1
|
Bernardi FR, Lucion MK, Dalle Mole R, Machado TD, Loreto BBL, Farias BL, Reis TM, Reis RS, Bigonha SM, Peluzio MDCG, Arcego DM, Dalmaz C, Silveira PP. Relationship between maternal biological features, environmental factors, and newborn neuromotor development associated with visual fixation abilities. Brain Cogn 2024; 180:106202. [PMID: 38991360 DOI: 10.1016/j.bandc.2024.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Newborn visual fixation abilities predict future cognitive, perceptive, and motor skills. However, little is known about the factors associated with the newborn visual fixation, which is an indicator of neurocognitive abilities. We analyzed maternal biological and environmental characteristics associated with fine motor skills (visual tracking) in 1 month old infants. Fifty-one infants were tested on visual tracking tasks (Infant Visuomotor Behavior Assessment Scale/ Guide for the Assessment of Visual Ability in Infants) and classified according to visual conducts scores. Differences between groups were compared considering motor development (Alberta Infant Motor Scale) maternal mental health (Edinburgh Postnatal Depression Scale and Hamilton Anxiety Scale); home environment (Affordances in the Home Environment for Development Scale); maternal care (Coding Interactive Behavior); breastmilk composition (total fatty acids, proteins, and cortisol); and maternal metabolic profile (serum hormones and interleukins). Mothers of infants with lower visual fixation scores had higher levels of protein in breastmilk at 3 months. Mothers of infants with better visual conduct scores had higher serum levels of T4 (at 1 month) and prolactin (at 3 months). There were no associations between visual ability and motor development, home environment, or maternal care. Early newborn neuromotor development, especially visual and fine motor skills, is associated with maternal biological characteristics (metabolic factors and breastmilk composition), highlighting the importance of early detection of maternal metabolic changes for the healthy neurodevelopment of newborns.
Collapse
Affiliation(s)
- Fernanda Rombaldi Bernardi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Unidade de Terapia Intensiva Neonatal do Hospital Universitário Polydoro Ernani de São Thiago, Universidade Federal de Santa Catarina, EBSERH, Florianópolis, SC, Brazil
| | - Marta Knijnik Lucion
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta Dalle Mole
- Department of Psychiatry, Faculty of Medicine, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Tania Diniz Machado
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Bruna Luciano Farias
- Faculdade de Fisioterapia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tatiane Madeira Reis
- Faculdade de Biomedicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta Sena Reis
- Faculdade de Nutrição, Universidade Federal de Goiás, Goiânia, Brazil
| | - Solange Mara Bigonha
- Programa de Pós-Graduação em Ciência da Nutrição, Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Programa de Pós-Graduação em Ciência da Nutrição, Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Brazil
| | - Danusa Mar Arcego
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Pelufo Silveira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Doom JR, Deer LK, Dabelea D, LeBourgeois MK, Lumeng JC, Martin CK, Hankin BL, Davis EP. Biological and behavioral pathways from prenatal depression to offspring cardiometabolic risk: Testing the developmental origins of health and disease hypothesis. Dev Psychol 2024; 60:1620-1638. [PMID: 38358670 PMCID: PMC11324863 DOI: 10.1037/dev0001704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Given prior literature focused on the Developmental Origins of Health and Disease framework, there is strong rationale to hypothesize that reducing depression in the prenatal period will cause improvements in offspring cardiometabolic health. The current review outlines evidence that prenatal depression is associated with offspring cardiometabolic risk and health behaviors. We review evidence of these associations in humans and in nonhuman animals at multiple developmental periods, from the prenatal period (maternal preeclampsia, gestational diabetes), neonatal period (preterm birth, small size at birth), infancy (rapid weight gain), childhood and adolescence (high blood pressure, impaired glucose-insulin homeostasis, unfavorable lipid profiles, abdominal obesity), and into adulthood (diabetes, cardiovascular disease). In addition to these cardiometabolic outcomes, we focus on health behaviors associated with cardiometabolic risk, such as child eating behaviors, diet, physical activity, and sleep health. Our review focuses on child behaviors (e.g., emotional eating, preference for highly palatable foods, short sleep duration) and parenting behaviors (e.g., pressuring child to eat, modeling of health behaviors). These changes in health behaviors may be detected before changes to cardiometabolic outcomes, which may allow for early identification of and prevention for children at risk for poor adult cardiometabolic outcomes. We also discuss the methods of the ongoing Care Project, which is a randomized clinical trial to test whether reducing prenatal maternal depression improves offspring's cardiometabolic health and health behaviors in preschool. The goal of this review and the Care Project are to inform future research, interventions, and policies that support prenatal mental health and offspring cardiometabolic health. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center; Department of Epidemiology, Colorado School of Public Health; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Julie C. Lumeng
