1
|
Zhang F, Chow RD, He E, Dong C, Xin S, Mirza D, Feng Y, Tian X, Verma N, Majety M, Zhang Y, Wang G, Chen S. Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. Nat Biotechnol 2025:10.1038/s41587-024-02535-2. [PMID: 39820813 DOI: 10.1038/s41587-024-02535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
The complex nature of the immunosuppressive tumor microenvironment (TME) requires multi-agent combinations for optimal immunotherapy. Here we describe multiplex universal combinatorial immunotherapy via gene silencing (MUCIG), which uses CRISPR-Cas13d to silence multiple endogenous immunosuppressive genes in the TME, promoting TME remodeling and enhancing antitumor immunity. MUCIG vectors targeting four genes delivered by adeno-associated virus (AAV) (Cd274/Pdl1, Lgals9/Galectin9, Lgals3/Galectin3 and Cd47; AAV-Cas13d-PGGC) demonstrate significant antitumor efficacy across multiple syngeneic tumor models, remodeling the TME by increasing CD8+ T-cell infiltration while reducing neutrophils. Whole transcriptome profiling validates the on-target knockdown of the four target genes and shows limited potential off-target or downstream gene alterations. AAV-Cas13d-PGGC outperforms corresponding shRNA treatments and individual gene knockdown. We further optimize MUCIG by employing high-fidelity Cas13d (hfCas13d), which similarly showed potent gene silencing and in vivo antitumor efficacy, without weight loss or liver toxicity. MUCIG represents a universal method to silence multiple immune genes in vivo in a programmable manner, offering broad efficacy across multiple tumor types.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Emily He
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Daniyal Mirza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Yanzhi Feng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Xiaolong Tian
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Nipun Verma
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Medha Majety
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Yale College, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
3
|
Zhao Z, Fetse J, Mamani UF, Guo Y, Li Y, Patel P, Liu Y, Lin CY, Li Y, Mustafa B, Cheng K. Development of a peptide-based tumor-activated checkpoint inhibitor for cancer immunotherapy. Acta Biomater 2024:S1742-7061(24)00769-4. [PMID: 39716541 DOI: 10.1016/j.actbio.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction. The peptide was modified with a PEG chain through a novel matrix metalloproteinase-2 (MMP-2)-specific cleavage linker. The modified TR3 peptide self-assembles into a micelle-like nanoparticle (TR3-M-NP), which remains inactive and unable to block the PD-1/PD-L1 interaction in its native form. However, upon cleavage by MMP-2 in tumors, it releases the active peptide. The TR3-M-NP5k nanoparticle was specifically activated in tumors through enzyme-mediated cleavage, leading to the inhibition of tumor growth and extended survival compared to control groups. In summary, TR3-M-NP shows great potential as a tumor-responsive immunotherapy agent with reduced toxicities. STATEMENT OF SIGNIFICANCE: In this study, we developed a bioactive peptide-based checkpoint inhibitor that is active only in tumors and not in normal tissues, thereby potentially avoiding immune-related adverse effects. We discovered a short anti-PD-L1 peptide, TR3, that blocks the PD-1/PD-L1 interaction. We chemically modified the TR3 peptide to self-assemble into a micelle-like nanoparticle (TR3-M-NP), which itself cannot block the PD-1/PD-L1 interaction but releases the active TR3 peptide in tumors upon cleavage by MMP-2. In contrast, the nanoparticle is randomly degraded in normal tissues into peptides fragments that cannot block the PD-1/PD-L1 interaction. Upon intraperitoneal injection, TR3-M-NP5k was activated specifically in tumors through enzyme cleavage, leading to the inhibition of tumor growth and extended survival compared to the control groups. In summary, TR3-M-NP holds significant promise as a tumor-responsive immunotherapy agent with reduced toxicities. The bioactive platform has the potential to be used for other types of checkpoint inhibitor.
Collapse
Affiliation(s)
- Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuhan Guo
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yongren Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Bahaa Mustafa
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
4
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2024; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
5
|
Dai J, Fang L, Wang X, Hua J, Tu Y, Li S, He K, Hang L, Xu Y, Fang J, Wang L, Wang J, Ma P, Jiang G. Configuration-Mediated Efficient Non-Radiative Transition for R848-Assisted Photothermal Immunotherapy to Inhibit Tumor Growth and Metastasis by An In Situ Tumor Vaccine Strategy. Angew Chem Int Ed Engl 2024:e202417871. [PMID: 39625062 DOI: 10.1002/anie.202417871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 12/12/2024]
Abstract
Cancer metastasis remains a critical factor contributing to the current limitations in cancer treatment. Photothermal immunotherapy has emerged as a safe and potent therapeutic approach, demonstrating the capability to suppress tumor growth and metastasis. While researchers have extensively investigated various structural modifications to enhance photothermal conversion performance, the influence of molecular configuration has received comparatively limited attention. In this study, we synthesized two isomers, CZTBT and LVTBT, which possessed distinct configurations. LVTBT, characterized by a flatter molecular configuration, exhibited an extended absorption wavelength and a higher molar extinction coefficient. Its excited state facilitated stronger rotation for non-radiative transitions, leading to a high photothermal conversion efficiency (PCE) of 36.3 %. When combined with R848, LVTBT@R848 nanoparticles (NPs)-mediated photothermal immunotherapy functioned as an in situ tumor vaccine, promoting the maturation of dendritic cells (DCs), T cell infiltration, and the differentiation of natural killer (NK) cells and memory T cells, thereby activating the strong immune response. Consequently, it significantly inhibited the growth of both primary and distant tumors, while also limiting lung metastasis. In summary, this study proposed a configuration-mediated non-radiative transition strategy for efficient photothermal immunotherapy, advancing the frontiers of organic photothermal agents (OPTAs) design and synthesis.
Collapse
Affiliation(s)
- Jianan Dai
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, 136000, P. R. China
- Jilin Provincial Key Laboratory of Wide Bandgap Semiconductor Material Growth and Device Applications, Jilin Normal University, Changchun, 130103, P. R. China
| | - Laiping Fang
- Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, 518037, P. R. China
| | - Xuan Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, 136000, P. R. China
- Jilin Provincial Key Laboratory of Wide Bandgap Semiconductor Material Growth and Device Applications, Jilin Normal University, Changchun, 130103, P. R. China
| | - Jie Hua
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, 136000, P. R. China
- Jilin Provincial Key Laboratory of Wide Bandgap Semiconductor Material Growth and Device Applications, Jilin Normal University, Changchun, 130103, P. R. China
| | - Yike Tu
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| | - Shufang Li
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| | - Kuo He
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| | - Yuan Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, P. R. China
| | - Jin Fang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, P. R. China
| | - Lina Wang
- Medical Ethics Office, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| | - Jin Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, 136000, P. R. China
- Jilin Provincial Key Laboratory of Wide Bandgap Semiconductor Material Growth and Device Applications, Jilin Normal University, Changchun, 130103, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, P. R. China
| | - Guihua Jiang
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| |
Collapse
|
6
|
Baird JR, Alice AF, Saito R, Chai Q, Han M, Ng C, Han S, Fernandez B, Ledoux S, Grosse J, Korman AJ, Potuznik M, Rajamanickam V, Bernard B, Crittenden MR, Gough MJ. A novel small molecule Enpp1 inhibitor improves tumor control following radiation therapy by targeting stromal Enpp1 expression. Sci Rep 2024; 14:29913. [PMID: 39622844 PMCID: PMC11612208 DOI: 10.1038/s41598-024-80677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
The uniqueness in each person's cancer cells and variation in immune infiltrates means that each tumor represents a unique problem, but therapeutic targets can be found among their shared features. Radiation therapy alters the interaction between the cancer cells and the stroma through release of innate adjuvants. The extranuclear DNA that can result from radiation damage of cells can result in production of the second messenger cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) by cyclic GMP-AMP synthase (cGAS). In turn, cGAMP can activate the innate sensor stimulator of interferon genes (STING), resulting in innate immune activation. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) is a phosphodiesterase that can be expressed by cancer cells that can degrade cGAMP, thus can decrease or block STING activation following radiation therapy, impairing the innate immunity that is critical to support adaptive immune control of tumors. We observed that many human and murine cancer cells lack Enpp1 expression, but that Enpp1 is expressed in cells of the tumor stroma where it limits tumor control by radiation therapy. We demonstrate in preclinical models the efficacy of a novel Enpp1 inhibitor and show that this inhibitor improves tumor control by radiation even where the cancer cells lack Enpp1. This mechanism requires STING and type I interferon (IFN) receptor expression by non-cancer cells and is dependent on CD8 T cells as a final effector mechanism of tumor control. This suggests that Enpp1 inhibition may be an effective partner for radiation therapy regardless of whether cancer cells express Enpp1. This broadens the potential patient base for whom Enpp1 inhibitors can be applied to improve innate immune responses following radiation therapy.
