1
|
Wang Y, Mo Y, Sun Y, Li J, An Y, Feng N, Liu Y. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J Nanobiotechnology 2024; 22:669. [PMID: 39487532 PMCID: PMC11531169 DOI: 10.1186/s12951-024-02930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles. Meanwhile, intestinal epithelial cells may absorb the NPs, allowing for their transcytosis or degradation. Conversely, nanoparticle-induced toxicity may occur as a biological response to the nanoparticle exposure. Additionally, immune response and cell functions in secretions such as mucin, peptide, and cytokines may also be altered. In this review, we discuss the bidirectional interactions between nanoparticles and cells focusing on enterocytes and goblet cells, M cells, and immune cells in the mucosa according to the essential role of intestinal epithelial cells and their crosstalk with immune cells. Furthermore, we discuss the recent advances of how the physiochemical properties of nanoparticles influence their interplay, delivery, and fate in intestinal mucosa. Understanding the fate of nanoparticles with different physiochemical properties from the perspective of their interaction with cells in mucosa provides essential support for the development, rational design, potency maximation, and application of advanced oral nanocarrier delivery systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yilei Mo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yingwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yu An
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| | - Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| |
Collapse
|
2
|
Weng MT, Hsiung CY, Wei SC, Chen Y. Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1999. [PMID: 39439396 DOI: 10.1002/wnan.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Yueh Hsiung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Serra-Casablancas M, Di Carlo V, Esporrín-Ubieto D, Prado-Morales C, Bakenecker AC, Sánchez S. Catalase-Powered Nanobots for Overcoming the Mucus Barrier. ACS NANO 2024; 18:16701-16714. [PMID: 38885185 PMCID: PMC11223492 DOI: 10.1021/acsnano.4c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Biological barriers present a significant obstacle to treatment, especially when drugs are administered locally to increase their concentrations at the target site while minimizing unintended off-target effects. Among these barriers, mucus presents a challenge, as it serves as a protective layer in the respiratory, urogenital, and gastrointestinal tracts. Its role is to shield the underlying epithelial cells from pathogens and toxic compounds but also impedes the efficient delivery of drugs. Despite the exploration of mucolytic agents to improve drug delivery, overcoming this protective barrier remains a significant hurdle. In our study, we investigate an alternative approach involving the use of catalase-powered nanobots. We use an in vitro model that simulates intestinal mucus secretion to demonstrate the dual functionality of our nanobots. This includes their ability to disrupt mucus, which we confirmed through in vitro and ex vivo validation, as well as their self-propulsion to overcome the mucus barrier, resulting in a 60-fold increase compared with passive nanoparticles. Therefore, our findings highlight the potential utility of catalase-powered nanobots as carriers for therapeutic agents since they could enhance drug delivery efficiency by penetrating the mucus barrier.
Collapse
Affiliation(s)
- Meritxell Serra-Casablancas
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Universitat
de Barcelona, Facultat de Farmàcia i Ciències de l’Alimentació, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Valerio Di Carlo
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - David Esporrín-Ubieto
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Carles Prado-Morales
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Universitat
de Barcelona, Facultat de Farmàcia i Ciències de l’Alimentació, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Anna C. Bakenecker
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Panthi VK, Fairfull-Smith KE, Islam N. Ciprofloxacin-Loaded Inhalable Formulations against Lower Respiratory Tract Infections: Challenges, Recent Advances, and Future Perspectives. Pharmaceutics 2024; 16:648. [PMID: 38794310 PMCID: PMC11125790 DOI: 10.3390/pharmaceutics16050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inhaled ciprofloxacin (CFX) has been investigated as a treatment for lower respiratory tract infections (LRTIs) associated with cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and bronchiectasis. The challenges in CFX effectiveness for LRTI treatment include poor aqueous solubility and therapy resistance. CFX dry powder for inhalation (DPI) formulations were well-tolerated, showing a remarkable decline in overall bacterial burden compared to a placebo in bronchiectasis patients. Recent research using an inhalable powder combining Pseudomonas phage PEV20 with CFX exhibited a substantial reduction in bacterial density in mouse lungs infected with clinical P. aeruginosa strains and reduced inflammation. Currently, studies suggest that elevated biosynthesis of fatty acids could serve as a potential biomarker for detecting CFX resistance in LRTIs. Furthermore, inhaled CFX has successfully addressed various challenges associated with traditional CFX, including the incapacity to eliminate the pathogen, the recurrence of colonization, and the development of resistance. However, further exploration is needed to address three key unresolved issues: identifying the right patient group, determining the optimal treatment duration, and accurately assessing the risk of antibiotic resistance, with additional multicenter randomized controlled trials suggested to tackle these challenges. Importantly, future investigations will focus on the effectiveness of CFX DPI in bronchiectasis and COPD, aiming to differentiate prognoses between these two conditions. This review underscores the importance of CFX inhalable formulations against LRTIs in preclinical and clinical sectors, their challenges, recent advancements, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
5
|
Niaz T, Mackie A. Effect of beta glucan coating on controlled release, bioaccessibility, and absorption of β-carotene from loaded liposomes. Food Funct 2024; 15:1627-1642. [PMID: 38247312 DOI: 10.1039/d3fo04123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Recently, the use of biopolymers as coating material to stabilise phospholipid-based nanocarriers has increased. One such class of biopolymers is the dietary fibre beta-glucan (βG). In this study, we developed and characterized beta-carotene (βC) loaded βG coated nanoliposomes (GNLs) to investigate the effect of βG coating on the stability, controlled release, bioaccessibility, diffusion and subsequent absorption of the lipophilic active agent. The size, charge (Z-potential), and FTIR spectra were measured to determine the physicochemical stability of GNLs. βG coating reduced the bioaccessibility, provided prolonged release and improved the antioxidant activity of the nanoliposomes. Multiple particle tracking (MPT) data suggested that βC-GNLs were less diffusive in porcine intestinal mucus (PIM). Additionally, the microviscosity of the PIM treated with GNLs was observed to be higher (0.04744 ± 0.00865 Pa s) than the PIM incubated with uncoated NLs (0.015 ± 0.0004 Pa s). An Ex vivo experiment was performed on mouse jejunum to measure the absorption of beta-carotene from coated (βC-GNLs) and uncoated nanoliposomes (βC-NLs). Data showed that after 2 hours, 27.7 ± 1.3 ng mL-1 of βC encapsulated in GNLs and 61.54 ± 3 ng mL-1 of the βC encapsulated in uncoated NLs was absorbed by mouse intestinal mucosa. These results highlight that coating with βG stabilise NLs during gastrointestinal digestion and provides more sustained release of βC from nanoliposomes.
Collapse
Affiliation(s)
- Taskeen Niaz
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Alan Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Banat H, Csóka I, Paróczai D, Burian K, Farkas Á, Ambrus R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro-In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals (Basel) 2024; 17:75. [PMID: 38256908 PMCID: PMC10818896 DOI: 10.3390/ph17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4-4.5 µm), fine particle fraction (56-71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Dóra Paróczai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Árpád Farkas
- Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| |
Collapse
|
7
|
de Lagarde VM, Chevalier L, Méausoone C, Cazier F, Dewaele D, Cazier-Dennin F, Janona M, Logie C, Achard S, André V, Rogez-Florent T, Monteil C, Corbiere C. Acute and repeated exposures of normal human bronchial epithelial (NHBE) cells culture to particles from a coloured pyrotechnic smoke. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104327. [PMID: 38006978 DOI: 10.1016/j.etap.2023.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Coloured pyrotechnic smokes are frequently used in the military field and occasionally by civilians, but their health hazards have been little studied. The main concern could rise from inhalation of smoke particles. Our previous study showed that acute exposure to particles from a red signalling smoke (RSS) induced an antioxidant and inflammatory responses in small airway epithelial cells. The aim of this study was to further explore the toxicity of RSS particles at a more proximal level of the respiratory tract, using normal human bronchial epithelial cells grown at the Air-Liquid Interface. Acute exposure (24 h) induced an oxidative stress that persisted 24 h post-exposure, associated with particle internalization and epithelium morphological changes (cuboidal appearance and loss of cilia). Repeated exposures (4×16h) to RSS particles did not trigger oxidative stress but cell morphological changes occurred. Overall, this study provides a better overview of the toxic effects of coloured smoke particles.