- Department of Nutritional Sciences, School of Public Health; Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, MI
| | | | - Benjamin L. Hankin
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana-Champaign, IL
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO
- Department of Pediatrics, University of California, Irvine
| |
Collapse
|
3
|
Montana AV, Mildon A, Daniel AI, Pitino MA, Baxter JAB, Beggs MR, Unger SL, O'Connor DL, Walton K. Is Maternal Body Weight or Composition Associated with Onset of Lactogenesis II, Human Milk Production, or Infant Consumption of Mother's Own Milk? A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100228. [PMID: 38609047 PMCID: PMC11163153 DOI: 10.1016/j.advnut.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Maternal adiposity impacts lactation performance, but the pathways are unclear. We conducted a systematic review to understand whether maternal adiposity (body mass index [BMI] or percentage fat mass) is associated with onset of lactogenesis II (copious milk; hours), human milk production (expressed volume/24 h), and infant consumption of mother's own milk (volume/24 h). We used random-effects standard meta-analyses to compare the relative risk (RR) of delayed lactogenesis II (>72 h) between mothers classified as underweight (BMI <18.5 kg/m2), healthy weight (BMI, 18.5-24.9 kg/m2), and overweight/obese (BMI ≥25 kg/m2) and random-effects meta-regressions to examine associations with hours to lactogenesis II and infant milk consumption. The certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation approach. We included 122 articles. Mothers with underweight (RR: 0.64; 95% CI: 0.49, 0.83; I2 = 39.48%; 8 articles/data points) or healthy weight status (RR: 0.67; 95% CI: 0.57, 0.79; I2 = 70.91%; 15 articles/data points) were less likely to experience delayed lactogenesis II than mothers with overweight/obesity. We found no association between maternal BMI and time to onset of lactogenesis II (β: 1.45 h; 95% CI: -3.19, 6.09 h; P = 0.52, I2 = 0.00%; 8 articles, 17 data points). Due to limited data, we narratively reviewed articles examining BMI or percentage fat mass and milk production (n = 6); half reported an inverse association and half no association. We found no association between maternal BMI (β: 6.23 mL; 95% CI: -11.26, 23.72 mL; P = 0.48, I2 = 47.23%; 58 articles, 75 data points) or percentage fat mass (β: 7.82 mL; 95% CI: -1.66, 17.29 mL; P = 0.10, I2 = 28.55%; 30 articles, 41 data points) and infant milk consumption. The certainty of evidence for all outcomes was very low. In conclusion, mothers with overweight/obesity may be at risk of delayed lactogenesis II. The available data do not support an association with infant milk consumption, but the included studies do not adequately represent mothers with obesity. This study was registered in PROSPERO as 285344.
Collapse
Affiliation(s)
- Amanda V Montana
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | - Alison Mildon
- Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | | | - Michael A Pitino
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | - Jo-Anna B Baxter
- Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | - Megan R Beggs
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | - Sharon L Unger
- Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada; Paediatrics, Mount Sinai Hospital, Toronto ON, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto ON, Canada
| | - Deborah L O'Connor
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada; Paediatrics, Mount Sinai Hospital, Toronto ON, Canada
| | - Kathryn Walton
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Family Relations & Applied Nutrition, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
5
|
Lugonja N, Marinković V, Pucarević M, Miletić S, Stojić N, Crnković D, Vrvić M. Human Milk-The Biofluid That Nourishes Infants from the First Day of Life. Foods 2024; 13:1298. [PMID: 38731669 PMCID: PMC11083309 DOI: 10.3390/foods13091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Human milk is a biofluid with a unique composition among mammalian milks. Besides this milk's major components, its bioactive compounds, like hormones, immune factors, and oligosaccharides, are unique and important for infant growth and development. The best form of nutrition for term and preterm infants is the mother's own milk. However, in the absence of the mother's own milk, donor milk should be made available. Milk banks support neonatal intensive care units by providing preterm infants with human milk that generally has reasonable nutritive value for this sensitive population. However, neither mother's own milk nor donor milk has sufficient energy content for the growth of preterm babies, so adequate human milk supplementation is crucial for their progress. Due to the different characteristics of human breast milk, as well as ubiquitous environmental pollutants, such as microplastics, new methods are required for monitoring the quality and characteristics of human milk, which will lay a solid foundation for the further development and progress of human milk research.