Collapse
Affiliation(s)
- Jason R Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Roland Saito
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Qingqing Chai
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Minhua Han
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Cindy Ng
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Stephanie Han
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Beth Fernandez
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Sarah Ledoux
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Johannes Grosse
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Alan J Korman
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Megan Potuznik
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Venkatesh Rajamanickam
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Brady Bernard
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA.
| |
Collapse
|
7
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2024; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
8
|
Chen KS, Manoury-Battais S, Kanaya N, Vogiatzi I, Borges P, Kruize SJ, Chen YC, Lin LY, Rossignoli F, Mendonca NC, Shah K. An inducible RIPK3-driven necroptotic system enhances cancer cell-based immunotherapy and ensures safety. J Clin Invest 2024; 135:e181143. [PMID: 39560995 PMCID: PMC11735097 DOI: 10.1172/jci181143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Recent progress in cancer cell-based therapies has led to effective targeting and robust immune responses against cancer. However, the inherent safety risks of using live cancer cells necessitate the creation of an optimized safety switch without hindering the efficacy of immunotherapy. The existing safety switches typically induce tolerogenic cell death, potentially leading to an immunosuppressive tumor immune microenvironment (TIME), which is counterproductive to the goals of immunotherapy. Here, we developed and characterized an inducible receptor-interacting protein kinase 3-driven (RIPK3-driven) necroptotic system that serves a dual function of safety switch as well as inducer of immunogenic cell death, which in turn stimulates antitumor immune responses. We show that activation of the RIPK3 safety switch triggered immunogenic responses marked by an increased release of ATP and damage-associated molecular patterns (DAMPs). Compared with other existing safety switches, incorporating the RIPK3 system inhibited tumor growth, improved survival outcomes in tumor-bearing mice, and fostered long-term antitumor immunity. Moreover, the RIPK3 system reinvigorated the TIME by promoting DC maturation, polarizing the macrophages toward a M1 phenotype, and reducing the exhaustion of CD4+ and CD8+ T lymphocytes. Our study highlights the dual role of the RIPK3-driven necroptotic system in improving the safety and efficacy of cancer cell-based therapy, with broader implications for cellular therapies.
Collapse
Affiliation(s)
- Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Manoury-Battais
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Education and Research in Biology, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nobuhiko Kanaya
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ioulia Vogiatzi
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paulo Borges
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sterre J. Kruize
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Ching Chen
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Y. Lin
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalia Claire Mendonca
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Amosu MM, Jankowski AM, McCright JC, Yang BE, Grano de Oro Fernandez J, Moore KA, Gadde HS, Donthi M, Kaluzienski ML, Maisel K. Plasmacytoid Dendritic Cells Mediate CpG-ODN-induced Increase in Survival in a Mouse Model of Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2024; 71:519-533. [PMID: 38990702 PMCID: PMC11568470 DOI: 10.1165/rcmb.2023-0410oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also reactivate immunity, and the TLR9 agonist CpG oligodeoxynucleotide (CpG-ODN) has been effective in treating lung cancer in animal models. In this study, we investigated the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor anti-PD1 and standard of care rapamycin, and determined the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival, likely because of fewer local side effects, but increased LAM nodule count and size compared with the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of T-helper type 17 cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells because depletion of plasmacytoid dendritic cells reduces survival and abrogates T-helper type 17 cell response. Finally, we found that CpG-ODN treatment is effective in early-stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.
Collapse
Affiliation(s)
- Mayowa M Amosu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Ashleigh M Jankowski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacob C McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Bennett E Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | | | - Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Havish S Gadde
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Mehul Donthi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Michele L Kaluzienski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
10
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Wei Y, Li R, Wang Y, Fu J, Liu J, Ma X. Nanomedicines Targeting Tumor Cells or Tumor-Associated Macrophages for Combinatorial Cancer Photodynamic Therapy and Immunotherapy: Strategies and Influencing Factors. Int J Nanomedicine 2024; 19:10129-10144. [PMID: 39381025 PMCID: PMC11460276 DOI: 10.2147/ijn.s466315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Immunotherapy is a promising cancer treatment because of its ability to sustainably enhance the natural immune response. However, the effects of multiple immunotherapies, including ICIs, are limited by resistance to these agents, immune-related adverse events, and a lack of reasonable therapeutic targets available at the right time and place. The tumor microenvironment (TME), which features tumor-associated macrophages (TAMs), plays a significant role in resistance owing to its hypoxic microenvironment and lack of blood vessels, resulting in cancer immune evasion. To enhance immunotherapy, photodynamic therapy (PDT) can increase innate and adaptive immune responses through immunogenic cell death (ICD) and improve the TME. Traditional photosensitizers (PSs) also include novel nanomedicines to precisely target tumor cells or TAMs. Here, we reviewed and summarized current strategies and possible influencing factors for nanomedicines for cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Yuhao Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yusha Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jiali Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People’s Republic of China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
12
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
13
|
Phan T, Fan D, Melstrom LG. Developing Vaccines in Pancreatic Adenocarcinoma: Trials and Tribulations. Curr Oncol 2024; 31:4855-4884. [PMID: 39329989 PMCID: PMC11430674 DOI: 10.3390/curroncol31090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma represents one of the most challenging malignancies to treat, with dismal survival rates despite advances in therapeutic modalities. Immunotherapy, particularly vaccines, has emerged as a promising strategy to harness the body's immune system in combating this aggressive cancer. This abstract reviews the trials and tribulations encountered in the development of vaccines targeting pancreatic adenocarcinoma. Key challenges include the immunosuppressive tumor microenvironment, the heterogeneity of tumor antigens, and a limited understanding of immune evasion mechanisms employed by pancreatic cancer cells. Various vaccine platforms, including peptide-based, dendritic cell-based, and viral vector-based vaccines, have been explored in preclinical and clinical settings. However, translating promising results from preclinical models to clinical efficacy has proven elusive. In recent years, mRNA vaccines have emerged as a promising immunotherapeutic strategy in the fight against various cancers, including pancreatic adenocarcinoma. We will discuss the potential applications, opportunities, and challenges associated with mRNA vaccines in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Darrell Fan
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
14
|
Sheth RA, Wehrenberg-Klee E, Patel SP, Brock KK, Fotiadis N, de Baère T. Intratumoral Injection of Immunotherapeutics: State of the Art and Future Directions. Radiology 2024; 312:e232654. [PMID: 39078294 PMCID: PMC11294769 DOI: 10.1148/radiol.232654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 07/31/2024]
Abstract
Systemic immunotherapies have led to tremendous progress across the cancer landscape. However, several challenges exist, potentially limiting their efficacy in the treatment of solid tumors. Direct intratumoral injection can increase the therapeutic index of immunotherapies while overcoming many of the barriers associated with systemic administration, including limited bioavailability to tumors and potential systemic safety concerns. However, challenges remain, including the lack of standardized approaches for administration, issues relating to effective drug delivery, logistical hurdles, and safety concerns specific to this mode of administration. This article reviews the biologic rationale for the localized injection of immunotherapeutic agents into tumors. It also addresses the existing limitations and practical considerations for safe and effective implementation and provide recommendations for optimizing logistics and treatment workflows. It also highlights the critical role that radiologists, interventional radiologists, and medical physicists play in intratumoral immunotherapy with respect to target selection, image-guided administration, and response assessment.
Collapse
Affiliation(s)
- Rahul A. Sheth
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Eric Wehrenberg-Klee
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Sapna P. Patel
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Kristy K. Brock
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Nicos Fotiadis
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Thierry de Baère
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| |
Collapse
|
15
|
Zou Z, Shen J, Xue D, Li H, Xu L, Cao W, Wang W, Fu YX, Peng H. Anti-PD-1 cis-delivery of low-affinity IL-12 activates intratumoral CD8 +T cells for systemic antitumor responses. Nat Commun 2024; 15:4701. [PMID: 38830882 PMCID: PMC11148143 DOI: 10.1038/s41467-024-49034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapies function by alleviating immunosuppression on tumor-infiltrating lymphocytes (TILs) but are often insufficient to fully reactivate these dysfunctional TILs. Although interleukin 12 (IL-12) has been used in combination with ICB to improve efficacy, this remains limited by severe toxicity associated with systemic administration of this cytokine. Here, we engineer a fusion protein composed of an anti-PD-1 antibody and a mouse low-affinity IL-12 mutant-2 (αPD1-mIL12mut2). Systemic administration of αPD1-mIL12mut2 displays robust antitumor activities with undetectable toxicity. Mechanistically, αPD1-mIL12mut2 preferentially activates tumor-infiltrating PD-1+CD8+T cells via high-affinity αPD-1 mediated cis-binding of low-affinity IL-12. Additionally, αPD1-mIL12mut2 treatment exerts an abscopal effect to suppress distal tumors, as well as metastasis. Collectively, αPD1-mIL12mut2 treatment induces robust systemic antitumor responses with reduced side effects.
