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
3
|
Fu Z, Xiao S, Wang P, Zhao J, Ling Z, An Z, Shao J, Fu W. Injectable, stretchable, toughened, bioadhesive composite hydrogel for bladder injury repair †. RSC Adv 2023; 13:10903-10913. [PMID: 37033438 PMCID: PMC10076968 DOI: 10.1039/d3ra00402c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
The bladder is exposed to constant internal and external mechanical forces due to its deformation and the dynamic environment in which it is placed, which can hamper its repair after an injury. Traditional hydrogel materials have limitations regarding their use in the bladder owing to their poor mechanical and tissue adhesion properties. In this study, a composite hydrogel composed of methacrylate gelatine, methacrylated silk fibroin, and Pluronic F127 diacrylate was developed, which combines the characteristics of natural and synthetic polymers. The mechanical properties of the novel hydrogel, such as stretchability, viscoelasticity, and toughness, were improved by virtue of a particular molecular design strategy whereby covalent and non-covalent bond interactions create a cross-linking effect. In addition, the composite hydrogel has important usability properties; it can be injected in liquid format and rapidly transformed into a gel via photo-initiated crosslinking. This was demonstrated on an isolated porcine bladder where the hydrogel closed arbitrarily-shaped tissue defects within 90 s of its application, verifying its effective bioadhesive and sealing properties. This composite hydrogel has great potential for application in bladder injury repair as a tissue-engineering scaffold. An injectable, stretchable, toughened, bioadhesive composite hydrogel offers a new application strategy for sutureless repair and tissue regeneration of injured bladders.![]()
Collapse
Affiliation(s)
- Zhouyang Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Shuwei Xiao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Department of Urology, Air Force Medical CenterBeijing100142China
| | - Pengchao Wang
- Medical School of Chinese PLABeijing100853China
- Department of Urology, Hainan Hospital of PLA General HospitalHainan572013China
| | - Jian Zhao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Zhengyun Ling
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Ziyan An
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Jinpeng Shao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Weijun Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
| |
Collapse
|
4
|
Peng L, Jin X, He Q, Gao X, Wang W, Zeng X, Shen H, Luo D. Remodelling landscape of tissue-engineered bladder with porcine small intestine submucosa using single-cell RNA sequencing. Cell Prolif 2022; 56:e13343. [PMID: 36177893 PMCID: PMC9816928 DOI: 10.1111/cpr.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Bioscaffolds are widely used for tissue engineering, but failed and inconsistent preclinical results have hampered the clinical use of bioscaffolds for tissue engineering. We aimed to construct a cellular remodelling landscape and to identify the key cell subpopulations and important genes driving bladder remodelling. METHODS Twenty-four reconstructed mouse bladders using porcine small intestinal submucosa (PSIS) were harvested at 1, 3, and 6 weeks to perform single-cell RNA sequencing. Cell types were identified and their differentially expressed genes (DEGs) at each stage were used for functional analysis. Immunofluorescence was used to validate the specific cell type. RESULTS The remodelling landscape included 13 cell types. Among them, fibroblasts, smooth muscle cells (SMCs), endothelial cells, and macrophages had the most communications with other cells. In the process of regeneration, DEGs of fibroblasts at 1, 3, and 6 weeks were mainly involved in wound healing, extracellular matrix organization, and regulation of development growth, respectively. Among these cells, Saa3+ fibroblasts might mediate tissue remodelling. The DEGs of SMCs at 1, 3, and 6 weeks were mainly involved in the inflammatory response, muscle cell proliferation, and mesenchyme development, respectively. Moreover, we found that Notch3+ SMCs potentially modulated contractility. From 1 to 6 weeks, synchronous development of endothelial cells was observed by trajectory analysis. CONCLUSIONS A remoulding landscape was successfully constructed and findings might help surficial modifications of PSIS and find a better alternative. However, more in vivo and in vitro studies are needed to further validate these results.
Collapse
Affiliation(s)
- Liao Peng
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Xi Jin
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Qing He
- Department of UrologyThe Third People's Hospital of ChengduChengduPR China
| | - Xiao‐shuai Gao
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Wei Wang
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Xiao Zeng
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Hong Shen
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - De‐yi Luo
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| |
Collapse
|
5
|
Badwaik HR, Kumari L, Maiti S, Sakure K, Ajazuddin, Nakhate KT, Tiwari V, Giri TK. A review on challenges and issues with carboxymethylation of natural gums: The widely used excipients for conventional and novel dosage forms. Int J Biol Macromol 2022; 209:2197-2212. [PMID: 35508229 DOI: 10.1016/j.ijbiomac.2022.04.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
Diverse properties of natural gums have made them quite useful for various pharmaceutical applications. However, they suffer from various problems, including unregulated hydration rates, microbial degradation, and decline in viscosity during warehousing. Among various chemical procedures for modification of gums, carboxymethylation has been widely studied due to its simplicity and efficiency. Despite the availability of numerous research articles on natural gums and their uses, a comprehensive review on carboxymethylation of natural gums and their applications in the pharmaceutical and other biomedical fields is not published until now. This review outlines the classification of gums and their derivatization methods. Further, we have discussed various techniques of carboxymethylation, process of determination of degree of substitution, and functionalization pattern of substituted gums. Detailed information about the application of carboxymethyl gums as drug delivery carriers has been described. The article also gives a brief account on tissue engineering and cell delivery potential of carboxymethylated gums.
