1
|
Chang H, Cai F, Li X, Li A, Zhang Y, Yang X, Liu X. Biomaterial-based circular RNA therapeutic strategy for repairing intervertebral disc degeneration. BIOMEDICAL TECHNOLOGY 2025; 9:100057. [DOI: 10.1016/j.bmt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Elias-Mordechai M, Morhaim M, Pelah MG, Rostovsky I, Nogaoker M, Jopp J, Zarivach R, Sal-Man N, Berkovich R. Altering the mechanical properties of self-assembled filaments through engineering of EspA bacterial protein. Mater Today Bio 2025; 30:101414. [PMID: 39811608 PMCID: PMC11732554 DOI: 10.1016/j.mtbio.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-based biomaterials are in high demand due to their high biocompatibility, non-toxicity, and biodegradability. In this study, we explore the bacterial E. coli secreted protein A (EspA), which self-assembles into long extracellular filaments, as a potential building block for new protein-based biomaterials. We investigated the morphological and mechanical properties of EspA filaments and how protein engineering can modify them. Our study include three types of filaments: natural EspA filaments, full-length recombinant EspA filaments, and truncated recombinant EspA filaments lacking a third of the original codon region. The recombinant EspA proteins formed curly, thin filaments with higher longitudinal elasticity (shorter persistence length) compared to the natural, linear filaments. Additionally, the recombinant filaments had a radial elastic modulus about an order of magnitude lower than the natural filaments. The truncated recombinant filaments had a higher radial modulus than the full-length ones, and unlike the purely elastic natural filaments, recombinant filaments were less compliant with the applied force that penetrated them. These differences underscore the potential to modulate EspA filament properties through protein sequence mutations. Our findings suggest EspA as a fundamental element for developing a new biomaterial with a hierarchical structure, enabling the fabrication of macroscopic substances from self-assembled EspA-modulated filaments.
Collapse
Affiliation(s)
- Moran Elias-Mordechai
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - May Morhaim
- Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Maya Georgia Pelah
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Irina Rostovsky
- Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - May Nogaoker
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jürgen Jopp
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life-Science, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Neta Sal-Man
- Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ronen Berkovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
3
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Varanko AK, Deshpande S, Li X, Chilkoti A. Binding Strength, Not Valency, Dictates Accumulation and Penetration of Affinity Targeted Macromolecules into Solid Tumors. Biomacromolecules 2025; 26:503-513. [PMID: 39729341 DOI: 10.1021/acs.biomac.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The efficacy of tumor-targeted therapeutics, engineered to engage specific cellular receptors to promote accumulation and penetration, is strongly influenced by the carrier's affinity for its target and the valency of binding molecules incorporated into the carrier. Previous research has primarily focused on improving targeting by augmenting the number of binding proteins on the carrier, inadvertently raising avidity without isolating the individual effects of binding strength and valency. Herein, we precisely evaluate the impact of multivalency on tumor targeting with a recombinant approach to independently control valency, avidity, and size. Our findings reveal that constructs with equivalent binding strength exhibit comparable receptor engagement and tumor extravasation, regardless of valency. Moreover, excessive avidity adversely affected tumor accumulation and penetration, with the highest-avidity construct showing diminished exposure. These results indicate that overall binding strength, not valency, is the primary determinant of tumor targeting, providing valuable insights for designing effective macromolecular drug carriers.
Collapse
Affiliation(s)
- Anastasia K Varanko
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Badrinarayanan S, Guntuboina C, Mollaei P, Barati Farimani A. Multi-Peptide: Multimodality Leveraged Language-Graph Learning of Peptide Properties. J Chem Inf Model 2025; 65:83-91. [PMID: 39700492 PMCID: PMC11733943 DOI: 10.1021/acs.jcim.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Peptides are crucial in biological processes and therapeutic applications. Given their importance, advancing our ability to predict peptide properties is essential. In this study, we introduce Multi-Peptide, an innovative approach that combines transformer-based language models with graph neural networks (GNNs) to predict peptide properties. We integrate PeptideBERT, a transformer model specifically designed for peptide property prediction, with a GNN encoder to capture both sequence-based and structural features. By employing a contrastive loss framework, Multi-Peptide aligns embeddings from both modalities into a shared latent space, thereby enhancing the transformer model's predictive accuracy. Evaluations on hemolysis and nonfouling data sets demonstrate Multi-Peptide's robustness, achieving state-of-the-art 88.057% accuracy in hemolysis prediction. This study highlights the potential of multimodal learning in bioinformatics, paving the way for accurate and reliable predictions in peptide-based research and applications.
Collapse
Affiliation(s)
- Srivathsan Badrinarayanan
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh 15213, Pennsylvania, United States
| | - Chakradhar Guntuboina
- Department
of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, Pennsylvania, United States
| | - Parisa Mollaei
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh 15213, Pennsylvania, United States
| | - Amir Barati Farimani
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh 15213, Pennsylvania, United States
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh 15213, Pennsylvania, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh 15213, Pennsylvania, United States
- Machine
Learning Department, Carnegie Mellon University, Pittsburgh 15213, Pennsylvania, United
States
| |
Collapse
|
6
|
Zhu N, Bi D, Huang J, Yao L, Wu Y, Jiang Z, Hu Z, Zhu B, Li S, Xu X. Genipin crosslinked sodium caseinate-chitosan oligosaccharide nanoparticles for optimizing β-carotene stability and bioavailability. Int J Biol Macromol 2025; 297:139626. [PMID: 39788249 DOI: 10.1016/j.ijbiomac.2025.139626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP). GSCCNP significantly augmented the encapsulation efficacy and photostability of β-carotene. β-Carotene encapsulated within GSCCNP (βC-GSCCNP) exhibited remarkable in vitro sustained release characteristics and heightened bioavailability. In addition, βC-GSCCNP showed significant in vitro anti-inflammatory activity. These findings indicated that genipin crosslinking COS-modified SC could construct a nano-delivery system to enhance the stability and bioavailability of insoluble nutritional factors, thereby presenting promising applications for hydrophobic nutrients in the development of functional foods and beverages.
Collapse
Affiliation(s)
- Nanting Zhu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Beiwei Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Pérez-Pérez M, Fuertes A, Montenegro J. Synthetic peptide scaffolds as ion channels and molecular carriers. Curr Opin Chem Biol 2025; 84:102563. [PMID: 39778387 DOI: 10.1016/j.cbpa.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Transmembrane ion exchange controls biological functions and is essential for life. Over the years, a great variety of nature-inspired artificial ion channels and carriers have been synthesized to control and promote ion exchange across biological membranes. In this context, peptides emerged as ideal scaffolds for synthetic ion channels due to their biocompatibility, accessibility and chemical versatility. Peptides have already shown their potential for the construction of a range of synthetic ion transporters either alone or in combination with other molecular scaffolds. Among the great diversity of peptide-based ion transporters, we can find key examples of single-molecule and supramolecular transmembrane ion channels and ionophores. Peptide scaffolds have also found great potential for the transmembrane delivery of biomolecular cargos such as nucleic acids and proteins. This review covers some of the most relevant advances in the peptide-based ion transport field from the last few years.
Collapse
Affiliation(s)
- Manuel Pérez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Alberto Fuertes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Zhang T, Yang DB, Kloxin CJ, Pochan DJ, Saven JG. Coarse-Grain Model of Ultrarigid Polymer Rods Comprising Bifunctionally Linked Peptide Bundlemers. Biomacromolecules 2024; 25:7904-7914. [PMID: 39499090 DOI: 10.1021/acs.biomac.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Computationally designed homotetrameric helical peptide bundles have been functionalized at their N-termini to achieve supramolecular polymers, wherein individual bundles ("bundlemers") are the monomeric units. Adjacent bundles are linked via two covalent cross-links. The polymers exhibit a range of conformational properties, including formation of rigid-rods with micrometer-scale persistence lengths. Herein, a coarse-grained model is used to illuminate how molecular features affect the rod-like behavior of the polymers. With increasing affinity between bundlemer ends, a sharp transition in the persistence length is observed. Doubly linked chains exhibit larger persistence lengths and more robust formation of rigid-rod structures than singly linked chains. Chain stiffness increases with decreasing temperatures. Increasing the length of the cross-linker results in more flexible chains. This model provides insights into how molecular features control the structural properties of chains comprising doubly linked rigid bundlemers.
