1
|
Shapiro RL, Bethiana T, Carter DM, Ortiz J, DeLong K, Anders N, Numan TA, Duggan E, Zierden HC, Ensign LM. Locally administered nanosuspension increases delivery of estradiol for the treatment of vaginal atrophy in mice. Drug Deliv Transl Res 2025; 15:609-620. [PMID: 38748201 DOI: 10.1007/s13346-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 01/01/2025]
Abstract
Vaginal atrophy affects up to 57% of post-menopausal women, with symptoms ranging from vaginal burning to dysuria. Estradiol hormone replacement therapy may be prescribed to alleviate these symptoms, though many vaginal products have drawbacks including increased discharge and local tissue toxicity due to their hypertonic nature. Here, we describe the development and characterization of a Pluronic F127-coated estradiol nanosuspension (NS) formulation for improved vaginal estradiol delivery. We compare the pharmacokinetics to the clinical comparator vaginal cream (Estrace) and demonstrate increased delivery of estradiol to the vaginal tissue. We utilized ovariectomized (OVX) mice as a murine model of post-menopausal vaginal atrophy and demonstrated equivalent efficacy in vaginal re-epithelialization when dosed with either the estradiol NS or Estrace cream. Further, we demonstrate compatibility of the estradiol NS with vaginal bacteria in vitro. We demonstrate that a Pluronic F127-coated estradiol NS may be a viable option for the treatment of post-menopausal vaginal atrophy.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Titania Bethiana
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Davell M Carter
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jairo Ortiz
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Kevin DeLong
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Nicole Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Tricia A Numan
- Department of Pathology, Sibley Memorial Hospital, Johns Hopkins University School of Medicine, Washington, DC, 20016, USA
| | - Eliza Duggan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Hannah C Zierden
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, College Park, MD, 20742, USA.
| | - Laura M Ensign
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Gynecology and Obstetrics, Department of Biomedical Engineering, and Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
2
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
3
|
Obuobi S, Škalko-Basnet N. Understanding vaginal biofilms: The first step in harnessing antimicrobial nanomedicine. J Control Release 2024; 376:1190-1208. [PMID: 39510257 DOI: 10.1016/j.jconrel.2024.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In spite of multipurpose technologies offering broad-spectrum prevention for sexually transmitted infections (STIs) and contraception, the STIs incidences rise worldwide. The situation is even more alarming considering continuous rise in antimicrobial resistance (AMR) that limits therapy options. In this review we address the specific challenges of efficiently treating vaginal infections locally, at the infection site, by understanding the underlying barriers to efficient treatment such as vaginal biofilms. Knowledge on vaginal biofilms remains, up to now, rather scarce and requires more attention. We therefore propose a 'back to basics' insight that seeks to probe the complexity and role of the vaginal microbiota, its relationship with vaginal biofilms and implications to future therapeutic modalities utilizing advanced nano delivery systems. Our key objective is to highlight the interplay between biofilm, (nano)formulation and therapy outcome rather than provide an overview of all nanoformulations that were challenged against biofilms. We focused on the anatomy of the female reproductive organ and its physiological changes from birth, the unique vaginal microenvironment in premenopausal and postmenopausal women, vaginal biofilm infections and current nanomedicine-based approaches to treat infections in the vaginal site. Finally, we offer our perspectives on the current challenges associated with vaginal delivery and key considerations that can aid in the design and development of safer and potent products against persisting vaginal infections.