Collapse
Affiliation(s)
- Nikoleta Lugonja
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Vesna Marinković
- Institute of Neonatology, Kralja Milutina 50, 11000 Belgrade, Serbia;
| | - Mira Pucarević
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia; (M.P.); (N.S.); (M.V.)
| | - Srdjan Miletić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Nataša Stojić
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia; (M.P.); (N.S.); (M.V.)
| | - Dragan Crnković
- City Public Health Institute of Belgrade, Blvd. Despot Stefana 54a, 11108 Belgrade, Serbia;
| | - Miroslav Vrvić
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia; (M.P.); (N.S.); (M.V.)
| |
Collapse
|
6
|
Zielinska-Pukos MA, Kopiasz Ł, Hamulka J. The Effect of Maternal Overweight/Obesity on Serum and Breastmilk Leptin, and Its Associations with Body Composition, Cardiometabolic Health Indices, and Maternal Diet: The BLOOM Study. Metabolites 2024; 14:221. [PMID: 38668349 PMCID: PMC11051946 DOI: 10.3390/metabo14040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In overweight and obese patients, elevated serum and breastmilk leptin concentrations are observed, with serum leptin also being likely affected by the diet. We analyzed serum and breastmilk leptin in normal weight (NW) and overweight/obese (OW/OB) mothers, and evaluated its associations with (1) maternal anthropometric parameters; (2) markers of cardiometabolic health; and (3) the maternal diet. The BLOOM (Breastmilk and the Link to Overweight/Obesity and Maternal diet) study was conducted among 40 women (n = 20 OW/OB; n = 20, NW) who were exclusively or predominantly breastfeeding for 15.5 ± 1.2 (OW/OB group (0.99)) weeks. We collected 24 h breastmilk and fasting blood samples for leptin analysis by ELISA. Maternal dietary habits were evaluated using a 3-day dietary record and food frequency questionnaire, which were used to calculate the Polish-adapted Mediterranean Diet score. Maternal anthropometric measurements and DEXA scans were performed, and anthropometric and cardiometabolic indices were calculated. The OW mothers had 1.4 times higher serum levels, while OB mothers had 4.5 and 6.2 higher serum and breastmilk leptin levels, respectively, in comparison to the NW mothers. The FM% was correlated with serum and breastmilk leptin levels (r = 0.878, r = 0.638). Serum leptin was associated with markers of cardiometabolic health such as AIP, CMI, and VAI in the NW mothers, and with LAP in the OW/OB mothers. Higher energy, fructose intake and adherence to the Mediterranean diet were associated with serum leptin in the NW mothers (β = 0.323, 0.039-0.608; β = 0.318, 0.065-0.572; β = 0.279, 0.031-0.528); meanwhile, higher adherence to the Mediterranean diet could protect against elevated breastmilk leptin concentrations in OW/OB mothers (β = -0.444, -0.839--0.050), even after adjustment for FM%. Our results suggest a potential association between maternal serum leptin concentrations and cardiometabolic health. In addition, we confirm the importance of healthy dietary patterns in the improvement of breastmilk composition.