Collapse
Affiliation(s)
| | - Laurence Chevalier
- Université de Rouen Normandie, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - Clémence Méausoone
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Fabrice Cazier
- Université du Littoral Côte d'Opale, CCM - Centre Commun de Mesures, 59 375 Dunkerque, France
| | - Dorothée Dewaele
- Université du Littoral Côte d'Opale, CCM - Centre Commun de Mesures, 59 375 Dunkerque, France
| | - Francine Cazier-Dennin
- Université du Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 417, 59 375 Dunkerque, France
| | - Marion Janona
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Cathy Logie
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Sophie Achard
- Université de Paris, Faculté de Pharmacie, Inserm UMR1153 - CRESS, HERA " Health Environmental Risk Assessment ", 75005 Paris, France
| | - Véronique André
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Tiphaine Rogez-Florent
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Christelle Monteil
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Cécile Corbiere
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France.
| |
Collapse
|
8
|
Ramachandran S, Prakash P, Mohtar N, Kumar KS, Parumasivam T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm Dev Technol 2023; 28:978-991. [PMID: 37937865 DOI: 10.1080/10837450.2023.2279691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
Tuberculosis is an airborne disease caused by the pathogen, Mycobacterium tuberculosis, which predominantly affects the lungs. World Health Organization (WHO) has reported that about 85% of TB patients are cured with the existing 6-month antibiotic regimen. However, the lengthy oral administration of high-dose anti-TB drugs is associated with significant side effects and leads to drug resistance cases. Alternatively, reformulating existing anti-tubercular drugs into inhalable nanoparticulate systems is a promising strategy to overcome the challenges associated with oral treatment as they could enhance drug retention in the pulmonary region to achieve an optimal drug concentration in the infected lungs. Hence, this review provides an overview of the literature on inhalable nano-formulations for the delivery of anti-TB drugs, including their formulation techniques and preclinical evaluations between the years 2000 and 2020, gathered from electronic journals via online search engines such as Google Scholar and PubMed. Previous in vitro and in vivo studies highlighted that the nano-size, low toxicity, and high efficacy were among the factors influencing the fate of nanoparticulate system upon deposition in the lungs. Although many preclinical studies have shown that inhalable nanoparticles increased therapeutic efficacy and minimised adverse drug reactions when delivered through the pulmonary route, none of them has progressed into clinical trials to date. This could be attributed to the high cost of inhaled regimes due to the expensive production and characterisation of the nanoparticles as well as the need for an inhalation device as compared to the oral treatment. Another barrier could be the lack of medical acceptance due to insufficient number of trained staff to educate the patients on the correct usage of the inhalation device. Hence, these barriers should be addressed satisfactorily to make the inhaled nanoparticles regimen a reality for the treatment of TB.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - K Sudesh Kumar
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Xu M, Qi Y, Liu G, Song Y, Jiang X, Du B. Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance. ACS NANO 2023; 17:20825-20849. [PMID: 37921488 DOI: 10.1021/acsnano.3c05853] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the in vivo transport of nanoparticles provides guidelines for designing nanomedicines with higher efficacy and fewer side effects. Among many factors, the size of nanoparticles plays a key role in controlling their in vivo transport behaviors due to the existence of various physiological size thresholds within the body and size-dependent nano-bio interactions. Encouraged by the evolving discoveries of nanoparticle-size-dependent biological effects, we believe that it is necessary to systematically summarize the size-scaling laws of nanoparticle transport in vivo. In this review, we summarized the size effect of nanoparticles on their in vivo transport along their journey in the body: begin with the administration of nanoparticles via different delivery routes, followed by the targeting of nanoparticles to intended tissues including tumors and other organs, and eventually clearance of nanoparticles through the liver or kidneys. We outlined the tools for investigating the in vivo transport of nanoparticles as well. Finally, we discussed how we may leverage the size-dependent transport to tackle some of the key challenges in nanomedicine translation and also raised important size-related questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Gaoshuo Liu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuanqing Song
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| |
Collapse
|
10
|
Drago SE, Cabibbo M, Craparo EF, Cavallaro G. TAT decorated siRNA polyplexes for inhalation delivery in anti-asthma therapy. Eur J Pharm Sci 2023; 190:106580. [PMID: 37717668 DOI: 10.1016/j.ejps.2023.106580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
In this work, a novel protonable copolymer was designed to deliver siRNA through the inhalation route, as an innovative formulation for the management of asthma. This polycation was synthesized by derivatization of α,β-poly(N-2-hydroxyethyl)D,L-aspartamide (PHEA) first with 1,2-Bis(3-aminopropylamino)ethane (bAPAE) and then with a proper amount of maleimide terminated poly(ethylene glycol) (PEG-MLB), with the aim to increase the superficial hydrophilicity of the system, allowing the diffusion trough the mucus layer. Once the complexation ability of the copolymer has been evaluated, obtaining nanosized polyplexes, polyplexes were functionalized on the surface with a thiolated TAT peptide, a cell-penetrating peptide (CPP), exploiting a thiol-ene reaction. TAT decorated polyplexes result to be highly cytocompatible and able to retain the siRNA with a suitable complexation weight ratio during the diffusion process through the mucus. Despite polyplexes establish weak bonds with the mucin chains, these can diffuse efficiently through the mucin layer and therefore potentially able to reach the bronchial epithelium. Furthermore, through cellular uptake studies, it was possible to observe how the obtained polyplexes penetrate effectively in the cytoplasm of bronchial epithelial cells, where they can reduce IL-8 gene expression, after LPS exposure. In the end, in order to obtain a formulation administrable as an inhalable dry powder, polyplexes were encapsulated in mannitol-based microparticles, by spray freeze drying, obtaining highly porous particles with proper technological characteristics that make them potentially administrable by inhalation route.
Collapse
Affiliation(s)
- Salvatore Emanuele Drago
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Marta Cabibbo
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Emanuela Fabiola Craparo
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) of Palermo, Palermo, Italy; Advanced Technology and Network Center (ATeN Center), Università di Palermo, Palermo 90133, Italy.
| |
Collapse
|
11
|
Liu K, Chen Y, Yang D, Cai Y, Yang Z, Jin J. Betaine-Based and Polyguanidine-Inserted Zwitterionic Micelle as a Promising Platform to Conquer the Intestinal Mucosal Barrier. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878752 DOI: 10.1021/acsami.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Developing nanocarriers for oral drug delivery is often hampered by the dilemma of balancing mucus permeation and epithelium absorption, since huge differences in surface properties are required for sequentially overcoming these two processes. Inspired by mucus-penetrating viruses that universally possess a dense charge distribution with equal opposite charges on their surfaces, we rationally designed and constructed a poly(carboxybetaine)-based and polyguanidine-inserted cationic micelle platform (hybrid micelle) for oral drug delivery. The optimized hybrid micelle exhibited a great capacity for sequentially overcoming the mucus and villi barriers. It was demonstrated that a longer zwitterionic chain was favorable for mucus diffusion for hybrid micelles but not conducive to cellular uptake. In addition, the significantly enhanced internalization absorption of hybrid micelles was attributed to the synergistic effect of polyguanidine and proton-assisted amine acid transporter 1 (PAT1). Moreover, the retrograde pathway was mainly involved in the intracellular transport of hybrid micelles and transcytosis delivery. Furthermore, the prominent intestinal mucosa absorption in situ and in vivo liver distribution of the oral hybrid micelle were both detected. The results of this study indicated that the hybrid micelles were capable of conquering the intestinal mucosal barrier, having a great potential for oral application of drugs with poor oral bioavailability.
Collapse
Affiliation(s)
- Kedong Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dutao Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Yuan M, Han Z, Liang Y, Sun Y, He B, Chen W, Li F. mRNA nanodelivery systems: targeting strategies and administration routes. Biomater Res 2023; 27:90. [PMID: 37740246 PMCID: PMC10517595 DOI: 10.1186/s40824-023-00425-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
With the great success of coronavirus disease (COVID-19) messenger ribonucleic acid (mRNA) vaccines, mRNA therapeutics have gained significant momentum for the prevention and treatment of various refractory diseases. To function efficiently in vivo and overcome clinical limitations, mRNA demands safe and stable vectors and a reasonable administration route, bypassing multiple biological barriers and achieving organ-specific targeted delivery of mRNA. Nanoparticle (NP)-based delivery systems representing leading vector approaches ensure the successful intracellular delivery of mRNA to the target organ. In this review, chemical modifications of mRNA and various types of advanced mRNA NPs, including lipid NPs and polymers are summarized. The importance of passive targeting, especially endogenous targeting, and active targeting in mRNA nano-delivery is emphasized, and different cellular endocytic mechanisms are discussed. Most importantly, based on the above content and the physiological structure characteristics of various organs in vivo, the design strategies of mRNA NPs targeting different organs and cells are classified and discussed. Furthermore, the influence of administration routes on targeting design is highlighted. Finally, an outlook on the remaining challenges and future development toward mRNA targeted therapies and precision medicine is provided.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
13
|
Song Q, Yang J, Wu X, Li Y, Zhao H, Feng Q, Zhang Z, Zhang Y, Wang L. A multifunctional integrated biomimetic spore nanoplatform for successively overcoming oral biological barriers. J Nanobiotechnology 2023; 21:302. [PMID: 37641137 PMCID: PMC10463901 DOI: 10.1186/s12951-023-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The biological barriers have seriously restricted the efficacious responses of oral delivery system in diseases treatment. Utilizing a carrier based on the single construction means is hard to overcome these obstacles simultaneously because the complex gastrointestinal tract environment requires carrier to have different or even contradictory properties. Interestingly, spore capsid (SC) integrates many unique biological characteristics, such as high resistance, good stability etc. This fact offers a boundless source of inspiration for the construction of multi-functional oral nanoplatform based on SC without further modification. Herein, we develop a type of biomimetic spore nanoplatform (SC@DS NPs) to successively overcome oral biological barriers. Firstly, doxorubicin (DOX) and sorafenib (SOR) are self-assembled to form carrier-free nanoparticles (DS NPs). Subsequently, SC is effectively separated from probiotic spores and served as a functional vehicle for delivering DS NPs. As expect, SC@DS NPs can efficaciously pass through the rugged stomach environment after oral administration and further be transported to the intestine. Surprisingly, we find that SC@DS NPs exhibit a significant improvement in the aspects of mucus penetration and transepithelial transport, which is related to the protein species of SC. This study demonstrates that SC@DS NPs can efficiently overcome multiple biological barriers and improve the therapeutic effect.
