1
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Wang H, Liu Z, Fang Y, Luo X, Zheng C, Xu Y, Zhou X, Yuan Q, Lv S, Ma L, Lao YH, Tao Y, Li M. Spatiotemporal release of non-nucleotide STING agonist and AKT inhibitor from implantable 3D-printed scaffold for amplified cancer immunotherapy. Biomaterials 2024; 311:122645. [PMID: 38850717 DOI: 10.1016/j.biomaterials.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiangfu Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Qing Yuan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Limin Ma
- Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Zhang Y, Wang S, Rha H, Xu C, Pei Y, Ji X, Zhang J, Lu R, Zhang S, Xie Z, Kim JS. Bifunctional black phosphorus quantum dots platform: Delivery and remarkable immunotherapy enhancement of STING agonist. Biomaterials 2024; 311:122696. [PMID: 38971121 DOI: 10.1016/j.biomaterials.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-β. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.
Collapse
Affiliation(s)
- Yujun Zhang
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China; International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Shijing Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Chang Xu
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Yue Pei
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518109, PR China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China.
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
4
|
Zou M, Lei C, Huang D, Liu L, Han Y. Application of plant-derived products as adjuvants for immune activation and vaccine development. Vaccine 2024; 42:126115. [PMID: 38987109 DOI: 10.1016/j.vaccine.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Vaccines are one of the most important means to prevent and control the epidemic of infectious diseases. Commercial vaccines not only include corresponding antigens, but also need vaccine adjuvants. Immune adjuvants play an increasingly important role in the research, development and manufacture of vaccines. Adjuvants combined with antigens can improve the stability, safety and immune efficiency of vaccines. Some substances that can enhance the immune response have been found in nature(mainly plants) and used as adjuvants in vaccines to improve the immune effect of vaccines. These plant-derived immune adjuvants often have the advantages of low toxicity, high stability, low price, etc., providing more possibilities for vaccine development. We summarized and analyzed the advantages, application research, particulate delivery systems, existing problems and future research focus of botanical adjuvant. It is hoped to provide new ideas for the research and development of immune adjuvants in the future.
Collapse
Affiliation(s)
- Manshu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Chang Lei
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Dan Huang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Lan Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Hunan Province, Changsha 410007, China.
| |
Collapse
|
5
|
Cheng SL, Lee HM, Li CP, Lin MW, Chou MY, Yen YT, Wu TH, Lian YC, Shih YC, Chiang CS, Chen TW, Wan D, Chen Y. Robust and Sustained STING Pathway Activation via Hydrogel-Based In Situ Vaccination for Cancer Immunotherapy. ACS NANO 2024; 18:29439-29456. [PMID: 39405469 PMCID: PMC11526424 DOI: 10.1021/acsnano.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
The stimulator of interferon genes (STING) pathway is crucial for tumor immunity, leading to the exploration of STING agonists as potential immunotherapy adjuvants. However, their clinical application faces obstacles including poor pharmacokinetics, transient activation, and an immunosuppressive tumor microenvironment (TME). Addressing these limitations, our study aims to develop an injectable silk fibroin hydrogel-based in situ vaccine. It incorporates a nanoscale STING agonist, an immunogenic cell death (ICD) inducer, and an immunomodulator to ensure their controlled and sustained release. cGAMP nanoparticles (cGAMPnps) with a core-shell structure ensure optimal delivery of cGAMP to dendritic cells (DCs), thereby activating the STING pathway and fostering DC maturation. ICD-associated damage-associated molecular patterns amplify and prolong STING activation via enhanced type I IFN and other inflammatory pathways, along with delayed degradation of cGAMP and STING. Furthermore, the STING-driven vascular normalization by cGAMPnps and ICD, in conjunction with immunomodulators like antiprogrammed cell death protein 1 antibody (anti-PD-1 Ab) or OX40 ligand (OX40L), effectively remodels the immunosuppressive TME. This in situ gel vaccine, when used independently or with surgery as neoadjuvant/adjuvant immunotherapy, enhances DC and CD8+ T-cell activation, suppressing tumor progression and recurrence across various immunologically cold tumor models. It revolutionizes the application of STING agonists in cancer immunotherapy, offering substantial promise for improving outcomes across a broad spectrum of malignancies.
Collapse
Affiliation(s)
- Sheng-Liang Cheng
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
- International
Intercollegiate Ph.D. Program, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Mei Lee
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Chung-Pin Li
- Division
of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division
of Clinical Skills Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Therapeutic
and Research Center of Pancreatic Cancer, Veterans General Hospital, Taipei 11217, Taiwan
- School
of
Medicine, College of Medicine, National
Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Mei-Wei Lin
- Biomedical
Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Min-Yuan Chou
- Biomedical
Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Yu-Ting Yen
- Institute
of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Tun-Han Wu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Yun-Chen Lian
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chuan Shih
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Chi-Shiun Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Wen Chen
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent
Drug Systems and Smart Bio-devices, National
Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Dehui Wan
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing
Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
6
|
Zhang Y, Mei X, Zhang C, Wang H, Xie X, Zhang Z, Feng Z. ASFV subunit vaccines: Strategies and prospects for future development. Microb Pathog 2024; 197:107063. [PMID: 39442810 DOI: 10.1016/j.micpath.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
African Swine Fever (ASF) is an acute, highly contagious, and lethal disease caused by the African Swine Fever Virus (ASFV), posing a severe threat to the global pig farming industry. Although live vaccines are currently available, preventing and controlling ASF remains a considerable challenge. Several factors have impeded vaccine development, including the complexity of ASFV particles and the suppressive effects of its gene-encoded proteins on the host's immune system. This article delves into the immunological responses elicited by ASFV, encompassing both innate and adaptive immunity, and examines how ASFV evades host immune defenses. Special attention is given to the current progress in the development of ASFV subunit vaccines, including protein-based vaccines, DNA vaccines, and viral vector vaccines. The advantages, challenges, and future directions of different vaccine types are discussed, offering new perspectives and insights for the future of ASFV vaccine development.
Collapse
Affiliation(s)
- Yuchen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China
| | - Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Hui Wang
- Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China; School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Xing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China.
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, Jiangsu, 210014, China; Veterinary Biological Products (Taizhou) Guotai Technology Innovation Center, Taizhou, 225300, China.
| |
Collapse
|
7
|
Wang N, Wang C, Wei C, Chen M, Gao Y, Zhang Y, Wang T. Constructing the cGAMP-Aluminum Nanoparticles as a Vaccine Adjuvant-Delivery System (VADS) for Developing the Efficient Pulmonary COVID-19 Subunit Vaccines. Adv Healthc Mater 2024:e2401650. [PMID: 39319481 DOI: 10.1002/adhm.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The cGAMP-aluminum nanoparticles (CAN) are engineered as a vaccine adjuvant-delivery system to carry mixed RBD (receptor-binding domain) of the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variant for developing bivalent pulmonary coronavirus disease 2019 (COVID-19) vaccines (biRBD-CAN). High phosphophilicity/adsorptivity made intrapulmonary CAN instantly form the pulmonary ingredient-coated CAN (piCAN) to possess biomimetic features enhancing biocompatibility. In vitro biRBD-CAN sparked APCs (antigen-presenting cells) to mature and make extra reactive oxygen species, engendered lysosome escape effects and enhanced proteasome activities. Through activating the intracellular stimulator of interferon genes (STING) and nucleotide-binding domain and leucine-rich repeat and pyrin domain containing proteins 3 (NALP3) inflammasome pathways to exert synergy between cGAMP and AN, biRBD-CAN stimulated APCs to secret cytokines favoring mixed Th1/Th2 immunoresponses. Mice bearing twice intrapulmonary biRBD-CAN produced high levels of mucosal antibodies, the long-lasting systemic antibodies, and potent cytotoxic T lymphocytes which efficiently erased cells displaying cognate epitopes. Notably, biRBD-CAN existed in mouse lungs and different lymph nodes for at least 48 h, unveiling their sustained immunostimulatory activity as the main mechanism underlying the long-lasting immunity and memory. Hamsters bearing twice intrapulmonary biRBD-CAN developed high resistance to pseudoviral challenges performed using different recombinant strains including the ones with distinct SARS-CoV-2-spike mutations. Thus, biRBD-CAN as a broad-spectrum pulmonary COVID-19 vaccine candidate may provide a tool for controlling the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 420 Jade Road, Hefei, Anhui Province, 230601, China
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Can Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
- Department of Pharmacy, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Lianyungang, Jiangsu Province, 222006, China
| | - Chunliu Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuhao Gao
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuxi Zhang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| |
Collapse
|
8
|
Hu Y, Yang A, Li H, Zhao R, Bao C, Yu Y, Wang Y, Wang Z, Zhuo L, Han Q, Zhang Z, Zhang J, Zhao H. Lymph node-targeted STING agonist nanovaccine against chronic HBV infection. Cell Mol Life Sci 2024; 81:372. [PMID: 39196331 PMCID: PMC11358573 DOI: 10.1007/s00018-024-05404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that substantially increases the risk of developing liver disease. The development of a novel strategy to induce anti-HB seroconversion and achieve a long-lasting immune response against chronic HBV infection remains challenging. Here, we found that chronic HBV infection affected the signaling pathway involved in STING-mediated induction of host immune responses in dendritic cells (DCs) and then generated a lymph node-targeted nanovaccine that co-delivered hepatitis B surface antigen (HBsAg) and cyclic diguanylate monophosphate (c-di-GMP) (named the PP-SG nanovaccine). The feasibility and efficiency of the PP-SG nanovaccine for CHB treatment were evaluated in HBV-carrier mice. Serum samples were analyzed for HBsAg, anti-HBs, HBV DNA, and alanine aminotransferase levels, and liver samples were evaluated for HBV DNA and RNA and HBcAg, accompanied by an analysis of HBV-specific cellular and humoral immune responses during PP-SG nanovaccine treatment. The PP-SG nanovaccine increased antigen phagocytosis and DC maturation, efficiently and safely eliminated HBV, achieved a long-lasting immune response against HBV reinjection, and disrupted chronic HBV infection-induced immune tolerance, as characterized by the generation and multifunctionality of HBV-specific CD8+ T and CD4+ T cells and the downregulation of immune checkpoint molecules. HBV-carrier mice immunized with the PP-SG nanovaccine achieved partial anti-HBs seroconversion. The PP-SG nanovaccine can induce sufficient and persistent viral suppression and achieve anti-HBs seroconversion, rendering it a promising vaccine candidate for clinical chronic hepatitis B therapy.