Collapse
Affiliation(s)
- Tianren Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dai-Bei Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
10
|
Rekhi S, Mittal J. Amino Acid Transfer Free Energies Reveal Thermodynamic Driving Forces in Biomolecular Condensate Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.625774. [PMID: 39677697 PMCID: PMC11642748 DOI: 10.1101/2024.12.01.625774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The self-assembly of intrinsically disordered proteins into biomolecular condensates shows a dependence on the primary sequence of the protein, leading to sequence-dependent phase separation. Methods to investigate this sequence-dependent phase separation rely on effective residue-level interaction potentials that quantify the propensity for the residues to remain in the dilute phase versus the dense phase. The most direct measure of these effective potentials are the distribution coefficients of the different amino acids between the two phases, but due to the lack of availability of these coefficients, proxies, most notably hydropathy, have been used. However, recent work has demonstrated the limitations of the assumption of hydropathy-driven phase separation. In this work, we address this fundamental gap by calculating the transfer free energies associated with transferring each amino acid side chain analog from the dilute phase to the dense phase of a model biomolecular condensate. We uncover an interplay between favorable protein-mediated and unfavorable water-mediated contributions to the overall free energies of transfer. We further uncover an asymmetry between the contributions of positive and negative charges in the driving forces for condensate formation. The results presented in this work provide an explanation for several non-trivial trends observed in the literature and will aid in the interpretation of experiments aimed at elucidating the sequence-dependent driving forces underlying the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Kaumbekova S, Sugita M, Sakaguchi N, Takahashi Y, Sadakane A, Umezawa M. Effect of Acetonitrile on the Conformation of Bovine Serum Albumin. ACS OMEGA 2024; 9:47680-47689. [PMID: 39651098 PMCID: PMC11618402 DOI: 10.1021/acsomega.4c07274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/06/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024]
Abstract
The use of organic solvents in drug delivery systems (DDSs) either to produce albumin nanoparticles or to manipulate the binding of target molecules to albumin, a promising nanocarrier material, presents challenges due to the conformational changes induced in the protein. In this study, we investigated the alterations in the conformation of bovine serum albumin (BSA) caused by acetonitrile (ACN) in aqueous solution by using a combination of spectroscopic analysis and molecular dynamics (MD) simulations. Ultraviolet (UV) absorption, fluorescence, and infrared (IR) absorption spectroscopy were used to analyze the BSA conformation in the solutions containing 0-60 vol % ACN. Additionally, MD simulations were conducted to elucidate the interactions between BSA and solvent components, focusing on the structural changes in the hydrophobic pocket with Trp residues of the albumin. Increasing the ACN concentration leads to significant changes in the BSA conformation, as evidenced by shifts in UV fluorescence wavelength, decreased intensity, and alterations in IR absorption bands. Furthermore, the formation of protein aggregates was observed at high ACN concentration (30 vol % ACN), shown by increased hydrodynamic diameter distribution. MD simulations further demonstrate that the presence of ACN molecules near the hydrophobic pocket with the Trp-213 residue increases the fluctuations in the positions of amino acids observed near the hydrophobic pocket with Trp-213. Moreover, the intrusion of water molecules into the hydrophobic pocket under 60% ACN conditions with highly decreased solvent polarity was correlated with the changes in the BSA secondary structure. These findings enhance our understanding of how solvent polarity affects the albumin conformation, which is crucial for optimizing albumin-based DDS applications.
Collapse
Affiliation(s)
- Samal Kaumbekova
- Department
of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Masatake Sugita
- Department
of Computer Science, School of Computing, Institute of Science Tokyo, Tokyo 152-8552, Japan
- Middle Molecule
IT-based Drug Discovery Laboratory (MIDL), Institute of Science Tokyo, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naoya Sakaguchi
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Yuta Takahashi
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Akira Sadakane
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Masakazu Umezawa
- Department
of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
12
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Bauer IA, Dmitrienko EV. Amphiphilic Oligonucleotide Derivatives-Promising Tools for Therapeutics. Pharmaceutics 2024; 16:1447. [PMID: 39598570 PMCID: PMC11597563 DOI: 10.3390/pharmaceutics16111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in genetics and nucleic acid chemistry have created fundamentally new tools, both for practical applications in therapy and diagnostics and for fundamental genome editing tasks. Nucleic acid-based therapeutic agents offer a distinct advantage of selectively targeting the underlying cause of the disease. Nevertheless, despite the success achieved thus far, there remain unresolved issues regarding the improvement of the pharmacokinetic properties of therapeutic nucleic acids while preserving their biological activity. In order to address these challenges, there is a growing focus on the study of safe and effective delivery methods utilising modified nucleic acid analogues and their lipid bioconjugates. The present review article provides an overview of the current state of the art in the use of chemically modified nucleic acid derivatives for therapeutic applications, with a particular focus on oligonucleotides conjugated to lipid moieties. A systematic analysis has been conducted to investigate the ability of amphiphilic oligonucleotides to self-assemble into micelle-like structures, as well as the influence of non-covalent interactions of such derivatives with serum albumin on their biodistribution and therapeutic effects.
Collapse
Affiliation(s)
| | - Elena V. Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
14
|
de Almeida CC, Baião DDS, da Silva DVT, da Trindade LR, Pereira PR, Conte-Junior CA, Paschoalin VMF. Dairy and nondairy proteins as nano-architecture structures for delivering phenolic compounds: Unraveling their molecular interactions to maximize health benefits. Compr Rev Food Sci Food Saf 2024; 23:e70053. [PMID: 39530635 DOI: 10.1111/1541-4337.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Phenolic compounds are recognized for their benefits against degenerative diseases. Clinical and nutritional applications are limited by their low solubility, stability, and bioavailability, compromising their efficacy. Natural macromolecules, such as lipids, polysaccharides, and proteins, employed as delivery systems can efficiently overcome these limitations. In this sense, proteins are attractive due to their biocompatibility and dynamic structure properties, functional adaptability and self-assembly capabilities, offering stability, efficient encapsulation, and controlled release. This review explores the potential use of dairy proteins, caseins, and whey proteins, and, alternatively, nondairy proteins, gelatin, human serum albumin, maize zein, and soybean proteins, in building wall materials for the delivery of phenolic compounds. To optimize performance, aspects, such as protein-phenolic affinity and complex stability/activity, should be considered when designing particle nano-architecture. Molecular interactions between protein-phenolic compound complexes are, thus, further discussed, as well as the effects of temperature and pH and strategies to stabilize and preserve nano-architecture and retain phenolic compound activity. All proteins harbor one or more putative binding sites, shared or not, depending on the phenolic compound. Preservation techniques are still a case-to-case study, as no behavior patterns among different complexes are noted. Safety aspects necessary for the marketing of nanoproducts, such as characterization, toxicity assessments, and post-market monitoring as defined by the European Food Safety Authority and the Food and Drug Administration, are discussed, evidencing the need for a unified regulation. This review broadens our understanding and opens new opportunities for the development of novel protein-based nanocarriers to obtain more effective and stable products, enhancing phenolic compound delivery and health benefits.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Diego Dos Santos Baião
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucileno Rodrigues da Trindade
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
16
|
Zhang Y, Zheng X, Huang Y, Li S, Li X, Zhu L. EDB-FN-targeted probes for near infrared fluorescent imaging and positron emission tomography imaging of breast cancer in mice. Sci Rep 2024; 14:22056. [PMID: 39333775 PMCID: PMC11437091 DOI: 10.1038/s41598-024-73362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The extra domain B splice variant of fibronectin (EDB-FN), which is overexpressed in several cancers, is an approved diagnostic and therapeutic target of cancers. The aim of this study was to evaluate the EDB-FN-targeting peptide EDBp as a noninvasive imaging modality for molecular imaging of breast cancer in mice. Western blot, flow cytometry and immunofluorescence were used to assess the expression level of EDB-FN and its binding to EDRp in MCF7, SKBR3, 4T1, EMT6, MDA-MB-231 and MDA-MB-453 cells. Establishment MDA-MB-231-luc cells-based subcutaneous tumor model mice or pulmonary metastasis model mice. The EDRp molecular probes to perform fluorescent probes for near-infrared fluorescence (NIRF)·and PET imaging of model mice. Our results demonstrate that EDBp-Cy5 had a strong binding ability to the MDA-MB-231 cells and exhibited specific tumor accumulation in MDA-MB-231 subcutaneous and pulmonary metastasis model mice. Importantly, the EDBp peptide-based radiotracer [18F]-AlF-NOTA-EDBp provided excellent diagnostic value for positron emission tomography (PET) imaging of breast cancer, especially in subcutaneous model mice. The uptake of [18F]-AlF-NOTA-EDBp in subcutaneous tumors (6.53 ± 0.89%, ID/g) was unexpectedly higher than that in the kidney (4.96 ± 0.20, %ID/g). The high tumor uptake of these probes in mice suggests their potential for application in imaging of EDB-FN-positive breast cancer for disease staging of regional and distant metastases.