Collapse
Affiliation(s)
- Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China
| | - Junfei Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
| | - Xiaocui Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
| | - Yao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
| | - Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China.
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
14
|
Wright L, Wignall A, Jõemetsa S, Joyce P, Prestidge CA. A membrane-free microfluidic approach to mucus permeation for efficient differentiation of mucoadhesive and mucopermeating nanoparticulate systems. Drug Deliv Transl Res 2023; 13:1088-1101. [PMID: 36520273 DOI: 10.1007/s13346-022-01274-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The gastrointestinal mucus barrier is a widely overlooked yet essential component of the intestinal epithelium, responsible for the body's protection against harmful pathogens and particulates. This, coupled with the increasing utilisation of biological molecules as therapeutics (e.g. monoclonal antibodies, RNA vaccines and synthetic proteins) and nanoparticle formulations for drug delivery, necessitates that we consider the additional absorption barrier that the mucus layer may pose. It is imperative that in vitro permeability methods can accurately model this barrier in addition to standardised cellular testing. In this study, a mucus-on-a-chip (MOAC) microfluidic device was engineered and developed to quantify the permeation kinetics of nanoparticles through a biorelevant synthetic mucus layer. Three equivalently sized nanoparticle systems, formulated from chitosan (CSNP), mesoporous silica (MSNP) and poly (lactic-co-glycolic) acid (PLGA-NP) were prepared to encompass various surface chemistries and nanostructures and were assessed for their mucopermeation within the MOAC. Utilising this device, the mucoadhesive behaviour of chitosan nanoparticles was clearly visualised, a phenomenon not often observed via standard permeation models. In contrast, MSNP and PLGA-NP displayed mucopermeation, with significant differences in permeation pattern due to specific mucus-nanoparticle binding. Further optimisation of the MOAC to include a more biorelevant mucus mimic resulted in 5.5-fold hindered PLGA-NP permeation compared to a mucin solution. Furthermore, tracking of PLGA-NP at a single nanoparticle resolution revealed rank-order correlations between particle diffusivity and MOAC permeation. This device, including utilisation of biosimilar mucus, provides a unique ability to quantify both mucoadhesion and mucopenetration of nano-formulations and elucidate mucus binding interactions on a microscopic scale.
Collapse
Affiliation(s)
- Leah Wright
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Anthony Wignall
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Silver Jõemetsa
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Paul Joyce
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Clive A Prestidge
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
15
|
Effects of prophylactic antibiotics administration on barrier properties of intestinal mucosa and mucus from preterm born piglets. Drug Deliv Transl Res 2023; 13:1456-1469. [PMID: 36884193 DOI: 10.1007/s13346-023-01309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
Early intervention and short-duration treatments with antibiotics in premature infants are reported to reduce the incidence of necrotizing enterocolitis (NEC), a terrible disease with severe inflammation and impaired intestinal barrier properties. Yet, it is unclear how antibiotics exposure, as well as route of administration used for dosing, can minimize the risk of NEC. With this study, we aimed to investigate if and how administration of antibiotics may affect the barrier properties of intestinal mucosa and mucus. We compared how parenteral (PAR) and a combination of enteral and parenteral (ENT+PAR) ampicillin and gentamicin given to preterm born piglets within 48 h after birth affected both barrier and physical properties of ex vivo small intestinal mucosa and mucus. Permeation of the markers mannitol, metoprolol, and fluorescein-isothiocyanate dextran of 4 kDa (FD4) and 70 kDa (FD70) through the mucosa and mucus was evaluated. For all markers, permeation through the mucosa and mucus collected from PAR piglets tended to be reduced when compared to that observed using untreated piglets. In contrast, permeation through the mucosa and mucus collected from ENT+PAR piglets tended to be similar to that observed for untreated piglets. Additionally, rheological measurements on the mucus from PAR piglets and ENT+PAR piglets displayed a decreased G' and G'/G" ratio and decreased viscosity at 0.4 s-1 as well as lower stress stability compared to the mucus from untreated piglets.
Collapse
|
16
|
Xu Y, Parra-Ortiz E, Wan F, Cañadas O, Garcia-Alvarez B, Thakur A, Franzyk H, Pérez-Gil J, Malmsten M, Foged C. Insights into the mechanisms of interaction between inhalable lipid-polymer hybrid nanoparticles and pulmonary surfactant. J Colloid Interface Sci 2023; 633:511-525. [PMID: 36463820 DOI: 10.1016/j.jcis.2022.11.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Pulmonary delivery of small interfering RNA (siRNA) using nanoparticle-based delivery systems is promising for local treatment of respiratory diseases. We designed dry powder inhaler formulations of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) with aerosolization properties optimized for inhalation therapy. Interactions between LPNs and pulmonary surfactant (PS) determine the fate of inhaled LPNs, but interaction mechanisms are unknown. Here we used surface-sensitive techniques to study how physicochemical properties and pathological microenvironments influence interactions between siRNA-loaded LPNs and supported PS layers. PS was deposited on SiO2 surfaces as single bilayer or multilayers and characterized using quartz crystal microbalance with dissipation monitoring and Fourier-transform infrared spectroscopy with attenuated total reflection. Immobilization of PS as multilayers, resembling the structural PS organization in the alveolar subphase, effectively reduced the relative importance of interactions between PS and the underlying surface. However, the binding affinity between PS and LPNs was identical in the two models. The physicochemical LPN properties influenced the translocation pathways and retention time of LPNs. Membrane fluidity and electrostatic interactions were decisive for the interaction strength between LPNs and PS. Experimental conditions reflecting pathological microenvironments promoted LPN deposition. Hence, these results shed new light on design criteria for LPN transport through the air-blood barrier.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Elisa Parra-Ortiz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Olga Cañadas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Begoña Garcia-Alvarez
- Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Martin Malmsten
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
17
|
PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. Int J Mol Sci 2023; 24:ijms24054333. [PMID: 36901762 PMCID: PMC10002081 DOI: 10.3390/ijms24054333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are critical areas of medical research, as millions of people are affected worldwide. In fact, more than 9 million deaths worldwide were associated with respiratory diseases in 2016, equivalent to 15% of global deaths, and the prevalence is increasing every year as the population ages. Due to inadequate treatment options, the treatments for many respiratory diseases are limited to relieving symptoms rather than curing the disease. Therefore, new therapeutic strategies for respiratory diseases are urgently needed. Poly (lactic-co-glycolic acid) micro/nanoparticles (PLGA M/NPs) have good biocompatibility, biodegradability and unique physical and chemical properties, making them one of the most popular and effective drug delivery polymers. In this review, we summarized the synthesis and modification methods of PLGA M/NPs and their applications in the treatment of respiratory diseases (asthma, COPD, cystic fibrosis (CF), etc.) and also discussed the research progress and current research status of PLGA M/NPs in respiratory diseases. It was concluded that PLGA M/NPs are the promising drug delivery vehicles for the treatment of respiratory diseases due to their advantages of low toxicity, high bioavailability, high drug loading capacity, plasticity and modifiability. And at the end, we presented an outlook on future research directions, aiming to provide some new ideas for future research directions and hopefully to promote their widespread application in clinical treatment.
Collapse
|
18
|
Wang C, Xiao J, Hu X, Liu Q, Zheng Y, Kang Z, Guo D, Shi L, Liu Y. Liquid Core Nanoparticle with High Deformability Enables Efficient Penetration across Biological Barriers. Adv Healthc Mater 2023; 12:e2201889. [PMID: 36349820 DOI: 10.1002/adhm.202201889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Biological barriers significantly limit the delivery efficiency of drug delivery systems, resulting in undesired therapeutic effects. When designing a delivery system with optimized penetration behavior across the biological barriers, mechanical properties, such as deformability, are emerging as important parameters that need to be considered, although they are usually neglected in current research. Herein, a liquid core nanoparticle (LCN) composed of a polymer-encapsulated edible oil droplet is demonstrated. Owing to the unique structure in which the liquid oil core is encapsulated by a layer of highly hydrophilic and cross-linked polymer, the LCN exhibits high mechanical softness, making it deformable under external forces. With high deformability, LCNs can effectively penetrate through several important biological barriers including deep tumor tissue, blood-brain barriers, mucus layers, and bacterial biofilms. Moreover, the potential of the LCN as a drug delivery system is also demonstrated by the loading and release of several clinical drugs. With the capability of penetrating biological barriers and delivering drugs, LCN provides a potential platform for disease treatments, particularly for those suffering from inadequate drug penetration.