Collapse
Affiliation(s)
- Monika A. Zielinska-Pukos
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
7
|
Francis J, Mildon A, Tarasuk V, Frank L. Household food insecurity is negatively associated with achievement of prenatal intentions to feed only breast milk in the first six months postpartum. Front Nutr 2024; 11:1287347. [PMID: 38356859 PMCID: PMC10865492 DOI: 10.3389/fnut.2024.1287347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Background Household food insecurity (HFI) has been associated with suboptimal breastfeeding practices. Postpartum factors reported by caregivers include stressful life circumstances and maternal diet quality concerns. It is unknown whether prenatal breast milk feeding intentions, a well-established predictor of breastfeeding outcomes, differ by HFI status. We explored associations between HFI and prenatal intentions to feed any and only breast milk in the first 6 months postpartum, and achievement of these intentions. Methods We utilized data from self-identified biological mothers with children 6-12 months of age who responded to a retrospective, cross-sectional online infant feeding survey conducted in Nova Scotia, Canada. HFI (yes/no) was assessed using the Household Food Security Survey Module. Prenatal intentions to feed any and only breast milk were assessed based on responses to five options for infant milk feeding plans. Achievement of intentions was assessed by breast milk and formula feeding practices in the first 6 months. Multivariable logistic regressions were conducted, adjusting for maternal socio-demographics. Results Among 459 respondents, 28% reported HFI; 88% intended to feed any breast milk and 77% intended to feed only breast milk, with no difference by HFI status. Of those intending to feed any breast milk, 99% succeeded, precluding further analysis. Among mothers who intended to provide only breast milk, only 51% achieved their intention, with lower odds among those with HFI (aOR 0.54, 95% CI 0.29-0.98). Conclusion HFI was not associated with intentions for feeding breast milk in the first 6 months postpartum, but mothers with HFI were less likely to achieve their intention to provide only breast milk. Further research is needed to understand the underlying reasons for this and to guide intervention designs to address HFI and help mothers reach their breastfeeding goals.
Collapse
Affiliation(s)
- Jane Francis
- Department of Sociology, Acadia University, Wolfville, NS, Canada
| | - Alison Mildon
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie Tarasuk
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Lesley Frank
- Department of Sociology, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
8
|
Suwaydi MA, Lai CT, Gridneva Z, Perrella SL, Wlodek ME, Geddes DT. Sampling Procedures for Estimating the Infant Intake of Human Milk Leptin, Adiponectin, Insulin, Glucose, and Total Lipid. Nutrients 2024; 16:331. [PMID: 38337616 PMCID: PMC10857176 DOI: 10.3390/nu16030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Limited attention is given to the efficacy of protocols for the estimation of infant intake of milk components when investigating their impact on infant outcomes. We compared the actual measured intake of human milk components with estimations derived from 15 protocols to determine the most reliable approach for estimating intake of HM leptin, adiponectin, insulin, glucose, and total lipid. Twenty mothers who were 3-5 months postpartum completed a 24 h milk profile study with pre-/post-feed milk samples collection. The true infant intake (control group) based on 24 h milk intake (MI) was compared to estimated infant intakes using concentrations from five sampling protocols that were multiplied by one of true infant MI, considered mean MI (800 mL), or global mean MI (766 mL). The mean measured concentrations of six samples (three sets of pre- and post-feed samples, from morning (06:00-09:00), afternoon (13:00-16:00), and evening (19:00-22:00)) multiplied by the true infant MI, mean considered MI, and global mean MI produced the most accurate estimates of infant intake of these components. Therefore, in the absence of 24 h measurements and sampling, a sampling protocol comprising three sets of pre-/post-feed samples provides the most reliable infant intake estimates of HM leptin, adiponectin, insulin, glucose, and total lipid.