Collapse
Affiliation(s)
- Sybil Obuobi
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
4
|
Carter D, Better M, Abbasi S, Zulfiqar F, Shapiro R, Ensign LM. Nanomedicine for Maternal and Fetal Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303682. [PMID: 37817368 PMCID: PMC11004090 DOI: 10.1002/smll.202303682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/25/2023] [Indexed: 10/12/2023]
Abstract
Conception, pregnancy, and childbirth are complex processes that affect both mother and fetus. Thus, it is perhaps not surprising that in the United States alone, roughly 11% of women struggle with infertility and 16% of pregnancies involve some sort of complication. This presents a clear need to develop safe and effective treatment options, though the development of therapeutics for use in women's health and particularly in pregnancy is relatively limited. Physiological and biological changes during the menstrual cycle and pregnancy impact biodistribution, pharmacokinetics, and efficacy, further complicating the process of administration and delivery of therapeutics. In addition to the complex pharmacodynamics, there is also the challenge of overcoming physiological barriers that impact various routes of local and systemic administration, including the blood-follicle barrier and the placenta. Nanomedicine presents a unique opportunity to target and sustain drug delivery to the reproductive tract and other relevant organs in the mother and fetus, as well as improve the safety profile and minimize side effects. Nanomedicine-based approaches have the potential to improve the management and treatment of infertility, obstetric complications, and fetal conditions.
Collapse
Affiliation(s)
- Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Gaikwad M, George A, Sivadas A, Karunakaran K, N S, Byradeddy SN, Mukhopadhyay C, Mudgal PP, Kulkarni M. Development and characterization of formulations based on combinatorial potential of antivirals against genital herpes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03468-y. [PMID: 39347802 DOI: 10.1007/s00210-024-03468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Herpes simplex virus type 2 (HSV-2) treatment faces challenges due to antiviral resistance and systemic side effects of oral therapies. Local delivery of antiviral agents, such as tenofovir (TDF) and zinc acetate dihydrate (ZAD), may offer improved efficacy and reduced systemic toxicity. This study's objective is to develop and evaluate local unit dose formulations of TDF and ZAD combination for local treatment of HSV-2 infection and exploring their individual and combinatory effects in vitro. The study involved the development of immediate-release film and pessary formulations containing TDF and ZAD. These formulations were characterized for physicochemical properties and in vitro drug release profiles. Cytotoxicity and antiviral activity assays were conducted to evaluate the individual and combinatory effects of TDF and ZAD. Film formulations released over 90% of the drugs within 1 h, and pessary formulations within 90 min, ensuring effective local drug delivery. ZAD showed moderate antiviral activity while TDF exhibited significant antiviral activity at non-cytotoxic concentrations. The combination of TDF and ZAD demonstrated synergistic effects in co-infection treatments, reducing the concentration required for 50% inhibition of HSV-2. Developed film and pessary formulations offer consistent and predictable local drug delivery, enhancing antiviral efficacy while minimizing systemic side effects. The combination of TDF and ZAD showed potential synergy against HSV-2, particularly in co-infection treatments. Further preclinical studies on pharmacokinetics, safety, and efficacy are necessary to advance these formulations toward clinical application.
Collapse
Affiliation(s)
- Mahesh Gaikwad
- SCES's Indira College of Pharmacy, New Mumbai Pune Highway, Tathawade, Pune, India
| | - Amal George
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Aparna Sivadas
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Kavitha Karunakaran
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Sudheesh N
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Siddappa N Byradeddy
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE, USA
| | | | - Piya Paul Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India.
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Mumbai Pune Highway, Tathawade, Pune, India.
| |
Collapse
|
6
|
Li J, Zhou M, Xie J, Chen J, Yang M, Ye C, Cheng S, Liu M, Li R, Tan R. Organoid modeling meets cancers of female reproductive tract. Cell Death Discov 2024; 10:410. [PMID: 39333482 PMCID: PMC11437045 DOI: 10.1038/s41420-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Diseases of the female reproductive system, especially malignant tumors, pose a serious threat to women's health worldwide. One of the key factors limiting research progress in this area is the lack of representative models. Organoid technology, especially tumor organoids, has been increasingly applied in the study of female reproductive system tumors due to their high heterogeneity, close resemblance to the physiological state, easy acquisition and cultivation advantages. They play a significant role in understanding the origin and causes of tumors, drug screening, and personalized treatment and more. This article reviews the organoid models for the female reproductive system, focusing on the cancer research advancements. It discusses the methods for constructing tumor organoids of the female reproductive tract and summarizes the limitations of current research. The aim is to offer a reference for future development and application of these organoid models, contributing to the advancement of anti-tumor drugs and treatment strategies for female reproductive tract cancer patients.