Collapse
Affiliation(s)
- Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Xiaobin Zheng
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060, China
| | - Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Xinling Li
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060, China.
| | - Lijun Zhu
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Geng Y, Hu J, Gao Y, Guo J, Hao H, Hao F, Li T, Chen Y, Huang W, Luo Q. Interfacially Self-Assembled Mutifunctional Protein Thin Films for Accelerated Wound Healing. ACS Macro Lett 2024; 13:1105-1111. [PMID: 39133518 DOI: 10.1021/acsmacrolett.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The design of mutifunctional protein films for large-area spatially ordered arrays of functional components holds great promise in the field of biomedical applications. Herein, interfacial electrostatic self-assembly was employed to construct a large-scale protein thin film by inducing electrostatic interactions between three bovine serum albumin (BSA)-coated nanoclusters and cetyltrimethylammonium bromide (CTAB), leading to their spontaneous organization and uniform distribution at the oil-water interface. This protein film demonstrated excellent multienzyme functions, high antibacterial activity, and pH-responsive drug release capability. Therefore, it can accelerate the wound closure process through a synergistic effect that includes reducing local blood glucose levels, regulating cellular oxidative stress, eradicating bacteria, and promoting cell proliferation.
Collapse
Affiliation(s)
- Yajiao Geng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Juntao Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Yuze Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jialiang Guo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hao Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fengjie Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yihao Chen
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Wei Huang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
18
|
Giraldo-Castaño MC, Littlejohn KA, Avecilla ARC, Barrera-Villamizar N, Quiroz FG. Programmability and biomedical utility of intrinsically-disordered protein polymers. Adv Drug Deliv Rev 2024; 212:115418. [PMID: 39094909 PMCID: PMC11389844 DOI: 10.1016/j.addr.2024.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Intrinsically disordered proteins (IDPs) exhibit molecular-level conformational dynamics that are functionally harnessed across a wide range of fascinating biological phenomena. The low sequence complexity of IDPs has led to the design and development of intrinsically-disordered protein polymers (IDPPs), a class of engineered repeat IDPs with stimuli-responsive properties. The perfect repetitive architecture of IDPPs allows for repeat-level encoding of tunable protein functionality. Designer IDPPs can be modeled on endogenous IDPs or engineered de novo as protein polymers with dual biophysical and biological functionality. Their properties can be rationally tailored to access enigmatic IDP biology and to create programmable smart biomaterials. With the goal of inspiring the bioengineering of multifunctional IDP-based materials, here we synthesize recent multidisciplinary progress in programming and exploiting the bio-functionality of IDPPs and IDPP-containing proteins. Collectively, expanding beyond the traditional sequence space of extracellular IDPs, emergent sequence-level control of IDPP functionality is fueling the bioengineering of self-assembling biomaterials, advanced drug delivery systems, tissue scaffolds, and biomolecular condensates -genetically encoded organelle-like structures. Looking forward, we emphasize open challenges and emerging opportunities, arguing that the intracellular behaviors of IDPPs represent a rich space for biomedical discovery and innovation. Combined with the intense focus on IDP biology, the growing landscape of IDPPs and their biomedical applications set the stage for the accelerated engineering of high-value biotechnologies and biomaterials.
Collapse
Affiliation(s)
- Maria Camila Giraldo-Castaño
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kai A Littlejohn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alexa Regina Chua Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Natalia Barrera-Villamizar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Liu X, Tian F, Zhang Z, Liu J, Wang S, Guo RC, Hu B, Wang H, Zhu H, Liu AA, Shi L, Yu Z. In Vivo Self-Sorting of Peptides via In Situ Assembly Evolution. J Am Chem Soc 2024; 146:24177-24187. [PMID: 39140408 DOI: 10.1021/jacs.4c10309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Despite significant progress achieved in artificial self-sorting in solution, operating self-sorting in the body remains a considerable challenge. Here, we report an in vivo self-sorting peptide system via an in situ assembly evolution for combined cancer therapy. The peptide E3C16-SS-EIY consists of two disulfide-connected segments, E3C16SH and SHEIY, capable of independent assembly into twisted or flat nanoribbons. While E3C16-SS-EIY assembles into nanorods, exposure to glutathione (GSH) leads to the conversion of the peptide into E3C16SH and SHEIY, thus promoting in situ evolution from the nanorods into self-sorted nanoribbons. Furthermore, incorporation of two ligand moieties targeting antiapoptotic protein XIAP and organellar endoplasmic reticulum (ER) into the self-sorted nanoribbons allows for simultaneous inhibition of XIAP and accumulation surrounding ER. This leads to the cytotoxicity toward the cancer cells with elevated GSH levels, through activating caspase-dependent apoptosis and inducing ER dysfunction. In vivo self-sorting of E3C16-SS-EIY decorated with ligand moieties is thoroughly validated by tissue studies. Tumor-bearing mouse experiments confirm the therapeutic efficacy of the self-sorted assemblies for inhibiting tumor growth, with excellent biosafety. Our findings demonstrate an efficient approach to develop in vivo self-sorting systems and thereby facilitating in situ formulation of biomedical agents.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Juanzu Liu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shuya Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Han Zhu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - An-An Liu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
20
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
21
|
Yu J, Tavsanli B, Tamminga MJ, Gillies ER. Compact Polyelectrolyte Complexes of Poly(l-Lysine) and Anionic Polysaccharides. Biomacromolecules 2024; 25:5160-5168. [PMID: 39041825 DOI: 10.1021/acs.biomac.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Compact polyelectrolyte complexes (CoPECs) can exhibit mechanical properties similar to those of biological tissues and other interesting properties, such as self-healing. To date, a variety of CoPECs prepared from synthetic polyelectrolytes have been investigated, but there are very few examples based entirely on biopolymers. We describe here an investigation of CoPECs based on poly(l-lysine) (PLL) with sodium hyaluronate (HA) and alginate (Alg). A 2:1 ratio of cation:anion and 0.25 M NaBr was beneficial for the formation of viscoelastic PLL-HA CoPECs, with the favorable ratio attributed to the spacing of carboxylates on HA being one every two saccharide units. In contrast, 1.0 M NaBr and a 1:1 ratio were better for PLL-Alg CoPECs. Both CoPECs swelled or retained a constant volume when immersed in hypertonic media, but contracted in hypotonic media. The loading of molecules into the PLL-HA (2:1) CoPECs was investigated. Higher loadings were achieved for anionic molecules compared to cations, presumably due to the excess cationic binding sites on the networks. The times required for full release of the molecules ranged from less than 2 h for neutral paracetamol to about 48 h for crystal violet and diclofenac.