Collapse
Affiliation(s)
- Hemant Ramachandra Badwaik
- Shri Shankaracharya Institute of Pharmaceutical Science and Research, Junwani, Bhilai 490020, Chhattisgarh, India.
| | - Leena Kumari
- School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Reasearch, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Reasearch, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaibhav Tiwari
- Shri Shankaracharya Institute of Pharmaceutical Science and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
6
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Xiao S, Wang P, Zhao J, Ling Z, An Z, Fu Z, Fu W, Zhang X. Bi-layer silk fibroin skeleton and bladder acellular matrix hydrogel encapsulating adipose-derived stem cells for bladder reconstruction. Biomater Sci 2021; 9:6169-6182. [PMID: 34346416 DOI: 10.1039/d1bm00761k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A scaffold, constructed from a bi-layer silk fibroin skeleton (BSFS) and a bladder acellular matrix hydrogel (BAMH) encapsulated with adipose-derived stem cells (ASCs), was developed for bladder augmentation in a rat model. The BSFS, prepared from silk fibroin (SF), had good mechanical properties that allowed it to maintain the scaffold shape and be used for stitching. The prepared BAM was digested by pepsin and the pH was adjusted to harvest the BAMH that provided an extracellular environment for the ASCs. The constructed BSFS-BAMH-ASCs and BSFS-BAMH scaffolds were wrapped in the omentum to promote neovascularization and then used for bladder augmentation; at the same time, a cystotomy was used as the condition for the control group. Histological staining and immunohistochemical analysis confirmed that the omentum incubation could promote scaffold vascularization. Hematoxylin and eosin and Masson's trichrome staining indicated that the BSFS-BAMH-ASCs scaffold regenerated the bladder wall structure. In addition, immunofluorescence analyses confirmed that the ASCs could promote the regeneration of smooth muscle, neurons and blood vessels and the restoration of physiological function. These results demonstrated that the BSFS-BAMH-ASCs may be a promising scaffold for promoting bladder wall regeneration and the restoration of physiological function of the bladder in a rat bladder augmentation model.
Collapse
Affiliation(s)
- Shuwei Xiao
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Pengchao Wang
- Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China and Department of Urology, Hainan Hospital of PLA General Hospital, Hai tang Bay, Sanya City, Hainan Province 572013, China
| | - Jian Zhao
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhengyun Ling
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Ziyan An
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhouyang Fu
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Weijun Fu
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Xu Zhang
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
8
|
Sharma S, Mandhani A, Bose S, Basu B. Dynamically crosslinked polydimethylsiloxane-based polyurethanes with contact-killing antimicrobial properties as implantable alloplasts for urological reconstruction. Acta Biomater 2021; 129:122-137. [PMID: 33979672 DOI: 10.1016/j.actbio.2021.04.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
A large population of patients is reported to suffer from urinary bladder-associated irreversible physiological disorders, rationalizing a continuous surge for structural and functional substitutes of urinary tissues, including ureters, bladder-wall, and urethra. The current gold standard for bladder reconstruction, an autologous gastrointestinal graft, is proven not to be an ideal substitute in the clinic. While addressing this unmet clinical need, a unique platform of antimicrobial polydimethyl siloxane-modified polyurethanes (TPU/PDMS) is designed and developed for its potential application as a urological implant. To the best of our knowledge, this study reports for the first time the successful integration of varying contents of PDMS within the molten polyurethane matrix using in situ crosslinking methodology. Thus, compatibilized binary blends possess clinically relevant viscoelastic properties to sustain high pressure, large distensions, and surgical manipulation. Furthermore, different chemical strategies are explored to covalently incorporate quaternized moieties, including 4-vinyl pyridine (4-VP), branched-polyethyleneimine (bPEI) as well as bPEI-grafted-(acrylic acid-co-vinylbenzyltriphenyl phosphonium chloride) (PAP), and counter urinary tract infections. The modified compositions, endowed with contact killing surfaces, reveal nearly three log reduction in bacterial growth in pathogenically infected artificial urine. Importantly, the antimicrobial TPU/PDMS blends support the uninhibited growth of mitochondrially viable murine fibroblasts, in a manner comparable to the medical-grade polyurethane. Collectively, the obtained results affirmed the newly developed polymers as promising biomaterials in reconstructive urology. STATEMENT OF SIGNIFICANCE: The clinical procedure for end-stage bladder disease remains replacement or augmentation of the bladder wall with a section of the patient's gastrointestinal tract. However, the absorptive and mucus-producing epithelium of intestinal segment is liable to short- and long-term complications. The dynamically crosslinked polydimethyl siloxane-based polyurethanes proposed herein, and the associated synthesis strategies to induce polycation grafted non-exhaustive contact-killing surfaces against uropathogents, have a significant clinical prospect in reconstructive urology. As an 'off-the-shelf' available alloplastic substitute, these blends offer the potential to circumvent the challenges associated with non-urinary autografts or scaffold based regenerative engineering and, thereby, shorten as well as simplify the surgical treatment. The targeted application has been conceived for a bladder patch to assist in various urinary diseases including, bladder carcinoma, refractory overactive bladder, interstitial cystitis, etc. However, given the ease of fabrication, moldability and the wide spectrum of mechanical properties that could be encompassed, these blends also present the possibility to be manifested into artificial ureteral or urethral conduits.
