1
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
2
|
McColloch A, Rabiei M, Rabbani P, Bowling A, Cho M. Correlation between Nuclear Morphology and Adipogenic Differentiation: Application of a Combined Experimental and Computational Modeling Approach. Sci Rep 2019; 9:16381. [PMID: 31705037 PMCID: PMC6842088 DOI: 10.1038/s41598-019-52926-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells undergo drastic morphological alterations during differentiation. While extensive studies have been performed to examine the cytoskeletal remodeling, there is a growing interest to determine the morphological, structural and functional changes of the nucleus. The current study is therefore aimed at quantifying the extent of remodeling of the nuclear morphology of human mesenchymal stem cells during biochemically-induced adipogenic differentiation. Results show the size of nuclei decreased exponentially over time as the lipid accumulation is up-regulated. Increases in the lipid accumulation appear to lag the nuclear reorganization, suggesting the nuclear deformation is a prerequisite to adipocyte maturation. Furthermore, the lamin A/C expression was increased and redistributed to the nuclear periphery along with a subsequent increase in the nuclear aspect ratio. To further assess the role of the nucleus, a nuclear morphology with a high aspect ratio was achieved using microcontact-printed substrate. The cells with an elongated nuclear shape did not efficiently undergo adipogenesis, suggesting the cellular and nuclear processes associated with stem cell differentiation at the early stage of adipogenesis cause a change in the nuclear morphology and cannot be abrogated by the morphological cues. In addition, a novel computational biomechanical model was generated to simulate the nuclear shape change during differentiation and predict the forces acting upon the nucleus. This effort led to the development of computational scaling approach to simulate the experimentally observed adipogenic differentiation processes over 15 days in less than 1.5 hours.
Collapse
Affiliation(s)
- Andrew McColloch
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Manoochehr Rabiei
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Parisa Rabbani
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Alan Bowling
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Michael Cho
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA.
| |
Collapse
|
3
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
4
|
Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 2018; 9:1533. [PMID: 30425656 PMCID: PMC6218675 DOI: 10.3389/fphys.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.
Collapse
Affiliation(s)
- Astrid Brull
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France.,Sanofi R&D, Chilly Mazarin, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Anne T Bertrand
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
5
|
Sowińska-Seidler A, Olech EM, Socha M, Larysz D, Jamsheer A. Novel 1q22-q23.1 duplication in a patient with lambdoid and metopic craniosynostosis, muscular hypotonia, and psychomotor retardation. J Appl Genet 2018; 59:281-289. [PMID: 29845577 PMCID: PMC6060980 DOI: 10.1007/s13353-018-0447-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 11/27/2022]
Abstract
Craniosynostosis (CS) refers to the group of craniofacial malformations characterized by the premature closure of one or more cranial sutures. The disorder is clinically and genetically heterogeneous and occurs usually as an isolated trait, but can also be syndromic. In 30-60% of patients, CS is caused by known genetic factors; however, in the rest of the cases, causative molecular lesions remain unknown. In this paper, we report on a sporadic male patient affected by complex CS (metopic and unilateral lambdoid synostosis), muscular hypotonia, psychomotor retardation, and facial dysmorphism. Since a subset of CS results from submicroscopic chromosomal aberrations, we performed array comparative genomic hybridization (array CGH) in order to identify possibly causative copy-number variation. Array CGH followed by breakpoint sequencing revealed a previously unreported de novo 1.26 Mb duplication at chromosome 1q22-q23.1 that encompassed two genes involved in osteoblast differentiation: BGLAP, encoding osteocalcin (OCN), and LMNA, encoding lamin A/C. OCN is a major component of bone extracellular matrix and a marker of osteogenesis, whereas mutations in LMNA cause several genetic disorders called laminopathies, including mandibuloacral dysostosis (MAD) that manifests with low bone mass, severe bone deformities, and delayed closure of the cranial sutures. Since LMNA and BGLAP overexpression promote osteoblast differentiation and calcification, phenotype of our patient may result from misexpression of the genes. Based on our findings, we hypothesize that both LMNA and BGLAP may be implicated in the pathogenesis of CS in humans. However, further studies are needed to establish the exact pathomechanism underlying development of this defect.