Collapse
Affiliation(s)
- Jaehak Yu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Burak Tavsanli
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Micah J Tamminga
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
22
|
Tan X, Liu Q, Fang Y, Zhu Y, Chen F, Zeng W, Ouyang D, Dong J. Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation. Mol Pharm 2024; 21:4116-4127. [PMID: 39031123 DOI: 10.1021/acs.molpharmaceut.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Peptide-based therapeutics hold immense promise for the treatment of various diseases. However, their effectiveness is often hampered by poor cell membrane permeability, hindering targeted intracellular delivery and oral drug development. This study addressed this challenge by introducing a novel graph neural network (GNN) framework and advanced machine learning algorithms to build predictive models for peptide permeability. Our models offer systematic evaluation across diverse peptides (natural, modified, linear and cyclic) and cell lines [Caco-2, Ralph Russ canine kidney (RRCK) and parallel artificial membrane permeability assay (PAMPA)]. The predictive models for linear and cyclic peptides in Caco-2 and RRCK cell lines were constructed for the first time, with an impressive coefficient of determination (R2) of 0.708, 0.484, 0.553, and 0.528 in the test set, respectively. Notably, the GNN framework behaved better in permeability prediction with larger data sets and improved the accuracy of cyclic peptide prediction in the PAMPA cell line. The R2 increased by about 0.32 compared with the reported models. Furthermore, the important molecular structural features that contribute to good permeability were interpreted; the influence of cell lines, peptide modification, and cyclization on permeability were successfully revealed. To facilitate broader use, we deployed these models on the user-friendly KNIME platform (https://github.com/ifyoungnet/PharmPapp). This work provides a rapid and reliable strategy for systematically assessing peptide permeability, aiding researchers in drug delivery optimization, peptide preselection during drug discovery, and potentially the design of targeted peptide-based materials.
Collapse
Affiliation(s)
- Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Qianhui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Yingli Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| |
Collapse
|
23
|
Jin A, Shao Y, Wang F, Feng J, Lei L, Dai M. Designing polysaccharide materials for tissue repair and regeneration. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0223937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tissue repair and regeneration are critical processes for maintaining the integrity and function of various organs and tissues. Recently, polysaccharide materials and protein materials have garnered interest for use in tissue repair strategies. However, polysaccharides are more stable and unaffected by temperature and pH changes compared to proteins, and some polysaccharides can provide stronger mechanical support, which is particularly important for constructing tissue-engineered scaffolds and wound dressings. This Review provides an in-depth overview of the origins of polysaccharides, the advantages of polysaccharide materials, and processing and design strategies. In addition, the potential of polysaccharide materials for the restoration of tissues such as skin, heart, and nerves is highlighted. Finally, we discuss in depth the challenges that polysaccharide materials still face in tissue repair, such as the stability of the material, regulating mechanical characteristics and deterioration rates under different conditions. To achieve more effective tissue repair and regeneration, future research must focus on further improving the characteristics and functionalities of polysaccharide materials.
Collapse
Affiliation(s)
- Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
24
|
Das D, Ainavarapu SRK. Protein engineering using circular permutation - structure, function, stability, and applications. FEBS J 2024; 291:3581-3596. [PMID: 38676939 DOI: 10.1111/febs.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Protein engineering is important for creating novel variants from natural proteins, enabling a wide range of applications. Approaches such as rational design and directed evolution are routinely used to make new protein variants. Computational tools like de novo design can introduce new protein folds. Expanding the amino acid repertoire to include unnatural amino acids with non-canonical side chains in vitro by native chemical ligation and in vivo via codon expansion methods broadens sequence and structural possibilities. Circular permutation (CP) is an invaluable approach to redesigning a protein by rearranging the amino acid sequence, where the connectivity of the secondary structural elements is altered without changing the overall structure of the protein. Artificial CP proteins (CPs) are employed in various applications such as biocatalysis, sensing of small molecules by fluorescence, genome editing, ligand-binding protein switches, and optogenetic engineering. Many studies have shown that CP can lead to either reduced or enhanced stability or catalytic efficiency. The effects of CP on a protein's energy landscape cannot be predicted a priori. Thus, it is important to understand how CP can affect the thermodynamic and kinetic stability of a protein. In this review, we discuss the discovery and advancement of techniques to create protein CP, and existing reviews on CP. We delve into the plethora of biological applications for designed CP proteins. We subsequently discuss the experimental and computational reports on the effects of CP on the thermodynamic and kinetic stabilities of proteins of various topologies. An understanding of the various aspects of CP will allow the reader to design robust CP proteins for their specific purposes.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
25
|
Tian F, Guo RC, Wu C, Liu X, Zhang Z, Wang Y, Wang H, Li G, Yu Z. Assembly of Glycopeptides in Living Cells Resembling Viral Infection for Cargo Delivery. Angew Chem Int Ed Engl 2024; 63:e202404703. [PMID: 38655625 DOI: 10.1002/anie.202404703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a β-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via β-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing β-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.
Collapse
Affiliation(s)
- Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chunxia Wu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yamei Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, China
| |
Collapse
|
26
|
Yang G, Ding J, Chen X. Bioactive poly(amino acid)s for multi-modal cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1985. [PMID: 39099475 DOI: 10.1002/wnan.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
The interplay between the tumor cells and their microenvironments is as inseparable as the relationship between "seeds" and "soil." The tumor microenvironments (TMEs) exacerbate malignancy by enriching malignant cell subclones, generating extracellular matrices, and recruiting immunosuppressive cells, thereby diminishing the efficacy of clinical therapies. Modulating TMEs has emerged as a promising strategy to enhance cancer therapy. However, the existing drugs used in clinical settings do not target the TMEs specifically, underscoring the urgent need for advanced strategies. Bioactive materials present unique opportunities for modulating TMEs. Poly(amino acid)s with precisely controllable structures and properties offer exceptional characteristics, such as diverse structural units, excellent biosafety, ease of modification, sensitive biological responsiveness, and unique secondary structures. These attributes hold significant potential for the modulation of TMEs and clinical applications further. Consequently, developing bioactive poly(amino acid)s capable of modulating the TMEs by elucidating structure-activity relationships and mechanisms is a promising approach for innovative clinical oncology therapy. This review summarizes the recent progress of our research team in developing bioactive poly(amino acid)s for multi-modal tumor therapy. First, a brief overview of poly(amino acid) synthesis and their advantages as nanocarriers is provided. Subsequently, the pioneering research of our research group on synthesizing the biologically responsive, dynamically allosteric, and immunologically effective poly(amino acid)s are highlighted. These poly(amino acid)s are designed to enhance tumor therapy by modulating the intracellular, extracellular matrix, and stromal cell microenvironments. Finally, the future development of poly(amino acid)s is discussed. This review will guide and inspire the construction of bioactive poly(amino acid)s with promising clinical applications in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Peptide-Based Structures.