Collapse
Affiliation(s)
- Swati Sharma
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Anil Mandhani
- Urology and Kidney Transplant Institute, Medanta-The Medicity, Gurgaon-12200, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
9
|
Zhang XZ, Jiang YL, Hu JG, Zhao LM, Chen QZ, Liang Y, Zhang Y, Lei XX, Wang R, Lei Y, Zhang QY, Li-Ling J, Xie HQ. Procyanidins-crosslinked small intestine submucosa: A bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater 2021; 6:1827-1838. [PMID: 33336114 PMCID: PMC7721664 DOI: 10.1016/j.bioactmat.2020.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023] Open
Abstract
Currently the standard surgical treatment for bladder defects is augmentation cystoplasty with autologous tissues, which has many side effects. Biomaterials such as small intestine submucosa (SIS) can provide an alternative scaffold for the repair as bladder patches. Previous studies have shown that SIS could enhance the capacity and compliance of the bladder, but its application is hindered by issues like limited smooth muscle regeneration and stone formation since the fast degradation and poor mechanical properties of the SIS. Procyanidins (PC), a natural bio-crosslinking agent, has shown anti-calcification, anti-inflammatory and anti-oxidation properties. More importantly, PC and SIS can crosslink through hydrogen bonds, which may endow the material with enhanced mechanical property and stabilized functionalities. In this study, various concentrations of PC-crosslinked SIS (PC-SIS) were prepared to repair the full-thickness bladder defects, with an aim to reduce complications and enhance bladder functions. In vitro assays showed that the crosslinking has conferred the biomaterial with superior mechanical property and anti-calcification property, ability to promote smooth muscle cell adhesion and upregulate functional genes expression. Using a rabbit model with bladder defects, we demonstrated that the PC-SIS scaffold can rapidly promote in situ tissue regrowth and regeneration, in particular smooth muscle remodeling and improvement of urinary functions. The PC-SIS scaffold has therefore provided a promising material for the reconstruction of a functional bladder.
Collapse
Affiliation(s)
- Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qiu-Zhu Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yi Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
10
|
The Evolution of Fabrication Methods in Human Retina Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optic nerve and retinal diseases such as age-related macular degeneration and inherited retinal dystrophies (IRDs) often cause permanent sight loss. Currently, a limited number of retinal diseases can be treated. Hence, new strategies are needed. Regenerative medicine and especially tissue engineering have recently emerged as promising alternatives to repair retinal degeneration and recover vision. Here, we provide an overview of retinal anatomy and diseases and a comprehensive review of retinal regeneration approaches. In the first part of the review, we present scaffold-free approaches such as gene therapy and cell sheet technology while in the second part, we focus on fabrication techniques to produce a retinal scaffold with a particular emphasis on recent trends and advances in fabrication techniques. To this end, the use of electrospinning, 3D bioprinting and lithography in retinal regeneration was explored.
Collapse
|
11
|
Zhang X, Li Z, Yang P, Duan G, Liu X, Gu Z, Li Y. Polyphenol scaffolds in tissue engineering. MATERIALS HORIZONS 2021; 8:145-167. [PMID: 34821294 DOI: 10.1039/d0mh01317j] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyphenols are a class of ubiquitous compounds distributed in nature, with fascinating inherent biocompatible, bioadhesive, antioxidant, and antibacterial properties. The unique polyphenolic structures based on catechol or pyrogallol moieties allow for strong non-covalent interactions (e.g., multiple hydrogen bonding, electrostatic, and cation-π interactions) as well as covalent interactions (e.g., Michael addition/Schiff-base reaction, radical coupling reaction, and dynamic coordination interactions with boronate or metal ions). This review article provides an overview of the polyphenol-based scaffolds including the hydrogels, films, and nanofibers that have emerged from chemical and functional signatures during the past years. A full description of the structure-function relationships in terms of their utilization in wound healing, bone regeneration, and electroactive tissue engineering is also carefully discussed, which may pave the path towards the rational design and facile preparation of next-generation polyphenol scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Aydin A, Cebi G, Demirtas ZE, Erkus H, Kucukay A, Ok M, Sakalli L, Alpdagtas S, Gunduz O, Ustundag CB. Combating COVID-19 with tissue engineering: a review. EMERGENT MATERIALS 2020; 4:329-349. [PMID: 33235976 PMCID: PMC7677604 DOI: 10.1007/s42247-020-00138-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
The ongoing COVID-19 pandemic triggered by SARS-CoV-2 emerged from Wuhan, China, firstly in December 2019, as well spread to almost all around the world rapidly. The main reason why this disease spreads so many people in a short time is that the virus could be transmitted from an infected person to another by infected droplets. The new emergence of diseases usually may affect multiple organs; moreover, this disease is such an example. Numerous reported studies focus on acute or chronic organ damage caused by the virus. At this point, tissue engineering (TE) strategies can be used to treat the damages with its interdisciplinary approaches. Tissue engineers could design drug delivery systems, scaffolds, and especially biomaterials for the damaged tissue and organs. In this review, brief information about SARS-CoV-2, COVID-19, and epidemiology of the disease will be given at first. After that, the symptoms, the tissue damages in specific organs, and cytokine effect caused by COVID-19 will be described in detail. Finally, it will be attempted to summarize and suggest the appropriate treatments with suitable biomaterials for the damages via TE approaches. The aim of this review is to serve as a summary of currently available tissue damage treatments after COVID-19.