Collapse
Affiliation(s)
- Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland.
| | - Ewelina M Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Magdalena Socha
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Dawid Larysz
- Department of Radiotherapy, The Maria Skłodowska Curie Memorial Cancer Centre and Institute of Oncology, Gliwice Branch, 44-101, Gliwice, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland.
| |
Collapse
|
6
|
Mandibuloacral dysplasia and LMNA A529V mutation in Turkish patients with severe skeletal changes and absent breast development. Clin Dysmorphol 2017; 25:91-7. [PMID: 27100822 DOI: 10.1097/mcd.0000000000000132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mandibuloacral dysplasia (MAD) is an autosomal recessive disorder characterized by acroosteolysis (resorption of terminal phalanges), skin changes (hyperpigmentation), clavicular hypoplasia, craniofascial anomalies, a hook nose and prominent eyes, delayed closures of the cranial sutures, lipodystrophy, alopecia, and skeletal anomalies. MAD patients are classified according to lipodystrophy patterns: type A and type B. The vast majority of MAD cases are caused by LMNA gene mutations. MAD patients with type A lipodystrophy (MADA) have been reported to have LMNA R527H, A529V, or A529T mutations. In this report, we describe two MADA patients with progressive skeletal changes, absent breast development, and cataract in addition to the classical MAD phenotype. Both patients were found to be homozygous for the Ala529Val mutation of the LMNA gene. Our female patient is the oldest MADA patient (59 years old) who has ever been reported with the LMNA mutation and also the LMNA Ala529Val mutation. This study is the second report on MADA patients with a homozygous Ala529Val mutation.
Collapse
|
7
|
Czapiewski R, Robson MI, Schirmer EC. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome. Front Genet 2016; 7:82. [PMID: 27200088 PMCID: PMC4859327 DOI: 10.3389/fgene.2016.00082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both.
Collapse
Affiliation(s)
| | | | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of EdinburghEdinburgh, UK
| |
Collapse
|
8
|
Sharma S, Bhonde R. Mesenchymal stromal cells are genetically stable under a hostile in vivo–like scenario as revealed by in vitro micronucleus test. Cytotherapy 2015; 17:1384-95. [DOI: 10.1016/j.jcyt.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
|
9
|
Camozzi D, Capanni C, Cenni V, Mattioli E, Columbaro M, Squarzoni S, Lattanzi G. Diverse lamin-dependent mechanisms interact to control chromatin dynamics. Focus on laminopathies. Nucleus 2015; 5:427-40. [PMID: 25482195 PMCID: PMC4164485 DOI: 10.4161/nucl.36289] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals.
Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation.
Collapse
Affiliation(s)
- Daria Camozzi
- a CNR Institute for Molecular Genetics; Unit of Bologna and SC Laboratory of Musculoskeletal Cell Biology; Rizzoli Orthopedic Institute; Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Kalidas RM, Raja SE, Mydeen SAKNM, Samuel SCJR, Durairaj SCJ, Nino GD, Palanichelvam K, Vaithi A, Sudhakar S. Conserved lamin A protein expression in differentiated cells in the earthworm Eudrilus eugeniae. Cell Biol Int 2015; 39:1036-43. [PMID: 25858151 DOI: 10.1002/cbin.10479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 03/29/2015] [Indexed: 12/26/2022]
Abstract
Lamin A is an intermediate filament protein found in most of the differentiated vertebrate cells but absent in stem cells. It shapes the skeletal frame structure beneath the inner nuclear membrane of the cell nucleus. As there are few studies of the expression of lamin A in invertebrates, in the present work, we have analyzed the sequence, immunochemical conservation and expression pattern of lamin A protein in the earthworm Eudrilus eugeniae, a model organism for tissue regeneration. The expression of lamin A has been confirmed in E. eugeniae by immunoblot. Its localization in the nuclear membrane has been observed by immunohistochemistry using two different rabbit anti-sera raised against human lamin A peptides, which are located at the C-terminus of the lamin A protein. These two antibodies detected 70 kDa lamin A protein in mice and a single 65 kDa protein in the earthworm. The Oct-4 positive undifferentiated blastemal tissues of regenerating earthworm do not express lamin A, while the Oct-4 negative differentiated cells express lamin A. This pattern was also confirmed in the earthworm prostate gland. The present study is the first evidence for the immunochemical identification of lamin A and Oct-4 in the earthworm. Along with the partial sequence obtained from the earthworm genome, the present results suggest that lamin A protein and its expression pattern is conserved from the earthworm to humans.