Collapse
Affiliation(s)
- Jiao Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengting Zhou
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xie
- Information Technology Center, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Jiani Chen
- Chongqing Medical University, Chongqing, China
| | - Mengni Yang
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjun Ye
- Rehabilitation Department, Changgeng Yining Hospital, Wenzhou, China
| | - Shihu Cheng
- Geriatric Department, Changgeng Yining Hospital, Wenzhou, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
7
|
Silva B, Marques EF, Gomes AC. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. Expert Opin Drug Deliv 2024; 21:1007-1027. [PMID: 39001669 DOI: 10.1080/17425247.2024.2380338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.
Collapse
Affiliation(s)
- Bruna Silva
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Thakur K, Telaprolu KC, Paterson D, Salem F, Arora S, Polak S. Development and verification of mechanistic vaginal absorption and metabolism model to predict systemic exposure after vaginal ring and gel application. Br J Clin Pharmacol 2024; 90:1428-1449. [PMID: 38450818 DOI: 10.1111/bcp.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
AIMS The current work describes the development of mechanistic vaginal absorption and metabolism model within Simcyp Simulator to predict systemic concentrations following vaginal application of ring and gel formulations. METHODS Vaginal and cervix physiology parameters were incorporated in the model development. The study highlights the model assumptions including simulation results comparing systemic concentrations of 5 different compounds, namely, dapivirine, tenofovir, lidocaine, ethinylestradiol and etonogestrel, administered as vaginal ring or gel. Due to lack of data, the vaginal absorption parameters were calculated based on assumptions or optimized. The model uses release rate/in vitro release profiles with formulation characteristics to predict drug mass transfer across vaginal tissue into the systemic circulation. RESULTS For lidocaine and tenofovir vaginal gel, the predicted to observed AUC0-t and Cmax ratios were well within 2-fold error limits. The average fold error (AFE) and absolute AFE indicating bias and precision of predictions range from 0.62 to 1.61. For dapivirine, the pharmacokinetic parameters are under and overpredicted in some studies due to lack of formulation composition details and relevance of release rate used in ring model. The predicted to observed AUC0-t and Cmax ratios were well within 2-fold error limits for etonogestrel and ethinylestradiol vaginal ring (AFEs and absolute AFEs from 0.84 to 1.83). CONCLUSION The current study provides first of its kind physiologically based pharmacokinetic framework integrating physiology, population and formulation data to carry out in silico mechanistic vaginal absorption studies, with the potential for virtual bioequivalence assessment in the future.
Collapse
Affiliation(s)
| | | | | | - Farzaneh Salem
- Simcyp Division, Certara UK Limited, Sheffield, UK
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, UK
| | - Sumit Arora
- Simcyp Division, Certara UK Limited, Sheffield, UK
- Janssen Pharmaceutical, Companies of Johnson & Johnson, Beerse, Belgium
| | - Sebastian Polak
- Simcyp Division, Certara UK Limited, Sheffield, UK
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
9
|
Subi MTM, Selvasudha N, Vasanthi HR. Vaginal drug delivery system: A promising route of drug administration for local and systemic diseases. Drug Discov Today 2024; 29:104012. [PMID: 38705512 DOI: 10.1016/j.drudis.2024.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Scientists around the globe have done cutting-edge research to facilitate the delivery of poorly absorbed drugs via various routes of administration and different delivery systems. The vaginal route of administration has emerged as a promising mode of drug delivery, attributed to its anatomy and physiology. Novel drug delivery systems overcome the demerits of conventional systems via nanobiotechnology. This review will focus on the disorders associated with women that are currently targeted by vaginal drug delivery systems. In addition, it will provide insights into innovations in drug formulations for the general benefit of women.