Collapse
Affiliation(s)
- Guanqing Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
27
|
Adams SC, Nambiar AK, Bressler EM, Raut CP, Colson YL, Wong WW, Grinstaff MW. Immunotherapies for locally aggressive cancers. Adv Drug Deliv Rev 2024; 210:115331. [PMID: 38729264 PMCID: PMC11228555 DOI: 10.1016/j.addr.2024.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Improving surgical resection outcomes for locally aggressive tumors is key to inducing durable locoregional disease control and preventing progression to metastatic disease. Macroscopically complete resection of the tumor is the standard of care for many cancers, including breast, ovarian, lung, sarcoma, and mesothelioma. Advancements in cancer diagnostics are increasing the number of surgically eligible cases through early detection. Thus, a unique opportunity arises to improve patient outcomes with decreased recurrence rates via intraoperative delivery treatments using local drug delivery strategies after the tumor has been resected. Of the current systemic treatments (e.g., chemotherapy, targeted therapies, and immunotherapies), immunotherapies are the latest approach to offer significant benefits. Intraoperative strategies benefit from direct access to the tumor microenvironment which improves drug uptake to the tumor and simultaneously minimizes the risk of drug entering healthy tissues thereby resulting in fewer or less toxic adverse events. We review the current state of immunotherapy development and discuss the opportunities that intraoperative treatment provides. We conclude by summarizing progress in current research, identifying areas for exploration, and discussing future prospects in sustained remission.
Collapse
Affiliation(s)
- Sarah C Adams
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Arun K Nambiar
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Eric M Bressler
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yolonda L Colson
- Massachusetts General Hospital, Department of Surgery, Boston, MA 02114, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston MA 02215, USA.
| |
Collapse
|
28
|
Golebiowska AA, Jala VR, Nukavarapu SP. Decellularized Tissue-Induced Cellular Recruitment for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2024; 52:1835-1847. [PMID: 36952144 DOI: 10.1007/s10439-023-03182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
29
|
Xu M, Wei S, Duan L, Ji Y, Han X, Sun Q, Weng L. The recent advancements in protein nanoparticles for immunotherapy. NANOSCALE 2024; 16:11825-11848. [PMID: 38814163 DOI: 10.1039/d4nr00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, the advancement of nanoparticle-based immunotherapy has introduced an innovative strategy for combatting diseases. Compared with other types of nanoparticles, protein nanoparticles have obtained substantial attention owing to their remarkable biocompatibility, biodegradability, ease of modification, and finely designed spatial structures. Nature provides several protein nanoparticle platforms, including viral capsids, ferritin, and albumin, which hold significant potential for disease treatment. These naturally occurring protein nanoparticles not only serve as effective drug delivery platforms but also augment antigen delivery and targeting capabilities through techniques like genetic modification and covalent conjugation. Motivated by nature's originality and driven by progress in computational methodologies, scientists have crafted numerous protein nanoparticles with intricate assembly structures, showing significant potential in the development of multivalent vaccines. Consequently, both naturally occurring and de novo designed protein nanoparticles are anticipated to enhance the effectiveness of immunotherapy. This review consolidates the advancements in protein nanoparticles for immunotherapy across diseases including cancer and other diseases like influenza, pneumonia, and hepatitis.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lifan Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yifan Ji
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaofan Han
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Sun
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
30
|
Bepler T, Barrera MD, Rooney MT, Xiong Y, Kuang H, Goodell E, Goodwin MJ, Harbron E, Fu R, Mihailescu M, Narayanan A, Cotten ML. Antiviral activity of the host defense peptide piscidin 1: investigating a membrane-mediated mode of action. Front Chem 2024; 12:1379192. [PMID: 38988727 PMCID: PMC11233706 DOI: 10.3389/fchem.2024.1379192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024] Open
Abstract
Outbreaks of viral diseases are on the rise, fueling the search for antiviral therapeutics that act on a broad range of viruses while remaining safe to human host cells. In this research, we leverage the finding that the plasma membranes of host cells and the lipid bilayers surrounding enveloped viruses differ in lipid composition. We feature Piscidin 1 (P1), a cationic host defense peptide (HDP) that has antimicrobial effects and membrane activity associated with its N-terminal region where a cluster of aromatic residues and copper-binding motif reside. While few HDPs have demonstrated antiviral activity, P1 acts in the micromolar range against several enveloped viruses that vary in envelope lipid composition. Notably, it inhibits HIV-1, a virus that has an envelope enriched in cholesterol, a lipid associated with higher membrane order and stability. Here, we first document through plaque assays that P1 boasts strong activity against SARS-CoV-2, which has an envelope low in cholesterol. Second, we extend previous studies done with homogeneous bilayers and devise cholesterol-containing zwitterionic membranes that contain the liquid disordered (Ld; low in cholesterol) and ordered (Lo, rich in cholesterol) phases. Using dye leakage assays and cryo-electron microscopy on vesicles, we show that P1 has dramatic permeabilizing capability on the Lo/Ld, an effect matched by a strong ability to aggregate, fuse, and thin the membranes. Differential scanning calorimetry and NMR experiments demonstrate that P1 mixes the lipid content of vesicles and alters the stability of the Lo. Structural studies by NMR indicate that P1 interacts with the Lo/Ld by folding into an α-helix that lies parallel to the membrane surface. Altogether, these results show that P1 is more disruptive to phase-separated than homogenous cholesterol-containing bilayers, suggesting an ability to target domain boundaries. Overall, this multi-faceted research highlights how a peptide that interacts strongly with membranes through an aromatic-rich N-terminal motif disrupt viral envelope mimics. This represents an important step towards the development of novel peptides with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Tristan Bepler
- New York Structural Biology Center, New York, NY, United States
| | - Michael D. Barrera
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Mary T. Rooney
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
- Department of Chemistry, Hofstra University, Hempstead, NY, United States
| | - Yawei Xiong
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
| | - Huihui Kuang
- New York Structural Biology Center, New York, NY, United States
| | - Evan Goodell
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
| | - Matthew J. Goodwin
- Department of Chemistry, William & Mary, Williamsburg, VA, United States
| | - Elizabeth Harbron
- Department of Chemistry, William & Mary, Williamsburg, VA, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
| | - Aarthi Narayanan
- Department of Biology, George Mason University, Manassas, VA, United States
| | - Myriam L. Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
31
|
Tharmatt A, Sahel DK, Jatyan R, Kumari A, Mishra A, Mittal A, Chitkara D. Lipo-polymeric nano-complexes for dermal delivery of a model protein. RSC Adv 2024; 14:20351-20364. [PMID: 38932980 PMCID: PMC11200120 DOI: 10.1039/d4ra02337d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Delivering macromolecules across the skin poses challenges due to the barrier properties of stratum corneum. Different strategies have been reported to cross this barrier, such as chemical penetration enhancers and physical methods like microneedles, sonophoresis, electroporation, laser ablation, etc. Herein, we explored a cationic lipo-polymeric nanocarrier to deliver a model protein across the skin. A cationic amphiphilic lipo-polymer was used to prepare blank nanoplexes, which were subsequently complexed with anionic fluorescein-tagged bovine serum albumin (FITC-BSA). Blank nanoplexes and FITC-BSA complexed nanoplexes showed sizes of 93.72 ± 5.8 (PDI-0.250) and 145.9 ± 3.2 nm (PDI-0.258), respectively, and zeta potentials of 25.6 ± 7.0 mV and 9.17 ± 1.20 mV. In vitro cell culture, and toxicity studies showed optimal use of these nanocarriers, with hemocompatibility data indicating non-toxicity. Ex vivo skin permeation analysis showed a skin permeation rate of 33% after 24 h. The optimized formulation was loaded in a carbopol-based gel that exhibits non-Newtonian flow characteristics with shear-thinning behavior and variable thixotropy. The nanoplexes delivered via gel demonstrated skin permeation of 57% after 24 h in mice skin ex vivo. In vivo skin toxicity testing confirmed the low toxicity profile of these nanocarriers. These results are promising for the transdermal/dermal delivery of macromolecules, such as protein therapeutics, using nanoplexes.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Anupma Kumari
- Centre for Comparative Medicine, Institute of Liver and Biliary Sciences (ILBS) New Delhi 110070 India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur Rajasthan India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| |
Collapse
|
32
|
Patkar SS, Wang B, Mosquera AM, Kiick KL. Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials. Chemistry 2024; 30:e202400582. [PMID: 38501912 PMCID: PMC11661552 DOI: 10.1002/chem.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.