Collapse
Affiliation(s)
- Yifei Hu
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong, China
| | - Cuiping Bao
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yating Yu
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yucan Wang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zixuan Wang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Li Y, Wang C, Lv H, Li J, Zhang X, Zhang S, Shen Q, Wu Q, Liu Y, Peng R, Liu Z. Manganese-Modified Aluminum Adjuvant Enhances both Humoral and Cellular Immune Responses. Adv Healthc Mater 2024:e2401675. [PMID: 39177146 DOI: 10.1002/adhm.202401675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Aluminum adjuvants remain the most commonly used vaccine adjuvants. Being rather effective in triggering humoral immunity, however, aluminum adjuvants usually show limited abilities in activating cellular immunities. Herein, by adding manganese ions during the preparation of aluminum adjuvant, a manganese-modified aluminum (Mn-Al) adjuvant is obtained, which can effectively stimulate both humoral and cellular immune responses. Such Mn-Al adjuvant can enhance antigen adsorption and promote antigen internalization by dendritic cells (DCs). Subsequently, the released Mn2+ can activate the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes pathway to further promote DC activation. When combines with the model antigen ovalbumin (OVA), the Mn-Al-adjuvantes vaccine can induce high levels of antigen-specific antibody titers and high proportions of antigen-specific cytotoxic T cells in vivo. Moreover, the Mn-Al-adjuvanted vaccine elicited stronger antigen-specific humoral and cellular immune responses than high-dose of the aluminum-based adjuvant. Additionally, immunization of mice with OVA in the presence of the Mn-Al adjuvant significantly inhibited the growth of B16-OVA tumors. Furthermore, when formulated with human papillomavirus antigens, Mn-Al-adjuvanted vaccines show better in vivo vaccination performance than aluminum-adjuvanted vaccines. Therefore, the manganese-modified aluminum adjuvant may thus become a new vaccine adjuvant with the potential to replace conventional aluminum adjuvants.
Collapse
Affiliation(s)
- Yaxin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Chenya Wang
- InnoBM Pharmaceuticals Co., Ltd., Suzhou, Jiangsu, 215123, China
| | - Haoyuan Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jingting Li
- Jiangsu Recbio Technology Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Xupei Zhang
- Jiangsu Recbio Technology Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Shiyuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qianqian Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yong Liu
- Jiangsu Recbio Technology Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
10
|
Sun Y, Ma YY, Shangguan S, Ruan Y, Bai T, Xue P, Zhuang H, Cao W, Cai H, Tang E, Wu Z, Yang M, Zeng Y, Sun J, Fan Y, Zeng X, Yan S. Metal ions-anchored bacterial outer membrane vesicles for enhanced ferroptosis induction and immune stimulation in targeted antitumor therapy. J Nanobiotechnology 2024; 22:474. [PMID: 39123234 PMCID: PMC11311927 DOI: 10.1186/s12951-024-02747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The activation of ferroptosis presents a versatile strategy for enhancing the antitumor immune responses in cancer therapy. However, developing ferroptosis inducers that combine high biocompatibility and therapeutic efficiency remains challenging. In this study, we propose a novel approach using biological nanoparticles derived from outer membrane vesicles (OMVs) of Escherichia coli for tumor treatment, aiming to activate ferroptosis and stimulate the immune responses. Specifically, we functionalize the OMVs by anchoring them with ferrous ions via electrostatic interactions and loading them with the STING agonist-4, followed by tumor-targeting DSPE-PEG-FA decoration, henceforth referred to as OMV/SaFeFA. The anchoring of ferrous ions endows the OMVs with peroxidase-like activity, capable of inducing cellular lipid peroxidation by catalyzing H2O2 to •OH. Furthermore, OMV/SaFeFA exhibits pH-responsive release of ferrous ions and the agonist, along with tumor-targeting capabilities, enabling tumor-specific therapy while minimizing side effects. Notably, the concurrent activation of the STING pathway and ferroptosis elicits robust antitumor responses in colon tumor-bearing mouse models, leading to exceptional therapeutic efficacy and prolonged survival. Importantly, no acute toxicity was observed in mice receiving OMV/SaFeFA treatments, underscoring its potential for future tumor therapy and clinical translation.
Collapse
Affiliation(s)
- Ying Sun
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yan-Yan Ma
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Shijie Shangguan
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yihang Ruan
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Tingjie Bai
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Panpan Xue
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Huilan Zhuang
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Wenyu Cao
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Huimei Cai
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China.
| | - Enqi Tang
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Zhou Wu
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Mingzhen Yang
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yixin Zeng
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Juan Sun
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yong Fan
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Xuemei Zeng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Shuangqian Yan
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
11
|
Chen Y, Li R, Duan Q, Wu L, Li X, Luo A, Zhang Y, Zhao N, Cui K, Wu W, Liu T, Wan J, Deng L, Li G, Hou L, Tan W, Xiao Z. A DNA-Modularized STING Agonist with Macrophage-Selectivity and Programmability for Enhanced Anti-Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400149. [PMID: 38898748 PMCID: PMC11348061 DOI: 10.1002/advs.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/03/2024] [Indexed: 06/21/2024]
Abstract
The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) and its adaptor, stimulator of interferon genes (STING), is known to reprogram the immunosuppressive tumor microenvironment for promoting antitumor immunity. To enhance the efficiency of cGAS-STING pathway activation, macrophage-selective uptake, and programmable cytosolic release are crucial for the delivery of STING agonists. However, existing polymer- or lipid-based delivery systems encounter difficulty in integrating multiple functions meanwhile maintaining precise control and simple procedures. Herein, inspired by cGAS being a natural DNA sensor, a modularized DNA nanodevice agonist (DNDA) is designed that enable macrophage-selective uptake and programmable activation of the cGAS-STING pathway through precise self-assembly. The resulting DNA nanodevice acts as both a nanocarrier and agonist. Upon local administration, it demonstrates the ability of macrophage-selective uptake, endosomal escape, and cytosolic release of the cGAS-recognizing DNA segment, leading to robust activation of the cGAS-STING pathway and enhanced antitumor efficacy. Moreover, DNDA elicits a synergistic therapeutic effect when combined with immune checkpoint blockade. The study broadens the application of DNA nanotechnology as an immune stimulator for cGAS-STING activation.