Collapse
Affiliation(s)
- Chun Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jian Xiao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Xinyue Hu
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yadan Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ziyao Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Dongsheng Guo
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
19
|
Jiang X, Wang N, Liu C, Zhuo Y, Liang L, Gan Y, Yu M. Oral delivery of nucleic acid therapeutics: Challenges, strategies, and opportunities. Drug Discov Today 2023; 28:103507. [PMID: 36690175 DOI: 10.1016/j.drudis.2023.103507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
In recent decades, advances in chemical synthesis and delivery systems have accelerated the development of therapeutic nucleic acids, several of which have been approved by the Us Food and Drug Administration (FDA). Oral nucleic acid delivery is preferred because of its simplicity and patient compliance, but it still presents distinct challenges. The negative charge, hydrophilicity, and large molecular weight of nucleic acids combined with in vivo gastrointestinal (GI) barriers (e.g., acidic pH, enzymes, mucus, and intestinal epithelial cells) severely hinder their delivery efficacy. Recently, various nanoparticles (NPs), ranging from polymeric to lipid-based (L)NPs and extracellular vesicles (EVs), have been extensively explored to address these obstacles. In this review, we describe the physiological barriers in the GI tract and summarize recent advances in NP-based oral nucleic acid therapeutics.
Collapse
Affiliation(s)
- Xiaohe Jiang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ning Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yan Zhuo
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330000, China
| | - Li Liang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Gan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
20
|
Mucus adhesion vs. mucus penetration? Screening nanomaterials for nasal inhalation by MD simulation. J Control Release 2023; 353:366-379. [PMID: 36462640 DOI: 10.1016/j.jconrel.2022.11.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nanocarrier-aided drug delivery techniques have improved the absorption and permeability of drugs in nose-to-brain delivery. However, the molecular properties of nanocarriers during the delivery process are of great interest; in particular, the characteristics when penetrating barriers in vivo are crucial for the screening and optimization of materials for nasal inhalation. In this study, we have focused on two types of delivery systems: mucoadhesive nanoparticles (MAPs) and mucopenetrating nanoparticles (MPPs); both have been widely used for mucosal delivery, although a method for selecting the more effective type of drug carriers for mucosal delivery has not been established. Molecular dynamics (MD) simulations were used to reveal the all-atom dynamic characteristics of the interaction between different delivery systems and the nasal mucus protein MUC5AC. Among the systems tested, hydroxypropyltrimethyl ammonium chloride chitosan (HTCC) had the strongest interaction with mucin, suggesting it had better mucoadhesive performance, and that it interacted with MUC5AC more strongly than unmodified chitosan. In contrast, the mucus-penetrating material polyethylene glycol-poly lactic acid-co-glycolic acid (PEG-PLGA), had almost no interaction with MUC5AC. The results of the MD simulations were verified by in vitro experiments on nanoparticles (NPs) and mucin binding. The drug delivery performance of the four types of NPs, analyzed by in vitro and ex vivo mucosal penetration, were all generally consistent with the properties of the material predicted from the MD simulation. These clues to the molecular mechanism of MAPs and MPPs may provide useful insight into the screening and optimization of nanomaterials suitable for nasal inhalation.
Collapse
|
21
|
Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022; 352:813-832. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Ligand-modified nanocarriers (LMNCs) specific to their targets have attracted increasing interest for enhanced oral drug delivery in recent decades. Although the design of LMNCs for enhanced endocytosis and improved exposure of the loaded drugs through the oral route has received abundant attention, it remains unclear how the design influences their transcellular process, especially the key factors affecting their functions. This review discusses the extracellular and cellular barriers to orally administered LMNCs in the gastrointestinal (GI) tract and new discoveries regarding the GI protein corona and the sequential transport barriers that impede the preplanned movements of LMNCs after oral administration. Furthermore, innovative progress in considering key factors (including target selection, ligand properties, and other important factors) in the rational design of LMNCs for oral drug delivery is presented. In particular, some factors that endow LMNCs with efficient transcytosis rather than only endocytosis are highlighted. Finally, the prospects of orally administered LMNCs in disease therapy for the enhanced oral/local bioavailability of active pharmaceutical ingredients, as well as emerging delivery routes, such as lymphatic drug delivery and systemic location-specific drug release based on oral transcellular LMNCs, are discussed.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
22
|
Asad S, Jacobsen AC, Teleki A. Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Mortensen JS, Bohr SSR, Harloff-Helleberg S, Hatzakis NS, Saaby L, Nielsen HM. Physical and barrier changes in gastrointestinal mucus induced by the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC). J Control Release 2022; 352:163-178. [PMID: 36314534 DOI: 10.1016/j.jconrel.2022.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Drug delivery systems (DDS) for oral delivery of peptide drugs contain excipients that facilitate and enhance absorption. However, little knowledge exists on how DDS excipients such as permeation enhancers interact with the gastrointestinal mucus barrier. This study aimed to investigate interactions of the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC) with ex vivo porcine intestinal mucus (PIM), ex vivo porcine gastric mucus (PGM), as well as with in vitro biosimilar mucus (BM) by profiling their physical and barrier properties upon exposure to SNAC. Bulk mucus permeability studies using the peptides cyclosporine A and vancomycin, ovalbumin as a model protein, as well as fluorescein-isothiocyanate dextrans (FDs) of different molecular weights and different surface charges were conducted in parallel to mucus retention force studies using a texture analyzer, rheological studies, cryo-scanning electron microscopy (cryo-SEM), and single particle tracking of fluorescence-labelled nanoparticles to investigate the effects of the SNAC-mucus interaction. The exposure of SNAC to PIM increased the mucus retention force, storage modulus, viscosity, increased nanoparticle confinement within PIM as well as decreased the permeation of cyclosporine A and ovalbumin through PIM. Surprisingly, the viscosity of PGM and the permeation of cyclosporine A and ovalbumin through PGM was unaffected by the presence of SNAC, thus the effect of SNAC depended on the regional site that mucus was collected from. In the absence of SNAC, the permeation of different molecular weight and differently charged FDs through PIM was comparable to that through BM. However, while bulk permeation of neither of the FDs through PIM was affected by SNAC, the presence of SNAC decreased the permeation of FD4 and increased the permeation of FD150 kDa through BM. Additionally, and in contrast to observations in PIM, nanoparticle confinement within BM remained unaffected by the presence of SNAC. In conclusion, the present study showed that SNAC altered the physical and barrier properties of PIM, but not of PGM. The effects of SNAC in PIM were not observed in the BM in vitro model. Altogether, the study highlights the need for further understanding how permeation enhancers influence the mucus barrier and illustrates that the selected mucus model for such studies should be chosen with care.
Collapse
Affiliation(s)
- J S Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - S S-R Bohr
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark
| | - S Harloff-Helleberg
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - N S Hatzakis
- Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark; Novo Nordisk Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - L Saaby
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer A/S, Kogle Alle 2, DK-2970 Hørsholm, Denmark
| | - H M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Lundquist P, Khodus G, Niu Z, Thwala LN, McCartney F, Simoff I, Andersson E, Beloqui A, Mabondzo A, Robla S, Webb DL, Hellström PM, Keita ÅV, Sima E, Csaba N, Sundbom M, Preat V, Brayden DJ, Alonso MJ, Artursson P. Barriers to the Intestinal Absorption of Four Insulin-Loaded Arginine-Rich Nanoparticles in Human and Rat. ACS NANO 2022; 16:14210-14229. [PMID: 35998570 PMCID: PMC9527806 DOI: 10.1021/acsnano.2c04330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peptide drugs and biologics provide opportunities for treatments of many diseases. However, due to their poor stability and permeability in the gastrointestinal tract, the oral bioavailability of peptide drugs is negligible. Nanoparticle formulations have been proposed to circumvent these hurdles, but systemic exposure of orally administered peptide drugs has remained elusive. In this study, we investigated the absorption mechanisms of four insulin-loaded arginine-rich nanoparticles displaying differing composition and surface characteristics, developed within the pan-European consortium TRANS-INT. The transport mechanisms and major barriers to nanoparticle permeability were investigated in freshly isolated human jejunal tissue. Cytokine release profiles and standard toxicity markers indicated that the nanoparticles were nontoxic. Three out of four nanoparticles displayed pronounced binding to the mucus layer and did not reach the epithelium. One nanoparticle composed of a mucus inert shell and cell-penetrating octarginine (ENCP), showed significant uptake by the intestinal epithelium corresponding to 28 ± 9% of the administered nanoparticle dose, as determined by super-resolution microscopy. Only a small fraction of nanoparticles taken up by epithelia went on to be transcytosed via a dynamin-dependent process. In situ studies in intact rat jejunal loops confirmed the results from human tissue regarding mucus binding, epithelial uptake, and negligible insulin bioavailability. In conclusion, while none of the four arginine-rich nanoparticles supported systemic insulin delivery, ENCP displayed a consistently high uptake along the intestinal villi. It is proposed that ENCP should be further investigated for local delivery of therapeutics to the intestinal mucosa.