Collapse
Affiliation(s)
- Ramamoorthy M Kalidas
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India
| | - Subramanian Elaiya Raja
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India
| | | | | | | | | | | | - Arumugaswami Vaithi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sivasubramaniam Sudhakar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India
| |
Collapse
|
11
|
Sharma S, Bhonde R. Influence of Nuclear Blebs and Micronuclei Status on the Growth Kinetics of Human Mesenchymal Stem Cells. J Cell Physiol 2014; 230:657-66. [DOI: 10.1002/jcp.24789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Shikha Sharma
- School of Regenerative Medicine; Manipal University; Bangalore Karnataka India
| | - Ramesh Bhonde
- School of Regenerative Medicine; Manipal University; Bangalore Karnataka India
| |
Collapse
|
12
|
Malik P, Zuleger N, de las Heras JI, Saiz-Ros N, Makarov AA, Lazou V, Meinke P, Waterfall M, Kelly DA, Schirmer EC. NET23/STING promotes chromatin compaction from the nuclear envelope. PLoS One 2014; 9:e111851. [PMID: 25386906 PMCID: PMC4227661 DOI: 10.1371/journal.pone.0111851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.
Collapse
Affiliation(s)
- Poonam Malik
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jose I. de las Heras
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalia Saiz-Ros
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandr A. Makarov
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Vassiliki Lazou
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Meinke
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Waterfall
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Kelly
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Stancheva I, Schirmer EC. Nuclear Envelope: Connecting Structural Genome Organization to Regulation of Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:209-44. [DOI: 10.1007/978-1-4899-8032-8_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Hutchison CJ. Do lamins influence disease progression in cancer? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:593-604. [PMID: 24563367 DOI: 10.1007/978-1-4899-8032-8_27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For nearly 60 years, diagnosis of cancer has been based on pathological tests that look for enlargement and distortion of nuclear shape. Because of their involvement in supporting nuclear architecture, it has been postulated that the basis for nuclear shape changes during cancer progression is altered expression of nuclear lamins and in particular lamins A and C. However, studies on lamin expression patterns in a range of different cancers have generated equivocal and apparently contradictory results. This might have been anticipated since cancers are diverse and complex diseases. Moreover, whilst altered epigenetic control over gene expression is a feature of many cancers, this level of control cannot be considered in isolation. Here I have reviewed those studies relating to altered expression of lamins in cancers and argue that consideration of changes in the expression of individual lamins cannot be considered in isolation but only in the context of an understanding of their functions in transformed cells.
Collapse
Affiliation(s)
- Christopher J Hutchison
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK,
| |
Collapse
|
15
|
Capanni C, Bruschi M, Columbaro M, Cuccarolo P, Ravera S, Dufour C, Candiano G, Petretto A, Degan P, Cappelli E. Changes in vimentin, lamin A/C and mitofilin induce aberrant cell organization in fibroblasts from Fanconi anemia complementation group A (FA-A) patients. Biochimie 2013; 95:1838-47. [PMID: 23831462 DOI: 10.1016/j.biochi.2013.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/21/2013] [Indexed: 01/03/2023]
Abstract
Growing number of publication has proved an increasing of cellular function of the Fanconi anemia proteins. To chromosome stability and DNA repair new roles have been attributed to FA proteins in oxidative stress response and homeostasis, immune response and cytokines sensibility, gene expression. Our work shows a new role for FA-A protein: the organization of the cellular structure. By 2D-PAGE of FA-A and correct fibroblasts treated and untreated with H2O2 we identify different expression of protein involved in the structural organization of nucleus, intermediate filaments and mitochondria. Immunofluorescence and electronic microscopy analysis clearly show an already altered cellular structure in normal culture condition and this worsted after oxidative stress. FA-A cell appears structurally prone to physiologic stress and this could explain part of the phenotype of FA cells.