Collapse
Affiliation(s)
- Ayca Aydin
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Gizem Cebi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Zeynep Ezgi Demirtas
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Huseyin Erkus
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Aleyna Kucukay
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Merve Ok
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Latife Sakalli
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Saadet Alpdagtas
- Department of Biology, Van Yuzuncu Yil University, 65080 Van, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| |
Collapse
|
13
|
Salem SA, Rashidbenam Z, Jasman MH, Ho CCK, Sagap I, Singh R, Yusof MR, Md Zainuddin Z, Haji Idrus RB, Ng MH. Incorporation of Smooth Muscle Cells Derived from Human Adipose Stem Cells on Poly(Lactic-co-Glycolic Acid) Scaffold for the Reconstruction of Subtotally Resected Urinary Bladder in Athymic Rats. Tissue Eng Regen Med 2020; 17:553-563. [PMID: 32583275 DOI: 10.1007/s13770-020-00271-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/12/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The urinary tract can be affected by both congenital abnormalities as well as acquired disorders, such as cancer, trauma, infection, inflammation, and iatrogenic injuries, all of which may lead to organ damage requiring eventual reconstruction. As a gold standard, gastrointestinal segment is used for urinary bladder reconstruction. However, one major problem is that while bladder tissue prevents reabsorption of specific solutes, gastrointestinal tissue actually absorbs them. Therefore, tissue engineering approach had been attempted to provide an alternative tissue graft for urinary bladder reconstruction. METHODS Human adipose-derived stem cells isolated from fat tissues were differentiated into smooth muscle cells and then seeded onto a triple-layered PLGA sheet to form a bladder construct. Adult athymic rats underwent subtotal urinary bladder resection and were divided into three treatment groups (n = 3): Group 1 ("sham") underwent anastomosis of the remaining basal region, Group 2 underwent reconstruction with the cell-free scaffold, and Group 3 underwent reconstruction with the tissue-engineered bladder construct. Animals were monitored on a daily basis and euthanisation was performed whenever a decline in animal health was detected. RESULTS All animals in Groups 1, 2 and 3 survived for at least 7 days and were followed up to a maximum of 12 weeks post-operation. It was found that by Day 14, substantial ingrowth of smooth muscle and urothelial cells had occurred in Group 2 and 3. In the long-term follow up of group 3 (tissue-engineered bladder construct group), it was found that the urinary bladder wall was completely regenerated and bladder function was fully restored. Urodynamic and radiological evaluations of the reconstructed bladder showed a return to normal bladder volume and function.Histological analysis revealed the presence of three muscular layers and a urothelium similar to that of a normal bladder. Immunohistochemical staining using human-specific myocyte markers (myosin heavy chain and smoothelin) confirmed the incorporation of the seeded cells in the newly regenerated muscular layers. CONCLUSION Implantation of PLGA construct seeded with smooth muscle cells derived from human adipose stem cells can lead to regeneration of the muscular layers and urothelial ingrowth, leading to formation of a completely functional urinary bladder.
Collapse
Affiliation(s)
- Salah Abood Salem
- Urology Unit, Department of Surgery, UKM Medical Centre, Kuala Lumpur, Malaysia.,Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Zahra Rashidbenam
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | | | | | - Ismail Sagap
- Urology Unit, Department of Surgery, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Rajesh Singh
- Department of Orthopaedics and Traumatology, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Reusmaazran Yusof
- Material Technology Group, Malaysian Nuclear Agency, Kajang, Selangor Darul Ehsan, Malaysia
| | | | - Ruszymah Bt Haji Idrus
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia.,Department of Physiology, UKM Medical Faculty, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Jin C, Cao N, Ni J, Zhao W, Gu B, Zhu W. A Lipid-Nanosphere-Small MyoD Activating RNA-Bladder Acellular Matrix Graft Scaffold [NP(saMyoD)/BAMG] Facilitates Rat Injured Bladder Muscle Repair and Regeneration [NP(saMyoD)/BAMG]. Front Pharmacol 2020; 11:795. [PMID: 32581787 PMCID: PMC7287117 DOI: 10.3389/fphar.2020.00795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background Bladder tissue engineering is an excellent alternative to conventional gastrointestinal bladder enlargement in the treatment of various acquired and congenital bladder abnormalities. We constructed a nanosphere-small MyoD activating RNA-bladder acellular matrix graft scaffold NP(saMyoD)/BAMG inoculated with adipose-derived stem cells (ADSC) to explore its effect on smooth muscle regeneration and bladder repair function in a rat augmentation model. Methods We performed many biotechniques, such as reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, MTT assay, HE staining, masson staining, and immunohistochemistry in our study. Lipid nanospheres were transfected into rat ADSCs after encapsulate saRNA-MyoD as an introduction vector. Lipid nanospheres encapsulated with saRNA-MyoD were transfected into rat ADSCs. The functional transfected rat ADSCs were called ADSC-NP(saMyoD). Then, Rat models were divided into four groups: sham group, ADSC-BAMG group, ADSC-NP(saMyoD)/BAMG group, and ADSC-NP(saMyoD)/SF(VEGF)/BAMG group. Finally, we compared the bladder function of different models by detecting the bladder histology, bladder capacity, smooth muscle function in each group. Results RT-PCR and Western blot results showed that ADSCs transfected with NP(saMyoD) could induce high expression of α-SMA, SM22α, and Desmin. At the same time, MTT analysis showed that NP(saMyoD) did not affect the activity of ADSC cells, suggesting little toxicity. HE staining and immunohistochemistry indicated that the rat bladder repair effect (smooth muscle function, bladder capacities) was better in the ADSC-NP(saMyoD)/BAMG group, ADSC-NP(saMyoD)/SF(VEGF)/BAMG group than in the control group. Conclusions Taken together, our results demonstrate that the NP(saMyoD)/SF(VEGF)/BAMG scaffold seeded with ADSCs could promote bladder morphological regeneration and improved bladder urinary function. This strategy of ADSC-NP(saMyoD)/SF(VEGF)/BAMG may has a potential to repair bladder defects in the future.