Collapse
Affiliation(s)
- M Tamil Mani Subi
- Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, India
| | | | - Hannah R Vasanthi
- Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, India.
| |
Collapse
|
10
|
Thapa R, Pandey P, Parat MO, Gurung S, Parekh HS. Phase transforming in situ gels for sustained and controlled transmucosal drug delivery via the intravaginal route. Int J Pharm 2024; 655:124054. [PMID: 38548071 DOI: 10.1016/j.ijpharm.2024.124054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Direct, reliable, controlled, and sustained drug delivery to female reproductive tract (FRT) remains elusive, with conventional dosage forms falling way short of the mark, leading to premature leakage, erratic drug delivery, and loss of compliance. Historically, the intravaginal route remains underserved by the pharmaceutical sector. To comprehensively address this, we turned our focus to phase-transforming sol-gels, using poloxamers, a thermosensitive polymer and, doxycycline (as hyclate salt, DOXH) as our model agent given its potential use in sexually transmitted infections (STIs). We further enhanced mucoadhesiveness through screening of differing viscosity grade hydroxypropyl methyl celluloses (HPMCs). The optimised sol-gels remained gelled at body temperature (<37 °C) and were prepared in buffer aligned to vaginal cavity pH and osmolality. Lead formulations were progressed based on their ability to retain key rheological properties, and acidic pH in the presence of simulated vaginal fluid (SVF). From a shelf-life perspective, DOXH stability, gelation temperature (Tsol-gel), and pH to three months (2-8 °C) was attained. In summary, the meticulously engineered, phase-transforming sol-gels provided sustained mucoretention despite dilution by vaginal fluid, paving the way for localised antimicrobial drug delivery at concentrations that potentially far exceed the minimum inhibitory concentration (MIC) for target STI-causing bacteria of the FRT.
Collapse
Affiliation(s)
- Ritu Thapa
- School of Pharamcy, The University of Queensland, 20 Cornwall St, Woollongabba, QLD 4102, Australia
| | - Preeti Pandey
- School of Pharamcy, The University of Queensland, 20 Cornwall St, Woollongabba, QLD 4102, Australia.
| | - Marie-Odile Parat
- School of Pharamcy, The University of Queensland, 20 Cornwall St, Woollongabba, QLD 4102, Australia
| | - Shila Gurung
- School of Health and Allied Sciences, Pokhara University, Pokhara-30, Kaski 33700, Nepal
| | - Harendra S Parekh
- School of Pharamcy, The University of Queensland, 20 Cornwall St, Woollongabba, QLD 4102, Australia.
| |
Collapse
|
11
|
Ye Z, Jiang P, Zhu Q, Pei Z, Hu Y, Zhao G. Molecular stratification of the human fetal vaginal epithelium by spatial transcriptome analysis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1521-1536. [PMID: 38666303 PMCID: PMC11612642 DOI: 10.3724/abbs.2024063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 11/01/2024] Open
Abstract
The human vaginal epithelium is a crucial component of numerous reproductive processes and serves as a vital protective barrier against pathogenic invasion. Despite its significance, a comprehensive exploration of its molecular profiles, including molecular expression and distribution across its multiple layers, has not been performed. In this study, we perform a spatial transcriptomic analysis within the vaginal wall of human fetuses to fill this knowledge gap. We successfully categorize the vaginal epithelium into four distinct zones based on transcriptomic profiles and anatomical features. This approach reveals unique transcriptomic signatures within these regions, allowing us to identify differentially expressed genes and uncover novel markers for distinct regions of the vaginal epithelium. Additionally, our findings highlight the varied expressions of keratin ( KRT) genes across different zones of the vaginal epithelium, with a gradual shift in expression patterns observed from the basal layer to the surface/superficial layer. This suggests a potential differentiation trajectory of the human vaginal epithelium, shedding light on the dynamic nature of this tissue. Furthermore, abundant biological processes are found to be enriched in the basal zone by KEGG pathway analysis, indicating an active state of the basal zone cells. Subsequently, the expressions of latent stem cell markers in the basal zone are identified. In summary, our research provides a crucial understanding of human vaginal epithelial cells and the complex mechanisms of the vaginal mucosa, with potential applications in vaginal reconstruction and drug delivery, making this atlas a valuable tool for future research in women's health and reproductive medicine.