Collapse
Affiliation(s)
- Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Diyuan Xue
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Hongjia Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Longxin Xu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weian Cao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Wenyan Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- Guangzhou Laboratory, Guangzhou, 510320, Guangdong, China.
| |
Collapse
|
16
|
Tung Y, Chen Y, Derr K, Wilson K, Song MJ, Ferrer M. A 3D Bioprinted Human Neurovascular Unit Model of Glioblastoma Tumor Growth. Adv Healthc Mater 2024; 13:e2302831. [PMID: 38394389 PMCID: PMC11176035 DOI: 10.1002/adhm.202302831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/29/2024] [Indexed: 02/25/2024]
Abstract
A 3D bioprinted neurovascular unit (NVU) model is developed to study glioblastoma (GBM) tumor growth in a brain-like microenvironment. The NVU model includes human primary astrocytes, pericytes and brain microvascular endothelial cells, and patient-derived glioblastoma cells (JHH-520) are used for this study. Fluorescence reporters are used with confocal high content imaging to quantitate real-time microvascular network formation and tumor growth. Extensive validation of the NVU-GBM model includes immunostaining for brain relevant cellular markers and extracellular matrix components; single cell RNA sequencing (scRNAseq) to establish physiologically relevant transcriptomics changes; and secretion of NVU and GBM-relevant cytokines. The scRNAseq reveals changes in gene expression and cytokines secretion associated with wound healing/angiogenesis, including the appearance of an endothelial mesenchymal transition cell population. The NVU-GBM model is used to test 18 chemotherapeutics and anti-cancer drugs to assess the pharmacological relevance of the model and robustness for high throughput screening.
Collapse
Affiliation(s)
- Yen‐Ting Tung
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Yu‐Chi Chen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Kelli Wilson
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Min Jae Song
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| |
Collapse
|
17
|
Xiao S, Ma S, Sun B, Pu W, Duan S, Han J, Hong Y, Zhang J, Peng Y, He C, Yi P, Caligiuri MA, Yu J. The tumor-intrinsic role of the m 6A reader YTHDF2 in regulating immune evasion. Sci Immunol 2024; 9:eadl2171. [PMID: 38820140 DOI: 10.1126/sciimmunol.adl2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Tumors evade attacks from the immune system through various mechanisms. Here, we identify a component of tumor immune evasion mediated by YTH domain-containing family protein 2 (YTHDF2), a reader protein that usually destabilizes m6A-modified mRNA. Loss of tumoral YTHDF2 inhibits tumor growth and prolongs survival in immunocompetent tumor models. Mechanistically, tumoral YTHDF2 deficiency promotes the recruitment of macrophages via CX3CL1 and enhances mitochondrial respiration of CD8+ T cells by impairing tumor glycolysis metabolism. Tumoral YTHDF2 deficiency promotes inflammatory macrophage polarization and antigen presentation in the presence of IFN-γ. In addition, IFN-γ induces autophagic degradation of tumoral YTHDF2, thereby sensitizing tumor cells to CD8+ T cell-mediated cytotoxicity. Last, we identified a small molecule compound that preferentially induces YTHDF2 degradation, which shows a potent antitumor effect alone but a better effect when combined with anti-PD-L1 or anti-PD-1 antibodies. Collectively, YTHDF2 appears to be a tumor-intrinsic regulator that orchestrates immune evasion, representing a promising target for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yaqun Hong
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ping Yi
- Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
18
|
Amosu MM, Jankowski AM, McCright JC, Yang BE, de Oro Fernandez JG, Moore KA, Gadde HS, Donthi M, Kaluzienski ML, Sriram V, Maisel K. Plasmacytoid dendritic cells mediate CpG-ODN induced increase in survival in a mouse model of lymphangioleiomyomatosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527331. [PMID: 36798234 PMCID: PMC9934559 DOI: 10.1101/2023.02.06.527331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also re-activate immunity and the TLR9 agonist, CpG-ODN, has been effective in treating lung cancer in animal models. Here we investigate the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor, anti-PD1, standard of care rapamycin and determine the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival likely due to fewer local side effects but increased LAM nodule count and size compared to the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of Th17 helper T cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells (pDCs), as depletion of pDCs reduces survival and abrogates Th17 T cell response. Finally, we found that CpG-ODN treatment is effective in early stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.
Collapse
Affiliation(s)
- Mayowa M Amosu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Ashleigh M Jankowski
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Jacob C McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Bennett E Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | | | - Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Havish S Gadde
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Mehul Donthi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Michele L Kaluzienski
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Vedanth Sriram
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
19
|
Xu K, Cui Y, Guan B, Qin L, Feng D, Abuduwayiti A, Wu Y, Li H, Cheng H, Li Z. Nanozymes with biomimetically designed properties for cancer treatment. NANOSCALE 2024; 16:7786-7824. [PMID: 38568434 DOI: 10.1039/d4nr00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the in vivo catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up. This approach aims to replicate the key characteristics of natural enzymes, including active structures, catalytic processes, and the ability to adapt to the tumor environment. This achieves selective optimization of nanozyme catalytic performance and therapeutic effects. This review takes a deep dive into the use of these biomimetically designed nanozymes in cancer treatment. It explores a range of biomimetic design strategies, from structural and process mimicry to advanced functional biomimicry. A significant focus is on tweaking the nanozyme structures to boost their catalytic performance, integrating them into complex enzyme networks similar to those in biological systems, and adjusting functions like altering tumor metabolism, reshaping the tumor environment, and enhancing drug delivery. The review also covers the applications of specially designed nanozymes in pan-cancer treatment, from catalytic therapy to improved traditional methods like chemotherapy, radiotherapy, and sonodynamic therapy, specifically analyzing the anti-tumor mechanisms of different therapeutic combination systems. Through rational design, these biomimetically designed nanozymes not only deepen the understanding of the regulatory mechanisms of nanozyme structure and performance but also adapt profoundly to tumor physiology, optimizing therapeutic effects and paving new pathways for innovative cancer treatment.
Collapse
Affiliation(s)
- Ke Xu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yujie Cui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Bin Guan
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200081, China
| | - Dihao Feng
- School of Art, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Abudumijiti Abuduwayiti
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yimu Wu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hao Li
- Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, Fujian, China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
20
|
Brown SR, Vomhof-DeKrey EE. Current Immunotherapy Treatments of Primary Breast Cancer Subtypes. Biomedicines 2024; 12:895. [PMID: 38672249 PMCID: PMC11048522 DOI: 10.3390/biomedicines12040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer receives the most funding when compared to any other cancer type, according to a global study conducted by The Lancet. Nevertheless, this malignancy remains the most diagnosed cancer among women and relies heavily on a neoadjuvant treatment regimen of chemotherapy and targeted therapy. After standard treatment, 25-30% of breast cancer patients still develop disease recurrence and must undergo cytoreductive debulking surgery followed by intensive chemotherapy. An array of targeted therapies are currently being utilized and developed to alleviate negative side effects, eradicate cancer growth, and diminish disease recurrence. Immunotherapy is a promising cancer therapy that upregulates one's immune system to stimulate a therapeutic effect and is utilized for cancer management among other ailments such as immunodeficiencies, hypersensitivity reactions, autoimmune diseases, inflammatory disorders, tissue and organ transplantation, and infectious diseases. This review highlights the five primary subtypes of breast cancer, provides a brief history of immunotherapy, evaluates the current landscape of treating breast cancer with immunotherapy, analyzes selected ongoing or recently completed immunotherapy clinical trials for hormone receptor-positive, HER2-enriched, and triple-negative breast cancer, and examines future trends for the treatment of breast cancer with immunotherapeutic techniques. This review provides a formal summary categorized by breast cancer subtype rather than types of immunotherapeutic treatment.