Collapse
Affiliation(s)
- Chongrui Jin
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| | - Nailong Cao
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| | - Jianshu Ni
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Baojun Gu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| | - Weidong Zhu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Urology, Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| |
Collapse
|
15
|
Galliger Z, Vogt CD, Panoskaltsis-Mortari A. 3D bioprinting for lungs and hollow organs. Transl Res 2019; 211:19-34. [PMID: 31150600 PMCID: PMC6702089 DOI: 10.1016/j.trsl.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Three-dimensional bioprinting has been gaining attention as a potential method for creating biological tissues, supplementing the current arsenal of tissue engineering techniques. 3D bioprinting raises the possibility of reproducibly creating complex macro- and microscale architectures using multiple different cell types. This is promising for creation of multilayered hollow organs, which has been challenging using more traditional tissue engineering techniques. In this review, the state of the field in bioprinting of epithelialized hollow and tubular organs is discussed. Most of the progress for the pulmonary system has been restricted to the trachea. Due to the gross structural similarities and common engineering challenges when creating any epithelialized hollow organ, this review also covers current progress in printing within the gastrointestinal and genitourinary systems, as well as applications of traditional plastic printing in engineering these tissues.
Collapse
Affiliation(s)
- Zachary Galliger
- University of Minnesota, Department of Pediatrics, Minneapolis, Minnesota
| | - Caleb D Vogt
- University of Minnesota, Department of Pediatrics, Minneapolis, Minnesota
| | | |
Collapse
|
16
|
Williams DF. Challenges With the Development of Biomaterials for Sustainable Tissue Engineering. Front Bioeng Biotechnol 2019; 7:127. [PMID: 31214584 PMCID: PMC6554598 DOI: 10.3389/fbioe.2019.00127] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has tantalizingly offered the possibility of regenerating new tissue in order to treat a multitude of diseases and conditions within the human body. Nevertheless, in spite of significant progress with in vitro and small animal studies, progress toward realizing the clinical and commercial endpoints has been slow and many would argue that ultimate goals, especially in treating those conditions which, as yet, do not have acceptable conventional therapies, may never be reached because of flawed scientific rationale. In other words, sustainable tissue engineering may not be achievable with current approaches. One of the major factors here is the choice of biomaterial that is intended, through its use as a "scaffold," to guide the regeneration process. For many years, effective specifications for these biomaterials have not been well-articulated, and the requirements for biodegradability and prior FDA approval for use in medical devices, have dominated material selection processes. This essay argues that these considerations are not only wrong in principle but counter-productive in practice. Materials, such as many synthetic bioabsorbable polymers, which are designed to have no biological activity that could stimulate target cells to express new and appropriate tissue, will not be effective. It is argued here that a traditional 'scaffold' represents the wrong approach, and that tissue-engineering templates that are designed to replicate the niche, or microenvironment, of these target cells are much more likely to succeed.
Collapse
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, United States
- Strait Access Technologies, Cape Town, South Africa
| |
Collapse
|
17
|
Abedin Zadeh M, Khoder M, Al-Kinani AA, Younes HM, Alany RG. Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discov Today 2019; 24:1669-1678. [PMID: 31051266 DOI: 10.1016/j.drudis.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD), can lead to permanent sight loss. Although intravitreal anti-vascular endothelial growth factor (VEGF) and steroid injections are effective for the management of early stages of wet and/or neovascular AMD (nAMD), no proven treatments currently exist for dry AMD or for the advanced geographic atrophy of the retina that follows. Tissue engineering (TE) has recently emerged as a promising alternative to repair retinal damaged and restore its functions. Here, we review recent advances in TE, with a particular emphasis on retinal regeneration. We provide an overview of retinal diseases, followed by a comprehensive review of TE techniques, cells, and polymers used in the fabrication of scaffolds for retinal cell regenerations, in particular the retinal pigment epithelium (RPE).
Collapse
Affiliation(s)
- Maria Abedin Zadeh
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar.
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Husam M Younes
- Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
Mirzaei A, Saburi E, Islami M, Ardeshirylajimi A, Omrani MD, Taheri M, Moghadam AS, Ghafouri-Fard S. Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly(lactide-co-glycolide) nanofibrous structure. Gene 2019; 694:26-32. [PMID: 30735717 DOI: 10.1016/j.gene.2019.01.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
Smooth muscle cell (SMC) regeneration plays an important role in retrieving the bladder-wall functionality and it can be achieved by a proper cell-co-polymer constructed by tissue engineering. Human induced pluripotent stem cells (iPSCs), which can be specifically prepared for the patient, was considered as cells in this study, and Poly(lactide-co-glycolide) (PLGA) as a most interesting polymer in biomedical applications was applied to the scaffold fabrication by electrospinning. After scaffold characterization, SMC differentiation potential of the human iPSCs was investigated while cultured on the PLGA nanofibrous scaffold by evaluation of the SMC related important gene and protein markers. Alpha-smooth muscle actin (ASMA), Smooth muscle 22 alpha (SM-22a) as two early SMC markers were significantly up regulated either two and three weeks after differentiation induction in human iPSCs cultured on PLGA compared to those cells cultured on the tissue culture polystyrene (TCPS). But Calponin-1, Caldesmon1 and myosin heavy chain (MHC) expression differences in human iPSCs cultured on PLGA and TCPS were significant only three weeks after differentiation induction based on its lately expression in the differentiation process. ASMA and MHC proteins were also considered for evaluation by immunocytochemistry on differentiated iPSCs whereas results showed higher expression of these proteins in stem cells grown on PLGA compared to the TCPS. According to the results, human iPSCs demonstrated a great SMC differentiation potential when grown on PLGA and it could be considered as a promising cell-co-polymer for use in bladder tissue engineering.