Collapse
Affiliation(s)
- Ziying Ye
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| | - Peipei Jiang
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| | - Qi Zhu
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| | - Zhongrui Pei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
| | - Yali Hu
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| | - Guangfeng Zhao
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| |
Collapse
|
12
|
Shatabayeva E, Kaldybekov DB, Ulmanova L, Zhaisanbayeva BA, Mun EA, Kenessova ZA, Kudaibergenov SE, Khutoryanskiy VV. Enhancing Mucoadhesive Properties of Gelatin through Chemical Modification with Unsaturated Anhydrides. Biomacromolecules 2024; 25:1612-1628. [PMID: 38319691 PMCID: PMC10934270 DOI: 10.1021/acs.biomac.3c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Gelatin is a water-soluble natural polyampholyte with poor mucoadhesive properties. It has traditionally been used as a major ingredient in many pharmaceuticals, including soft and hard capsules, suppositories, tissue engineering, and regenerative medicine. The mucoadhesive properties of gelatin can be improved by modifying it through conjugation with specific adhesive unsaturated groups. In this study, gelatin was modified by reacting with crotonic, itaconic, and methacrylic anhydrides in varying molar ratios to yield crotonoylated-, itaconoylated-, and methacryloylated gelatins (abbreviated as Gel-CA, Gel-IA, and Gel-MA, respectively). The successful synthesis was confirmed using 1H NMR, FTIR spectroscopies, and colorimetric TNBSA assay. The effect of chemical modification on the isoelectric point was studied through viscosity and electrophoretic mobility measurements. The evolution of the storage (G') and loss (G'') moduli was employed to determine thermoreversible gelation points of modified and unmodified gelatins. The safety of modified gelatin derivatives was assessed with an in vivo slug mucosal irritation test (SMIT) and an in vitro MTT assay utilizing human pulmonary fibroblasts cell line. Two different model dosage forms, such as physical gels and spray-dried microparticles, were prepared and their mucoadhesive properties were evaluated using a flow-through technique with fluorescent detection and a tensile test with ex vivo porcine vaginal tissues and sheep nasal mucosa. Gelatins modified with unsaturated groups exhibited superior mucoadhesive properties compared to native gelatin. The enhanced ability of gelatin modified with these unsaturated functional groups is due to the formation of covalent bonds with cysteine-rich subdomains present in the mucin via thiol-ene click Michael-type addition reactions occurring under physiologically relevant conditions.