Collapse
Affiliation(s)
- Savannah R. Brown
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Emilie E. Vomhof-DeKrey
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
21
|
El-Tanani M, Rabbani SA, Babiker R, Rangraze I, Kapre S, Palakurthi SS, Alnuqaydan AM, Aljabali AA, Rizzo M, El-Tanani Y, Tambuwala MM. Unraveling the tumor microenvironment: Insights into cancer metastasis and therapeutic strategies. Cancer Lett 2024; 591:216894. [PMID: 38626856 DOI: 10.1016/j.canlet.2024.216894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
This comprehensive review delves into the pivotal role of the tumor microenvironment (TME) in cancer metastasis and therapeutic response, offering fresh insights into the intricate interplay between cancer cells and their surrounding milieu. The TME, a dynamic ecosystem comprising diverse cellular and acellular elements, not only fosters tumor progression but also profoundly affects the efficacy of conventional and emerging cancer therapies. Through nuanced exploration, this review illuminates the multifaceted nature of the TME, elucidating its capacity to engender drug resistance via mechanisms such as hypoxia, immune evasion, and the establishment of physical barriers to drug delivery. Moreover, it investigates innovative therapeutic approaches aimed at targeting the TME, including stromal reprogramming, immune microenvironment modulation, extracellular matrix (ECM)-targeting agents, and personalized medicine strategies, highlighting their potential to augment treatment outcomes. Furthermore, this review critically evaluates the challenges posed by the complexity and heterogeneity of the TME, which contribute to variable therapeutic responses and potentially unintended consequences. This underscores the need to identify robust biomarkers and advance predictive models to anticipate treatment outcomes, as well as advocate for combination therapies that address multiple facets of the TME. Finally, the review emphasizes the necessity of an interdisciplinary approach and the integration of cutting-edge technologies to unravel the intricacies of the TME, thereby facilitating the development of more effective, adaptable, and personalized cancer treatments. By providing critical insights into the current state of TME research and its implications for the future of oncology, this review highlights the dynamic and evolving landscape of this field.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rasha Babiker
- Physiology Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Imran Rangraze
- Internal Medicine Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Sushesh Srivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Manfredi Rizzo
- (D)epartment of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
22
|
DuPont M, Klumpp C, Iraca M, Allababidi D, Visca H, Engelman DM, Andreev OA, Moshnikova A, Reshetnyak YK. pHLIP targeted intracellular delivery of calicheamicin. Int J Pharm 2024; 654:123954. [PMID: 38428548 DOI: 10.1016/j.ijpharm.2024.123954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Calicheamicin is a potent, cell-cycle independent enediyne antibiotic that binds and cleaves DNA. Toxicity has led to its use in a targeted form, as an antibody-drug conjugate approved for the treatment of liquid tumors. We used a reduced calicheamicin to conjugate it to a single cysteine residue at the membrane-inserting end of a pH Low Insertion Peptide (pHLIP) that targets imaging and therapeutic agents to tumors. The cytoplasmic reduction of the disulfide releases the calicheamicin, and activation, DNA binding, and strand scission ensue. We studied the interaction of pHLIP-calicheamicin with liposomal and cellular membranes and demonstrated that the agent exhibits cytotoxic activity both in highly proliferative cancer cells and in non-proliferative immune cells, such as polarized M2 macrophages. In vivo, the agent was effective in inhibiting tumor growth in mice with no signs of toxicity. Biodistribution studies confirmed tumor targeting with no accumulation of the agent in organs and tissues. The agent was found within the tumor mass and tumor-stroma interface. Treatment of tumors led to the depletion of CD206+ M2- tumor-associated macrophages within the tumor core. pHLIP-calicheamicin could be pursued as an effective therapeutic for the treatment of solid tumors.
Collapse
Affiliation(s)
- Michael DuPont
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Craig Klumpp
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Marissa Iraca
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Dana Allababidi
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Hannah Visca
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale, New Haven, CT, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
23
|
Qin Y, Huo M, Liu X, Li SC. Biomarkers and computational models for predicting efficacy to tumor ICI immunotherapy. Front Immunol 2024; 15:1368749. [PMID: 38524135 PMCID: PMC10957591 DOI: 10.3389/fimmu.2024.1368749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Numerous studies have shown that immune checkpoint inhibitor (ICI) immunotherapy has great potential as a cancer treatment, leading to significant clinical improvements in numerous cases. However, it benefits a minority of patients, underscoring the importance of discovering reliable biomarkers that can be used to screen for potential beneficiaries and ultimately reduce the risk of overtreatment. Our comprehensive review focuses on the latest advancements in predictive biomarkers for ICI therapy, particularly emphasizing those that enhance the efficacy of programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors immunotherapies. We explore biomarkers derived from various sources, including tumor cells, the tumor immune microenvironment (TIME), body fluids, gut microbes, and metabolites. Among them, tumor cells-derived biomarkers include tumor mutational burden (TMB) biomarker, tumor neoantigen burden (TNB) biomarker, microsatellite instability (MSI) biomarker, PD-L1 expression biomarker, mutated gene biomarkers in pathways, and epigenetic biomarkers. TIME-derived biomarkers include immune landscape of TIME biomarkers, inhibitory checkpoints biomarkers, and immune repertoire biomarkers. We also discuss various techniques used to detect and assess these biomarkers, detailing their respective datasets, strengths, weaknesses, and evaluative metrics. Furthermore, we present a comprehensive review of computer models for predicting the response to ICI therapy. The computer models include knowledge-based mechanistic models and data-based machine learning (ML) models. Among the knowledge-based mechanistic models are pharmacokinetic/pharmacodynamic (PK/PD) models, partial differential equation (PDE) models, signal networks-based models, quantitative systems pharmacology (QSP) models, and agent-based models (ABMs). ML models include linear regression models, logistic regression models, support vector machine (SVM)/random forest/extra trees/k-nearest neighbors (KNN) models, artificial neural network (ANN) and deep learning models. Additionally, there are hybrid models of systems biology and ML. We summarized the details of these models, outlining the datasets they utilize, their evaluation methods/metrics, and their respective strengths and limitations. By summarizing the major advances in the research on predictive biomarkers and computer models for the therapeutic effect and clinical utility of tumor ICI, we aim to assist researchers in choosing appropriate biomarkers or computer models for research exploration and help clinicians conduct precision medicine by selecting the best biomarkers.
Collapse
Affiliation(s)
- Yurong Qin
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Miaozhe Huo
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Xingwu Liu
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Lin Q, Wang Y, Wang L, Fan Z. Engineered macrophage-derived cellular vesicles for NIR-II fluorescence imaging-guided precise cancer photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 235:113770. [PMID: 38330689 DOI: 10.1016/j.colsurfb.2024.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Significant progress has been made in cancer immunotherapy; however, challenges such as interpatient variability, limited treatment response, and severe side effects persist. Although nanoimmunotherapy has emerged as a promising approach, the construction of precise and efficient nanosystems remain formidable challenges. Herein, a multifunctional nanoplatform was developed using macrophage-derived cellular vesicles (MCVs) for NIR-II imaging-guided precise cancer photo-immunotherapy. MCVs exhibited excellent tumor targeting and TAMs re-education effects, serving as both delivery carriers and therapeutic agents. Through amide bond, indocyanine green (ICG) was conjugated to the surface of MCVs, enabling in vivo tracking of MCVs distribution. Notably, ICG exhibited dual functionality as a NIR-II fluorescent agent and possessed photodynamic and photothermal effects, enabling the conversion of light energy into chemical or heat energy to eliminate tumor cells. This precision phototherapy triggered immunogenic cell death (ICD) of tumor, thereby activating the anti-tumor immune response. Additionally, MCVs loaded with R848, a toll-like receptor agonist, augmented the ICD-induced anti-tumor immunity. Animal experiments confirmed that MCVs-mediated photoimmunotherapy promoted T cell infiltration, inhibited tumor growth, and improved survival rates. In conclusion, we have developed a promising precision immunotherapy strategy capable of enhancing the immune response while mitigating off-target effects. These findings offer encouraging prospects for clinical translation.
Collapse
Affiliation(s)
- Quanshi Lin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, China.
| | - Linlin Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
25
|
Boemi I, Piccini S, Colombo FS, Smiroldo V, Zerbi A, Capretti G, Alloisio M, Trivellin G, Lavezzi E, Mazziotti G, Vitali E, Lania AG. Alteration of the immunophenotype and cytokine profiles in patients affected by neuroendocrine neoplasms. Endocrine 2024; 83:810-823. [PMID: 37845576 DOI: 10.1007/s12020-023-03563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Neuroendocrine neoplasms (NENs) are tumors that arise from cells of the endocrine system and are most common in the gastrointestinal tract, the pancreas, and the lungs. Their incidence is rapidly increasing and the therapeutic options available are limited. METHODS Since the immune system can interfere with tumor growth and response to therapy, using flow cytometry we investigated the immunophenotype in samples of peripheral blood leukocytes from patients with pancreatic (Pan-NENs) and pulmonary NENs (Lung-NENs). Moreover, we performed a multiplex analysis of 13 key cytokines and growth factors essential for the immune response in the plasma of NEN patients and controls. RESULTS Patients presented with a higher percentage of granulocytes, a lower percentage of lymphocytes, and an increase in the granulocytes to lymphocytes ratio compared to healthy donors. These alterations were more marked in patients with metastasis. Somatostatin analogs (SSAs) restored the immunophenotype of patients to that seen in healthy donors. Finally, Pan-NEN patients showed a higher plasma concentration of IP-10, MCP-1, and IL-8 compared to healthy donors, suggesting a potential role for these cytokines as diagnostic biomarkers. CONCLUSION This study highlighted differences in the immunophenotype of patients with Pan- and Lung-NENs compared to healthy individuals; these alterations were partially restored by therapy.