Collapse
Affiliation(s)
- Majed A. Suwaydi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- School of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Sharon L. Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Mary E. Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia or (M.A.S.); (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Martin Carli JF, Dzieciatkowska M, Hernandez TL, Monks J, McManaman JL. Comparative proteomic analysis of human milk fat globules and paired membranes and mouse milk fat globules identifies core cellular systems contributing to mammary lipid trafficking and secretion. Front Mol Biosci 2023; 10:1259047. [PMID: 38169886 PMCID: PMC10759240 DOI: 10.3389/fmolb.2023.1259047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Human milk delivers critical nutritional and immunological support to human infants. Milk fat globules (MFGs) and their associated membranes (MFGMs) contain the majority of milk lipids and many bioactive components that contribute to neonatal development and health, yet their compositions have not been fully defined, and the mechanisms responsible for formation of these structures remain incompletely understood. Methods: In this study, we used untargeted mass spectrometry to quantitatively profile the protein compositions of freshly obtained MFGs and their paired, physically separated MFGM fractions from 13 human milk samples. We also quantitatively profiled the MFG protein compositions of 9 pooled milk samples from 18 lactating mouse dams. Results: We identified 2,453 proteins and 2,795 proteins in the majority of human MFG and MFGM samples, respectively, and 1,577 proteins in mouse MFGs. Using paired analyses of protein abundance in MFGMs compared to MFGs (MFGM-MFG; 1% FDR), we identified 699 proteins that were more highly abundant in MFGMs (MFGM-enriched), and 201 proteins that were less abundant in MFGMs (cytoplasmic). MFGM-enriched proteins comprised membrane systems (apical plasma membrane and multiple vesicular membranes) hypothesized to be responsible for lipid and protein secretion and components of membrane transport and signaling systems. Cytoplasmic proteins included ribosomal and proteasomal systems. Comparing abundance between human and mouse MFGs, we found a positive correlation (R 2 = 0.44, p < 0.0001) in the relative abundances of 1,279 proteins that were found in common across species. Discussion: Comparative pathway enrichment analyses between human and mouse samples reveal similarities in membrane trafficking and signaling pathways involved in milk fat secretion and identify potentially novel immunological components of MFGs. Our results advance knowledge of the composition and relative quantities of proteins in human and mouse MFGs in greater detail, provide a quantitative profile of specifically enriched human MFGM proteins, and identify core cellular systems involved in milk lipid secretion.
Collapse
Affiliation(s)
- Jayne F. Martin Carli
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Teri L. Hernandez
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jenifer Monks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James L. McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Brown RSE, Jacobs IM, Khant Aung Z, Knowles PJ, Grattan DR, Ladyman SR. High fat diet-induced maternal obesity in mice impairs peripartum maternal behaviour. J Neuroendocrinol 2023; 35:e13350. [PMID: 37926066 DOI: 10.1111/jne.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Obesity during pregnancy represents a significant health issue and can lead to increased complications during pregnancy and impairments with breastfeeding, along with long-term negative health consequences for both mother and offspring. In rodent models, diet-induced obesity (DIO) during pregnancy leads to poor outcomes for offspring. Using a DIO mouse model, consisting of feeding mice a high fat diet for 8 weeks before mating, we recapitulate the effect of high pup mortality within the first 3 days postpartum. To examine the activity of the dam around the time of birth, late pregnant control and DIO dams were recorded in their home cages and the behaviour of the dam immediately before and after birth was analysed. Prior to giving birth, DIO dams spent less time engaging in nesting behaviour, while after birth, DIO dams spent less time in the nest with their pups compared to control dams, indicating reduced pup-engagement in the early postpartum period. We have previously reported that lactogenic hormone action, mediated by the prolactin receptor, in the medial preoptic area of the hypothalamus (MPOA) is critical for the onset of normal postpartum maternal behaviour. We hypothesized that DIO dams may have lower lactogenic hormone activity during late pregnancy, which would contribute to impaired onset of normal postpartum maternal behaviour. Day 16 lactogenic activity, transport of prolactin into the brain, and plasma prolactin concentrations around birth were all similar in control and DIO dams. Moreover, endogenous pSTAT5, a marker of prolactin receptor activity, in the MPOA was unaffected by DIO. Overall, these data indicate that lactogenic activity in late pregnancy of DIO dams is not different to controls and is unlikely to play a major role in impaired onset of normal postpartum maternal behaviour.