Collapse
Affiliation(s)
- Elvira
O. Shatabayeva
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
| | - Daulet B. Kaldybekov
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
- Institute
of Polymer Materials and Technology, 050019 Almaty, Kazakhstan
| | - Leila Ulmanova
- School
of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Balnur A. Zhaisanbayeva
- School
of Engineering and Digital Sciences, Nazarbayev
University, 010000 Astana, Kazakhstan
| | - Ellina A. Mun
- School
of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zarina A. Kenessova
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
| | | | - Vitaliy V. Khutoryanskiy
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
| |
Collapse
|
13
|
Cao Z, Pang Y, Pu J, Liu J. Bacteria-based drug delivery for treating non-oncological diseases. J Control Release 2024; 366:668-683. [PMID: 38219912 DOI: 10.1016/j.jconrel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Bacteria inhabit all over the human body, especially the skin, gastrointestinal tract, respiratory tract, urogenital tract, as well as specific lesion sites, such as wound and tumor. By leveraging their distinctive attributes including rapid proliferation, inherent abilities to colonize various biointerfaces in vivo and produce diverse biomolecules, and the flexibility to be functionalized via genetic engineering or surface modification, bacteria have been widely developed as living therapeutic agents, showing promising potential to make a great impact on the exploration of advanced drug delivery systems. In this review, we present an overview of bacteria-based drug delivery and its applications in treating non-oncological diseases. We systematically summarize the physiological positions where living bacterial therapeutic agents can be delivered to, including the skin, gastrointestinal tract, respiratory tract, and female genital tract. We discuss the success of using bacteria-based drug delivery systems in the treatment of diseases that occur in specific locations, such as skin wound healing/infection, inflammatory bowel disease, respiratory diseases, and vaginitis. We also discuss the advantages as well as the limitations of these living therapeutics and bacteria-based drug delivery, highlighting the key points that need to be considered for further translation. This review article may provide unique insights for designing next-generation bacteria-based therapeutics and developing advanced drug delivery systems.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
14
|
Yadav G, Srinivasan G, Jain A. Cervical cancer: Novel treatment strategies offer renewed optimism. Pathol Res Pract 2024; 254:155136. [PMID: 38271784 DOI: 10.1016/j.prp.2024.155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Cervical cancer poses a significant global public health issue, primarily affecting women, and stands as one of the four most prevalent cancers affecting woman globally, which includes breast cancer, colorectal cancer, lung cancer and cervical cancer. Almost every instance of cervical cancer is associated with infections caused by the human papillomavirus (HPV). Prevention of this disease hinges on screening and immunization of the patients, yet disparities in cervical cancer occurrence exist between developed and developing nations. Multiple factors contribute to cervical cancer, including sexually transmitted diseases (STDs), reproductive and hormonal influences, genetics, and host-related factors. Preventive programs, lifestyle improvements, smoking cessation, and prompt precancerous lesion treatment can reduce the occurrence of cervical cancer. The persistency and recurrence of the cases are inherited even after the innovative treatments available for cervical cancer. For patient's ineligible for curative surgery or radiotherapy, palliative chemotherapy remains the standard treatment. Novel treatment strategies are emerging to combat the limited effectiveness of chemotherapy. Nanocarriers offer the promise of concurrent chemotherapeutic drug delivery as a beacon of hope in cervical cancer research. The primary aim of this review study is to contribute to a thorough understanding of cervical cancer, fostering awareness and informed decision-making and exploring novel treatment methods such as nanocarriers for the treatment of cervical cancer. This manuscript delves into cutting-edge approaches, exploring the potential of nanocarriers and other innovative treatments. Our study underscores the critical need for global awareness, early intervention, and enhanced treatment options. Novel strategies, such as nanocarriers, offer renewed optimism in the battle against cervical cancer. This research provides compelling evidence for the investigation of these novel therapeutic approaches within the medical field. Cervical cancer remains a formidable adversary, but with ongoing advancements and unwavering commitment, we move closer to a future where it is a preventable and treatable disease, even in the most underserved regions.
Collapse
Affiliation(s)
- Gangotri Yadav
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India.