Collapse
Affiliation(s)
- Ilena Boemi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Sara Piccini
- Endocrinology, Diabetology, and Andrology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Federico S Colombo
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Valeria Smiroldo
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Alessandro Zerbi
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- Pancreas Surgery Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Giovanni Capretti
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- Pancreas Surgery Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Marco Alloisio
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- Thoracic Surgery Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Elisabetta Lavezzi
- Endocrinology, Diabetology, and Andrology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Gherardo Mazziotti
- Endocrinology, Diabetology, and Andrology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy.
| | - Andrea G Lania
- Endocrinology, Diabetology, and Andrology Unit, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| |
Collapse
|
26
|
Lim SK, Lin WC, Huang SW, Pan YC, Hu CW, Mou CY, Hu CMJ, Mou KY. Bacteria colonization in tumor microenvironment creates a favorable niche for immunogenic chemotherapy. EMBO Mol Med 2024; 16:416-428. [PMID: 38225455 PMCID: PMC10897177 DOI: 10.1038/s44321-023-00022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME.
Collapse
Affiliation(s)
- See-Khai Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Ching Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Sin-Wei Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Che-Wei Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| | | |
Collapse
|
27
|
Sun S, Xu H, Zhao W, Li Q, Yuan Y, Zhang G, Li S, Wang B, Zhang W, Gao X, Zheng J, Zhang Q. PA suppresses antitumor immunity of T cells by disturbing mitochondrial activity through Akt/mTOR-mediated Ca 2+ flux. Cancer Lett 2024; 581:216511. [PMID: 38013049 DOI: 10.1016/j.canlet.2023.216511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Deciphering the mechanisms behind how T cells become exhausted and regulatory T cells (Tregs) differentiate in a tumor microenvironment (TME) will significantly benefit cancer immunotherapy. A common metabolic alteration feature in TME is lipid accumulation, associated with T cell exhaustion and Treg differentiation. However, the regulatory role of free fatty acids (FFA) on T cell antitumor immunity has yet to be clearly illustrated. Our study observed that palmitic acid (PA), the most abundant saturated FFA in mouse plasma, enhanced T cell exhaustion and Tregs population in TME and increased tumor growth. In contrast, oleic acid (OA), a monounsaturated FFA, rescued PA-induced T cell exhaustion, decreased Treg population, and ameliorated T cell antitumor immunity in an obese mouse model. Mechanistically, mitochondrial metabolic activity is critical in maintaining T cell function, which PA attenuated. PA-induced T cell exhaustion and Treg formation depended on CD36 and Akt/mTOR-mediated calcium signaling. The study described a new mechanism of PA-induced downregulation of antitumor immunity of T cells and the therapeutic potential behind its restoration by targeting PA.
Collapse
Affiliation(s)
- Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Heng Xu
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yifan Yuan
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Guopeng Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Shuyu Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Bixi Wang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Wei Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
28
|
Singh R, Srivastava P, Manna PP. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition. Med Oncol 2024; 41:59. [PMID: 38238513 DOI: 10.1007/s12032-023-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The evolution of the complex immune system is equipped to defend against perilous intruders and concurrently negatively regulate the deleterious effect of immune-mediated inflammation caused by self and nonself antigens. Regulatory T-cells (Tregs) are specialized cells that minimize immune-mediated inflammation, but in malignancies, this feature has been exploited toward cancer progression by keeping the antitumor immune response in check. The modulation of Treg cell infiltration and their induction in the TME (tumor microenvironment) alongside associated inhibitory molecules, both soluble or membranes tethered in the TME, have proven clinically beneficial in boosting the tumoricidal activity of the immune system. Moreover, Treg-associated immune checkpoints pose a greater obstruction in cancer immunotherapy. Inhibiting or blocking active immune checkpoint signaling in combination with other therapies has proven clinically beneficial. This review summarizes the ontogeny of Treg cells and their migration, stability, and function in the TME. We also elucidate the Treg-associated checkpoint moieties that impede effective antitumor activity and harness these molecules for effective and targeted immunotherapy against cancer nuisance.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
29
|
Li C, Bie L, Chen M, Ying J. Therapeutic significance of tumor microenvironment in cholangiocarcinoma: focus on tumor-infiltrating T lymphocytes. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1310-1327. [PMID: 38213535 PMCID: PMC10776604 DOI: 10.37349/etat.2023.00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 01/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive type of adenocarcinoma distinguished by its invasiveness. Depending on specific anatomical positioning within the biliary tree, CCA can be categorized into intrahepatic CCA (ICCA), perihilar CCA (pCCA) and distal CCA (dCCA). In recent years, there has been a significant increase in the global prevalence of CCA. Unfortunately, many CCA patients are diagnosed at an advanced stage, which makes surgical resection impossible. Although systemic chemotherapy is frequently used as the primary treatment for advanced or recurrent CCA, its effectiveness is relatively low. Therefore, immunotherapy has emerged as a promising avenue for advancing cancer treatment research. CCA exhibits a complex immune environment within the stromal tumor microenvironment (TME), comprising a multifaceted immune landscape and a tumor-reactive stroma. A deeper understanding of this complex TME is indispensable for identifying potential therapeutic targets. Thus, targeting tumor immune microenvironment holds promise as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, Zhejiang, China
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
30
|
Mahasongkram K, Glab-ampai K, Kaewchim K, Saenlom T, Chulanetra M, Sookrung N, Nathalang O, Chaicumpa W. Agonistic Bivalent Human scFvs-Fcγ Fusion Antibodies to OX40 Ectodomain Enhance T Cell Activities against Cancer. Vaccines (Basel) 2023; 11:1826. [PMID: 38140230 PMCID: PMC10747724 DOI: 10.3390/vaccines11121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Understanding how advanced cancers evade host innate and adaptive immune opponents has led to cancer immunotherapy. Among several immunotherapeutic strategies, the reversal of immunosuppression mediated by regulatory T cells in the tumor microenvironment (TME) using blockers of immune-checkpoint signaling in effector T cells is the most successful treatment measure. Furthermore, agonists of T cell costimulatory molecules (CD40, 4-1BB, OX40) play an additional anti-cancer role to that of checkpoint blocking in combined therapy and serve also as adjuvant/neoadjuvant/induction therapy to conventional cancer treatments, such as tumor resection and radio- and chemo- therapies. (2) Methods and Results: In this study, novel agonistic antibodies to the OX40/CD134 ectodomain (EcOX40), i.e., fully human bivalent single-chain variable fragments (HuscFvs) linked to IgG Fc (bivalent HuscFv-Fcγ fusion antibodies) were generated by using phage-display technology and genetic engineering. The HuscFvs in the fusion antibodies bound to the cysteine-rich domain-2 of the EcOX40, which is known to be involved in OX40-OX40L signaling for NF-κB activation in T cells. The fusion antibodies caused proliferation, and increased the survival and cytokine production of CD3-CD28-activated human T cells. They showed enhancement trends for other effector T cell activities like granzyme B production and lysis of ovarian cancer cells when added to the activated T cells. (3) Conclusions: The novel OX40 agonistic fusion antibodies should be further tested step-by-step toward their safe use as an adjunctive non-immunogenic cancer immunotherapeutic agent.