Collapse
Affiliation(s)
- Yingzhi Chen
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Molecular MedicineShanghai Key Laboratory of Nucleic Acid Chemistry and NanomedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ruike Li
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Qiao Duan
- Institute of Molecular MedicineShanghai Key Laboratory of Nucleic Acid Chemistry and NanomedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lingling Wu
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xinyi Li
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Aoxiang Luo
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yongming Zhang
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Na Zhao
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Kai Cui
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Wenwei Wu
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tize Liu
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau999078China
| | - Liufu Deng
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Guiying Li
- Department of Nephrologythe Affiliated Hospital of Hebei Engineering UniversityHebei056038China
| | - Lijun Hou
- Department of NeurosurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Weihong Tan
- Institute of Molecular MedicineShanghai Key Laboratory of Nucleic Acid Chemistry and NanomedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Molecular MedicineShanghai Key Laboratory of Nucleic Acid Chemistry and NanomedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| |
Collapse
|
12
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
13
|
Zhang T, Yin W, Zhao Y, Huang L, Gu J, Zang J, Zheng X, Chang J, Sun J, Dong H, Li Y, Li Y. NOX2 Enzyme Mimicking Nano-Networks Regulate Tumor-Associated Macrophages to Initiate Both Innate and Adaptive Immune Effects. Adv Healthc Mater 2024; 13:e2302387. [PMID: 37975271 DOI: 10.1002/adhm.202302387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Macrophages, capable of both direct killing and antigen presentation, are crucial for the interplay between innate and adaptive immunity. However, strategies mainly focus on polarizing tumor-associated macrophages (TAMs) to M1 phenotype, while overlooking the inefficient antigen cross-presentation due to hyperactive hydrolytic protease within lysosomes which leads to antigen degradation. In light of the significant influence of reactive oxygen species (ROS) on TAMs' polarization and the inhibition of phagosomal proteolysis, a novel nanosystem termed OVA-Fe-GA (OFG) is engineered, drawing inspiration from the NOX2 enzyme's role. OFG integrates ovalbumin (OVA) and a network composed of Fe-gallic acid (GA), emulating the NOX2 enzyme's sequential ROS generation process ("O2 to O2 •- to H2O2/•OH"). Furthermore, it elucidates a biological mechanism that augments antigen cross-presentation by suppressing the expression of cysteine proteases. OFG restores the innate anti-tumor functionality of TAMs and significantly amplifies their antigen cross-presentation (4.5-fold compared to the PBS control group) in B16-OVA tumor-bearing mice. Notably, the infiltration and activity of intratumoral CD8+ T cells are enhanced, indicating an adaptive immune response. Moreover, OFG exhibits excellent photothermal properties, thereby fostering a system antitumor immune response. This study provides a promising strategy for initiating both innate and adaptive immunity via TAMs activation.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Weimin Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO), School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingjing Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO), School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jie Zang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao Zheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiao Chang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiuyuan Sun
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO), School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
14
|
Zhang X, Shi H, Hendy DA, Bachelder EM, Ainslie KM, Ross TM. Multi-COBRA hemagglutinin formulated with cGAMP microparticles elicits protective immune responses against influenza viruses. mSphere 2024; 9:e0016024. [PMID: 38920382 PMCID: PMC11288037 DOI: 10.1128/msphere.00160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
In humans, seasonal influenza viruses cause epidemics. Avian influenza viruses are of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against all influenza strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines, which promotes type I interferons' production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in mice for protective antibody responses. cGAMP MPs adjuvanted COBRA HA vaccines elicited robust antigen-specific antibodies following vaccination. Compared with COBRA HA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI activity elicited by COBRA HA vaccines. The HAI activity was not significantly different between cGAMP MPs adjuvanted monovalent or multivalent COBRA HA vaccines. The cGAMP MPs adjuvanted COBRA vaccine groups had higher antigen-specific IgG2a-binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated diseases caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains. IMPORTANCE Influenza viruses cause severe respiratory disease, particularly in the very young and the elderly. Next-generation influenza vaccines are needed to protect against new influenza variants. This report used a promising adjuvant, cyclic GMP-AMP (cGAMP), to enhance the elicited antibodies by an improved influenza hemagglutinin candidate and protect against influenza virus infection. Overall, adding adjuvants to influenza vaccines is an effective method to improve vaccines.
Collapse
Affiliation(s)
- Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Li Q, Yan Y, Wang C, Dong Z, Hao Y, Chen M, Liu Z, Feng L. Biomineralization-inspired synthesis of autologous cancer vaccines for personalized metallo-immunotherapy. iScience 2024; 27:110189. [PMID: 38989457 PMCID: PMC11233966 DOI: 10.1016/j.isci.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Autologous cancer vaccines represent a promising therapeutic approach against tumor relapse. Herein, a concise biomineralization strategy was developed to prepare an immunostimulatory autologous cancer vaccine through protein antigen-mediated growth of flower-like manganese phosphate (MnP) nanoparticles. In addition to inheriting the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING)-activating capacity of Mn2+, the resulting ovalbumin (OVA)-loaded MnP (OVA@MnP) nanoparticles with superior stability and pH-responsiveness enabled efficient priming of antigen-specific CD8+ T cell expansion through promoting the endo/lysosome escape and subsequent antigen cross-presentation of OVA. Resultantly, OVA@MnP vaccines upon subcutaneous vaccination elicited both prophylactic and therapeutic effects against OVA-expressing B16-F10 melanoma. Furthermore, the biomineralized autologous cancer vaccines prepared from the whole tumor cell lysates of the dissected tumors suppressed the growth of residual tumors, particularly in combination with anti-PD-1 immunotherapy. This study highlights a simple biomineralization approach for the controllable synthesis of cGAS-STING-activating autologous cancer vaccines to suppress postsurgical tumor relapse.
Collapse
Affiliation(s)
- Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Yifan Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Minming Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
16
|
Duan X, Zhao Y, Hu H, Wang X, Yan J, Li S, Zhang Y, Jiao J, Zhang G. Amino Acid Metabolism-Regulated Nanomedicine for Enhanced Tumor Immunotherapy through Synergistic Regulation of Immune Microenvironment. Biomater Res 2024; 28:0048. [PMID: 38966855 PMCID: PMC11223770 DOI: 10.34133/bmr.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 07/06/2024] Open
Abstract
The reprogramming of tumor metabolism presents a substantial challenge for effective immunotherapy, playing a crucial role in developing an immunosuppressive microenvironment. In particular, the degradation of the amino acid L-tryptophan (Trp) to kynurenine (Kyn) by indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) is one of the most clinically validated pathways for immune suppression. Thus, regulating the Trp/Kyn metabolism by IDO1 inhibition represents a promising strategy for enhancing immunotherapy. Herein, metabolism-regulated nanoparticles are prepared through metal coordination-driven assembly of an IDO1 inhibitor (NLG919) and a stimulator of interferon genes (STING) agonist (MSA-2) for enhanced immunotherapy. After intravenous administration, the assembled nanoparticles could efficiently accumulate in tumors, enhancing the bioavailability of NLG919 and down-regulating the metabolism of Trp to Kyn to remodel the immunosuppressive tumor microenvironment. Meanwhile, the released MSA-2 evoked potent STING pathway activation in tumors, triggering an effective immune response. The antitumor immunity induced by nanoparticles significantly inhibited the development of primary and metastatic tumors, as well as B16 melanoma. Overall, this study provided a novel paradigm for enhancing tumor immunotherapy through synergistic amino acid metabolism and STING pathway activation.
Collapse
Affiliation(s)
- Xiuying Duan
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- School of Life Sciences,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yilei Zhao
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Houyang Hu
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xuechun Wang
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jie Yan
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Songyan Li
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yueying Zhang
- School of Clinical and Basic Medical Sciences,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
| | - Guiqiang Zhang
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
17
|
Li M, Yao Z, Wang H, Ma Y, Yang W, Guo Y, Yu G, Shi W, Zhang N, Xu M, Li X, Zhao J, Zhang Y, Xue C, Sun B. Silicon or Calcium Doping Coordinates the Immunostimulatory Effects of Aluminum Oxyhydroxide Nanoadjuvants in Prophylactic Vaccines. ACS NANO 2024; 18:16878-16894. [PMID: 38899978 DOI: 10.1021/acsnano.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aluminum salts still remain as the most popular adjuvants in marketed human prophylactic vaccines due to their capability to trigger humoral immune responses with a good safety record. However, insufficient induction of cellular immune responses limits their further applications. In this study, we prepare a library of silicon (Si)- or calcium (Ca)-doped aluminum oxyhydroxide (AlOOH) nanoadjuvants. They exhibit well-controlled physicochemical properties, and the dopants are homogeneously distributed in nanoadjuvants. By using Hepatitis B surface antigen (HBsAg) as the model antigen, doped AlOOH nanoadjuvants mediate higher antigen uptake and promote lysosome escape of HBsAg through lysosomal rupture induced by the dissolution of the dopant in the lysosomes in bone marrow-derived dendritic cells (BMDCs). Additionally, doped nanoadjuvants trigger higher antigen accumulation and immune cell activation in draining lymph nodes. In HBsAg and varicella-zoster virus glycoprotein E (gE) vaccination models, doped nanoadjuvants induce high IgG titer, activations of CD4+ and CD8+ T cells, cytotoxic T lymphocytes, and generations of effector memory T cells. Doping of aluminum salt-based adjuvants with biological safety profiles and immunostimulating capability is a potential strategy to mediate robust humoral and cellular immunity. It potentiates the applications of engineered adjuvants in the development of vaccines with coordinated immune responses.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Huiyang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wenqi Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yiyang Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wendi Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Muzhe Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jiashu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
18
|
Yang J, Luo Z, Ma J, Wang Y, Cheng N. A next-generation STING agonist MSA-2: From mechanism to application. J Control Release 2024; 371:273-287. [PMID: 38789087 DOI: 10.1016/j.jconrel.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The stimulator of interferon genes (STING) connects the innate and adaptive immune system and plays a significant role in antitumor immunity. Over the past decades, endogenous and CDN-derived STING agonists have been a hot topic in the research of cancer immunotherapies. However, these STING agonists are either in infancy with limited biological effects or have failed in clinical trials. In 2020, a non-nucleotide STING agonist MSA-2 was identified, which exhibited satisfactory antitumor effects in animal studies and is amenable to oral administration. Due to its distinctive binding mode and enhanced bioavailability, there have been accumulating interests and an array of studies on MSA-2 and its derivatives, spanning its structure-activity relationship, delivery systems, applications in combination therapies, etc. Here, we provide a comprehensive review of MSA-2 and interventional strategies based on this family of STING agonists to help more researchers extend the investigation on MSA-2 in the future.