Collapse
Affiliation(s)
- Patrik Lundquist
- Department
of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden
| | - Georgiy Khodus
- Department
of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden
| | - Zhigao Niu
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
| | - Lungile Nomcebo Thwala
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
- Université
catholique de Louvain, UCLouvain, Louvain Drug Research Institute,
Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium
| | - Fiona McCartney
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield D04 V1W8, Ireland
| | - Ivailo Simoff
- Department
of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden
| | - Ellen Andersson
- Department
of Surgery in Norrköping, Linköping
University, SE-581 83 Norrköping, Sweden
- Department
of Biomedical and Clinical Sciences, Linköping
University, SE-581 83 Linköping, Sweden
| | - Ana Beloqui
- Université
catholique de Louvain, UCLouvain, Louvain Drug Research Institute,
Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium
| | - Aloise Mabondzo
- CEA,
Institute of Biology and Technology of Saclay, Department of Pharmacology
and Immunoanalysis, Gif sur Yvette FR 91191, France
| | - Sandra Robla
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
| | - Dominic-Luc Webb
- Department
of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Per M. Hellström
- Department
of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Åsa V Keita
- Department
of Biomedical and Clinical Sciences, Linköping
University, SE-581 83 Linköping, Sweden
| | - Eduardo Sima
- Department
of Surgical Sciences−Upper Abdominal Surgery, Uppsala University, SE-751
85 Uppsala, Sweden
| | - Noemi Csaba
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
| | - Magnus Sundbom
- Department
of Surgical Sciences−Upper Abdominal Surgery, Uppsala University, SE-751
85 Uppsala, Sweden
| | - Veronique Preat
- Université
catholique de Louvain, UCLouvain, Louvain Drug Research Institute,
Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium
| | - David J. Brayden
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield D04 V1W8, Ireland
| | - Maria Jose Alonso
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
| | - Per Artursson
- Department
of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden
| |
Collapse
|
25
|
Shah S, Famta P, Bagasariya D, Charankumar K, Amulya E, Kumar Khatri D, Singh Raghuvanshi R, Bala Singh S, Srivastava S. Nanotechnology based drug delivery systems: Does shape really matter? Int J Pharm 2022; 625:122101. [PMID: 35961415 DOI: 10.1016/j.ijpharm.2022.122101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
As of today, the era of nanomedicine has brought numerous breakthroughs and overcome challenges in the treatment of various disorders. Various factors like size, charge and surface hydrophilicity have garnered significant attention by nanotechnologists. However, more exploration in the field of nanoparticle shape and geometry, one of the basic physical phenomenon is required. Tuning nanoparticle shape and geometry could potentially overcome pitfalls in therapeutics and biomedical fields. Thus, in this article, we unveil the importance of tuning nanoparticle shape selection across the delivery platforms. This article provides an in-depth understanding of nanoparticle shape modulation and advise the researchers on the ideal morphology selection tailored for each implication. We deliberated the importance of nanoparticle shape selection for specific implications with respect to organ targeting, cellular internalization, pharmacokinetics and bio-distribution, protein corona formation as well as RES evasion and tumor targeting. An additional section on the significance of shape transformation, a recently introduced novel avenue with applications in drug delivery was discussed. Furthermore, regulatory concerns towards nanoparticle shape which need to be addressed for harnessing their clinical translation will be explained.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
26
|
García-Díaz M, Cendra MDM, Alonso-Roman R, Urdániz M, Torrents E, Martínez E. Mimicking the Intestinal Host-Pathogen Interactions in a 3D In Vitro Model: The Role of the Mucus Layer. Pharmaceutics 2022; 14:1552. [PMID: 35893808 PMCID: PMC9331835 DOI: 10.3390/pharmaceutics14081552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intestinal mucus lines the luminal surface of the intestinal epithelium. This mucus is a dynamic semipermeable barrier and one of the first-line defense mechanisms against the outside environment, protecting the body against chemical, mechanical, or biological external insults. At the same time, the intestinal mucus accommodates the resident microbiota, providing nutrients and attachment sites, and therefore playing an essential role in the host-pathogen interactions and gut homeostasis. Underneath this mucus layer, the intestinal epithelium is organized into finger-like protrusions called villi and invaginations called crypts. This characteristic 3D architecture is known to influence the epithelial cell differentiation and function. However, when modelling in vitro the intestinal host-pathogen interactions, these two essential features, the intestinal mucus and the 3D topography are often not represented, thus limiting the relevance of the models. Here we present an in vitro model that mimics the small intestinal mucosa and its interactions with intestinal pathogens in a relevant manner, containing the secreted mucus layer and the epithelial barrier in a 3D villus-like hydrogel scaffold. This 3D architecture significantly enhanced the secretion of mucus. In infection with the pathogenic adherent invasive E. coli strain LF82, characteristic of Crohn's disease, we observed that this secreted mucus promoted the adhesion of the pathogen and at the same time had a protective effect upon its invasion. This pathogenic strain was able to survive inside the epithelial cells and trigger an inflammatory response that was milder when a thick mucus layer was present. Thus, we demonstrated that our model faithfully mimics the key features of the intestinal mucosa necessary to study the interactions with intestinal pathogens.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Maria del Mar Cendra
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Raquel Alonso-Roman
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - María Urdániz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Biology Faculty, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
28
|
Nguyen TT, Nguyen PT, Pham MN, Razafindralambo H, Hoang QK, Nguyen HT. Synbiotics: a New Route of Self-production and Applications to Human and Animal Health. Probiotics Antimicrob Proteins 2022; 14:980-993. [PMID: 35650337 DOI: 10.1007/s12602-022-09960-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 01/17/2023]
Abstract
Synbiotics are preparations in which prebiotics are added to probiotics to achieve superior performance and benefits on the host. A new route of their formation is to induce the prebiotic biosynthesis within the probiotic for synbiotic self-production or autologous synbiotics. The aim of this review paper is first to overview the basic concept and (updated) definitions of synergistic synbiotics, and then to focus particularly on the prebiotic properties of probiotic wall components while describing the environmental factors/stresses that stimulate autologous synbiotics, that is, the biosynthesis of prebiotic-forming microcapsule by probiotic bacteria, and finally to present some of their applications to human and animal health.
Collapse
Affiliation(s)
- Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | | | - Quoc-Khanh Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
29
|
Liu Q, Xue J, Zhang X, Chai J, Qin L, Guan J, Zhang X, Mao S. Biomimetic pulmonary surfactant modification on the in vivo fate of nanoparticles in the lung. Acta Biomater 2022; 147:391-402. [PMID: 35643196 DOI: 10.1016/j.actbio.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Direct biomimetic modification of nanoparticles (NPs) with endogenous surfactants is helpful to improve the biocompatibility of NPs and avoid damage to the physiological function of the lung. Therefore, the objective of this study is to investigate the influence of biomimetic endogenous pulmonary surfactant phospholipid modification on the in vivo fate of NPs after lung delivery. Here, two neutral phospholipids (dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylamine (DPPE)) and two negatively charged phospholipids (dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidylserine (DPPS)) were selected to modify paclitaxel (PTX)-loaded PLGA NPs with different molar ratio. DPPC, DPPE, and DPPG improved mucoadhesion, in contrast, DPPS improved the mucus permeability of the NPs. Neutral DPPC and DPPE reduced, but negatively charged DPPS and DPPG increased the uptake by alveolar macrophages, all types of phospholipid increased the uptake by lung epithelial cells and increased PTX retention in the whole lung. Whereas, DPPC, DPPE, and DPPG promoted PTX retention in bronchoalveolar lavage fluid (BALF), while DPPS promoted PTX absorption in the lung tissue. Only DPPS-PLGA (1:1) NPs remarkably increased PTX systemic exposure. A good correlation between PTX percentage in the supernatant of BALF and PTX concentration in plasma was established, implying PTX entered the system circulation mainly in molecular form. Phospholipid modification had no effect on extrapulmonary organ distribution of PTX. Taken together, our study disclosed that different phospholipid modification can endow the NPs mucoadhesive or mucus penetration and cellular uptake properties, with tunable retention in BALF and absorption in the lung tissue, providing the scientific background for translational nanocarrier design for inhalation as required. STATEMENT OF SIGNIFICANCE: Inhaled nanomedicines will inevitably interact with pulmonary surfactant and form "surfactant corona". However, the contribution of individual pulmonary surfactant phospholipid on the in vivo fate of nanomedicines is still unclear. In this regard, the most abundant pulmonary surfactant phospholipid dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylamine, and dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylserine were selected to modify the paclitaxel loaded PLGA nanoparticles and the effect of these pulmonary surfactant phospholipids on their in vivo fate was investigated. It was demonstrated that different phospholipid modification can endow the nanoparticles mucoadhesive or mucus penetration properties, with tunable retention in bronchoalveolar lavage fluid, alveolar macrophages uptake and absorption in the lung tissue. The present study provided a comprehensive understanding for the role of pulmonary surfactant phospholipid on inhaled nanomedicines.
