1
|
Oklander LI, Fernández GP, Machado S, Caputo M, Hirano ZMB, Rylands AB, Neves LG, Mendes SL, Pacca LG, de Melo FR, Mourthé I, Freitas TRO, Corach D, Jerusalinsky L, Bonatto SL. Phylogeography, taxonomy, and conservation of the endangered brown howler monkey, Alouatta guariba (Primates, Atelidae), of the Atlantic Forest. Front Genet 2024; 15:1453005. [PMID: 39737001 PMCID: PMC11683736 DOI: 10.3389/fgene.2024.1453005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/15/2024] [Indexed: 01/01/2025] Open
Abstract
The brown howler, Alouatta guariba, endemic to the Atlantic Forest of Brazil and Argentina, is threatened by habitat loss and fragmentation, hunting, and its susceptibility to yellow fever. Two subspecies have been recognized, but their names, validity, and geographic ranges have been controversial. We obtained samples covering the species' entire distribution in Brazil and Argentina to clarify these issues by investigating their genetic diversity and structure and assessing their evolutionary history. We analyzed, for the first time, a set of ten microsatellite markers (N = 153), plus mitochondrial DNA (mtDNA) segments of the control region (N = 207) and cytochrome b gene (N = 116). The microsatellite data support two to three genetic clusters with biological significance. The southern populations (Argentina, Santa Catarina, and Rio Grande do Sul) presented a homogeneous genetic component, and populations from São Paulo (SP) to the north presented another component, although most presented ∼20% of the southern component. With K = 3, SP emerged as a third component while sharing some ancestry with Rio de Janeiro and Argentina. The mtDNA phylogenies revealed three main clades that diverged almost simultaneously around 250 thousand years ago (kya). Clades A and B are from central SP to the north and east, while clade C is from SP to the south and southwest. Samples from SP presented haplotypes in all three clades, sometimes in the same population. The demographic history of the species estimated with the Bayesian skyline plot of the mtDNA showed a strong expansion ∼40-20 kya and a strong reduction over the last ∼4-2 kya. Although the genetic clusters identified here deserve appropriate management strategies as conservation units, the absence of (i) concordance between the mtDNA and microsatellite data, (ii) reciprocal monophyly in the mtDNA, and (iii) clear-cut non-genetic diagnostic characters advises against considering them as different taxonomic entities. None of the previous taxonomic proposals were corroborated by our data. Our results elucidate the taxonomy of the Atlantic Forest brown howler, indicating it should be considered a monotypic species, A. guariba. We also clarify the evolutionary history of the species regarding its intraspecific genetic diversity, which is crucial information for its conservation and population management.
Collapse
Affiliation(s)
- Luciana I. Oklander
- Instituto de Biología Subtropical (IBS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Misiones (UNAM), Posadas, Argentina
- Neotropical Primate Conservation Argentina, Puerto Iguazú, Misiones, Argentina
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
| | - Gabriela P. Fernández
- Centro de Bioinvestigaciones (CeBio), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (UNNOBA-UNSAdA-CONICET), Buenos Aires, Argentina
| | - Stela Machado
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariela Caputo
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Zelinda M. B. Hirano
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Projeto Bugio, Centro de Pesquisas Biológicas de Indaial—CEPESBI, Universidade Regional de Blumenau—FURB, Indaial, Santa Catarina, Brazil
| | - Anthony B. Rylands
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Re:wild, Austin, TX, United States
| | | | - Sérgio L. Mendes
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Instituto Nacional da Mata Atlântica—INMA, Ministério da Ciência, Tecnologia e Inovação—MCTI, Santa Teresa, Espírito Santo, Brazil
| | - Luciana G. Pacca
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros—CPB, Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio, Cabedelo, Brazil
| | - Fabiano R. de Melo
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Italo Mourthé
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thales R. O. Freitas
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel Corach
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Leandro Jerusalinsky
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros—CPB, Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio, Cabedelo, Brazil
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa Macacos Urbanos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sandro L. Bonatto
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Árnadóttir ER, Moore KHS, Guðmundsdóttir VB, Ebenesersdóttir SS, Guity K, Jónsson H, Stefánsson K, Helgason A. The rate and nature of mitochondrial DNA mutations in human pedigrees. Cell 2024; 187:3904-3918.e8. [PMID: 38851187 DOI: 10.1016/j.cell.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.