Collapse
Affiliation(s)
- Junhan Yang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhenyu Luo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jingyi Ma
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
19
|
Tian X, Ai J, Tian X, Wei X. cGAS-STING pathway agonists are promising vaccine adjuvants. Med Res Rev 2024; 44:1768-1799. [PMID: 38323921 DOI: 10.1002/med.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.
Collapse
Affiliation(s)
- Xinyu Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
20
|
Cao LM, Yu YF, Li ZZ, Zhong NN, Wang GR, Xiao Y, Liu B, Wu QJ, Feng C, Bu LL. Adjuvants for cancer mRNA vaccines in the era of nanotechnology: strategies, applications, and future directions. J Nanobiotechnology 2024; 22:308. [PMID: 38825711 PMCID: PMC11145938 DOI: 10.1186/s12951-024-02590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi-Fu Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiu-Ji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| | - Chun Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongii Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
21
|
Zhang Y, Gao Z, Yang X, Xu Q, Lu Y. Leveraging high-throughput screening technologies in targeted mRNA delivery. Mater Today Bio 2024; 26:101101. [PMID: 38883419 PMCID: PMC11176929 DOI: 10.1016/j.mtbio.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
Messenger ribonucleic acid (mRNA) has emerged as a promising molecular preventive and therapeutic approach that opens new avenues for healthcare. Although the use of delivery systems, especially lipid nanoparticles (LNPs), greatly improves the efficiency and stability of mRNA, mRNA tends to accumulate in the liver and hardly penetrates physiological barriers to reach the target site after intravenous injection. Hence, the rational design of targeting strategies aimed at directing mRNA to specific tissues and cells remains an enormous challenge in mRNA therapy. High-throughput screening (HTS) is a cutting-edge targeted technique capable of synthesizing chemical compound libraries for the large-scale experiments to validate the efficiency of mRNA delivery system. In this review, we firstly provide an overview of conventional low-throughput targeting strategies. Then the latest advancements in HTS techniques for mRNA targeted delivery, encompassing optimizing structures of large-scale delivery vehicles and developing large-scale surface ligands, as well as the applications of HTS techniques in extrahepatic systemic diseases are comprehensively summarized. Moreover, we illustrate the selection of administration routes for targeted mRNA delivery. Finally, challenges in the field and potential solutions to tackle them are proposed, offering insights for future development toward mRNA targeted therapy.
Collapse
Affiliation(s)
- Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhifei Gao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiao Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qinglong Xu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| |
Collapse
|
22
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
23
|
Huang C, Zhi X, Ye T, Wang X, Li K, Li Y, Zhang Q, Jiang L, Ding X. Boosting humoral and cellular immunity with enhanced STING activation by hierarchical mesoporous metal-organic framework adjuvants. J Control Release 2024; 370:691-706. [PMID: 38723671 DOI: 10.1016/j.jconrel.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Vaccination is essential for preventing and controlling infectious diseases, along with reducing mortality. Developing safe and versatile adjuvants to enhance humoral and cellular immune responses to vaccines remains a key challenge in vaccine development. Here, we designed hierarchical mesoporous MOF-801 (HM801) using a Cocamidopropyl betaine (CAPB) and a Pluronics F127 in an aqueous phase system. Meanwhile, we synthesized a novel SARS-CoV-2 nanovaccine (R@M@HM801) with a high loading capacity for both the STING agonist (MSA-2) and the Delta receptor binding domain (Delta-RBD) antigen. R@M@HM801 enhanced MSA-2 and RBD utilization and effectively co-delivered MSA-2 and RBD antigens to antigen-presenting cells in the draining lymph nodes, thereby promoting the activation of both T and B cells. Lymphocyte single-cell analysis showed that R@M@HM801 stimulated robust CD11b+CD4+ T cells, CXCR5+CD4+ T follicular helper (Tfh), and durable CD4+CD44+CD62L-, CD8+CD44+CD62L- effector memory T cell (TEM) immune responses, and promoted the proliferative activation of CD26+ B cells in vivo. Meanwhile, R@M@HM801 induced stronger specific antibodies and neutralization of pseudovirus against Delta compared to the RBD + MAS-2 and RBD + MAS-2 + Alum vaccines. Our study demonstrated the efficacy of a hierarchical mesoporous HM801 and its potential immune activation mechanism in enhancing adaptive immune responses against viruses and other diseases.
Collapse
Affiliation(s)
- Chengjie Huang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Zhi
- Shanghai Institute of Virology Shanghai Jiao Tong University School of Medicine 227 South Chongqing Road, Shanghai 200225, PR China.
| | - Tianbao Ye
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiuyuan Wang
- Department of Dermatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Ke Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yiyang Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
Chen L, Liu S, Zhang Y, Tang Q, Quan C, Wang J, Peng X, Zhong X. Palmitic acid-capped MIL-101-Al as a nano-adjuvant to amplify immune responses against Pseudomonas aeruginosa. NANOSCALE 2024; 16:10306-10317. [PMID: 38727538 DOI: 10.1039/d4nr01180e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
As a highly contagious opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa) is one of the main causes of healthcare-associated infections. The drug-resistant nature of P. aeruginosa can render antibiotic treatments ineffective, leading to a high morbidity and mortality. Higher specificity and reduced toxicity are features of immunotherapy, which can generate robust immune responses and preserve long-term immunological memory to completely eradicate infections. In this study, we developed a type of P. aeruginosa vaccine based on a metal-organic framework. Specifically, MIL-101-Al nanoparticles were synthesized to encapsulate antigens derived from the bacterial lysate (BL) of PAO1, a drug-resistant P. aeruginosa, and the adjuvant unmethylated cytosine-phosphate-guanine oligonucleotide (CpG), which were then modified with palmitic acid (PAA) to obtain MIL-BC@PAA. The stability and biocompatibility were significantly increased by capping with PAA. Moreover, MIL-BC@PAA showed significantly enhanced uptake by antigen presenting cells (APCs), and promoted their maturation. Importantly, immunity studies revealed the greatly elicited antigen-specific humoral and cellular responses, and a protection rate of about 70% was observed in P. aeruginosa-challenged mice. Overall, these results demonstrate the promising potential of MIL-BC@PAA as an ideal nanovaccine for P. aeruginosa vaccination.
Collapse
Affiliation(s)
- Lingming Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, 523808 Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, 523808 Dongguan, Guangdong, China
| | - Shuai Liu
- Otolaryngology Department, Huangjiang Hospital, Dongguan 523750, China
| | - Yunting Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiling Tang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Chunyu Quan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Jundan Wang
- Jiangxi College of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Xiaofang Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
25
|
Curvino EJ, Woodruff ME, Roe EF, Freire Haddad H, Cordero Alvarado P, Collier JH. Supramolecular Peptide Self-Assemblies Facilitate Oral Immunization. ACS Biomater Sci Eng 2024; 10:3041-3056. [PMID: 38623037 PMCID: PMC11382288 DOI: 10.1021/acsbiomaterials.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Oral immunization is a promising strategy for preventing and treating gastrointestinal (GI) infections and diseases, as it allows for direct access to the disease site. To elicit immune responses within the GI tract, however, there are many obstacles that oral vaccines must surmount, including proteolytic degradation and thick mucus barriers. Here, we employed a modular self-assembling peptide nanofiber platform to facilitate oral immunization against both peptide and small molecule epitopes. Synthesizing nanofibers with d-amino acids rendered them resistant to proteases in vitro, whereas l-amino acid nanofibers were rapidly degraded. Additionally, the inclusion of peptide sequences rich in proline, alanine, and serine (PAS), increased nanofiber muco-penetration, and accelerated nanofiber transport through the GI tract. Oral immunization with PASylated nanofibers and mucosal adjuvant generated local and systemic immune responses to a peptide epitope but only for l-amino acid nanofibers. Further, we were able to apply this design to also enable oral immunization against a small molecule epitope and illustrated the therapeutic and prophylactic effectiveness of these immunizations in mouse models of colitis. These findings demonstrate that supramolecular peptide self-assemblies have promise as oral vaccines and immunotherapies.