Collapse
Affiliation(s)
- Qiaoyu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xinrui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Juanjuan Chai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
30
|
Yasmin F, Najeeb H, Shaikh S, Hasanain M, Naeem U, Moeed A, Koritala T, Hasan S, Surani S. Novel drug delivery systems for inflammatory bowel disease. World J Gastroenterol 2022; 28:1922-1933. [PMID: 35664964 PMCID: PMC9150062 DOI: 10.3748/wjg.v28.i18.1922] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/22/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic illness characterized by relapsing inflammation of the intestines. The disorder is stratified according to the severity and is marked by its two main phenotypical representations: Ulcerative colitis and Crohn’s disease. Pathogenesis of the disease is ambiguous and is expected to have interactivity between genetic disposition, environmental factors such as bacterial agents, and dysregulated immune response. Treatment for IBD aims to reduce symptom extent and severity and halt disease progression. The mainstay drugs have been 5-aminosalicylates (5-ASAs), corticosteroids, and immunosuppressive agents. Parenteral, oral and rectal routes are the conventional methods of drug delivery, and among all, oral administration is most widely adopted. However, problems of systematic drug reactions and low specificity in delivering drugs to the inflamed sites have emerged with these regular routes of delivery. Novel drug delivery systems have been introduced to overcome several therapeutic obstacles and for localized drug delivery to target tissues. Enteric-coated microneedle pills, various nano-drug delivery techniques, prodrug systems, lipid-based vesicular systems, hybrid drug delivery systems, and biologic drug delivery systems constitute some of these novel methods. Microneedles are painless, they dislodge their content at the affected site, and their release can be prolonged. Recombinant bacteria such as genetically engineered Lactococcus Lactis and eukaryotic cells, including GM immune cells and red blood cells as nanoparticle carriers, can be plausible delivery methods when evaluating biologic systems. Nano-particle drug delivery systems consisting of various techniques are also employed as nanoparticles can penetrate through inflamed regions and adhere to the thick mucus of the diseased site. Prodrug systems such as 5-ASAs formulations or their derivatives are effective in reducing colonic damage. Liposomes can be modified with both hydrophilic and lipophilic particles and act as lipid-based vesicular systems, while hybrid drug delivery systems containing an internal nanoparticle section for loading drugs are potential routes too. Leukosomes are also considered as possible carrier systems, and results from mouse models have revealed that they control anti- and pro-inflammatory molecules.
Collapse
Affiliation(s)
- Farah Yasmin
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Hala Najeeb
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Shehryar Shaikh
- Department of Medicine, Dow OJha University Hospital, Karachi 74200, Pakistan
| | - Muhammad Hasanain
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Unaiza Naeem
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Abdul Moeed
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Thoyaja Koritala
- Department of Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Syedadeel Hasan
- Department of Medicine, University of Louisville, Louisville, KY 40292, United States
| | - Salim Surani
- Department of Medicine, Texas A&M University, College Station, TX 77843, United States
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55901, United States
| |
Collapse
|
31
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
32
|
Fan W, Wei Q, Xiang J, Tang Y, Zhou Q, Geng Y, Liu Y, Sun R, Xu L, Wang G, Piao Y, Shao S, Zhou Z, Tang J, Xie T, Li Z, Shen Y. Mucus Penetrating and Cell-Binding Polyzwitterionic Micelles as Potent Oral Nanomedicine for Cancer Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109189. [PMID: 35196415 DOI: 10.1002/adma.202109189] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Orally administrable anticancer nanomedicines are highly desirable due to their easy and repeatable administration, but are not yet feasible because the current nanomedicine cannot simultaneously overcome the strong mucus and villi barriers and thus have very low bioavailability (BA). Herein, this work presents the first polymeric micelle capable of fast mucus permeation and villi absorption and delivering paclitaxel (PTX) efficiently to tumors with therapeutic efficacy even better than intravenously administered polyethylene glycol based counterpart or free PTX. Poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA), a water-soluble polyzwitterion, is highly nonfouling to proteins and other biomacromolecules such as mucin but can weakly bind to phospholipids. Therefore, the micelle of its block copolymer with poly(ε-caprolactone) (OPDEA-PCL) can efficiently permeate through the viscous mucus and bind to villi, which triggers transcytosis-mediated transepithelial transport into blood circulation for tumor accumulation. The orally administered micelles deliver PTX to tumors, efficiently inhibiting the growth of HepG2 and patient-derived hepatocellular carcinoma xenografts and triple-negative breast tumors. These results demonstrate that OPDEA-based micelles may serve as an efficient oral nanomedicine for delivering other small molecules or even large molecules.
Collapse
Affiliation(s)
- Wufa Fan
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Qiuyu Wei
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Yisi Tang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Quan Zhou
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Yu Geng
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Yanpeng Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Rui Sun
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Lei Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Guowei Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Tao Xie
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Zichen Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
33
|
Kumari A, Pal S, G BR, Mohny FP, Gupta N, Miglani C, Pattnaik B, Pal A, Ganguli M. Surface-Engineered Mucus Penetrating Nucleic Acid Delivery Systems with Cell Penetrating Peptides for the Lungs. Mol Pharm 2022; 19:1309-1324. [PMID: 35333535 DOI: 10.1021/acs.molpharmaceut.1c00770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acids, both DNA and small RNAs, have emerged as potential therapeutics for the treatment of various lung disorders. However, delivery of nucleic acids to the lungs is challenging due to the barrier property imposed by mucus, which is further reinforced in disease conditions such as chronic obstructive pulmonary disease and asthma. The presence of negatively charged mucins imparts the electrostatic barrier property, and the mesh network structure of mucus provides steric hindrance to the delivery system. To overcome this, the delivery system either needs to be muco-inert with a low positive charge such that the interactions with mucus are minimized or should have the ability to transiently dismantle the mucus structure for effective penetration. We have developed a mucus penetrating system for the delivery of both small RNA and plasmid DNA independently. The nucleic acid core consists of a nucleic acid (pDNA/siRNA) and a cationic/amphipathic cell penetrating peptide. The mucus penetrating coating consists of the hydrophilic biopolymer chondroitin sulfate A (CS-A) conjugated with a mucolytic agent, mannitol. We hypothesize that the hydrophilic coating of CS-A would reduce the surface charge and decrease the interaction with negatively charged mucins, while the conjugated mannitol residues would disrupt the mucin-mucin interaction or decrease the viscosity of mucus by increasing the influx of water into the mucus. Our results indicate that CS-A-mannitol-coated nanocomplexes possess reduced surface charge, reduced viscosity of artificial mucus, and increased diffusion in mucin suspension as well as increased penetration through the artificial mucus layer as compared to the non-coated ones. Further, the coated nanocomplexes showed low cytotoxicity as well as higher transfection in A-549 and BEAS-2B cells as compared to the non-coated ones.
Collapse
Affiliation(s)
- Anupama Kumari
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simanti Pal
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Betsy Reshma G
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Franklin Pulikkottil Mohny
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nidhi Gupta
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Bijay Pattnaik
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Department of Pulmonary, Critical Care & Sleep Medicine, All Indian Institute of Medical Science (AIIMS), New Delhi 110029, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 2022; 20:101. [PMID: 35241085 PMCID: PMC8892824 DOI: 10.1186/s12951-022-01307-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Pulmonary drug delivery is a highly attractive topic for the treatment of infectious lung diseases. Drug delivery via the pulmonary route offers unique advantages of no first-pass effect and high bioavailability, which provides an important means to deliver therapeutics directly to lung lesions. Starting from the structural characteristics of the lungs and the biological barriers for achieving efficient delivery, we aim to review literatures in the past decade regarding the pulmonary delivery strategies used to treat infectious lung diseases. Hopefully, this review article offers new insights into the future development of therapeutic strategies against pulmonary infectious diseases from a delivery point of view.