Collapse
Affiliation(s)
- Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Kantaphon Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Oytip Nathalang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand;
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| |
Collapse
|
31
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
32
|
Flati I, Di Vito Nolfi M, Dall’Aglio F, Vecchiotti D, Verzella D, Alesse E, Capece D, Zazzeroni F. Molecular Mechanisms Underpinning Immunometabolic Reprogramming: How the Wind Changes during Cancer Progression. Genes (Basel) 2023; 14:1953. [PMID: 37895302 PMCID: PMC10606647 DOI: 10.3390/genes14101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolism and the immunological state are intimately intertwined, as defense responses are bioenergetically expensive. Metabolic homeostasis is a key requirement for the proper function of immune cell subsets, and the perturbation of the immune-metabolic balance is a recurrent event in many human diseases, including cancer, due to nutrient fluctuation, hypoxia and additional metabolic changes occurring in the tumor microenvironment (TME). Although much remains to be understood in the field of immunometabolism, here, we report the current knowledge on both physiological and cancer-associated metabolic profiles of immune cells, and the main molecular circuits involved in their regulation, highlighting similarities and differences, and emphasizing immune metabolic liabilities that could be exploited in cancer therapy to overcome immune resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (I.F.); (M.D.V.N.); (F.D.); (D.V.); (D.V.); (E.A.); (F.Z.)
| | | |
Collapse
|
33
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Lim C, Hwang D, Yazdimamaghani M, Atkins HM, Hyun H, Shin Y, Ramsey JD, Rädler PD, Mott KR, Perou CM, Sokolsky-Papkov M, Kabanov AV. High-Dose Paclitaxel and its Combination with CSF1R Inhibitor in Polymeric Micelles for Chemoimmunotherapy of Triple Negative Breast Cancer. NANO TODAY 2023; 51:101884. [PMID: 37484164 PMCID: PMC10357922 DOI: 10.1016/j.nantod.2023.101884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The presence of immunosuppressive immune cells in tumors is a significant barrier to the generation of therapeutic immune responses. Similarly, in vivo triple-negative breast cancer (TNBC) models often contain prevalent, immunosuppressive tumor-associated macrophages in the tumor microenvironment (TME), resulting in breast cancer initiation, invasion, and metastasis. Here, we test systemic chemoimmunotherapy using small-molecule agents, paclitaxel (PTX), and colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX3397, to enhance the adaptive T cell immunity against TNBCs in immunocompetent mouse TNBC models. We use high-capacity poly(2-oxazoline) (POx)-based polymeric micelles to greatly improve the solubility of insoluble PTX and PLX3397 and widen the therapeutic index of such drugs. The results demonstrate that high-dose PTX in POx, even as a single agent, exerts strong effects on TME and induces long-term immune memory. In addition, we demonstrate that the PTX and PLX3397 combination provides consistent therapeutic improvement across several TNBC models, resulting from the repolarization of the immunosuppressive TME and enhanced T cell immune response that suppress both the primary tumor growth and metastasis. Overall, the work emphasizes the benefit of drug reformulation and outlines potential translational path for both PTX and PTX with PLX3397 combination therapy using POx polymeric micelles for the treatment of TNBC.
Collapse
Affiliation(s)
- Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mostafa Yazdimamaghani
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah Marie Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyesun Hyun
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuseon Shin
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, South Korea
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick D Rädler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
35
|
Zahavi D, Hodge JW. Targeting Immunosuppressive Adenosine Signaling: A Review of Potential Immunotherapy Combination Strategies. Int J Mol Sci 2023; 24:ijms24108871. [PMID: 37240219 DOI: 10.3390/ijms24108871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The tumor microenvironment regulates many aspects of cancer progression and anti-tumor immunity. Cancer cells employ a variety of immunosuppressive mechanisms to dampen immune cell function in the tumor microenvironment. While immunotherapies that target these mechanisms, such as immune checkpoint blockade, have had notable clinical success, resistance is common, and there is an urgent need to identify additional targets. Extracellular adenosine, a metabolite of ATP, is found at high levels in the tumor microenvironment and has potent immunosuppressive properties. Targeting members of the adenosine signaling pathway represents a promising immunotherapeutic modality that can potentially synergize with conventional anti-cancer treatment strategies. In this review, we discuss the role of adenosine in cancer, present preclinical and clinical data on the efficacy adenosine pathway inhibition, and discuss possible combinatorial approaches.
Collapse
Affiliation(s)
- David Zahavi
- Center for Immuno-Oncology (CIO), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10, Rm 8B13, 9000 Rockville Pike, Bethesda, MD 20879, USA
| | - James W Hodge
- Center for Immuno-Oncology (CIO), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10, Rm 8B13, 9000 Rockville Pike, Bethesda, MD 20879, USA
| |
Collapse
|
36
|
Zhou Q, Dutta D, Cao Y, Ge Z. Oxidation-Responsive PolyMOF Nanoparticles for Combination Photodynamic-Immunotherapy with Enhanced STING Activation. ACS NANO 2023; 17:9374-9387. [PMID: 37141569 DOI: 10.1021/acsnano.3c01333] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stimulator of interferon genes (STING) activation by STING agonists has been recognized as one of the potent and promising immunotherapy strategies. However, the immunosuppressive tumor microenvironment always hinders the therapeutic efficacy of cancer immunotherapy. In this report, we present polymeric metal-organic framework (PMOF) nanoparticles (NPs) for the combination of photodynamic therapy (PDT) and enhanced STING activation to improve the immunotherapeutic efficacy. The PMOF NPs with poly(ethylene glycol) (PEG) shells were obtained via coordination between the block copolymer ligand PEG-b-PABDA consisting of 1,4-bezenedicarboxylic acid-bearing polyacrylamide (PABDA), meso-tetra(carboxyphenyl)porphyrin (TCPP), thioketal diacetic acid, and zirconyl chloride. Subsequently, the STING agonist SR-717 was loaded into the porous structure of PMOF to obtain SR@PMOF NPs which show excellent stability under the physiological conditions. After intravenous injection and tumor accumulation, light irradiation on the tumor sites results in efficient singlet oxygen (1O2) production from TCPP and cellular apoptosis to release fragmented DNA and tumor-associated antigens. Simultaneously, thioketal bonds can be broken by 1O2 to destroy the PMOF structure and rapidly release SR717. SR-717 and PDT synergistically enhance the antitumor immunity via combination photodynamic-immunotherapy due to reversal of the immunosuppressive tumor microenvironment and enhanced endogenous STING activation, which can suppress the growth of the primary and distant tumors efficiently. The oxidation-responsive SR@PMOF NPs represent a promising delivery system of STING agonists and efficient PDT NPs for simultaneous suppression of the primary and metastatic tumors via the rational combination of PDT and enhanced STING activation.
Collapse
Affiliation(s)
- Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Debabrata Dutta
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yufei Cao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
37
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
38
|
Zhang F, Guangchuan W, Chow R, He E, Majety M, Zhang Y, Chen S. Multiplexed inhibition of immunosuppressive genes with Cas13d for on-demand combinatorial cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532668. [PMID: 36993222 PMCID: PMC10055084 DOI: 10.1101/2023.03.14.532668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Checkpoint blockade immunotherapy is a potent class of cancer treatment, however, the complex immunosuppressive tumor microenvironment (TME) often requires multi-agent combinations to be effective. Current cancer immunotherapy combination approaches are cumbersome, usually involving one-drug-at-a-time scheme. Here, we devise Multiplex Universal Combinatorial Immunotherapy via Gene-silencing (MUCIG), as a versatile approach for combinatorial cancer immunotherapy. We harness CRISPR-Cas13d to efficiently target multiple endogenous immunosuppressive genes on demand, allowing us to silence various combinations of multiple immunosuppressive factors in the TME. Intratumoral AAV-mediated administration of MUCIG (AAV-MUCIG) elicits significant anti-tumor activity with several Cas13d gRNA compositions. TME target expression analysis driven optimization led to a simplified off-the-shelf MUCIG targeting a four gene combination (PGGC: Pdl1, Galectin9, Galectin3 and Cd47 ). AAV-PGGC shows significant in vivo efficacy in syngeneic tumor models. Single cell and flow profiling revealed that AAV-PGGC remodeled the TME by increasing CD8 + T cell infiltration and reducing myeloid-derived immunosuppressive cells (MDSCs). MUCIG thus serves as a universal method to silence multiple immune genes in vivo, and can be delivered via AAV as a therapeutic approach.
Collapse
|
39
|
Abbasi S, Totmaj MA, Abbasi M, Hajazimian S, Goleij P, Behroozi J, Shademan B, Isazadeh A, Baradaran B. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies. Cancer Med 2023; 12:7844-7858. [PMID: 36583504 PMCID: PMC10134288 DOI: 10.1002/cam4.5551] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/23/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last decade, the emergence of several novel therapeutic approaches has changed the therapeutic perspective of human malignancies. Adoptive immunotherapy through chimeric antigen receptor T cell (CAR-T), which includes the engineering of T cells to recognize tumor-specific membrane antigens and, as a result, death of cancer cells, has created various clinical benefits for the treatment of several human malignancies. In particular, CAR-T-cell-based immunotherapy is known as a critical approach for the treatment of patients with hematological malignancies such as acute lymphoblastic leukemia (ALL), multiple myeloma (MM), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), Hodgkin lymphoma (HL), and non-Hodgkin's lymphoma (NHL). However, CAR-T-cell therapy of hematological malignancies is associated with various side effects. There are still extensive challenges in association with further progress of this therapeutic approach, from manufacturing and engineering issues to limitations of applications and serious toxicities. Therefore, further studies are required to enhance efficacy and minimize adverse events. In the current review, we summarize the development of CAR-T-cell-based immunotherapy and current clinical antitumor applications to treat hematological malignancies. Furthermore, we will mention the current advantages, disadvantages, challenges, and therapeutic limitations of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Samane Abbasi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| | - Milad Asghari Totmaj
- Department of Clinical Immunology, Faculty of MedicineThe University of ManchesterManchesterUK
| | - Masoumeh Abbasi
- Department of Microbiology, Malekan BranchIslamic Azad UniversityMalekanIran
| | - Saba Hajazimian
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Pouya Goleij
- Department of Genetics, Faculty of BiologySana Institute of Higher EducationSariIran
| | - Javad Behroozi
- Department of Genetics and Biotechnology, School of MedicineAJA University of Medical SciencesTehranIran
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Alireza Isazadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
40
|
Preet Kaur A, Alice A, Crittenden MR, Gough MJ. The role of dendritic cells in radiation-induced immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:61-104. [PMID: 37438021 DOI: 10.1016/bs.ircmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.