Collapse
Affiliation(s)
- Ali Mirzaei
- Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ehsan Saburi
- Immunogenetics and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Islami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Shapouri Moghadam
- Bu-Ali Research Institute, Department of Immunogenetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Ardeshirylajimi A, Ghaderian SMH, Omrani MD, Moradi SL. Biomimetic scaffold containing PVDF nanofibers with sustained TGF-β release in combination with AT-MSCs for bladder tissue engineering. Gene 2018; 676:195-201. [DOI: 10.1016/j.gene.2018.07.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 01/27/2023]
|
20
|
Hustler A, Eardley I, Hinley J, Pearson J, Wezel F, Radvanyi F, Baker SC, Southgate J. Differential transcription factor expression by human epithelial cells of buccal and urothelial derivation. Exp Cell Res 2018; 369:284-294. [PMID: 29842880 PMCID: PMC6092173 DOI: 10.1016/j.yexcr.2018.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022]
Abstract
Identification of transcription factors expressed by differentiated cells is informative not only of tissue-specific pathways, but to help identify master regulators for cellular reprogramming. If applied, such an approach could generate healthy autologous tissue-specific cells for clinical use where cells from the homologous tissue are unavailable due to disease. Normal human epithelial cells of buccal and urothelial derivation maintained in identical culture conditions that lacked significant instructive or permissive signaling cues were found to display inherent similarities and differences of phenotype. Investigation of transcription factors implicated in driving urothelial-type differentiation revealed buccal epithelial cells to have minimal or absent expression of PPARG, GATA3 and FOXA1 genes. Retroviral overexpression of protein coding sequences for GATA3 or PPARy1 in buccal epithelial cells resulted in nuclear immunolocalisation of the respective proteins, with both transductions also inducing expression of the urothelial differentiation-associated claudin 3 tight junction protein. PPARG1 overexpression alone entrained expression of nuclear FOXA1 and GATA3 proteins, providing objective evidence of its upstream positioning in a transcription factor network and identifying it as a candidate factor for urothelial-type transdifferentiation or reprogramming.
Collapse
Affiliation(s)
- Arianna Hustler
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Ian Eardley
- Pyrah Department of Urology, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Jennifer Hinley
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Joanna Pearson
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Felix Wezel
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Francois Radvanyi
- Oncologie Moléculaire, Institut Curie, Centre de Recherche, 75248 Paris cedex 05, France
| | - Simon C Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
21
|
Schäfer FM, Stehr M. Tissue engineering in pediatric urology - a critical appraisal. Innov Surg Sci 2018; 3:107-118. [PMID: 31579774 PMCID: PMC6604568 DOI: 10.1515/iss-2018-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 01/01/2023] Open
Abstract
Tissue engineering is defined as the combination of biomaterials and bioengineering principles together with cell transplantation or directed growth of host cells to develop a biological replacement tissue or organ that can be a substitute for normal tissue both in structure and function. Despite early promising preclinical studies, clinical translation of tissue engineering in pediatric urology into humans has been unsuccessful both for cell-seeded and acellular scaffolds. This can be ascribed to various factors, including the use of only non-diseased models that inaccurately describe the structural and functional modifications of diseased tissue. The paper addresses potential future strategies to overcome the limitations experienced in clinical applications so far. This includes the use of stem cells of various origins (mesenchymal stem cells, hematopoietic stem/progenitor cells, urine-derived stem cells, and progenitor cells of the urothelium) as well as the need for a deeper understanding of signaling pathways and directing tissue ingrowth and differentiation through the concept of dynamic reciprocity. The development of smart scaffolds that release trophic factors in a set and timely manner will probably improve regeneration. Modulation of innate immune response as a major contributor to tissue regeneration outcome is also addressed. It is unlikely that only one of these strategies alone will lead to clinically applicable tissue engineering strategies in pediatric urology. In the meanwhile, the fundamental new insights into regenerative processes already obtained in the attempts of tissue engineering of the lower urogenital tract remain our greatest gain.