Collapse
|
16
|
Abstract
Much of the structural stability of the nucleus comes from meshworks of intermediate filament proteins known as lamins forming the inner layer of the nuclear envelope called the nuclear lamina. These lamin meshworks additionally play a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford Progeria Syndrome, and often include protruding structures termed nuclear blebs. These nuclear blebs are thought to be related to pathological gene expression; however, little is known about how and why blebs form. We have developed a minimal continuum elastic model of a lamin meshwork that we use to investigate which aspects of the meshwork could be responsible for bleb formation. Mammalian lamin meshworks consist of two types of lamin proteins, A type and B type, and it has been reported that nuclear blebs are enriched in A-type lamins. Our model treats each lamin type separately and thus, can assign them different properties. Nuclear blebs have been reported to be located in regions where the fibers in the lamin meshwork have a greater separation, and we find that this greater separation of fibers is an essential characteristic for generating nuclear blebs. The model produces structures with comparable morphologies and distributions of lamin types as real pathological nuclei. Thus, preventing this opening of the meshwork could be a route to prevent bleb formation, which could be used as a potential therapy for the pathologies associated with nuclear blebs.
Collapse
|
17
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
18
|
Lattanzi G, Marmiroli S, Facchini A, Maraldi NM. Nuclear damages and oxidative stress: new perspectives for laminopathies. Eur J Histochem 2012; 56:e45. [PMID: 23361241 PMCID: PMC3567764 DOI: 10.4081/ejh.2012.e45] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/11/2012] [Accepted: 10/09/2012] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes encoding nuclear envelope proteins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, referred to as laminopathies. The astonishing variety of diseased phenotypes suggests that different mechanisms could be involved in the pathogenesis of laminopathies. In this review we will focus mainly on two of these pathogenic mechanisms: the nuclear damages affecting the chromatin organization, and the oxidative stress causing un-repairable DNA damages. Alteration in the nuclear profile and in chromatin organization, which are particularly impressive in systemic laminopathies whose cells undergo premature senescence, are mainly due to accumulation of unprocessed prelamin A. The toxic effect of these molecular species, which interfere with chromatin-associated proteins, transcription factors, and signaling pathways, could be reduced by drugs which reduce their farnesylation and/or stability. In particular, inhibitors of farnesyl transferase (FTIs), have been proved to be active in rescuing the altered cellular phenotype, and statins, also in association with other drugs, have been included into pilot clinical trials. The identification of a mechanism that accounts for accumulation of un-repairable DNA damage due to reactive oxygen species (ROS) generation in laminopathic cells, similar to that found in other muscular dystrophies (MDs) caused by altered expression of extracellular matrix (ECM) components, suggests that anti-oxidant therapeutic strategies might prove beneficial to laminopathic patients.
Collapse
Affiliation(s)
- G Lattanzi
- Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | | | | | | |
Collapse
|
19
|
Capanni C, Squarzoni S, Cenni V, D'Apice MR, Gambineri A, Novelli G, Wehnert M, Pasquali R, Maraldi NM, Lattanzi G. Familial partial lipodystrophy, mandibuloacral dysplasia and restrictive dermopathy feature barrier-to-autointegration factor (BAF) nuclear redistribution. Cell Cycle 2012; 11:3568-77. [PMID: 22935701 PMCID: PMC3478308 DOI: 10.4161/cc.21869] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prelamin A processing impairment is a common feature of a restricted group of rare genetic alterations/disorders associated with a wide range of clinical phenotypes. Changes in histone posttranslational modifications, alterations in non-histone chromatin proteins and chromatin disorganization have been specifically linked to impairment of specific, distinct prelamin A processing steps, but the molecular mechanism involved in these processes is not yet understood . In this study, we show that the accumulation of wild-type prelamin A detected in restrictive dermopathy (RD), as well as the accumulation of mutated forms of prelamin A identified in familial partial lipodystrophy (FPLD) and mandibuloacral dysplasia (MADA), affect the nuclear localization of barrier-to-autointegration factor (BAF), a protein able to link lamin A precursor to chromatin remodeling functions. Our findings, in accordance with previously described results, support the hypothesis of a prelamin A involvement in BAF nuclear recruitment and suggest BAF-prelamin A complex as a protein platform usually activated in prelamin A-accumulating diseases. Finally, we demonstrate the involvement of the inner nuclear membrane protein emerin in the proper localization of BAF-prelamin A complex.