Collapse
Affiliation(s)
- Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States; The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
41
|
Mamilos A, Lein A, Winter L, Ettl T, Künzel J, Reichert TE, Spanier G, Brochhausen C. Tumor Immune Microenvironment Heterogeneity at the Invasion Front and Tumor Center in Oral Squamous Cell Carcinoma as a Perspective of Managing This Cancer Entity. J Clin Med 2023; 12:jcm12041704. [PMID: 36836239 PMCID: PMC9958892 DOI: 10.3390/jcm12041704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Evaluating the tumor microenvironment and its influence on clinical management and therapy response is becoming increasingly important. However, only a few studies deal with the spatial distribution of immune cells within the tumor. This study aimed to describe the topology of immune cells in the microenvironment of oral squamous cell carcinoma (OSCC) sectioned by tumor invasion front and tumor center and to test their prognostic relevance regarding patient survival. METHODS A total of 55 OSCC patient specimens were collected retrospectively. The cancer tissue was immunohistochemically stained using an automated tissue stainer Ventana Benchmark Ultra (Roche) and analyzed using discrete expression marker profiles on immune cells. We investigated CD4+ lymphocytes, CD8+ lymphocytes, CD68+ macrophages, CD163+ macrophages, and M1 macrophages regarding their spatial distribution. RESULTS The statistical analysis revealed that the quantity and distribution of CD4+ (p = 0.007), CD8+ (p < 0.001), CD68+ (p < 0.001), CD163+ cells (p = 0.004), and M1 (p < 0.001) macrophages were significantly higher at the invasion front compared to the tumor center in all observed cases. However, high and low immune cell counts in the tumor center and invasion front were not associated with overall survival. CONCLUSION Our results show two distinct immune microenvironments of the tumor center compared to the invasion front. Future studies are needed to explore how these results can be leveraged to improve patient therapy and outcome.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alexander Lein
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Julian Künzel
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-383-2275
| |
Collapse
|
42
|
Ex vivo analysis of radiation effects on tumor infiltrating immune cells using tumor explants. Methods Cell Biol 2023; 174:55-63. [PMID: 36710051 DOI: 10.1016/bs.mcb.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The response to radiation therapy incorporates both the direct impacts of radiation on cancer cells as well as the immune consequences that can help or hinder control of residual disease. Understanding the response of an individual patient's cancer to radiation, and the impact of radiation on the immune cell subsets present in the tumor prior to radiation therapy, can help identify potential predictors of outcome. Here, we describe a methodological approach to using an explant tumor model to characterize and study the immune cell subsets in murine tumors following exposure to ex vivo radiation treatment. The broader tumor environment incorporates distinct microenvironments consisting of tumor stroma and cancer cell nests, with limited interchange between these zones. Ex vivo analysis of tumor explants ensures that these environments remain intact and allows patient-specific response assessments with a broader range of treatment conditions to find optimal conditions and immunotherapy combinations. While this protocol describes the treatment of murine tumors, with minor variations the same protocol can be used to study and characterize various immune populations following radiation therapy in human tumors.
Collapse
|
43
|
Tigue ML, Loberg MA, Goettel JA, Weiss WA, Lee E, Weiss VL. Wnt Signaling in the Phenotype and Function of Tumor-Associated Macrophages. Cancer Res 2023; 83:3-11. [PMID: 36214645 PMCID: PMC9812914 DOI: 10.1158/0008-5472.can-22-1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
Tumor-associated macrophages (TAM) play an important role in supporting tumor growth and suppressing antitumor immune responses, and TAM infiltration has been associated with poor patient prognosis in various cancers. TAMs can be classified as pro-inflammatory, M1-like, or anti-inflammatory, M2-like. While multiple factors within the tumor microenvironment affect the recruitment, polarization, and functions of TAMs, accumulating evidence suggests that Wnt signaling represents an important, targetable driver of an immunosuppressive, M2-like TAM phenotype. TAM production of Wnt ligands mediates TAM-tumor cross-talk to support cancer cell proliferation, invasion, and metastasis. Targeting TAM polarization and the protumorigenic functions of TAMs through inhibitors of Wnt signaling may prove a beneficial treatment strategy in cancers where macrophages are prevalent in the microenvironment.
Collapse
Affiliation(s)
- Megan L Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew A Loberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - William A Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Vivian L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
44
|
Peng W, Yao C, Pan Q, Zhang Z, Ye J, Shen B, Zhou G, Fang Y. Novel considerations on EGFR-based therapy as a contributor to cancer cell death in NSCLC. Front Oncol 2023; 13:1120278. [PMID: 36910653 PMCID: PMC9995697 DOI: 10.3389/fonc.2023.1120278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) represented by gefitinib and erlotinib are widely used in treating non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR-TKI treatment remains a clinical challenge. In recent years, emerging research investigated in EGFR-TKI-based combination therapy regimens, and remarkable achievements have been reported. This article focuses on EGFR-TKI-based regimens, reviews the standard and novel application of EGFR targets, and summarizes the mechanisms of EGFR-TKI combinations including chemotherapy, anti-vascular endothelial growth factor monoclonal antibodies, and immunotherapy in the treatment of NSCLC. Additionally, we summarize clinical trials of EGFR-TKI-based combination therapy expanding indications to EGFR mutation-negative lung malignancies. Moreover, novel strategies are under research to explore new drugs with good biocompatibility. Nanoparticles encapsulating non-coding RNA and chemotherapy of new dosage forms drawn great attention and showed promising prospects in effective delivery and stable release. Overall, as the development of resistance to EGFR-TKIs treatment is inevitable in most of the cases, further research is needed to clarify the underlying mechanism of the resistance, and to evaluate and establish EGFR-TKI combination therapies to diversify the treatment landscape for NSCLC.
Collapse
Affiliation(s)
- Weiwei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chengyun Yao
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Pan
- Department of Medical Oncology, Liyang People's Hospital, Liyang, China
| | - Zhi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjun Ye
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Fang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Del Baldo G, Del Bufalo F, Pinacchio C, Carai A, Quintarelli C, De Angelis B, Merli P, Cacchione A, Locatelli F, Mastronuzzi A. The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors. Front Immunol 2023; 14:1142597. [PMID: 37025994 PMCID: PMC10072260 DOI: 10.3389/fimmu.2023.1142597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Childhood malignant brain tumors remain a significant cause of death in the pediatric population, despite the use of aggressive multimodal treatments. New therapeutic approaches are urgently needed for these patients in order to improve prognosis, while reducing side effects and long-term sequelae of the treatment. Immunotherapy is an attractive option and, in particular, the use of gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells) represents a promising approach. Major hurdles in the clinical application of this approach in neuro-oncology, however, exist. The peculiar location of brain tumors leads to both a difficulty of access to the tumor mass, shielded by the blood-brain barrier (BBB), and to an increased risk of potentially life-threatening neurotoxicity, due to the primary location of the disease in the CNS and the low intracranial volume reserve. There are no unequivocal data on the best way of CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells for hematologic malignancies proved that genetically engineered T cells can cross the BBB, suggesting that systemically administered CAR-T cell can be used in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be easily managed with local implantable devices, suitable also for a more precise neuro-monitoring. The identification of specific approaches of neuro-monitoring is of utmost importance in these patients. In the present review, we highlight the most relevant potential challenges associated with the application of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the best route of delivery, the peculiar risk of neurotoxicity and the related neuro-monitoring.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Claudia Pinacchio
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Pietro Merli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
46
|
Gong Z, Li Q, Shi J, Liu ET, Shultz LD, Ren G. Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells. Cell Metab 2022; 34:1960-1976.e9. [PMID: 36476935 PMCID: PMC9819197 DOI: 10.1016/j.cmet.2022.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
While the distant organ environment is known to support metastasis of primary tumors, its metabolic roles in this process remain underdetermined. Here, in breast cancer models, we found lung-resident mesenchymal cells (MCs) accumulating neutral lipids at the pre-metastatic stage. This was partially mediated by interleukin-1β (IL-1β)-induced hypoxia-inducible lipid droplet-associated (HILPDA) that subsequently represses adipose triglyceride lipase (ATGL) activity in lung MCs. MC-specific ablation of the ATGL or HILPDA genes in mice reinforced and reduced lung metastasis of breast cancer respectively, suggesting a metastasis-promoting effect of lipid-laden MCs. Mechanistically, lipid-laden MCs transported their lipids to tumor cells and natural killer (NK) cells via exosome-like vesicles, leading to heightened tumor cell survival and proliferation and NK cell dysfunction. Blockage of IL-1β, which was effective singly, improved the efficacy of adoptive NK cell immunotherapy in mitigating lung metastasis. Collectively, lung MCs metabolically regulate tumor cells and anti-tumor immunity to facilitate breast cancer lung metastasis.