Collapse
Affiliation(s)
- Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Huang G, Shuai S, Zhou W, Chen Y, Shen B, Yue P. To Enhance Mucus Penetration and Lung Absorption of Drug by Inhalable Nanocrystals-In-Microparticles. Pharmaceutics 2022; 14:pharmaceutics14030538. [PMID: 35335914 PMCID: PMC8955757 DOI: 10.3390/pharmaceutics14030538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
To effectively achieve the pulmonary delivery for curcumin (CN), novel inhalable mucus-penetrating nanocrystal-based microparticles (INMP) were designed. The D-Tocopherol acid polyethylene glycol 1000 succinate (TPGS) modified CN nanocrystals (CN-NS@TPGS) were prepared by high pressure homogenization and further converted into nanocrystal-based microparticles (CN-INMP@TPGS) using spray-drying. It was demonstrated that CN-NS@TPGS exhibited little interaction with the negatively charged mucin due to a strong electrostatic repulsion effect and PEG hydrophilic chain, and exhibited a much higher penetration ability across the mucus layer compared with poloxamer 407 modified CN-NS (CN-NS@P407) and tween 80 modified CN-NS (CN-NS@TW80). The aerodynamic results demonstrated that the CN-INMP with 10% TPGS acting as the stabilizer presented a high FPF value, indicating excellent deposition in the lung after inhalation administration. Additionally, in vivo bioavailability studies indicated that the AUC(0-t) of CN-INMP@TPGS (2413.18 ± 432.41 µg/L h) were 1.497- and 3.32-fold larger compared with those of CN-INMP@TW80 (1612.35 ± 261.35 µg/L h) and CN-INMP@P407 (3.103 ± 196.81 µg/L h), respectively. These results indicated that the CN-INMP@TPGS were absorbed rapidly after pulmonary administration and resulted in increased systemic absorption. Therefore, the inhalable CN-INMP could significantly improve the bioavailability of CN after inhalation administration. The developed mucus-penetrating nanocrystals-in-microparticles might be regarded as a promising formulation strategy for the pulmonary administration of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengfei Yue
- Correspondence: or ; Tel.: +86-0791-87118658
| |
Collapse
|
36
|
Yue P, Zhou W, Huang G, Lei F, Chen Y, Ma Z, Chen L, Yang M. Nanocrystals based pulmonary inhalation delivery system: advance and challenge. Drug Deliv 2022; 29:637-651. [PMID: 35188021 PMCID: PMC8865109 DOI: 10.1080/10717544.2022.2039809] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary inhalation administration is an ideal approach to locally treat lung disease and to achieve systemic administration for other diseases. However, the complex nature of the structural characteristics of the lungs often results in the difficulty in the development of lung inhalation preparations. Nanocrystals technology provides a potential formulation strategy for the pulmonary delivery of poorly soluble drugs, owing to the decreased particle size of drug, which is a potential approach to overcome the physiological barrier existing in the lungs and significantly increased bioavailability of drugs. The pulmonary inhalation administration has attracted considerable attentions in recent years. This review discusses the barriers for pulmonary drug delivery and the recent advance of the nanocrystals in pulmonary inhalation delivery. The presence of nanocrystals opens up new prospects for the development of novel pulmonary delivery system. The particle size control, physical instability, potential cytotoxicity, and clearance mechanism of inhaled nanocrystals based formulations are the major considerations in formulation development.
Collapse
Affiliation(s)
- Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Weicheng Zhou
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Guiting Huang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Fangfang Lei
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Zhilin Ma
- Langka Biotechnology (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Liru Chen
- Beijing Hospital, Beijing, People's Republic of China
| | - Ming Yang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| |
Collapse
|
37
|
Conte G, Costabile G, Baldassi D, Rondelli V, Bassi R, Colombo D, Linardos G, Fiscarelli EV, Sorrentino R, Miro A, Quaglia F, Brocca P, d’Angelo I, Merkel OM, Ungaro F. Hybrid Lipid/Polymer Nanoparticles to Tackle the Cystic Fibrosis Mucus Barrier in siRNA Delivery to the Lungs: Does PEGylation Make the Difference? ACS APPLIED MATERIALS & INTERFACES 2022; 14:7565-7578. [PMID: 35107987 PMCID: PMC8855343 DOI: 10.1021/acsami.1c14975] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 06/01/2023]
Abstract
Inhaled siRNA therapy has a unique potential for treatment of severe lung diseases, such as cystic fibrosis (CF). Nevertheless, a drug delivery system tackling lung barriers is mandatory to enhance gene silencing efficacy in the airway epithelium. We recently demonstrated that lipid-polymer hybrid nanoparticles (hNPs), comprising a poly(lactic-co-glycolic) acid (PLGA) core and a lipid shell of dipalmitoyl phosphatidylcholine (DPPC), may assist the transport of the nucleic acid cargo through mucus-covered human airway epithelium. To study in depth the potential of hNPs for siRNA delivery to the lungs and to investigate the hypothesized benefit of PEGylation, here, an siRNA pool against the nuclear factor-κB (siNFκB) was encapsulated inside hNPs, endowed with a non-PEGylated (DPPC) or a PEGylated (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) or DSPE-PEG) lipid shell. Resulting hNPs were tested for their stability profiles and transport properties in artificial CF mucus, mucus collected from CF cells, and sputum samples from a heterogeneous and representative set of CF patients. Initial information on hNP properties governing their interaction with airway mucus was acquired by small-angle X-ray scattering (SAXS) studies in artificial and cellular CF mucus. The diffusion profiles of hNPs through CF sputa suggested a crucial role of lung colonization of the corresponding donor patient, affecting the mucin type and content of the sample. Noteworthy, PEGylation did not boost mucus penetration in complex and sticky samples, such as CF sputa from patients with polymicrobial colonization. In parallel, in vitro cell uptake studies performed on mucus-lined Calu-3 cells grown at the air-liquid interface (ALI) confirmed the improved ability of non-PEGylated hNPs to overcome mucus and cellular lung barriers. Furthermore, effective in vitro NFκB gene silencing was achieved in LPS-stimulated 16HBE14o- cells. Overall, the results highlight the potential of non-PEGylated hNPs as carriers for pulmonary delivery of siRNA for local treatment of CF lung disease. Furthermore, this study provides a detailed understanding of how distinct models may provide different information on nanoparticle interaction with the mucus barrier.
Collapse
Affiliation(s)
- Gemma Conte
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, Caserta 81100, Italy
| | - Gabriella Costabile
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Domizia Baldassi
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität, München, Munich 81377, Germany
| | - Valeria Rondelli
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Rosaria Bassi
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Diego Colombo
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | | | | | - Raffaella Sorrentino
- Department
of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli 80131, Italy
| | - Agnese Miro
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Fabiana Quaglia
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Paola Brocca
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Ivana d’Angelo
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, Caserta 81100, Italy
| | - Olivia M. Merkel
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität, München, Munich 81377, Germany
| | - Francesca Ungaro
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| |
Collapse
|
38
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
39
|
Sun J, Xu Z, Hou Y, Yao W, Fan X, Zheng H, Piao J, Li F, Wei Y. Hierarchically structured microcapsules for oral delivery of emodin and tanshinone IIA to treat renal fibrosis. Int J Pharm 2022; 616:121490. [DOI: 10.1016/j.ijpharm.2022.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
40
|
Watchorn J, Burns D, Stuart S, Gu FX. Investigating the Molecular Mechanism of Protein-Polymer Binding with Direct Saturation Compensated Nuclear Magnetic Resonance. Biomacromolecules 2021; 23:67-76. [PMID: 34647719 DOI: 10.1021/acs.biomac.1c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we describe a new technique, direct saturation compensated transfer (DISCO) NMR, to characterize protein-macromolecule interactions. DISCO enables the direct observation of intermolecular interactions and is used to investigate mucoadhesion, a type of polymer-protein interaction that is widely implemented in drug delivery but remains poorly understood. In a model system of bovine submaxillary mucin and poly(acrylic acid), DISCO identifies selective backbone interactions that facilitate mucoadhesion through chain interpenetration. DISCO demonstrated distinct patterns of molecular selectivity between mucoadhesive polymers when applied to hydroxypropyl cellulose and carboxymethyl cellulose and that functionalizing adhesive polymers with strongly interacting moieties may be detrimental to the overall adhesive interaction. Additionally, DISCO was used to estimate polymer-protein dissociation constants using individual proton signals as reporters. Overall, DISCO can be used as a label-free screening tool to generate polymer-specific binding fingerprints to map and quantify interactions between macromolecules.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Darcy Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Samantha Stuart
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Frank X Gu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
41
|
Bredeck G, Kämpfer AAM, Sofranko A, Wahle T, Büttner V, Albrecht C, Schins RPF. Ingested Engineered Nanomaterials Affect the Expression of Mucin Genes-An In Vitro-In Vivo Comparison. NANOMATERIALS 2021; 11:nano11102621. [PMID: 34685068 PMCID: PMC8537393 DOI: 10.3390/nano11102621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
The increasing use of engineered nanomaterials (ENM) in food has fueled the development of intestinal in vitro models for toxicity testing. However, ENM effects on intestinal mucus have barely been addressed, although its crucial role for intestinal health is evident. We investigated the effects of ENM on mucin expression and aimed to evaluate the suitability of four in vitro models of increasing complexity compared to a mouse model exposed through feed pellets. We assessed the gene expression of the mucins MUC1, MUC2, MUC5AC, MUC13 and MUC20 and the chemokine interleukin-8 in pre-confluent and confluent HT29-MTX-E12 cells, in stable and inflamed triple cultures of Caco-2, HT29-MTX-E12 and THP-1 cells, and in the ileum of mice following exposure to TiO2, Ag, CeO2 or SiO2. All ENM had shared and specific effects. CeO2 downregulated MUC1 in confluent E12 cells and in mice. Ag induced downregulation of Muc2 in mice. Overall, the in vivo data were consistent with the findings in the stable triple cultures and the confluent HT29-MTX-E12 cells but not in pre-confluent cells, indicating the higher relevance of advanced models for hazard assessment. The effects on MUC1 and MUC2 suggest that specific ENM may lead to an elevated susceptibility towards intestinal infections and inflammations.