| | - Ganga Srinivasan
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| | - Ashish Jain
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| |
Collapse
|
15
|
Teworte S, Aleandri S, Weber JR, Carone M, Luciani P. Mucoadhesive 3D printed vaginal ovules to treat endometriosis and fibrotic uterine diseases. Eur J Pharm Sci 2023; 188:106501. [PMID: 37339708 DOI: 10.1016/j.ejps.2023.106501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Gynaecological health is a neglected field of research that includes conditions such as endometriosis, uterine fibroids, infertility, viral and bacterial infections, and cancers. There is a clinical need to develop dosage forms for gynecological diseases that increase efficacy and reduce side effects and explore new materials with properties tailored to the vaginal mucosa and milieu. Here, we developed a 3D printed semisolid vaginal ovule containing pirfenidone, a repurposed drug candidate for endometriosis. Vaginal drug delivery allows direct targeting of the reproductive organs via the first uterine pass effect, but vaginal dosage forms can be challenging to self-administer and retain in situ for periods of more than 1-3 h. We show that a semisoft alginate-based vaginal suppository manufactured using semisolid extrusion additive manufacturing is superior to vaginal ovules made using standard excipients. The 3D-printed ovule showed a controlled release profile of pirfenidone in vitro in standard and biorelevant release tests, as well as better mucoadhesive properties ex vivo. An exposure time of 24 h of pirfenidone to a monolayer culture of an endometriotic epithelial cell line, 12Z, is necessary to reduce the cells' metabolic activity, which demonstrates the need for a sustained release formulation of pirfenidone. 3D printing allowed us to formulate mucoadhesive polymers into a semisolid ovule with controlled release of pirfenidone. This work enables further preclinical and clinical studies into vaginally administered pirfenidone to assess its efficacy as a repurposed endometriosis treatment.
Collapse
Affiliation(s)
- Sarah Teworte
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Jessica R Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Marianna Carone
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
| |
Collapse
|
16
|
Narmani A, Jahedi R, Bakhshian-Dehkordi E, Ganji S, Nemati M, Ghahramani-Asl R, Moloudi K, Hosseini SM, Bagheri H, Kesharwani P, Khani A, Farhood B, Sahebkar A. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Deliv 2023; 20:937-954. [PMID: 37294853 DOI: 10.1080/17425247.2023.2223941] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ehsan Bakhshian-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Hosseini
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ali Khani
- Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benival D, Kommineni N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15041313. [PMID: 37111795 PMCID: PMC10144389 DOI: 10.3390/pharmaceutics15041313] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chitosan, a biocompatible and biodegradable polysaccharide derived from chitin, has surfaced as a material of promise for drug delivery and biomedical applications. Different chitin and chitosan extraction techniques can produce materials with unique properties, which can be further modified to enhance their bioactivities. Chitosan-based drug delivery systems have been developed for various routes of administration, including oral, ophthalmic, transdermal, nasal, and vaginal, allowing for targeted and sustained release of drugs. Additionally, chitosan has been used in numerous biomedical applications, such as bone regeneration, cartilage tissue regeneration, cardiac tissue regeneration, corneal regeneration, periodontal tissue regeneration, and wound healing. Moreover, chitosan has also been utilized in gene delivery, bioimaging, vaccination, and cosmeceutical applications. Modified chitosan derivatives have been developed to improve their biocompatibility and enhance their properties, resulting in innovative materials with promising potentials in various biomedical applications. This article summarizes the recent findings on chitosan and its application in drug delivery and biomedical science.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Pranav Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Amit Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
18
|
Shen C, Zhang ZJ, Li XX, Huang YP, Wang YX, Zhou H, Xiong L, Wen Y, Zou H, Liu ZT. Intersection of nanomaterials and organoids technology in biomedicine. Front Immunol 2023; 14:1172262. [PMID: 37187755 PMCID: PMC10175666 DOI: 10.3389/fimmu.2023.1172262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Organoids are stem cell-derived, self-organizing, 3D structures. Compared to the conventional 2D cell culture method, 3D cultured organoids contain a variety of cell types that can form functional "micro-organs" and can be used to simulate the occurrence process and physiological pathological state of organ tissues more effectively. Nanomaterials (NMs) are becoming indispensable in the development of novel organoids. Understanding the application of nanomaterials in organoid construction can, therefore, provide researchers with ideas for the development of novel organoids. Here, we discuss the application status of NMs in various organoid culture systems and the research direction of NMs combined with organoids in the biomedical field.
Collapse
Affiliation(s)
- Chen Shen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi-jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-xue Li
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-peng Huang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong-xiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Zou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Heng Zou, ; Zhong-tao Liu,
| | - Zhong-tao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Heng Zou, ; Zhong-tao Liu,
| |
Collapse
|