Collapse
Affiliation(s)
- Cristina Capanni
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Unit of Bologna-IOR, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing, and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
21
|
Kubben N, Voncken JW, Misteli T. Mapping of protein- and chromatin-interactions at the nuclear lamina. Nucleus 2010; 1:460-71. [PMID: 21327087 PMCID: PMC3027047 DOI: 10.4161/nucl.1.6.13513] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 01/07/2023] Open
Abstract
The nuclear envelope and the lamina define the nuclear periphery and are implicated in many nuclear processes including chromatin organization, transcription and DNA replication. Mutations in lamin A proteins, major components of the lamina, interfere with these functions and cause a set of phenotypically diverse diseases referred to as laminopathies. The phenotypic diversity of laminopathies is thought to be the result of alterations in specific protein- and chromatin interactions due to lamin A mutations. Systematic identification of lamin A-protein and -chromatin interactions will be critical to uncover the molecular etiology of laminopathies. Here we summarize and critically discuss recent technology to analyze lamina-protein and-chromatin interactions.
Collapse
Affiliation(s)
- Nard Kubben
- Center for Heart Failure Research; Maastricht, The Netherlands
- National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Jan Willem Voncken
- Department of Molecular Genetics; Maastricht University Medical Center; Maastricht, The Netherlands
| | - Tom Misteli
- National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
22
|
Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pinto Y, Misteli T. Identification of differential protein interactors of lamin A and progerin. Nucleus 2010; 1:513-25. [PMID: 21327095 PMCID: PMC3027055 DOI: 10.4161/nucl.1.6.13512] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 01/11/2023] Open
Abstract
The nuclear lamina is an interconnected meshwork of intermediate filament proteins underlying the nuclear envelope. The lamina is an important regulator of nuclear structural integrity as well as nuclear processes, including transcription, DNA replication and chromatin remodeling. The major components of the lamina are A- and B-type lamins. Mutations in lamins impair lamina functions and cause a set of highly tissue-specific diseases collectively referred to as laminopathies. The phenotypic diversity amongst laminopathies is hypothesized to be caused by mutations affecting specific protein interactions, possibly in a tissue-specific manner. Current technologies to identify interaction partners of lamin A and its mutants are hampered by the insoluble nature of lamina components. To overcome the limitations of current technologies, we developed and applied a novel, unbiased approach to identify lamin A-interacting proteins. This approach involves expression of the high-affinity OneSTrEP-tag, precipitation of lamin-protein complexes after reversible protein cross-linking and subsequent protein identification by mass spectrometry. We used this approach to identify in mouse embryonic fibroblasts and cardiac myocyte NklTAg cell lines proteins that interact with lamin A and its mutant isoform progerin, which causes the premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). We identified a total of 313 lamina-interacting proteins, including several novel lamin A interactors, and we characterize a set of 35 proteins which preferentially interact with lamin A or progerin.
Collapse
Affiliation(s)
- Nard Kubben
- Center for Heart Failure Research; Cardiovascular Research Institute Maastricht; Maastricht, The Netherlands
- National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Jan Willem Voncken
- Department of Molecular Genetics; GROW School for Oncology and Developmental Biology; Maastricht, The Netherlands
| | | | - Chantal Calis
- Department of Clinical Genetics; Maastricht University; Maastricht, The Netherlands
| | - Geert van Almen
- Center for Heart Failure Research; Cardiovascular Research Institute Maastricht; Maastricht, The Netherlands
| | - Yigal Pinto
- Heart Failure Research Center; Medical Center; Amsterdam, The Netherlands
| | - Tom Misteli
- National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
23
|
Muscular laminopathies: role of prelamin A in early steps of muscle differentiation. ACTA ACUST UNITED AC 2010; 51:246-56. [PMID: 21035482 DOI: 10.1016/j.advenzreg.2010.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022]
Abstract
Lamin A is a nuclear envelope constituent involved in a group of human disorders, collectively referred to as laminopathies, which include Emery-Dreifuss muscular dystrophy. Because increasing evidence suggests a role of lamin A precursor in nuclear functions, we investigated the processing of prelamin A along muscle differentiation. Both protein levels and cellular localization of prelamin A appears to be modulated during C2C12 mouse myoblasts activation. Similar changes also occur in the expression of two lamin A-binding proteins: emerin and LAP2α. Furthermore prelamin A forms a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affects LAP2α and PCNA amount and increases caveolin 3 mRNA and protein levels, whilst accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor inhibits caveolin 3 expression. These data provide evidence for a critical role of lamin A precursor in the early steps of muscle cell differentiation. In fact the post-translational processing of prelamin A affects caveolin 3 expression and influences the myoblast differentiation process. Thus, altered lamin A processing could affect myoblast differentiation and/or muscle regeneration and might contribute to the myopathic phenotype.