Collapse
|
42
|
Abstract
Polysaccharide biomaterials have gained significant importance in the manufacture of nanoparticles used in colon-targeted drug delivery systems. These systems are a form of non-invasive oral therapy used in the treatment of various diseases. To achieve successful colonic delivery, the chemical, enzymatic and mucoadhesive barriers within the gastrointestinal (GI) tract must be analyzed. This will allow for the nanomaterials to cross these barriers and reach the colon. This review provides information on the development of nanoparticles made from various polysaccharides, which can overcome multiple barriers along the GI tract and affect encapsulation efficiency, drug protection, and release mechanisms upon arrival in the colon. Also, there is information disclosed about the size of the nanoparticles that are usually involved in the mechanisms of diffusion through the barriers in the GI tract, which may influence early drug degradation and release in the digestive tract.
Collapse
|
43
|
Treghini C, Dell'Accio A, Fusi F, Romano G. Aerosol-based antimicrobial photoinactivation in the lungs: an action spectrum study. Photochem Photobiol Sci 2021; 20:985-996. [PMID: 34275118 DOI: 10.1007/s43630-021-00066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Chronic lung infections are among the most diffused human infections, being often associated with multidrug-resistant bacteria. In this framework, the European project "Light4Lungs" aims at synthesizing and testing an inhalable light source to control lung infections by antimicrobial photoinactivation (aPDI), addressing endogenous photosensitizers only (porphyrins) in the representative case of S. aureus and P. aeruginosa. In the search for the best emission characteristics for the aerosolized light source, this work defines and calculates the photo-killing action spectrum for lung aPDI in the exemplary case of cystic fibrosis. This was obtained by applying a semi-theoretical modelling with Monte Carlo simulations, according to previously published methodology related to stomach infections and applied to the infected trachea, bronchi, bronchioles and alveoli. In each of these regions, the two low and high oxygen concentration cases were considered to account for the variability of in vivo conditions, together with the presence of endogenous porphyrins and other relevant absorbers/diffusers inside the illuminated biofilm/mucous layer. Furthermore, an a priori method to obtain the "best illumination wavelengths" was defined, starting from maximizing porphyrin and light absorption at any depth. The obtained action spectrum is peaked at 394 nm and mostly follows porphyrin extinction coefficient behavior. This is confirmed by the results from the best illumination wavelengths, which reinforces the robustness of our approach. These results can offer important indications for the synthesis of the aerosolized light source and definition of its most effective emission spectrum, suggesting a flexible platform to be considered in further applications.
Collapse
Affiliation(s)
- Chiara Treghini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Alfonso Dell'Accio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Franco Fusi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, 50139, Florence, Italy.
| | - Giovanni Romano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
44
|
Drago SE, Craparo EF, Luxenhofer R, Cavallaro G. Development of polymer-based nanoparticles for zileuton delivery to the lung: PMeOx and PMeOzi surface chemistry reduces interactions with mucins. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102451. [PMID: 34325034 DOI: 10.1016/j.nano.2021.102451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
In this paper, two amphiphilic graft copolymers were synthesized by grafting polylactic acid (PLA) as hydrophobic chain and poly(2-methyl-2-oxazoline) (PMeOx) or poly(2-methyl-2-oxazine) (PMeOzi) as hydrophilic chain, respectively, to a backbone of α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA). These original graft copolymers were used to prepare nanoparticles delivering Zileuton in inhalation therapy. Among various tested methods, direct nanoprecipitation proved to be the best technique to prepare nanoparticles with the smallest dimensions, the narrowest dimensional distribution and a spherical shape. To overcome the size limitations for administration by inhalation, the nano-into-micro strategy was applied, encapsulating the nanoparticles in water-soluble mannitol-based microparticles by spray-drying. This process has allowed to produce spherical microparticles with the proper size for optimal lung deposition, and, once in contact with fluids mimicking the lung district, able to dissolve and release non-aggregated nanoparticles, potentially able to spread through the mucus, releasing about 70% of the drug payload in 24 h.
Collapse
Affiliation(s)
- Salvatore E Drago
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Emanuela F Craparo
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Würzburg, Germany; Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland.
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
45
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
46
|
Cui Z, Qin L, Guo S, Cheng H, Zhang X, Guan J, Mao S. Design of biotin decorated enterocyte targeting muco-inert nanocomplexes for enhanced oral insulin delivery. Carbohydr Polym 2021; 261:117873. [DOI: 10.1016/j.carbpol.2021.117873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
|
47
|
Bai X, Wang J, Mu Q, Su G. In vivo Protein Corona Formation: Characterizations, Effects on Engineered Nanoparticles' Biobehaviors, and Applications. Front Bioeng Biotechnol 2021; 9:646708. [PMID: 33869157 PMCID: PMC8044820 DOI: 10.3389/fbioe.2021.646708] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the basic interactions between engineered nanoparticles (ENPs) and biological systems is essential for evaluating ENPs’ safety and developing better nanomedicine. Profound interactions between ENPs and biomolecules such as proteins are inevitable to occur when ENPs are administered or exposed to biological systems, for example, through intravenous injection, oral, or respiration. As a key component of these interactions, protein corona (PC) is immediately formed surrounding the outlayer of ENPs. PC formation is crucial because it gives ENPs a new biological identity by altering not only the physiochemical properties, but also the biobehaviors of ENPs. In the past two decades, most investigations about PC formation were carried out with in vitro systems which could not represent the true events occurring within in vivo systems. Most recently, studies of in vivo PC formation were reported, and it was found that the protein compositions and structures were very different from those formed in vitro. Herein, we provide an in-time review of the recent investigations of this in vivo PC formation of ENPs. In this review, commonly used characterization methods and compositions of in vivo PC are summarized firstly. Next, we highlight the impacts of the in vivo PC formation on absorption, blood circulation, biodistribution, metabolism, and toxicity of administered ENPs. We also introduce the applications of modulating in vivo PC formation in nanomedicine. We further discuss the challenges and future perspectives.
Collapse
Affiliation(s)
- Xue Bai
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiali Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
48
|
Targeting strategies of oral nano-delivery systems for treating inflammatory bowel disease. Int J Pharm 2021; 600:120461. [PMID: 33711470 DOI: 10.1016/j.ijpharm.2021.120461] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of gastrointestinal tract with rising incidence. Established treatments of IBD are characterized by significantly adverse effects, insufficient therapeutic efficacy. Employing the oral nano-drug delivery systems for targeted therapy is capable of effectively avoiding systematic absorption and increasing local drug concentration, consequently leading to decreased adverse effects and improved therapeutic outcomes. This review gives a brief profile of pathophysiological considerations in terms of developing disease-directed drug delivery systems, then focuses on mechanisms and strategies of current oral nano-drug delivery systems, including size-, enzyme-, redox-, pH-, ligand-receptor-, mucus-dependent systems, and proposes the future directions of managements for IBD.
Collapse
|
49
|
Huang Z, Kłodzińska SN, Wan F, Nielsen HM. Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res 2021; 11:1634-1654. [PMID: 33694082 PMCID: PMC7945609 DOI: 10.1007/s13346-021-00954-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Recalcitrant respiratory tract infections caused by bacteria have emerged as one of the greatest health challenges worldwide. Aerosolized antimicrobial therapy is becoming increasingly attractive to combat such infections, as it allows targeted delivery of high drug concentrations to the infected organ while limiting systemic exposure. However, successful aerosolized antimicrobial therapy is still challenged by the diverse biological barriers in infected lungs. Nanoparticle-mediated pulmonary drug delivery is gaining increasing attention as a means to overcome the biological barriers and accomplish site-specific drug delivery by controlling release of the loaded drug(s) at the target site. With the aim to summarize emerging efforts in combating respiratory tract infections by using nanoparticle-mediated pulmonary delivery strategies, this review provides a brief introduction to the bacterial infection-related pulmonary diseases and the biological barriers for effective treatment of recalcitrant respiratory tract infections. This is followed by a summary of recent advances in design of inhalable nanoparticle-based drug delivery systems that overcome the biological barriers and increase drug bioavailability. Finally, challenges for the translation from exploratory laboratory research to clinical application are also discussed and potential solutions proposed.
Collapse
Affiliation(s)
- Zheng Huang
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Sylvia Natalie Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Feng Wan
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
50
|
Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 64:292-307. [PMID: 33095997 PMCID: PMC7909340 DOI: 10.1165/rcmb.2020-0306tr] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Department of Pediatrics, College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|