Collapse
Affiliation(s)
- Rosemary Shanon Eileen Brown
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ireland M Jacobs
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Pene J Knowles
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
11
|
Mohr AE, Senkus KE, McDermid JM, Berger PK, Perrin MT, Handu D. Human Milk Nutrient Composition Data is Critically Lacking in the United States and Canada: Results from a Systematic Scoping Review of 2017-2022. Adv Nutr 2023; 14:1617-1632. [PMID: 37758059 PMCID: PMC10721511 DOI: 10.1016/j.advnut.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Characterization of the nutrients in human milk is important to understand the dietary and developmental requirements of infants. The objective of this review was to summarize the state-of-the-science on the nutrient composition of human milk in the United States and Canada published from 2017 to 2022. Four databases were searched for randomized controlled studies and others given the scoping nature of this review. We limited type to mature milk collected 21 d postpartum and beyond from lactating individuals in the United States and Canada who gave birth at 37-wk gestation or later (full-term). Outcomes of interest included traditional macro- and micronutrients, including human milk oligosaccharides (HMOs), and milk volume. The publication date range was selected as January 1, 2017, to the day the literature search was performed. A total of 32 articles were included in the scoping review from primarily longitudinal cohort or cross-sectional designs. The most prevalent sample collection method was full-breast expression (n = 20) with most studies (n = 26) collecting samples from a single timepoint. Carbohydrates (HMOs [n = 12], glucose [n = 8], and lactose [n = 6]) and protein (n = 5) were the most frequently assessed nutrients in this body of work, with consensus among studies that glucose is present in limited concentrations compared to lactose (24-64 mg/dL compared with 6-7 g/dL) and that HMOs are influenced by temporality and secretor status. Included studies displayed an overall level of heterogeneity and sparsity paralleling previous reports and nutrient data in the USDA FoodData Central system. Much of the data extracted from retained articles generally provided analysis of a specific nutrient or group of nutrients. Moreover, many studies did not use the preferred analytical methods as outlined by the Human Milk Composition Initiative to increase measurement confidence. Up-to-date nutrient composition data of human milk is still greatly needed as it is paramount for the management of infant feeding, assessment of infant and maternal nutritional and health needs, and as a reference for infant formula development.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Katelyn E Senkus
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL, United States
| | | | - Paige K Berger
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Maryanne T Perrin
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC, United States
| | - Deepa Handu
- Evidence Analysis Center, Academy of Nutrition and Dietetics, Chicago, IL, United States.
| |
Collapse
|
12
|
Suwaydi MA, Lai CT, Rea A, Gridneva Z, Perrella SL, Wlodek ME, Geddes DT. Circadian Variation in Human Milk Hormones and Macronutrients. Nutrients 2023; 15:3729. [PMID: 37686759 PMCID: PMC10490050 DOI: 10.3390/nu15173729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
There is an inadequate understanding of the daily variations in hormones and macronutrients in human milk (HM), and sample collection protocols vary considerably from study to study. To investigate changes in these milk components across 24 h, 22 lactating women collected small milk samples before and after each breastfeed or expression from each breast. Test weighing was used to determine the volume of HM consumed in each feed. The concentrations of leptin, adiponectin, insulin, fat, and glucose were measured, and the intakes were calculated. A linear mixed model was fitted to assess within-feed and circadian variation in HM feed volume and concentration, and intakes of several components. The average infant intake of HM was 879 g/24 h. Significantly higher pre-feed concentrations were found for adiponectin and glucose and lower post-feed concentrations were found for insulin and fat. Significant circadian rhythms were displayed for leptin, adiponectin, insulin, glucose (both concentration and intake), fat concentration, and milk volume. These findings demonstrate the necessity for setting up standardised and rigorous sampling procedures that consider both within-feed and circadian variations in HM components to gain a more precise understanding of the impacts of these components on infant health, growth and development.
Collapse
Affiliation(s)
- Majed A. Suwaydi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- School of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
| | - Alethea Rea
- Mathematics and Statistics, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia;
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
| | - Sharon L. Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
| | - Mary E. Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia (C.T.L.); (Z.G.); (S.L.P.); (M.E.W.)