Collapse
|
24
|
Maraldi NM, Lattanzi G, Cenni V, Bavelloni A, Marmiroli S, Manzoli FA. Laminopathies and A-type lamin-associated signalling pathways. ACTA ACUST UNITED AC 2009; 50:248-61. [PMID: 19917303 DOI: 10.1016/j.advenzreg.2009.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
|
26
|
Favreau C, Delbarre E, Courvalin JC, Buendia B. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway. Exp Cell Res 2008; 314:1392-405. [PMID: 18294630 DOI: 10.1016/j.yexcr.2008.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/15/2008] [Accepted: 01/25/2008] [Indexed: 12/29/2022]
Abstract
Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.
Collapse
Affiliation(s)
- Catherine Favreau
- Institut Jacques Monod, UMR7592, CNRS et Universités Paris 6 et 7, Paris Cedex 05, France
| | | | | | | |
Collapse
|
27
|
Maraldi NM, Capanni C, Lattanzi G, Camozzi D, Facchini A, Manzoli FA. SREBP1 interaction with prelamin A forms: A pathogenic mechanism for lipodystrophic laminopathies. ACTA ACUST UNITED AC 2008; 48:209-23. [DOI: 10.1016/j.advenzreg.2007.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Lattanzi G, Columbaro M, Mattioli E, Cenni V, Camozzi D, Wehnert M, Santi S, Riccio M, Del Coco R, Maraldi NM, Squarzoni S, Foisner R, Capanni C. Pre-Lamin A processing is linked to heterochromatin organization. J Cell Biochem 2007; 102:1149-59. [PMID: 17654502 DOI: 10.1002/jcb.21467] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pre-lamin A undergoes subsequent steps of post-translational modification at its C-terminus, including farnesylation, methylation, and cleavage by ZMPSTE24 metalloprotease. Here, we show that accumulation of different intermediates of pre-lamin A processing in nuclei, induced by expression of mutated pre-lamin A, differentially affected chromatin organization in human fibroblasts. Unprocessed (non-farnesylated) pre-lamin A accumulated in intranuclear foci, caused the redistribution of LAP2alpha and of the heterochromatin markers HP1alpha and trimethyl-K9-histone 3, and triggered heterochromatin localization in the nuclear interior. In contrast, the farnesylated and carboxymethylated lamin A precursor accumulated at the nuclear periphery and caused loss of heterochromatin markers and Lap2alpha in enlarged nuclei. Interestingly, pre-lamin A bound both HP1alpha and LAP2alpha in vivo, but the farnesylated form showed reduced affinity for HP1alpha. Our data show a link between pre-lamin A processing and heterochromatin remodeling and have major implications for understanding molecular mechanisms of human diseases linked to mutations in lamins.
Collapse
|
29
|
Maraldi NM, Mattioli E, Lattanzi G, Columbaro M, Capanni C, Camozzi D, Squarzoni S, Manzoli FA. Prelamin A processing and heterochromatin dynamics in laminopathies. ACTA ACUST UNITED AC 2007; 47:154-67. [PMID: 17341429 DOI: 10.1016/j.advenzreg.2006.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nadir M Maraldi
- Department of Anatomical Sciences, University of Bologna, Bologna, Italy; IGM-CNR, Unit of Bologna, c/o IOR, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|