Collapse
Affiliation(s)
- Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, United States
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Ana Maria Mosquera
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
33
|
Cecuda-Adamczewska V, Romanik-Chruścielewska A, Kosowska K, Sokołowska I, Łukasiewicz N, Korycka P, Florys-Jankowska K, Zakrzewska A, Wszoła M, Klak M. Elasticity Modification of Biomaterials Used in 3D Printing with an Elastin-Silk-like Recombinant Protein. J Funct Biomater 2024; 15:141. [PMID: 38921515 PMCID: PMC11204424 DOI: 10.3390/jfb15060141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The recombinant structural protein described in this study was designed based on sequences derived from elastin and silk. Silk-elastin hybrid copolymers are characterized by high solubility while maintaining high product flexibility. The phase transition temperature from aqueous solution to hydrogel, as well as other physicochemical and mechanical properties of such particles, can differ significantly depending on the number of sequence repeats. We present a preliminary characterization of the EJ17zipR protein obtained in high yield in a prokaryotic expression system and efficiently purified via a multistep process. Its addition significantly improves biomaterial's rheological and mechanical properties, especially elasticity. As a result, EJ17zipR appears to be a promising component for bioinks designed to print spatially complex structures that positively influence both shape retention and the internal transport of body fluids. The results of biological studies indicate that the addition of the studied protein creates a favorable microenvironment for cell adhesion, growth, and migration.
Collapse
Affiliation(s)
- Violetta Cecuda-Adamczewska
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | | | - Katarzyna Kosowska
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | - Iwona Sokołowska
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | - Natalia Łukasiewicz
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | - Paulina Korycka
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | - Katarzyna Florys-Jankowska
- Foundation of Research and Science Development, 01-424 Warsaw, Poland; (A.R.-C.); (K.K.); (I.S.); (N.Ł.); (P.K.); (K.F.-J.)
| | | | - Michał Wszoła
- Polbionica Ltd., 01-424 Warsaw, Poland; (A.Z.); (M.W.)
| | - Marta Klak
- Polbionica Ltd., 01-424 Warsaw, Poland; (A.Z.); (M.W.)
| |
Collapse
|
34
|
Hamlish NX, Abramyan AM, Shah B, Zhang Z, Schepartz A. Incorporation of Multiple β 2-Hydroxy Acids into a Protein In Vivo Using an Orthogonal Aminoacyl-tRNA Synthetase. ACS CENTRAL SCIENCE 2024; 10:1044-1053. [PMID: 38799653 PMCID: PMC11117724 DOI: 10.1021/acscentsci.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
The programmed synthesis of sequence-defined biomaterials whose monomer backbones diverge from those of canonical α-amino acids represents the next frontier in protein and biomaterial evolution. Such next-generation molecules provide otherwise nonexistent opportunities to develop improved biologic therapies, bioremediation tools, and biodegradable plastic-like materials. One monomer family of particular interest for biomaterials includes β-hydroxy acids. Many natural products contain isolated β-hydroxy acid monomers, and polymers of β-hydroxy acids (β-esters) are found in polyhydroxyalkanoate (PHA) polyesters under development as bioplastics and drug encapsulation/delivery systems. Here we report that β2-hydroxy acids possessing both (R) and (S) absolute configuration are substrates for pyrrolysyl-tRNA synthetase (PylRS) enzymes in vitro and that (S)-β2-hydroxy acids are substrates in cellulo. Using the orthogonal MaPylRS/MatRNAPyl synthetase/tRNA pair, in conjunction with wild-type E. coli ribosomes and EF-Tu, we report the cellular synthesis of model proteins containing two (S)-β2-hydroxy acid residues at internal positions. Metadynamics simulations provide a rationale for the observed preference for the (S)-β2-hydroxy acid and provide mechanistic insights that inform future engineering efforts. As far as we know, this finding represents the first example of an orthogonal synthetase that acylates tRNA with a β2-hydroxy acid substrate and the first example of a protein hetero-oligomer containing multiple expanded-backbone monomers produced in cellulo.
Collapse
Affiliation(s)
- Noah X. Hamlish
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
| | - Ara M. Abramyan
- Schrödinger,
Inc., San Diego, California 92121, United States
| | - Bhavana Shah
- Process
Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United
States
| | - Zhongqi Zhang
- Process
Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United
States
| | - Alanna Schepartz
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, Calfornia 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Chan Zuckerberg
Biohub, San Francisco, California 94158, United States
- ARC
Institute, Palo Alto, California 94304, United States
| |
Collapse
|
35
|
Nasirabadi FKR, Doosti A. Dermaseptin B2 bioactive gene's potential for anticancer and anti-proliferative effect is linked to the regulation of the BAX/BBC3/AKT pathway. Med Oncol 2024; 41:162. [PMID: 38767753 DOI: 10.1007/s12032-024-02384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Dermaseptin B2 (DrsB2) is an antimicrobial peptide with anticancer and angiostatic properties. We aimed to assess the in vitro inhibitory effect of pDNA/DrsB2 on the growth of breast cancer cells and its impact on the expression of genes involved in the BAX/BBC3/AKT pathway. The nucleic acid sequence of DrsB2 was artificially synthesized and inserted into the pcDNA3.1( +) Mammalian Expression Plasmid. PCR testing and enzyme digesting procedures evaluated the accuracy of cloning. The vectors were introduced into cells using LipofectamineTM2000 transfection reagent. The breast cancer cells were assessed by flow cytometry, MTT assessment, soft agar colony method, and wound healing investigation. The gene's transcription was evaluated using real-time PCR with a significance level of P < 0.05. The recombinant plasmid harboring the pDNA/DrsB2 vector was effectively produced, and the gene sequence showed absolute homogeneity (100% similarity) with the DrsB2 gene. The transfection effectiveness of MCF-7 and MCF-10A cells was 79% and 68%, respectively. The findings are measured using the growth inhibition 50% (GI50) metric, which indicates the concentration of pDNA/DrsB2 that stops 50% of cell growth. The proportions of early apoptosis, late apoptosis, necrosis, and viable MCF-7 cells in the pDNA/DrsB2 group were 40.50%, 2.31%, 1.69%, and 55.50%, respectively. The results showed a 100% increase in gene expression in programmed cell death following treatment with pDNA/DrsB2 (**P < 0.01). To summarize, the results described in this work offer new possibilities for treating cancer by targeting malignancies via pDNA/DrsB2 and activating the BAX/BBC3/AKT signaling pathways.
Collapse
Affiliation(s)
- Fatemeh Khak-Rah Nasirabadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
36
|
Pollini M, Paladini F. The Emerging Role of Silk Fibroin for the Development of Novel Drug Delivery Systems. Biomimetics (Basel) 2024; 9:295. [PMID: 38786505 PMCID: PMC11117513 DOI: 10.3390/biomimetics9050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
In order to reduce the toxicological impact on healthy cells and to improve the therapeutic response, many drug delivery systems have been fabricated and analysed, involving the use of different natural and synthetic materials at macro-, micro- and nanoscales. Among the natural materials which have demonstrated a huge potential for the development of effective drug delivery systems, silk fibroin has emerged for its excellent biological properties and for the possibility to be processed in a wide range of forms, which can be compliant with multiple active molecules and pharmaceutical ingredients for the treatment of various diseases. This review aims at presenting silk fibroin as an interesting biopolymer for applications in drug delivery systems, exploring the results obtained in recent works in terms of technological progress and effectiveness in vitro and in vivo.