Collapse
Affiliation(s)
- Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Qing Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jiayuan Shi
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | - Guangwen Ren
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
47
|
Yan WL, Lang TQ, Yuan WH, Yin Q, Li YP. Nanosized drug delivery systems modulate the immunosuppressive microenvironment to improve cancer immunotherapy. Acta Pharmacol Sin 2022; 43:3045-3054. [PMID: 36050519 PMCID: PMC9712392 DOI: 10.1038/s41401-022-00976-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy that activates immune systems for combating cancer has yielded considerable clinical benefits recently. However, the immunosuppressive tumor microenvironment (ITME) is a major hurdle to immunotherapy as it supports tumor to evade immune surveillance. Reversing ITME facilitates the recruitment and activation of antitumor immune cells, thereby promoting immunotherapy. Our group has developed various nanosized drug delivery systems (NDDSs) to modulate ITME with enhanced efficacy and safety. In the review we introduce the ITME-remodeling strategies for improving immunotherapy based on NDDSs including triggering tumor cells to undergo immunogenetic cell death (ICD), applying tumor vaccine, and directly regulating intratumoral immune components (immune cells or cytokines). In order to guide the design of NDDSs for amplified effects of antitumor immunotherapy, the contributions and future directions of this field are also discussed.
Collapse
Affiliation(s)
- Wen-Lu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Qun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
| | - Wen-Hui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China.
| | - Ya-Ping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- School of Pharmacy, Yantai University, Yantai, 264005, China.
| |
Collapse
|
48
|
Safaeifard F, Goliaei B, Aref AR, Foroughmand-Araabi MH, Goliaei S, Lorch J, Jenkins RW, Barbie DA, Shariatpanahi SP, Rüegg C. Distinct Dynamics of Migratory Response to PD-1 and CTLA-4 Blockade Reveals New Mechanistic Insights for Potential T-Cell Reinvigoration following Immune Checkpoint Blockade. Cells 2022; 11:3534. [PMID: 36428963 PMCID: PMC9688893 DOI: 10.3390/cells11223534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), two clinically relevant targets for the immunotherapy of cancer, are negative regulators of T-cell activation and migration. Optimizing the therapeutic response to CTLA-4 and PD-1 blockade calls for a more comprehensive insight into the coordinated function of these immune regulators. Mathematical modeling can be used to elucidate nonlinear tumor-immune interactions and highlight the underlying mechanisms to tackle the problem. Here, we investigated and statistically characterized the dynamics of T-cell migration as a measure of the functional response to these pathways. We used a previously developed three-dimensional organotypic culture of patient-derived tumor spheroids treated with anti-CTLA-4 and anti-PD-1 antibodies for this purpose. Experiment-based dynamical modeling revealed the delayed kinetics of PD-1 activation, which originates from the distinct characteristics of PD-1 and CTLA-4 regulation, and followed through with the modification of their contributions to immune modulation. The simulation results show good agreement with the tumor cell reduction and active immune cell count in each experiment. Our findings demonstrate that while PD-1 activation provokes a more exhaustive intracellular cascade within a mature tumor environment, the time-delayed kinetics of PD-1 activation outweighs its preeminence at the individual cell level and consequently confers a functional dominance to the CTLA-4 checkpoint. The proposed model explains the distinct immunostimulatory pattern of PD-1 and CTLA-4 blockade based on mechanisms involved in the regulation of their expression and may be useful for planning effective treatment schemes targeting PD-1 and CTLA-4 functions.
Collapse
Affiliation(s)
- Fateme Safaeifard
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614411, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614411, Iran
| | - Amir R. Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Xsphera Biosciences Inc., Boston, MA 02210, USA
| | | | - Sama Goliaei
- Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Jochen Lorch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Russell W. Jenkins
- MassGeneral Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Seyed Peyman Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614411, Iran
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology, and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
49
|
Li X, Zhou Q, Japir AAWMM, Dutta D, Lu N, Ge Z. Protein-Delivering Nanocomplexes with Fenton Reaction-Triggered Cargo Release to Boost Cancer Immunotherapy. ACS NANO 2022; 16:14982-14999. [PMID: 36017992 DOI: 10.1021/acsnano.2c06026] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Immunotherapeutic efficacy of tumors based on immune checkpoint blockade (ICB) therapy is frequently limited by an immunosuppressive tumor microenvironment and cross-reactivity with normal tissues. Herein, we develop reactive oxygen species (ROS)-responsive nanocomplexes with the function of ROS production for delivery and triggered release of anti-mouse programmed death ligand 1 antibody (αPDL1) and glucose oxidase (GOx). GOx and αPDL1 were complexed with oligomerized (-)-epigallocatechin-3-O-gallate (OEGCG), which was followed by chelation with Fe3+ and coverage of the ROS-responsive block copolymer, POEGMA-b-PTKDOPA, consisting of poly(oligo(ethylene glycol)methacrylate) (POEGMA) and the block with thioketal bond-linked dopamine moieties (PTKDOPA) as the side chains. After intravenous injection, the nanocomplexes show prolonged circulation in the bloodstream with a half-life of 8.72 h and efficient tumor accumulation. At the tumor sites, GOx inside the nanocomplexes can produce H2O2 via oxidation of glucose for Fenton reaction to generate hydroxyl radicals (•OH) which further trigger the release of the protein cargos through ROS-responsive cleavage of thioketal bonds. The released GOx improves the production efficiency of •OH to kill cancer cells for release of tumor-associated antigens via chemodynamic therapy (CDT). The enhanced immunogenic cell death (ICD) can activate the immunosuppressive tumor microenvironment and improve the immunotherapy effect of the released αPDL1, which significantly suppresses primary and metastatic tumors. Thus, the nanocomplexes with Fenton reaction-triggered protein release show great potentials to improve the immunotherapeutic efficacy of ICB via combination with CDT.
Collapse
Affiliation(s)
- Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Abd Al-Wali Mohammed M Japir
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Debabrata Dutta
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
50
|
Zhang M, Wei T, Zhang X, Guo D. Targeting lipid metabolism reprogramming of immunocytes in response to the tumor microenvironment stressor: A potential approach for tumor therapy. Front Immunol 2022; 13:937406. [PMID: 36131916 PMCID: PMC9483093 DOI: 10.3389/fimmu.2022.937406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
The tumor microenvironment (TME) has become a major research focus in recent years. The TME differs from the normal extracellular environment in parameters such as nutrient supply, pH value, oxygen content, and metabolite abundance. Such changes may promote the initiation, growth, invasion, and metastasis of tumor cells, in addition to causing the malfunction of tumor-infiltrating immunocytes. As the neoplasm develops and nutrients become scarce, tumor cells transform their metabolic patterns by reprogramming glucose, lipid, and amino acid metabolism in response to various environmental stressors. Research on carcinoma metabolism reprogramming suggests that like tumor cells, immunocytes also switch their metabolic pathways, named “immunometabolism”, a phenomenon that has drawn increasing attention in the academic community. In this review, we focus on the recent progress in the study of lipid metabolism reprogramming in immunocytes within the TME and highlight the potential target molecules, pathways, and genes implicated. In addition, we discuss hypoxia, one of the vital altered components of the TME that partially contribute to the initiation of abnormal lipid metabolism in immune cells. Finally, we present the current immunotherapies that orchestrate a potent antitumor immune response by mediating the lipid metabolism of immunocytes, highlight the lipid metabolism reprogramming capacity of various immunocytes in the TME, and propose promising new strategies for use in cancer therapy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- *Correspondence: Danfeng Guo,
| |
Collapse
|