| |
Collapse
|
13
|
Carter CS. Close encounters with oxytocin. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 15:100189. [PMID: 37577297 PMCID: PMC10422098 DOI: 10.1016/j.cpnec.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
The purpose of this narrative review is to use a personal perspective to describe unanticipated and pivotal findings that drew the author into the study oxytocin. Oxytocin was originally described as a "female reproductive hormone." However, supporting reproduction is only one of a myriad of functions now attributed to oxytocin. Oxytocin promotes survival and resilience in both sexes and across the lifespan, especially in the context of stress or trauma and helps to explain the health benefits of relationships. Oxytocin works in the context of individual histories and in conjunction with other molecules, as well as the autonomic nervous system and immune factors. The chemical properties of oxytocin make it biologically active, but difficult to measure. As a deeper understanding of the biology of oxytocin is emerging, we may use knowledge of the properties of oxytocin to uncover adaptive strategies that protect and heal in the face of stress and adversity in both males and females.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA
- Department of Psychology, University of Virginia, Charlotteville, VA, USA
| |
Collapse
|
14
|
Tomberlin JK, Miranda C, Flint C, Harris E, Wu G. Lactation in the human. Anim Front 2023; 13:64-70. [PMID: 37324212 PMCID: PMC10425138 DOI: 10.1093/af/vfad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Chelsea Miranda
- Department of Entomology, Texas A&M University, College Station, TX
| | - Casey Flint
- Department of Entomology, Texas A&M University, College Station, TX
| | - Erin Harris
- Department of Entomology, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
15
|
Smilowitz JT, Allen LH, Dallas DC, McManaman J, Raiten DJ, Rozga M, Sela DA, Seppo A, Williams JE, Young BE, McGuire MK. Ecologies, synergies, and biological systems shaping human milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 2. Am J Clin Nutr 2023; 117 Suppl 1:S28-S42. [PMID: 37173059 DOI: 10.1016/j.ajcnut.2022.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.
Collapse
Affiliation(s)
- Jennifer T Smilowitz
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA.
| | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, University of California Davis, Davis, CA, USA
| | - David C Dallas
- Nutrition Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - James McManaman
- Division of Reproductive Sciences, University of Colorado, Aurora, CO, USA
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mary Rozga
- Evidence Analysis Center, Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Antti Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Bridget E Young
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
16
|
Krebs NF, Belfort MB, Meier PP, Mennella JA, O'Connor DL, Taylor SN, Raiten DJ. Infant factors that impact the ecology of human milk secretion and composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 3. Am J Clin Nutr 2023; 117 Suppl 1:S43-S60. [PMID: 37173060 PMCID: PMC10356564 DOI: 10.1016/j.ajcnut.2023.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 05/15/2023] Open
Abstract
Infants drive many lactation processes and contribute to the changing composition of human milk through multiple mechanisms. This review addresses the major topics of milk removal; chemosensory ecology for the parent-infant dyad; the infant's inputs into the composition of the human milk microbiome; and the impact of disruptions in gestation on the ecology of fetal and infant phenotypes, milk composition, and lactation. Milk removal, which is essential for adequate infant intake and continued milk synthesis through multiple hormonal and autocrine/paracrine mechanisms, should be effective, efficient, and comfortable for both the lactating parent and the infant. All 3 components should be included in the evaluation of milk removal. Breastmilk "bridges" flavor experiences in utero with postweaning foods, and the flavors become familiar and preferred. Infants can detect flavor changes in human milk resulting from parental lifestyle choices, including recreational drug use, and early experiences with the sensory properties of these recreational drugs impact subsequent behavioral responses. Interactions between the infant's own developing microbiome, that of the milk, and the multiple environmental factors that are drivers-both modifiable and nonmodifiable-in the microbial ecology of human milk are explored. Disruptions in gestation, especially preterm birth and fetal growth restriction or excess, impact the milk composition and lactation processes such as the timing of secretory activation, adequacy of milk volume and milk removal, and duration of lactation. Research gaps are identified in each of these areas. To assure a sustained and robust breastfeeding ecology, these myriad infant inputs must be systematically considered.
