1
|
Perry AS, Piaggi P, Huang S, Nayor M, Freedman J, North KE, Below JE, Clish CB, Murthy VL, Krakoff J, Shah RV. Human metabolic chambers reveal a coordinated metabolic-physiologic response to nutrition. JCI Insight 2024; 9:e184279. [PMID: 39576013 PMCID: PMC11601946 DOI: 10.1172/jci.insight.184279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024] Open
Abstract
Human studies linking metabolism with organism-wide physiologic function have been challenged by confounding, adherence, and precisionHere, we united physiologic and molecular phenotypes of metabolism during controlled dietary intervention to understand integrated metabolic-physiologic responses to nutrition. In an inpatient study of individuals who underwent serial 24-hour metabolic chamber experiments (indirect calorimetry) and metabolite profiling, we mapped a human metabolome onto substrate oxidation rates and energy expenditure across up to 7 dietary conditions (energy balance, fasting, multiple 200% caloric excess overfeeding of varying fat, protein, and carbohydrate composition). Diets exhibiting greater fat oxidation (e.g., fasting, high-fat) were associated with changes in metabolites within pathways of mitochondrial β-oxidation, ketogenesis, adipose tissue fatty acid liberation, and/or multiple anapleurotic substrates for tricarboxylic acid cycle flux, with inverse associations for diets with greater carbohydrate availability. Changes in each of these metabolite classes were strongly related to 24-hour respiratory quotient (RQ) and substrate oxidation rates (e.g., acylcarnitines related to lower 24-hour RQ and higher 24-hour lipid oxidation), underscoring links between substrate availability, physiology, and metabolism in humans. Physiologic responses to diet determined by gold-standard human metabolic chambers are strongly coordinated with biologically consistent, interconnected metabolic pathways encoded in the metabolome.
Collapse
Affiliation(s)
- Andrew S. Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, Arizona, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jane Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kari E. North
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer E. Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | | | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, Arizona, USA
| | - Ravi V. Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Cuparencu C, Bulmuş-Tüccar T, Stanstrup J, La Barbera G, Roager HM, Dragsted LO. Towards nutrition with precision: unlocking biomarkers as dietary assessment tools. Nat Metab 2024; 6:1438-1453. [PMID: 38956322 DOI: 10.1038/s42255-024-01067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
Precision nutrition requires precise tools to monitor dietary habits. Yet current dietary assessment instruments are subjective, limiting our understanding of the causal relationships between diet and health. Biomarkers of food intake (BFIs) hold promise to increase the objectivity and accuracy of dietary assessment, enabling adjustment for compliance and misreporting. Here, we update current concepts and provide a comprehensive overview of BFIs measured in urine and blood. We rank BFIs based on a four-level utility scale to guide selection and identify combinations of BFIs that specifically reflect complex food intakes, making them applicable as dietary instruments. We discuss the main challenges in biomarker development and illustrate key solutions for the application of BFIs in human studies, highlighting different strategies for selecting and combining BFIs to support specific study designs. Finally, we present a roadmap for BFI development and implementation to leverage current knowledge and enable precision in nutrition research.
Collapse
Affiliation(s)
- Cătălina Cuparencu
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.
| | - Tuğçe Bulmuş-Tüccar
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
- Department of Nutrition and Dietetics, Yüksek İhtisas University, Ankara, Turkey
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Hu Y, Wang M, Willett WC, Stampfer M, Liang L, Hu FB, Rimm E, Brennan L, Sun Q. Calibration of citrus intake assessed by food frequency questionnaires using urinary proline betaine in an observational study setting. Am J Clin Nutr 2024; 120:178-186. [PMID: 38762186 PMCID: PMC11251408 DOI: 10.1016/j.ajcnut.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Whether observational study can be employed to establish calibration equations for self-reported dietary intake using food biomarkers is unknown. OBJECTIVES This study aims to demonstrate the feasibility of obtaining calibration equations based on food biomarkers and 7-d diet records (7DDRs) to correct measurement errors of food frequency questionnaires (FFQs) in an observational study setting. METHODS The study population consisted of 669 males and 749 females from the Women's and Men's Lifestyle Validation Studies. In the training set, the biomarker-predicted intake derived by regressing 7DDR-assessed intake on urinary proline betaine concentration was regressed on the FFQ-assessed intake to obtain the calibration equations. The regression coefficients were applied to the test set to calculate the calibrated FFQ intake. We examined total citrus as well as individual citrus fruits/beverages. RESULTS Urinary proline betaine was moderately correlated with orange juice intake (Pearson correlation [r] = 0.53 for 7DDR and 0.48 for FFQ) but only weakly correlated with intakes of orange (r = 0.12 for 7DDR and 0.15 for FFQ) and grapefruit (r = 0.14 for 7DDR and 0.09 for FFQ). The FFQ-assessed citrus intake was systematically higher than the 7DDR-assessed intake, and after calibrations, the mean calibrated FFQ measurements were almost identical to 7DDR assessments. In the test set, the mean intake levels from 7DDRs, FFQs, and calibrated FFQs were 62.5, 75.3, and 63.2 g/d for total citrus; 41.6, 42.5, and 41.9 g/d for orange juice; 11.8, 24.3, and 12.3 g/d for oranges; and 8.3, 9.3, and 8.6 g/d for grapefruit, respectively. We observed larger differences between calibrated FFQ and 7DDR assessments at the extreme ends of intake, although, on average, good agreements were observed for all citrus except grapefruit. CONCLUSIONS Our 2-step calibration approach has the potential to be adapted to correct systematic measurement error for other foods/nutrients with established food biomarkers in a cost effective way.