Collapse
Affiliation(s)
- Mauro Pollini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Federica Paladini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
37
|
Shetty K, Yadav KS. Temozolomide nano-in-nanofiber delivery system with sustained release and enhanced cellular uptake by U87MG cells. Drug Dev Ind Pharm 2024; 50:420-431. [PMID: 38502031 DOI: 10.1080/03639045.2024.2332906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The study was aimed at formulating temozolomide (TMZ) loaded gelatin nanoparticles (GNPs) encapsulated into polyvinyl alcohol (PVA) nanofibers (TMZ-GNPs-PVA NFs) as the nano-in-nanofiber delivery system. The secondary objective was to explore the sustained releasing ability of this system and to assess its enhanced cellular uptake against U87MG glioma cells in vitro. SIGNIFICANCE Nano-in-nanofibers are the emerging drug delivery systems for treating a wide range of diseases including cancers as they overcome the challenges experienced by nanoparticles and nanofibers alone. METHODS The drug-loaded GNPs were formulated by one-step desolvation method. The Design of Experiments (DoE) was used to optimize nanoparticle size and entrapment efficiency. The optimized drug-loaded nanoparticles were then encapsulated within nanofibers using blend electrospinning technique. The U87MG glioma cells were used to investigate the uptake of the formulation. RESULTS A 32 factorial design was used to optimize the mean particle size (145.7 nm) and entrapment efficiency (87.6%) of the TMZ-loaded GNPs which were subsequently ingrained into PVA nanofibers by electrospinning technique. The delivery system achieved a sustained drug release for up to seven days (in vitro). The SEM results ensured that the expected nano-in-nanofiber delivery system was achieved. The uptake of TMZ-GNPs-PVA NFs by cells was increased by a factor of 1.964 compared to that of the pure drug. CONCLUSION The nano-in-nanofiber drug delivery system is a potentially useful therapeutic strategy for the management of glioblastoma multiforme.
Collapse
Affiliation(s)
- Karishma Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
38
|
Wang A, Yue K, Yan X, Zhong W, Zhang G, Wang L, Zhang H, Zhang X. Inhibition of platelet adhesion to exposed subendothelial collagen by steric hindrance with blocking peptide nanoparticles. Colloids Surf B Biointerfaces 2024; 237:113866. [PMID: 38520952 DOI: 10.1016/j.colsurfb.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The inhibition of platelet adhesion to collagen in exposed vessels represents an innovative approach to the treatment of atherosclerosis and thrombosis. This study aimed to engineer peptide-based nanoparticles that prevent platelet binding to subendothelial collagen by engaging with collagen with high affinity. We examined the interactions between integrin α2/ glycoprotein VI/ von Willebrand factor A3 domain and collagen, as well as between the synthesized peptide nanoparticles and collagen, utilizing molecular dynamics simulations and empirical assays. Our findings indicated that the bond between von Willebrand factor and collagen was more robust. Specifically, the sequences SITTIDV, VDVMQRE, and YLTSEMH in von Willebrand factor were identified as essential for its attachment to collagen. Based on these sequences, three peptide nanoparticles were synthesized (BPa: Capric-GNNQQNYK-SITTIDV, BPb: Capric-GNNQQNYK-VDVMQRE, BPc: Capric-GNNQQNYK-YLTSEMH), each displaying significant affinity towards collagen. Of these, the BPa nanoparticles exhibited the most potent interaction with collagen, leading to a 75% reduction in platelet adhesion.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
| | - Xiaotong Yan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| |
Collapse
|
39
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
40
|
Gorantla A, Hall JTVE, Troidle A, Janjic JM. Biomaterials for Protein Delivery: Opportunities and Challenges to Clinical Translation. MICROMACHINES 2024; 15:533. [PMID: 38675344 PMCID: PMC11052476 DOI: 10.3390/mi15040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The development of biomaterials for protein delivery is an emerging field that spans materials science, bioengineering, and medicine. In this review, we highlight the immense potential of protein-delivering biomaterials as therapeutic options and discuss the multifaceted challenges inherent to the field. We address current advancements and approaches in protein delivery that leverage stimuli-responsive materials, harness advanced fabrication techniques like 3D printing, and integrate nanotechnologies for greater targeting and improved stability, efficacy, and tolerability profiles. We also discuss the demand for highly complex delivery systems to maintain structural integrity and functionality of the protein payload. Finally, we discuss barriers to clinical translation, such as biocompatibility, immunogenicity, achieving reliable controlled release, efficient and targeted delivery, stability issues, scalability of production, and navigating the regulatory landscape for such materials. Overall, this review summarizes insights from a survey of the current literature and sheds light on the interplay between innovation and the practical implementation of biomaterials for protein delivery.
Collapse
Affiliation(s)
- Amogh Gorantla
- Department of Engineering, Wake Forest University, Winston-Salem, NC 27109, USA;
| | | | | | - Jelena M. Janjic
- School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
41
|
Liu Y, Lin Z, Wang Y, Chen L, Wang Y, Luo C. Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024; 14:2490-2525. [PMID: 38646646 PMCID: PMC11024862 DOI: 10.7150/thno.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/23/2024] Open
Abstract
Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Liuhui Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
42
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
43
|
Fraser B, Wilkins A, Whiting S, Liang M, Rebourcet D, Nixon B, Aitken RJ. Development of peptides for targeting cell ablation agents concurrently to the Sertoli and Leydig cell populations of the testes: An approach to non-surgical sterilization. PLoS One 2024; 19:e0292198. [PMID: 38574116 PMCID: PMC10994420 DOI: 10.1371/journal.pone.0292198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/28/2023] [Indexed: 04/06/2024] Open
Abstract
The surgical sterilization of cats and dogs has been used to prevent their unwanted breeding for decades. However, this is an expensive and invasive procedure, and often impractical in wider contexts, for example the control of feral populations. A sterilization agent that could be administered in a single injection, would not only eliminate the risks imposed by surgery but also be a much more cost-effective solution to this worldwide problem. In this study, we sought to develop a targeting peptide that would selectively bind to Leydig cells of the testes. Subsequently, after covalently attaching a cell ablation agent, Auristatin, to this peptide we aimed to apply this conjugated product (LH2Auristatin) to adult male mice in vivo, both alone and together with a previously developed Sertoli cell targeting peptide (FSH2Menadione). The application of LH2Auristatin alone resulted in an increase in sperm DNA damage, reduced mean testes weights and mean seminiferous tubule size, along with extensive germ cell apoptosis and a reduction in litter sizes. Together with FSH2Menadione there was also an increase in embryo resorptions. These promising results were observed in around a third of all treated animals. Given this variability, we discuss how these reagents might be modified in order to increase target cell ablation and improve their efficacy as sterilization agents.
Collapse
Affiliation(s)
- Barbara Fraser
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Alex Wilkins
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Sara Whiting
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
44
|
Ede SR, Yu H, Sung CH, Kisailus D. Bio-Inspired Functional Materials for Environmental Applications. SMALL METHODS 2024; 8:e2301227. [PMID: 38133492 DOI: 10.1002/smtd.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 12/23/2023]
Abstract
With the global population expected to reach 9.7 billion by 2050, there is an urgent need for advanced materials that can address existing and developing environmental issues. Many current synthesis processes are environmentally unfriendly and often lack control over size, shape, and phase of resulting materials. Based on knowledge from biological synthesis and assembly processes, as well as their resulting functions (e.g., photosynthesis, self-healing, anti-fouling, etc.), researchers are now beginning to leverage these biological blueprints to advance bio-inspired pathways for functional materials for water treatment, air purification and sensing. The result has been the development of novel materials that demonstrate enhanced performance and address sustainability. Here, an overview of the progress and potential of bio-inspired methods toward functional materials for environmental applications is provided. The challenges and opportunities for this rapidly expanding field and aim to provide a valuable resource for researchers and engineers interested in developing sustainable and efficient processes and technologies is discussed.