Collapse
Affiliation(s)
- Frank-Mattias Schäfer
- Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| | - Maximilian Stehr
- Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| |
Collapse
|
22
|
Zhang D, Cao N, Zhou S, Chen Z, Zhang X, Zhu W. The enhanced angiogenesis effect of VEGF-silk fibroin nanospheres-BAMG scaffold composited with adipose derived stem cells in a rabbit model. RSC Adv 2018; 8:15158-15165. [PMID: 35541334 PMCID: PMC9080003 DOI: 10.1039/c7ra11610a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/03/2018] [Indexed: 11/21/2022] Open
Abstract
We report a study to determine whether a vascular endothelial growth factor (VEGF)-silk fibroin (SF) nanospheres-bladder acellular matrix graft (BAMG) scaffold composited with adipose derived stem cells (ADSCs) could enhance angiogenesis in bladder regeneration in rabbits. Rabbit ADSCs were isolated and identified by flow cytometry. The morphology and release behaviour of VEGF-SF nanospheres were detected. After the composite scaffolds were successfully used in bladder reconstruction, the bladder capacity, H&E staining and immunohistochemical staining were studied at different time points. ADSCs exerts high expression rates of CD29, CD90, and CD44, accompanied with low expression rates of CD34 and CD45. SF nanospheres with diameters of 200–1000 nm were prepared to load VEGF, and they contributed to maintain the release of VEGF. The reconstructed bladder with VEGF-SF nanospheres-BAMG plus ADSCs had more regular smooth muscle tissue and blood vessels. Moreover, instead of differentiating into epithelial or vascular endothelial cells, ADSCs may be more likely to provide additional cytokines to enhance angiogenesis in the bladder regeneration process. The tissue engineered bladder constructed by BAMG modified by VEGF-SF nanospheres possessed high bio-compatibility and an enhanced angiogenesis effect, and could be used as an ideal biological material to repair bladder defects after being composited with ADSCs. The adipose derived stem cells (ADSCs) was composited with vascular endothelial growth factor (VEGF)-silk fibroin (SF) nanospheres-bladder acellular matrix graft (BAMG) scaffold to repair bladder defect in rabbits.![]()
Collapse
Affiliation(s)
- Dongliang Zhang
- Department of Urology
- Shanghai Sixth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200233
| | - Nailong Cao
- Department of Urology
- Shanghai Sixth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200233
| | - Shukui Zhou
- Department of Urology
- Shanghai Sixth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200233
| | - Zhong Chen
- Department of Urology
- Shanghai Sixth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200233
| | - Xinru Zhang
- Department of Urology
- Shanghai Sixth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200233
| | - Weidong Zhu
- Department of Urology
- Shanghai Sixth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200233
| |
Collapse
|
23
|
Yu HS, Park J, Lee HS, Park SA, Lee DW, Park K. Feasibility of Polycaprolactone Scaffolds Fabricated by Three-Dimensional Printing for Tissue Engineering of Tunica Albuginea. World J Mens Health 2017; 36:66-72. [PMID: 29076301 PMCID: PMC5756809 DOI: 10.5534/wjmh.17025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the feasibility of a polycaprolactone (PCL) scaffold fabricated by three-dimensional (3D) printing for tissue engineering applications for tunica albuginea. MATERIALS AND METHODS PCL scaffolds were fabricated by use of a 3D printing system. Two scaffolds were fabricated that differed in the architecture of the lay-down pattern: a 90°PCL scaffold and a 45°PCL scaffold. Mechanical properties were measured to compare tensile strength between the two scaffold types. The scaffolds were characterized by scanning electron microscope (SEM) images. The scaffolds were seeded with fibroblast cells, and the ability of these scaffolds to support the cells was evaluated by immunofluorescence staining. RESULTS The PCL scaffolds had well-structured shapes, regular arrays, and good interconnection in SEM images. The horizontal and vertical Young's modulus coefficients were 13 and 12 MPa for the 90°PCL scaffold and 19 and 21 MPa for the 45°PCL scaffold, respectively. Microscopy images revealed that human fibroblast cells covered the entire scaffold surface. Immunofluorescence staining of ER-TR7 confirmed that the fibroblast cells remained viable and proliferated throughout the time course of the culture. CONCLUSIONS This preliminary study provides experimental evidence for the feasibility of 3D printing of PCL scaffolds for tissue engineering applications of tunica albuginea.
Collapse
Affiliation(s)
- Ho Song Yu
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Jinju Park
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Hyun Suk Lee
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Su A Park
- Nano Convergence and Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, Korea
| | - Dong Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea.
| |
Collapse
|
24
|
Adamowicz J, Pokrywczynska M, Van Breda SV, Kloskowski T, Drewa T. Concise Review: Tissue Engineering of Urinary Bladder; We Still Have a Long Way to Go? Stem Cells Transl Med 2017; 6:2033-2043. [PMID: 29024555 PMCID: PMC6430044 DOI: 10.1002/sctm.17-0101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a new branch of medicine based on tissue engineering technology. This rapidly developing field of science offers revolutionary treatment strategy aimed at urinary bladder regeneration. Despite many promising announcements of experimental urinary bladder reconstruction, there has been a lack in commercialization of therapies based on current investigations. This is due to numerous obstacles that are slowly being identified and precisely overcome. The goal of this review is to present the current status of research on urinary bladder regeneration and highlight further challenges that need to be gradually addressed. We put an emphasis on expectations of urologists that are awaiting tissue engineering based solutions in clinical practice. This review also presents a detailed characteristic of obstacles on the road to successful urinary bladder regeneration from urological clinician perspective. A defined interdisciplinary approach might help to accelerate planning transitional research tissue engineering focused on urinary tracts. Stem Cells Translational Medicine 2017;6:2033-2043.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
25
|
Wiese CB, Deal KK, Ireland SJ, Cantrell VA, Southard-Smith EM. Migration pathways of sacral neural crest during development of lower urogenital tract innervation. Dev Biol 2017; 429:356-369. [PMID: 28449850 PMCID: PMC5572097 DOI: 10.1016/j.ydbio.2017.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
Abstract
The migration and fate of cranial and vagal neural crest-derived progenitor cells (NCPCs) have been extensively studied; however, much less is known about sacral NCPCs particularly in regard to their distribution in the urogenital system. To construct a spatiotemporal map of NCPC migration pathways into the developing lower urinary tract, we utilized the Sox10-H2BVenus transgene to visualize NCPCs expressing Sox10. Our aim was to define the relationship of Sox10-expressing NCPCs relative to bladder innervation, smooth muscle differentiation, and vascularization through fetal development into adulthood. Sacral NCPC migration is a highly regimented, specifically timed process, with several potential regulatory mileposts. Neuronal differentiation occurs concomitantly with sacral NCPC migration, and neuronal cell bodies are present even before the pelvic ganglia coalesce. Sacral NCPCs reside within the pelvic ganglia anlagen through 13.5 days post coitum (dpc), after which they begin streaming into the bladder body in progressive waves. Smooth muscle differentiation and vascularization of the bladder initiate prior to innervation and appear to be independent processes. In adult bladder, the majority of Sox10+ cells express the glial marker S100β, consistent with Sox10 being a glial marker in other tissues. However, rare Sox10+ NCPCs are seen in close proximity to blood vessels and not all are S100β+, suggesting either glial heterogeneity or a potential nonglial role for Sox10+ cells along vasculature. Taken together, the developmental atlas of Sox10+ NCPC migration and distribution profile of these cells in adult bladder provided here will serve as a roadmap for future investigation in mouse models of lower urinary tract dysfunction.