Collapse
Affiliation(s)
- Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Meir Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Eric Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lorraine Brennan
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
4
|
Bhave VM, Ament Z, Levy DE, Thorndike AN, Kimberly WT. Workplace food purchases, dietary intake, and gut microbial metabolites in a secondary analysis of the ChooseWell 365 study. Am J Clin Nutr 2024; 119:1504-1513. [PMID: 38677520 PMCID: PMC11196865 DOI: 10.1016/j.ajcnut.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Dietary choices can affect human health through alterations in gut microbial metabolism, and gut microbial metabolites could serve as biomarkers for disease risk conferred by dietary intake. However, self-reported dietary intake may not reflect true intake. OBJECTIVES We identified circulating metabolites, including gut microbiome-related metabolites, associated with adherence to a healthy diet in the ChooseWell 365 study. In this randomized clinical trial, the dietary choices of hospital employees were assessed over 24 mo using not only 24-h dietary recalls but also electronic records of hospital cafeteria purchases. METHODS Plasma metabolites were profiled from 470 participants. Two targeted metabolomics methods were developed and implemented to expand detection coverage for metabolites related to gut microbial activity. Linear regression models were used to associate metabolites with Healthy Purchasing Scores (HPSs) derived from cafeteria purchases and Healthy Eating Index-2015 (HEI-15) scores derived from dietary recalls. RESULTS Fourteen metabolites were concordantly associated with the HPS and HEI-15 scores in multivariable models adjusted for age, gender, and race, including the gut microbiome-related metabolites indole-3-propionic acid (HPS, β: 0.16, 95% CI: 0.07, 0.26, P = 7.32 × 10-4; HEI-15, β: 0.16, 95% CI: 0.07, 0.25, P = 6.79 × 10-4), hippuric acid (HPS, β: 0.11, 95% CI: 0.02, 0.21, P = 1.97 × 10-2; HEI-15, β: 0.10, 95% CI: 0.01, 0.19, P = 3.14 × 10-2), and indoxyl sulfate (HPS, β = -0.13, 95% CI: -0.23, -0.03, P = 8.21 × 10-3; HEI-15, β: -0.12, 95% CI: -0.22, -0.03, P = 8.50 × 10-3). These gut microbial metabolites were associated with the intake of specific food groups, such as whole fruits. These metabolites were also associated with clinical variables, including blood pressure, diabetes or prediabetes, and body mass index. CONCLUSIONS In a secondary analysis of the ChooseWell 365 study, associations between circulating gut microbiome-related metabolites and a healthy diet were confirmed using both objective and subjective measures of consumption. Accurate identification of diet-associated metabolites may help guide dietary or microbiome-based interventions aimed at disease prevention.
Collapse
Affiliation(s)
| | - Zsuzsanna Ament
- Harvard Medical School, Boston, MA, United States; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Douglas E Levy
- Harvard Medical School, Boston, MA, United States; Mongan Institute Health Policy Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Anne N Thorndike
- Harvard Medical School, Boston, MA, United States; Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - W Taylor Kimberly
- Harvard Medical School, Boston, MA, United States; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
5
|
Landberg R. Controlled dietary interventions with individual's habitual diet are warranted to shed light on the performance of dietary biomarkers. Am J Clin Nutr 2024; 119:244-245. [PMID: 38309822 DOI: 10.1016/j.ajcnut.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 02/05/2024] Open
Affiliation(s)
- Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|