Collapse
Affiliation(s)
- Elizabeth J Curvino
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Emily F Roe
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Helena Freire Haddad
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Pablo Cordero Alvarado
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Li Z, Zhang Q, Li Z, Ren L, Pan D, Gong Q, Gu Z, Cai H, Luo K. Branched glycopolymer prodrug-derived nanoassembly combined with a STING agonist activates an immuno-supportive status to boost anti-PD-L1 antibody therapy. Acta Pharm Sin B 2024; 14:2194-2209. [PMID: 38799622 PMCID: PMC11121173 DOI: 10.1016/j.apsb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 05/29/2024] Open
Abstract
Despite the great potential of anti-PD-L1 antibodies for immunotherapy, their low response rate due to an immunosuppressive tumor microenvironment has hampered their application. To address this issue, we constructed a cell membrane-coated nanosystem (mB4S) to reverse an immunosuppressive microenvironment to an immuno-supportive one for strengthening the anti-tumor effect. In this system, Epirubicin (EPI) as an immunogenic cell death (ICD) inducer was coupled to a branched glycopolymer via hydrazone bonds and diABZI as a stimulator of interferon genes (STING) agonist was encapsulated into mB4S. After internalization of mB4S, EPI was acidic-responsively released to induce ICD, which was characterized by an increased level of calreticulin (CRT) exposure and enhanced ATP secretion. Meanwhile, diABZI effectively activated the STING pathway. Treatment with mB4S in combination with an anti-PD-L1 antibody elicited potent immune responses by increasing the ratio of matured dendritic cells (DCs) and CD8+ T cells, promoting cytokines secretion, up-regulating M1-like tumor-associated macrophages (TAMs) and down-regulating immunosuppressive myeloid-derived suppressor cells (MDSCs). Therefore, this nanosystem for co-delivery of an ICD inducer and a STING agonist achieved promotion of DCs maturation and CD8+ T cells infiltration, creating an immuno-supportive microenvironment, thus potentiating the therapy effect of the anti-PD-L1 antibody in both 4T1 breast and CT26 colon tumor mice.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Qianfeng Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Hao Cai
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
27
|
Liu J, Liu C, Ma Y, Pan X, Chu R, Yao S, Chen J, Liu C, Chen Z, Sheng C, Zhang K, Xue Y, Schiöth HB, Kong B, Zhang Q, Song K. STING inhibitors sensitize platinum chemotherapy in ovarian cancer by inhibiting the CGAS-STING pathway in cancer-associated fibroblasts (CAFs). Cancer Lett 2024; 588:216700. [PMID: 38373690 DOI: 10.1016/j.canlet.2024.216700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Chemotherapy resistance in ovarian cancer hampers cure rates, with cancer-associated fibroblasts (CAFs) playing a pivotal role. Despite their known impact on cancer progression and chemotherapy resistance, the specific mechanism by which CAFs regulate the tumor inflammatory environment remains unclear. This study reveals that cisplatin facilitates DNA transfer from ovarian cancer cells to CAFs, activating the CGAS-STING-IFNB1 pathway in CAFs and promoting IFNB1 release. Consequently, this reinforces cancer cell resistance to platinum drugs. High STING expression in the tumor stroma was associated with a poor prognosis, while inhibiting STING expression enhanced ovarian cancer sensitivity. Understanding the relevance of the CGAS-STING pathway in CAFs for platinum resistance suggests targeting STING as a promising combination therapy for ovarian cancer, providing potential avenues for improved treatment outcomes.
Collapse
Affiliation(s)
- Jiale Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Chenmian Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Yana Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Xiyu Pan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Ran Chu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Junyu Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Zhongshao Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Chenchen Sheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Kai Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Ying Xue
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
28
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
29
|
Sun X, Huang X, Park KS, Zhou X, Kennedy AA, Pretto CD, Wu Q, Wan Z, Xu Y, Gong W, Sexton JZ, Tai AW, Lei YL, Moon JJ. Self-Assembled STING-Activating Coordination Nanoparticles for Cancer Immunotherapy and Vaccine Applications. ACS NANO 2024; 18:10439-10453. [PMID: 38567994 PMCID: PMC11031738 DOI: 10.1021/acsnano.3c11374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xuehui Huang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kyung Soo Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew A Kennedy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Carla D Pretto
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Qi Wu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziye Wan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Cancer Biology at the University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, United States
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew W Tai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Otolaryngology─Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Head and Neck Surgery, Department of Cancer Biology, Department of Translational Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Yoon M, Choi Y, Wi T, Choi YS, Choi J. The role of cGAMP via the STING pathway in modulating germinal center responses and CD4 T cell differentiation. Front Immunol 2024; 15:1340001. [PMID: 38680492 PMCID: PMC11045936 DOI: 10.3389/fimmu.2024.1340001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/12/2024] [Indexed: 05/01/2024] Open
Abstract
Germinal center (GC) responses are essential for establishing protective, long-lasting immunity through the differentiation of GC B cells (BGC) and plasma cells (BPC), along with the generation of antigen-specific antibodies. Among the various pathways influencing immune responses, the STING (Stimulator of Interferon Genes) pathway has emerged as significant, especially in innate immunity, and extends its influence to adaptive responses. In this study, we examined how the STING ligand cGAMP can modulate these key elements of the adaptive immune response, particularly in enhancing GC reactions and the differentiation of BGC, BPC, and follicular helper T cells (TFH). Employing in vivo models, we evaluated various antigens and the administration of cGAMP in Alum adjuvant, investigating the differentiation of BGC, BPC, and TFH cells, along with the production of antigen-specific antibodies. cGAMP enhances the differentiation of BGC and BPC, leading to increased antigen-specific antibody production. This effect is shown to be type I Interferon-dependent, with a substantial reduction in BPC frequency upon interferon (IFN)-β blockade. Additionally, cGAMP's influence on TFH differentiation varies over time, which may be critical for refining vaccine strategies. The findings elucidate a complex, antigen-specific influence of cGAMP on T and B cell responses, providing insights that could optimize vaccine efficacy.
Collapse
Affiliation(s)
- Mijung Yoon
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yurim Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Taeuk Wi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
31
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
32
|
Pan X, Ni S, Hu K. Nanomedicines for reversing immunosuppressive microenvironment of hepatocellular carcinoma. Biomaterials 2024; 306:122481. [PMID: 38286109 DOI: 10.1016/j.biomaterials.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although immunotherapeutic strategies such as immune checkpoint inhibitors (ICIs) have gained promising advances, their limited efficacy and significant toxicity remain great challenges for hepatocellular carcinoma (HCC) immunotherapy. The tumor immunosuppressive microenvironment (TIME) with insufficient T-cell infiltration and low immunogenicity accounts for most HCC patients' poor response to ICIs. Worse still, the current immunotherapeutics without precise delivery may elicit enormous autoimmune side effects and systemic toxicity in the clinic. With a better understanding of the TIME in HCC, nanomedicines have emerged as an efficient strategy to achieve remodeling of the TIME and superadditive antitumor effects via targeted delivery of immunotherapeutics or multimodal synergistic therapy. Based on the typical characteristics of the TIME in HCC, this review summarizes the recent advancements in nanomedicine-based strategies for TIME-reversing HCC treatment. Additionally, perspectives on the awaiting challenges and opportunities of nanomedicines in modulating the TIME of HCC are presented. Acquisition of knowledge of nanomedicine-mediated TIME reversal will provide researchers with a better opportunity for clinical translation of HCC immunotherapy.