Collapse
Affiliation(s)
- Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - V Ashley Cantrell
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States.
| |
Collapse
|
26
|
Gold nanoparticle-filled biodegradable photopolymer scaffolds induced muscle remodeling: in vitro and in vivo findings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:625-630. [DOI: 10.1016/j.msec.2016.11.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022]
|
27
|
Colombo F, Sampogna G, Cocozza G, Guraya SY, Forgione A. Regenerative medicine: Clinical applications and future perspectives. J Microsc Ultrastruct 2017; 5:1-8. [PMID: 30023231 PMCID: PMC6014261 DOI: 10.1016/j.jmau.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 12/13/2022] Open
Abstract
After many years of basic research, regenerative medicine (RM) is now beginning to represent a valuable tool to cure several clinical conditions in both acute injuries and chronic diseases. The aim of this study is to update readers on current clinical applications of some selected organs and pathologies which may benefit from RM. An extensive literature research was performed using PubMed, Google and specialized journals. RM has achieved great successes, but there are still several challenges to tackle before it could be used on a daily basis in clinical practice. The crucial point of this revolution is represented by the appropriate and valid translation from bench to bedside.
Collapse
Affiliation(s)
- Federica Colombo
- Advanced International Mini-invasive Surgery – AIMS Academy, Milan, Italy
| | - Gianluca Sampogna
- Advanced International Mini-invasive Surgery – AIMS Academy, Milan, Italy
| | - Giovanni Cocozza
- Advanced International Mini-invasive Surgery – AIMS Academy, Milan, Italy
| | - Salman Yousuf Guraya
- Department of Surgery and Consultant Colorectal Surgeon, College of Medicine, Taibah University, Almadinah Almunawwarah, KSA
| | - Antonello Forgione
- Advanced International Mini-invasive Surgery – AIMS Academy, Milan, Italy
| |
Collapse
|
28
|
Çetinel B, Kocjancic E, Demirdağ Ç. Augmentation cystoplasty in neurogenic bladder. Investig Clin Urol 2016; 57:316-23. [PMID: 27617312 PMCID: PMC5017553 DOI: 10.4111/icu.2016.57.5.316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022] Open
Abstract
The aim of this review is to update the indications, contraindications, technique, complications, and the tissue engineering approaches of augmentation cystoplasty (AC) in patients with neurogenic bladder. PubMed/MEDLINE was searched for the keywords "augmentation cystoplasty," "neurogenic bladder," and "bladder augmentation." Additional relevant literature was determined by examining the reference lists of articles identified through the search. The update review of of the indications, contraindications, technique, outcome, complications, and tissue engineering approaches of AC in patients with neurogenic bladder is presented. Although some important progress has been made in tissue engineering AC, conventional AC still has an important role in the surgical treatment of refractory neurogenic lower urinary tract dysfunction.
Collapse
Affiliation(s)
- Bülent Çetinel
- Department of Urology, Istanbul University, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| | - Ervin Kocjancic
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Çetin Demirdağ
- Department of Urology, Istanbul University, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
29
|
Miranda EGD, Miranda CTCBCD, Lopes AIP, Santana DM, Lemos Filho JEP, Diniz TP, Silva JF, Waisberg J. Expression of P53, HER2 and Ki67 proteins in rats subjected to bladder augmentation with stomach, colon and ileum. Acta Cir Bras 2016; 31:44-52. [PMID: 26840355 DOI: 10.1590/s0102-865020160010000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To study the expression of HER2, p53 and Ki67 proteins in cystoplasties. METHODS Sixty rats were distributed randomly into three groups of 20 animals. Bladder augmentation was held to increase with ileum (Group I), colon (Group II) and stomach (Group III). Tissue samples of neobladder was collected from each rat to its own control. The animals were sacrificed after 12 weeks. The neobladder was withdrawn for immunohistochemistry analysis of p53, HER2 and Ki67 expression. Wilcoxon and Mann-Whitney tests were used for statistical study. RESULTS There were no significant changes in the expression of p53 and HER2 proteins. It was observed significant increase (p<0.0001) in Ki67 expression in all groups, when compared with their respective controls. When the study groups were compared with each other, there was increase of cell proliferation in the largest gastrocystoplasties in respect of ileocystoplasties (p=0.004) and colocystoplasties (p=0.003). CONCLUSION We observed significant increase of cell proliferation characterized by Ki67 protein in the digestive tract of the ileocystoplasties, the colocystoplasties and the gastrocystoplasties and this increase was significantly greater in gastrocystoplasties.
Collapse
|
30
|
Jerman UD, Kreft ME, Veranič P. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:521-30. [PMID: 26066408 DOI: 10.1089/ten.teb.2014.0678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| | - Peter Veranič
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
31
|
Damaser MS, Sievert KD. Tissue engineering and regenerative medicine: bench to bedside in urology. Preface. Adv Drug Deliv Rev 2015; 82-83:v-vii. [PMID: 25623935 DOI: 10.1016/j.addr.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|