Collapse
Affiliation(s)
- Nancy F Krebs
- Section of Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paula P Meier
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | | | - Deborah L O'Connor
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah N Taylor
- Division of Neonatology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Donovan SM, Aghaeepour N, Andres A, Azad MB, Becker M, Carlson SE, Järvinen KM, Lin W, Lönnerdal B, Slupsky CM, Steiber AL, Raiten DJ. Evidence for human milk as a biological system and recommendations for study design-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 4. Am J Clin Nutr 2023; 117 Suppl 1:S61-S86. [PMID: 37173061 PMCID: PMC10356565 DOI: 10.1016/j.ajcnut.2022.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health and Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin Becker
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology and Center for Food Allergy, University of Rochester Medical Center, New York, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Nommsen-Rivers L, Black MM, Christian P, Groh-Wargo S, Heinig MJ, Israel-Ballard K, Obbagy J, Palmquist AEL, Stuebe A, Barr SM, Proaño GV, Moloney L, Steiber A, Raiten DJ. An equitable, community-engaged translational framework for science in human lactation and infant feeding-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 5. Am J Clin Nutr 2023; 117 Suppl 1:S87-S105. [PMID: 37173062 PMCID: PMC10356563 DOI: 10.1016/j.ajcnut.2023.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 05/15/2023] Open
Abstract
Human milk is the ideal source of nutrition for most infants, but significant gaps remain in our understanding of human milk biology. As part of addressing these gaps, the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project Working Groups 1-4 interrogated the state of knowledge regarding the infant-human milk-lactating parent triad. However, to optimize the impact of newly generated knowledge across all stages of human milk research, the need remained for a translational research framework specific to the field. Thus, with inspiration from the simplified environmental sciences framework of Kaufman and Curl, Working Group 5 of the BEGIN Project developed a translational framework for science in human lactation and infant feeding, which includes 5 nonlinear, interconnected translational stages, T1: Discovery; T2: Human health implications; T3: Clinical and public health implications; T4: Implementation; and T5: Impact. The framework is accompanied by 6 overarching principles: 1) Research spans the translational continuum in a nonlinear, nonhierarchical manner; 2) Projects engage interdisciplinary teams in continuous collaboration and cross talk; 3) Priorities and study designs incorporate a diverse range of contextual factors; 4) Research teams include community stakeholders from the outset through purposeful, ethical, and equitable engagement; 5) Research designs and conceptual models incorporate respectful care for the birthing parent and address implications for the lactating parent; 6) Research implications for real-world settings account for contextual factors surrounding the feeding of human milk, including exclusivity and mode of feeding. To demonstrate application of the presented translational research framework and its overarching principles, 6 case studies are included, each illustrating research gaps across all stages of the framework. Applying a translational framework approach to addressing gaps in the science of human milk feeding is an important step toward the aligned goals of optimizing infant feeding across diverse contexts as well as optimizing health for all.
Collapse
Affiliation(s)
| | - Maureen M Black
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA; RTI International, Research Triangle Park, NC, USA
| | - Parul Christian
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Groh-Wargo
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - M Jane Heinig
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | | | - Julie Obbagy
- Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Washington, DC, USA
| | - Aunchalee E L Palmquist
- Department of Maternal & Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alison Stuebe
- Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Lisa Moloney
- Academy of Nutrition and Dietetics, Chicago, IL, USA
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Raiten DJ, Steiber AL, Papoutsakis C, Rozga M, Handu D, Proaño GV, Moloney L, Bremer AA. The "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Project - executive summary. Am J Clin Nutr 2023; 117 Suppl 1:S1-S10. [PMID: 37173057 DOI: 10.1016/j.ajcnut.2022.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 05/15/2023] Open
Abstract
The public health community has come to appreciate that a deeper understanding of the biology of human milk is essential to address ongoing and emerging questions about infant feeding practices. The critical pieces of that understanding are that 1) human milk is a complex biological system, a matrix of many interacting parts that is more than the sum of those parts, and 2) human milk production needs to be studied as an ecology that consists of inputs from the lactating parent, their breastfed baby, and their respective environments. The "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Project was designed to examine this ecology as well as its functional implications for both the parent and infant and to explore ways in which this emerging knowledge can be expanded via a targeted research agenda and translated to support the community's efforts to ensure safe, efficacious, and context-specific infant feeding practices in the United States and globally. The five working groups of the BEGIN Project addressed the following themes: 1) parental inputs to human milk production and composition; 2) the components of human milk and the interactions of those components within this complex biological system; 3) infant inputs to the matrix, emphasizing the bidirectional relationships associated with the breastfeeding dyad; 4) the application of existing and new technologies and methodologies to study human milk as a complex biological system; and 5) approaches to translation and implementation of new knowledge to support safe and efficacious infant feeding practices.
Collapse
Affiliation(s)
- Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | - Mary Rozga
- Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - Deepa Handu
- Academy of Nutrition and Dietetics, Chicago, IL, USA
| | | | - Lisa Moloney
- Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - Andrew A Bremer
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|