Collapse
Affiliation(s)
- Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
33
|
Baljon J, Kwiatkowski AJ, Pagendarm HM, Stone PT, Kumar A, Bharti V, Schulman JA, Becker KW, Roth EW, Christov PP, Joyce S, Wilson JT. A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists. ACS NANO 2024; 18:6845-6862. [PMID: 38386282 PMCID: PMC10919087 DOI: 10.1021/acsnano.3c04471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment and led to complete and durable responses, but only for a minority of patients. Resistance to ICB can largely be attributed to insufficient number and/or function of antitumor CD8+ T cells in the tumor microenvironment. Neoantigen targeted cancer vaccines can activate and expand the antitumor T cell repertoire, but historically, clinical responses have been poor because immunity against peptide antigens is typically weak, resulting in insufficient activation of CD8+ cytotoxic T cells. Herein, we describe a nanoparticle vaccine platform that can overcome these barriers in several ways. First, the vaccine can be reproducibly formulated using a scalable confined impingement jet mixing method to coload a variety of physicochemically diverse peptide antigens and multiple vaccine adjuvants into pH-responsive, vesicular nanoparticles that are monodisperse and less than 100 nm in diameter. Using this approach, we encapsulated synergistically acting adjuvants, cGAMP and monophosphoryl lipid A (MPLA), into the nanocarrier to induce a robust and tailored innate immune response that increased peptide antigen immunogenicity. We found that incorporating both adjuvants into the nanovaccine synergistically enhanced expression of dendritic cell costimulatory markers, pro-inflammatory cytokine secretion, and peptide antigen cross-presentation. Additionally, the nanoparticle delivery increased lymph node accumulation and uptake of peptide antigen by dendritic cells in the draining lymph node. Consequently, nanoparticle codelivery of peptide antigen, cGAMP, and MPLA enhanced the antigen-specific CD8+ T cell response and delayed tumor growth in several mouse models. Finally, the nanoparticle platform improved the efficacy of ICB immunotherapy in a murine colon carcinoma model. This work establishes a versatile nanoparticle vaccine platform for codelivery of peptide neoantigens and synergistic adjuvants to enhance responses to cancer vaccines.
Collapse
Affiliation(s)
- Jessalyn
J. Baljon
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexander J. Kwiatkowski
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hayden M. Pagendarm
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Payton T. Stone
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Amrendra Kumar
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Vijaya Bharti
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jacob A. Schulman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kyle W. Becker
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Eric W. Roth
- Northwestern
University Atomic and Nanoscale Characterization Experimental (NUANCE)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Plamen P. Christov
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232, United States
| | - Sebastian Joyce
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Veteran Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram
Cancer Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
34
|
Kane G, Lusi C, Brassil M, Atukorale P. Engineering approaches for innate immune-mediated tumor microenvironment remodeling. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100406. [PMID: 38213392 PMCID: PMC10777078 DOI: 10.1016/j.iotech.2023.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cancer immunotherapy offers transformative promise particularly for the treatment of lethal cancers, since a correctly trained immune system can comprehensively orchestrate tumor clearance with no need for continued therapeutic intervention. Historically, the majority of immunotherapies have been T cell-focused and have included immune checkpoint inhibitors, chimeric antigen receptor T cells, and T-cell vaccines. Unfortunately T-cell-focused therapies have failed to achieve optimal efficacy in most solid tumors largely because of a highly immunosuppressed 'cold' or immune-excluded tumor microenvironment (TME). Recently, a rapidly growing treatment paradigm has emerged that focuses on activation of tumor-resident innate antigen-presenting cells, such as dendritic cells and macrophages, which can drive a proinflammatory immune response to remodel the TME from 'cold' or immune-excluded to 'hot'. Early strategies for TME remodeling centered on free cytokines and agonists, but these approaches have faced significant hurdles in both delivery and efficacy. Systemic toxicity from off-target inflammation is a paramount concern in these therapies. To address this critical gap, engineering approaches have provided the opportunity to add 'built-in' capabilities to cytokines, agonists, and other therapeutic agents to mediate improved delivery and efficacy. Such capabilities have included protective encapsulation to shield them from degradation, targeting to direct them with high specificity to tumors, and co-delivery strategies to harness synergistic proinflammatory pathways. Here, we review innate immune-mediated TME remodeling engineering approaches that focus on cytokines, innate immune agonists, immunogenic viruses, and cell-based methods, highlighting emerging preclinical approaches and strategies that are either being tested in clinical trials or already Food and Drug Administration approved.
Collapse
Affiliation(s)
- G.I. Kane
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - C.F. Lusi
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - M.L. Brassil
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - P.U. Atukorale
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, USA
| |
Collapse
|
35
|
Hendy DA, Pena ES, Ontiveros‐Padilla L, Dixon TA, Middleton DD, Williamson GL, Lukesh NR, Simpson SR, Stiepel RT, Islam MJ, Carlock MA, Ross TM, Bachelder EM, Ainslie KM. Immunogenicity of an adjuvanted broadly active influenza vaccine in immunocompromised and diverse populations. Bioeng Transl Med 2024; 9:e10634. [PMID: 38435811 PMCID: PMC10905549 DOI: 10.1002/btm2.10634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Abstract
Influenza virus outbreaks are a major burden worldwide each year. Current vaccination strategies are inadequate due to antigenic drift/shift of the virus and the elicitation of low immune responses. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) immunogens subvert the constantly mutating viruses; however, they are poorly immunogenic on their own. To increase the immunogenicity of subunit vaccines such as this, adjuvants can be delivered with the vaccine. For example, agonists of the stimulator of interferon genes (STING) have proven efficacy as vaccine adjuvants. However, their use in high-risk populations most vulnerable to influenza virus infection has not been closely examined. Here, we utilize a vaccine platform consisting of acetalated dextran microparticles loaded with COBRA HA and the STING agonist cyclic GMP-AMP. We examine the immunogenicity of this platform in mouse models of obesity, aging, and chemotherapy-induced immunosuppression. Further, we examine vaccine efficacy in collaborative cross mice, a genetically diverse population that mimics human genetic heterogeneity. Overall, this vaccine platform had variable efficacy in these populations supporting work to better tailor adjuvants to specific populations.
Collapse
Affiliation(s)
- Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Erik S. Pena
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Luis Ontiveros‐Padilla
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Timothy A. Dixon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Denzel D. Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Grace L. Williamson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sean R. Simpson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Md Jahirul Islam
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | - Ted M. Ross
- Florida Research and Innovation CenterPort St. LucieFloridaUSA
- Center for Vaccines and ImmunologyUniversity of GeorgiaAthensGeorgiaUSA
- Department of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
- Department of Microbiology and Immunology, UNC School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
36
|
Zhang X, Shi H, Hendy DA, Bachelder EM, Ainslie KM, Ross TM. Multi-COBRA hemagglutinin formulated with cGAMP microparticles elicit protective immune responses against influenza viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582355. [PMID: 38464191 PMCID: PMC10925245 DOI: 10.1101/2024.02.27.582355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Influenza viruses cause a common respiratory disease known as influenza. In humans, seasonal influenza viruses can lead to epidemics, with avian influenza viruses of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against seasonal and pre-pandemic influenza virus strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines that promotes type I interferons production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in a mouse model for antibody responses and protection against viral challenge. Serological analysis showed that cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccines elicited robust antigen-specific antibody responses after a prime-boost vaccination and antibody titers were further enhanced after second boost. Compared to COBRA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI antibody responses against COBRA vaccination. The HAI antibody titers were not significantly different between cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccine groups for most of the viruses tested in panels. The cGAMP MPs adjuvanted COBRA vaccines groups had higher antigen-specific IgG2a binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated disease caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains.