Collapse
Affiliation(s)
- Sivasankara Rao Ede
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Haitao Yu
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Chao Hsuan Sung
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
45
|
Xing Y, Peng A, Yang J, Cheng Z, Yue Y, Liu F, Li F, Liu Y, Liu Q. Precisely Activating cGAS-STING Pathway with a Novel Peptide-Based Nanoagonist to Potentiate Immune Checkpoint Blockade Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309583. [PMID: 38233164 PMCID: PMC11022698 DOI: 10.1002/advs.202309583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Indexed: 01/19/2024]
Abstract
As an essential intracellular immune activation pathway, the cGAS-STING pathway has attracted broad attention in cancer treatment. However, low bioavailability, nonspecificity, and adverse effects of small molecule STING agonists severely limit their therapeutic efficacy and in vivo application. In this study, a peptide-based STING agonist is first proposed, and KLA is screened out to activate the cGAS-STING pathway by promoting mitochondrial DNA (mtDNA) leakage. To precisely activate the cGAS-STING pathway and block the PD-1/PD-L1 pathway, a multi-stimuli activatable peptide nanodrug (MAPN) is developed for the effective delivery of KLA and PD-L1 antagonist peptide (CVR). With rational design, MAPN achieved the site-specific release of KLA and CVR in response to multiple endogenous stimuli, simultaneously activating the cGAS-STING pathway and blocking PD-1/PD-L1 pathway, ultimately initiating robust and durable T cell anti-tumor immunity with a tumor growth inhibition rate of 78% and extending the median survival time of B16F10 tumor-bearing mice to 40 days. Overall, antimicrobial peptides, which can promote mtDNA leakage through damaging mitochondrial membranes, may be potential alternatives for small molecule STING agonists and giving a new insight for the design of novel STING agonists. Furthermore, MAPN presents a universal delivery platform for the effective synergy of multiple peptides.
Collapse
Affiliation(s)
- Yumeng Xing
- School of PharmacyAnhui Medical UniversityHefei230032China
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ao Peng
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Jianhui Yang
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Zhifei Cheng
- School of PharmacyAnhui University of Chinese MedicineHefei230012China
| | - Yi Yue
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Feilong Liu
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Fenghe Li
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Yang Liu
- College of ChemistryNankai UniversityTianjin300071China
| | - Qi Liu
- School of PharmacyAnhui Medical UniversityHefei230032China
| |
Collapse
|
46
|
Zayed HS, Saleh S, Omar AE, Saleh AK, Salama A, Tolba E. Development of collagen-chitosan dressing gel functionalized with propolis-zinc oxide nanoarchitectonics to accelerate wound healing. Int J Biol Macromol 2024; 261:129665. [PMID: 38266853 DOI: 10.1016/j.ijbiomac.2024.129665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/01/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Using an in situ sol-gel technique, new nanoarchitectonics of propolis loaded zinc oxide nanoarchitectonics (PP/ZnO-NPs) were developed in order to improve the in vivo outcomes of collagen-chitosan gel in wounded rats. The obtained nanoarchitectonics were fully characterized. The XRD results indicate the presence of a Zincite phase for ZnO-NPs and Zincite accompanied by a minor amount of zinc hydroxide for PP/ZnO-NPs samples. While the TEM findings illustrate the transfer of the ZnO-NPs from agglomerated spheres with an average particle size of 230 ± 29 nm to needle-like NPs of 323 ± 173 nm length (PP1/ZnO-NPs) and to a sheet-like NPs of 500 ± 173 nm diameter (PP2/ZnO-NPs). In addition, the incorporation of PP results in an increase in the surface negativity of ZnO-NPs to -31.4 ± 6.4 mV for PP2/ZnO-NPs. The antimicrobial activities of the nanocomposite gel loaded with 10%PP1/ZnO-NPs (G6) revealed the highest inhibition zone against E. coli (26 ± 2.31 mm). Remarkably, the in vivo outcomes showed that the nanocomposite gel (G6) has exceptional collagen deposition, quick wound closure rates, and re-epithelization. The outcomes demonstrate the nanocomposite gel encouraging biological properties for the treatment of damaged and infected wounds.
Collapse
Affiliation(s)
- Heba S Zayed
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Safaa Saleh
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Areg E Omar
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Emad Tolba
- Polymers and Pigments Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
47
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Liu Q, Wang L, Su Y, Dong W, Wang H, Liu Y, Liu H, Liu L, Wang Y. Ultrahigh Enzyme Loading Metal-Organic Frameworks for Deep Tissue Pancreatic Cancer Photoimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305131. [PMID: 37875640 DOI: 10.1002/smll.202305131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Indexed: 10/26/2023]
Abstract
Protein drugs hold promise in treating multiple complex diseases, including cancer. The priority of protein drug application is precise delivery of substantial bioactive protein into tumor site. Metal-organic-framework (MOF) is widely considered as a promising carrier to encapsulate protein drug owing to the noncovalent interaction between carrier and protein. However, limited loading efficiency and potential toxicity of metal ion in MOF restrict its application in clinical research. Herein, a tumor targeted collagenase-encapsulating MOF via protein-metal ion-organic ligand coordination (PMOCol ) for refining deep tissue pancreatic cancer photoimmunotherapy is developed. By an expedient method in which the ratio of metal ion, histidine residues of protein and ligand is precisely controlled, PMOCol is constructed with ultrahigh encapsulation efficiency (80.3 wt%) and can release collagenase with high enzymatic activity for tumor extracellular matrix (ECM) regulation after reaching tumor microenvironment (TME). Moreover, PMOcol exhibits intensively poorer toxicity than the zeolitic imidazolate framework-8 biomineralized protein. After treatment, the pancreatic tumor with abundant ECM shows enhanced immunocyte infiltration owing to extracellular matrix degradation that improves suppressive TME. By integrating hyperthermia agent with strong near-infrared absorption (1064 nm), PMOCol can induce acute immunogenicity to host immunity activation and systemic immune memory production to prevent tumor development and recurrence.
Collapse
Affiliation(s)
- Qian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, P. R. China
| | - Li Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yitan Su
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Wang Dong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huiru Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, P. R. China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
49
|
Guo S, Wang J, Wang Q, Wang J, Qin S, Li W. Advances in peptide-based drug delivery systems. Heliyon 2024; 10:e26009. [PMID: 38404797 PMCID: PMC10884816 DOI: 10.1016/j.heliyon.2024.e26009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Drug delivery systems (DDSs) are designed to deliver drugs to their specific targets to minimize their toxic effects and improve their susceptibility to clearance during targeted transport. Peptides have high affinity, low immunogenicity, simple amino acid composition, and adjustable molecular size; therefore, most peptides can be coupled to drugs via linkers to form peptide-drug conjugates (PDCs) and act as active pro-drugs. PDCs are widely thought to be promising DDSs, given their ability to improve drug bio-compatibility and physiological stability. Peptide-based DDSs are often used to deliver therapeutic substances such as anti-cancer drugs and nucleic acid-based drugs, which not only slow the degradation rate of drugs in vivo but also ensure the drug concentration at the targeted site and prolong the half-life of drugs in vivo. This article provides an profile of the advancements and future development in functional peptide-based DDSs both domestically and internationally in recent years, in the expectation of achieving targeted drug delivery incorporating functional peptides and taking full advantage of synergistic effects.
Collapse
Affiliation(s)
- Sijie Guo
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
50
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|