Collapse
Affiliation(s)
- Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
37
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
38
|
Wang B, Hu ZC, Chen LJ, Liang HF, Lu HW, Chen Q, Liang B, Aji A, Dong J, Tian QW, Jiang LB, Xue FF. Nuclear-Targeted Nanostrategy Regulates Spatiotemporal Communication for Dual Antitumor Immunity. Adv Healthc Mater 2024; 13:e2302342. [PMID: 37975509 DOI: 10.1002/adhm.202302342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Intercellular communication between tumor cells and immune cells regulates tumor progression including positive communication with immune activation and negative communication with immune escape. An increasing number of methods are employed to suppress the dominant negative communication in tumors such as PD-L1/PD-1. However, how to effectively improve positive communication is still a challenge. In this study, a nuclear-targeted photodynamic nanostrategy is developed to establish positive spatiotemporal communication, further activating dual antitumor immunity, namely innate and adaptative immunity. The mSiO2 -Ion@Ce6-NLS nanoparticles (NPs) are designed, whose surface is modified by ionic liquid silicon (Ion) and nuclear localization signal peptide (NLS: PKKKRKV), and their pores are loaded with the photosensitizer hydrogen chloride e6 (Ce6). Ion-modified NPs enhance intratumoral enrichment, and NLS-modified NPs exhibit nuclear-targeted characteristics to achieve nuclear-targeted photodynamic therapy (nPDT). mSiO2 -Ion@Ce6-NLS with nPDT facilitate the release of damaged double-stranded DNA from tumor cells to activate macrophages via stimulator of interferon gene signaling and induce the immunogenic cell death of tumor cells to activate dendritic cells via "eat me" signals, ultimately leading to the recruitment of CD8+ T-cells. This therapy effectively strengthens positive communication to reshape the dual antitumor immune microenvironment, further inducing long-term immune memory, and eventually inhibiting tumor growth and recurrence.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-Chao Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Jie Chen
- Department of Surgical Oncology, Zhejiang Taizhou Hospital, Taizhou, Zhejiang, 317000, China
| | - Hai-Feng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong-Wei Lu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bing Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Abudula Aji
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi-Wei Tian
- Shanghai Key Laboratory of Molecular lmaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng-Feng Xue
- Shanghai Key Laboratory of Molecular lmaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| |
Collapse
|
39
|
Chen M, Wang C, Wang X, Tu Z, Ding Z, Liu Z. An "AND" Logic-Gated Prodrug Micelle Locally Stimulates Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307818. [PMID: 37935201 DOI: 10.1002/adma.202307818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Materials that can respond to multiple biomarkers simultaneously, acting as an "AND" gate, have the potential to enhance tumor-targeting for drug delivery. In this study, an "AND" logic-controlled release prodrug micelle is developed for codelivering the chemotherapeutic and the stimulator of interferon genes (STING) agonist, enabling precise combinatorial therapy. The drug release is programmed by tumor-enriched boramino acids (BAA) in the tumor microenvironment and intracellular reactive oxygen species (ROS), resulting in enhanced tumor targeting. STING agonist is successfully encapsulated into prodrug micelles through π-π stacking and hydrophobic interactions. These AND logic-gated prodrug micelles can achieve tumor-targeted delivery of STING agonist, leading to significantly enhanced immune activation and antitumor efficacy in vivo. It is expected that this clinically relevant nanoplatform will provide a rational design of an effective immunotherapy combination regimen to convert immunologically "cold" tumors to immunogenic "hot" tumors, addressing the major challenges faced by immunotherapies.
Collapse
Affiliation(s)
- Mengqi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chunhong Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuanyu Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zexuan Ding
- Changping Laboratory, Beijing, 102206, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Changping Laboratory, Beijing, 102206, China
- Peking University - Tsinghua University Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
40
|
Niu L, Miao Y, Cao Z, Wei T, Zhu J, Li M, Bai B, Chen L, Liu N, Pan F, Zhu J, Wang C, Yang Y, Chen Q. Minimalist Nanovaccine with Optimized Amphiphilic Copolymers for Cancer Immunotherapy. ACS NANO 2024; 18:3349-3361. [PMID: 38230639 DOI: 10.1021/acsnano.3c10174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cancer vaccines with the ability to elicit tumor-specific immune responses have attracted significant interest in cancer immunotherapy. A key challenge for effective cancer vaccines is the spatiotemporal codelivery of antigens and adjuvants. Herein, we synthesized a copolymer library containing nine poly(ethylene glycol) methyl ether methacrylate-co-butyl methacrylate-co-2-(azepan-1-yl)ethyl methacrylate (PEGMA-co-BMA-co-C7AMA) graft copolymers with designed proportions of different components to regulate their properties. Among these polymers, C-25, with a C7AMA:BMA ratio at 1.5:1 and PEG wt % of 25%, was screened as the most effective nanovaccine carrier with enhanced ability to induce mouse bone marrow-derived dendritic cell (BMDC) maturation. Additionally, RNA-sequencing (RNA-Seq) analysis revealed that C-25 could activate dendritic cells (DCs) through multisignaling pathways to trigger potent immune effects. Then, the screened C-25 was used to encapsulate the model peptide antigen, OVA257-280, to form nanovaccine C-25/OVA257-280. It was found that the C-25/OVA257-280 nanovaccine could effectively facilitate DC maturation and antigen cross-presentation without any other additional adjuvant and exhibited excellent prophylactic efficacy in the B16F10-OVA tumor model. Moreover, in combination with antiprogrammed cell death protein-ligand 1 (anti-PD-L1), the C-25/OVA257-280 nanovaccine could significantly delay the growth of pre-existing tumors. Therefore, this work developed a minimalist nanovaccine with a simple formulation and high efficiency in activating tumor-specific immune responses, showing great potential for further application in cancer immunotherapy.
Collapse
Affiliation(s)
- Le Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhiqin Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ting Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Maoyi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Boxiong Bai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Nanhui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Cheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
41
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
42
|
Jeon MJ, Lee H, Jo S, Kang M, Jeong JH, Jeong SH, Lee JY, Song GY, Choo H, Lee S, Kim H. Discovery of novel amidobenzimidazole derivatives as orally available small molecule modulators of stimulator of interferon genes for cancer immunotherapy. Eur J Med Chem 2023; 261:115834. [PMID: 37862818 DOI: 10.1016/j.ejmech.2023.115834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Stimulator of interferon genes (STING) agonists show promise as immunomodulatory agents for cancer therapy. In this study, we report the discovery of a novel orally available STING agonist, SAP-04, that exhibits potent immunomodulatory effects for cancer therapy. By optimizing the amidobenzimidazole core with various pyridine-based heterocyclic substituents, we identified a monomeric variant that displayed more efficient STING agonistic activity than the corresponding dimer. SAP-04 efficiently induced cytokine secretion related to innate immunity by directly binding of the compound to the STING protein, followed by sequential signal transduction for the STING signaling pathway and type I interferon (IFN) responses. Further pharmacological validation in vitro and in vivo demonstrated the potential utility of SAP-04 as an immunomodulatory agent for cancer therapy in vivo. The in vivo anticancer effect was observed in a 4T1 breast tumor syngeneic mouse model through oral administration of the compound. Our findings suggest a possible strategy for developing synthetically accessible monomeric variants as orally available STING agonists.
Collapse
Affiliation(s)
- Min Jae Jeon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyelim Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seongman Jo
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Miso Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong Hyun Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - So Hyeon Jeong
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Joo-Youn Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gyu Yong Song
- Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyunah Choo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sanghee Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department for HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hyejin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
43
|
Hu MM, Shu HB. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 2023; 20:1403-1412. [PMID: 37932533 PMCID: PMC10687031 DOI: 10.1038/s41423-023-01086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
44
|
Elahi R, Hozhabri S, Moradi A, Siahmansouri A, Jahani Maleki A, Esmaeilzadeh A. Targeting the cGAS-STING pathway as an inflammatory crossroad in coronavirus disease 2019 (COVID-19). Immunopharmacol Immunotoxicol 2023; 45:639-649. [PMID: 37335770 DOI: 10.1080/08923973.2023.2215405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/14/2023] [Indexed: 06/21/2023]
Abstract
CONTEXT AND OBJECTIVE The emerging pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has imposed significant mortality and morbidity on the world. An appropriate immune response is necessary to inhibit SARS-CoV-2 spread throughout the body. RESULTS During the early stages of infection, the pathway of stimulators of interferon genes (STING), known as the cGAS-STING pathway, has a significant role in the induction of the antiviral immune response by regulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Interferon regulatory factor 3 (IRF3), two key pathways responsible for proinflammatory cytokines and type I IFN secretion, respectively. DISCUSSION During the late stages of COVID-19, the uncontrolled inflammatory responses, also known as cytokine storm, lead to the progression of the disease and poor prognosis. Hyperactivity of STING, leading to elevated titers of proinflammatory cytokines, including Interleukin-I (IL-1), IL-4, IL-6, IL-18, and tissue necrosis factor-α (TNF-α), is considered one of the primary mechanisms contributing to the cytokine storm in COVID-19. CONCLUSION Exploring the underlying molecular processes involved in dysregulated inflammation can bring up novel anti-COVID-19 therapeutic options. In this article, we aim to discuss the role and current studies targeting the cGAS/STING signaling pathway in both early and late stages of COVID-19 and COVID-19-related complications and the therapeutic potential of STING agonists/antagonists. Furthermore, STING agonists have been discussed as a vaccine adjuvant to induce a potent and persistent immune response.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Salar Hozhabri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
45
|
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Mater Today Bio 2023; 23:100839. [PMID: 38024837 PMCID: PMC10630661 DOI: 10.1016/j.mtbio.2023.100839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Genwen Hu
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hong Zhang
- Department of Interventional Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523560, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
46
|
Zhou S, Cheng F, Zhang Y, Su T, Zhu G. Engineering and Delivery of cGAS-STING Immunomodulators for the Immunotherapy of Cancer and Autoimmune Diseases. Acc Chem Res 2023; 56:2933-2943. [PMID: 37802125 PMCID: PMC10882213 DOI: 10.1021/acs.accounts.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway is an emerging therapeutic target for the prophylaxis and therapy of a variety of diseases, ranging from cancer, infectious diseases, to autoimmune disorders. As a cytosolic double stranded DNA (dsDNA) sensor, cGAS can bind with relatively long dsDNA, resulting in conformational change and activation of cGAS. Activated cGAS catalyzes the conversion of adenosine triphosphate (ATP) and guanosine triphosphate (GTP) into cGAMP, a cyclic dinucleotide (CDN). CDNs, including 2'3'-cGAMP, stimulate adapter protein STING on the endoplasmic membrane, triggering interferon regulatory factor 3 (IRF3) phosphorylation and nuclear factor kappa B (NF-κB) activation. This results in antitumor and antiviral type I interferon (IFN-I) responses. Moreover, cGAS-STING overactivation and the resulting IFN-I responses have been associated with a number of inflammatory and autoimmune diseases. This makes cGAS-STING appealing immunomodulatory targets for the prophylaxis and therapy of various related diseases. However, drug development of CDNs and CDN derivatives is challenged by their limited biostability, difficult formulation, poor pharmacokinetics, and inefficient tissue accumulation and cytosolic delivery. Though recent synthetic small molecular CDN- or non-CDN-based STING agonists have been reported with promising preclinical therapeutic efficacy, their therapeutic efficacy and safety remain to be fully evaluated preclinically and clinically. Therefore, it is highly desirable and clinically significant to advance drug development for cGAS-STING activation by innovative approaches, such as drug delivery systems and drug development for pharmacological immunomodulation of cGAS. In this Account, we summarize our recent research in the engineering and delivery of immunostimulatory or immunoregulatory modulators for cGAS and STING for the immunotherapy of cancer and autoimmune diseases. To improve the delivery efficiency of CDNs, we developed ionizable and pH-responsive polymeric nanocarriers to load STING agonists, aiming to improve the cellular uptake and facilitate the endosomal escape to induce efficient STING activation. We also codelivered STING agonists with complementary immunostimulatants in nanoparticle-in-hydrogel composites to synergetically elicit potent innate and adaptive antitumor responses that eradicate local and distant large tumors. Further, taking advantage of the simplicity of manufacturing and the established nucleic acid delivery system, we developed oligonucleotide-based cGAS agonists as immunostimulant immunotherapeutics as well as adjuvants for peptide antigens for cancer immunotherapy. To suppress the overly strong proinflammatory responses associated with cGAS-STING overactivation in some of the autoimmune disorders, we devised nanomedicine-in-hydrogel (NiH) that codelivers a cGAS inhibitor and cell-free DNA (cfDNA)-scavenging cationic nanoparticles (cNPs) for systemic immunosuppression in rheumatoid arthritis (RA) therapy. Lastly, we discussed current drug development by targeting cGAS-STING for cancer, infectious diseases, and autoimmune diseases, as well as the potential opportunities for utilizing cGAS-STING pathway for versatile applications in disease treatment.
Collapse
Affiliation(s)
- Shurong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan. Ann Arbor, Michigan 48109, United States
| | - Furong Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yu Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 31002, China
| | - Ting Su
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan. Ann Arbor, Michigan 48109, United States
| |
Collapse
|
47
|
Li Y, Sun Y, Zhang Y, Li Q, Wang S, Curtiss R, Shi H. A Bacterial mRNA-Lysis-Mediated Cargo Release Vaccine System for Regulated Cytosolic Surveillance and Optimized Antigen Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303568. [PMID: 37867213 PMCID: PMC10667801 DOI: 10.1002/advs.202303568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Engineered vector-based in vivo protein delivery platforms have made significant progress for both prophylactic and therapeutic applications. However, the lack of effective release strategies results in foreign cargo being trapped within the vector, restricting the provision of significant performance benefits and enhanced therapeutic results compared to traditional vaccines. Herein, the development of a Salmonella mRNA interferase regulation vector (SIRV) system is reported to overcome this challenge. The genetic circuits are engineered that (1) induce self-lysis to release foreign antigens into target cells and (2) activate the cytosolic surveillance cGAS-STING axis by releasing DNA into the cytoplasm. Delayed synthesis of the MazF interferase regulates differential mRNA cleavage, resulting in a 36-fold increase in the delivery of foreign antigens and modest activation of the inflammasome, which collectively contribute to the marked maturation of antigen-presenting cells (APCs). Bacteria delivering the protective antigen SaoA exhibits excellent immunogenicity and safety in mouse and pig models, significantly improving the survival rate of animals challenged with multiple serotypes of Streptococcus suis. Thus, the SIRV system enables the effective integration of various modular components and antigen cargos, allowing for the generation of an extensive range of intracellular protein delivery systems using multiple bacterial species in a highly efficient manner.
Collapse
Affiliation(s)
- Yu‐an Li
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Yanni Sun
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Yuqin Zhang
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Quan Li
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Shifeng Wang
- Department of Infectious Diseases and ImmunologyCollege of Veterinary MedicineUniversity of FloridaGainesvilleFL32611‐0880USA
| | - Roy Curtiss
- Department of Infectious Diseases and ImmunologyCollege of Veterinary MedicineUniversity of FloridaGainesvilleFL32611‐0880USA
| | - Huoying Shi
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
- Joint International Research Laboratory of Agriculture and Agri‐Product SafetyYangzhou University (JIRLAAPS)Yangzhou225000China
| |
Collapse
|
48
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
49
|
He Y, Hong C, Huang S, Kaskow JA, Covarrubias G, Pires IS, Sacane JC, Hammond PT, Belcher AM. STING Protein-Based In Situ Vaccine Synergizes CD4 + T, CD8 + T, and NK Cells for Tumor Eradication. Adv Healthc Mater 2023; 12:e2300688. [PMID: 37015729 PMCID: PMC10964211 DOI: 10.1002/adhm.202300688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Stimulator of interferon genes (STING) signaling is a promising target in cancer immunotherapy, with many ongoing clinical studies in combination with immune checkpoint blockade (ICB). Existing STING-based therapies largely focus on activating CD8+ T cell or NK cell-mediated cytotoxicity, while the role of CD4+ T cells in STING signaling has yet to be extensively studied in vivo. Here, a distinct CD4-mediated, protein-based combination therapy of STING and ICB as an in situ vaccine, is reported. The treatment eliminates subcutaneous MC38 and YUMM1.7 tumors in 70-100% of mice and protected all cured mice against rechallenge. Mechanistic studies reveal a robust TH 1 polarization and suppression of Treg of CD4+ T cells, followed by an effective collaboration of CD4+ T, CD8+ T, and NK cells to eliminate tumors. Finally, the potential to overcome host STING deficiency by significantly decreasing MC38 tumor burden in STING KO mice is demonstrated, addressing the translational challenge for the 19% of human population with loss-of-function STING variants.
Collapse
Affiliation(s)
- Yanpu He
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Celestine Hong
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shengnan Huang
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Material Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Justin A. Kaskow
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ivan S. Pires
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - James C. Sacane
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Angela M. Belcher
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Material Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
50
|
Govea-Alonso DO, García-Soto MJ, Mendoza-Pérez ES, Farfán-Castro S, Fuente D, González-Ortega O, Rosales-Mendoza S. Assessing the Adjuvant Effect of Layered Double Hydroxides (LDH) on BALB/c Mice. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5467. [PMID: 37570172 PMCID: PMC10419364 DOI: 10.3390/ma16155467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The discovery and validation of new adjuvants are critical areas for vaccinology. Mineral materials (e.g., alum microparticles) have been used for a long time as adjuvants in human vaccine formulations. Nonetheless, the use of nanosized materials is a promising approach to diversify the properties of adjuvants. Nanoclays are potential adjuvants proposed by some research groups. However, their adjuvant mechanisms and safety have not been fully elucidated. Herein, we aimed at expanding the knowledge on the potential adjuvanticity of layered double hydroxide (LDH) nanoparticles by reporting a detailed method for the synthesis and characterization of LDHs and the adsorption of a model antigen (bovine serum albumin, BSA). LDHs varying in diameter (from 56 to 88 nm) were obtained, and an in vitro evaluation revealed that the LDHs are not inherently toxic. BSA was passively adsorbed onto the LDHs, and the immunogenicity in mice of the conjugates obtained was compared to that of free BSA and BSA co-administered with alum (Alum-BSA). The LDH-BSA conjugates induced a higher humoral response that lasted for a longer period compared with that of free BSA and Alum-BSA, confirming that LDH exerts adjuvant effects. The 56 nm LDH particles were deemed as the more efficient carrier since they induced a higher and more balanced Th1/Th2 response than the 88 nm particles. This study is a contribution toward expanding the characterization and use of nanoclays in vaccinology and justifies further studies with pathogen-specific antigens.
Collapse
Affiliation(s)
- Dania O. Govea-Alonso
- Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico;
| | - Mariano J. García-Soto
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Emilio Sebastián Mendoza-Pérez
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Susan Farfán-Castro
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Diana Fuente
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Omar González-Ortega
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Sergio Rosales-Mendoza
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| |
Collapse
|