Collapse
Affiliation(s)
| | | | - Valdís B Guðmundsdóttir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - Kamran Guity
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Översti S, Palo JU. Variation in the substitution rates among the human mitochondrial haplogroup U sublineages. Genome Biol Evol 2022; 14:6613373. [PMID: 35731946 PMCID: PMC9250076 DOI: 10.1093/gbe/evac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Resolving the absolute timescale of phylogenetic trees stipulates reliable estimates for the rate of DNA sequence evolution. For this end, various calibration methods have been developed and studied intensively. Intraspecific rate variation among distinct genetic lineages, however, has gained less attention. Here, we have assessed lineage-specific molecular rates of human mitochondrial DNA (mtDNA) by performing tip-calibrated Bayesian phylogenetic analyses. Tip-calibration, as opposed to traditional nodal time stamps from dated fossil evidence or geological events, is based on sample ages and becoming ever more feasible as ancient DNA data from radiocarbon-dated samples accumulate. We focus on subhaplogroups U2, U4, U5a, and U5b, the data including ancient mtDNA genomes from 14C-dated samples (n = 234), contemporary genomes (n = 301), and two outgroup sequences from haplogroup R. The obtained molecular rates depended on the data sets (with or without contemporary sequences), suggesting time-dependency. More notable was the rate variation between haplogroups: U4 and U5a stand out having a substantially higher rate than U5b. This is also reflected in the divergence times obtained (U5a: 17,700 years and U5b: 29,700 years), a disparity not reported previously. After ruling out various alternative causes (e.g., selection, sampling, and sequence quality), we propose that the substitution rates have been influenced by demographic histories, widely different among populations where U4/U5a or U5b are frequent. As with the Y-chromosomal subhaplogroup R1b, the mitochondrial U4 and U5a have been associated with remarkable range extensions of the Yamnaya culture in the Bronze Age.
Collapse
Affiliation(s)
- Sanni Översti
- Transmission, Infection, Diversification and Evolution Group, Max-Planck Institute for the Science of Human History, Jena, Germany Kahlaische Straße 10, 07745, Jena, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological Sciences, University of Helsinki, Helsinki, Finland P.O. Box 56, FI-00014, Helsinki, Finland
| | - Jukka U Palo
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland P.O. Box 40, FI-00014, Helsinki, Finland.,Forensic Chemistry Unit, Forensic Genetics Team, Finnish Institute for Health and Welfare, Helsinki, Finland P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
5
|
Paleogenomics reveals independent and hybrid origins of two morphologically distinct wolf lineages endemic to Japan. Curr Biol 2022; 32:2494-2504.e5. [DOI: 10.1016/j.cub.2022.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
6
|
Lan Q, Zhao C, Chen C, Xu H, Fang Y, Yao H, Zhu B. Forensic Feature Exploration and Comprehensive Genetic Insights Into Yugu Ethnic Minority and Northern Han Population via a Novel NGS-Based Marker Set. Front Genet 2022; 13:816737. [PMID: 35601485 PMCID: PMC9121381 DOI: 10.3389/fgene.2022.816737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
The MPS technology has expanded the potential applications of DNA markers and increased the discrimination power of the targeted loci by taking variations in their flanking regions into consideration. Here, a collection of nuclear and extranuclear DNA markers (totally six kinds of nuclear genetic markers and mtDNA hypervariable region variations) were comprehensively and systematically assessed for polymorphism detections, further employed to dissect the population backgrounds in the Yugu ethnic group from Gansu province (Yugu) and Han population from the Inner Mongolia Autonomous Region (NMH) of China. The elevated efficiencies of the marker set in separating full sibling and challenging half sibling determination cases in parentage tests (iiSNPs), as well as predicting ancestry origins of unknown individuals from at least four continental populations (aiSNPs) and providing informative characteristic-related clues for Chinese populations (piSNPs) are highlighted in the present study. To sum up, different sets of DNA markers revealed sufficient effciencies to serve as promising tools in forensic applications. Genetic insights from the perspectives of autosomal DNA, Y chromosomal DNA, and mtDNA variations yielded that the Yugu ethnic group was genetically close related to the Han populations of the northern region. But we admit that more reference populations (like Mongolian, Tibetan, Hui, and Tu) should be incorporated to gain a refined genetic background landscape of the Yugu group in future studies.
Collapse
Affiliation(s)
- Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congying Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chong Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hongbing Yao
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Bofeng Zhu,
| |
Collapse
|
7
|
Segawa T, Yonezawa T, Mori H, Akiyoshi A, Allentoft ME, Kohno A, Tokanai F, Willerslev E, Kohno N, Nishihara H. Ancient DNA reveals multiple origins and migration waves of extinct Japanese brown bear lineages. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210518. [PMID: 34386259 PMCID: PMC8334828 DOI: 10.1098/rsos.210518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Little is known about how mammalian biogeography on islands was affected by sea-level fluctuations. In the Japanese Archipelago, brown bears (Ursus arctos) currently inhabit only Hokkaido, the northern island, but Pleistocene fossils indicate a past distribution throughout Honshu, Japan's largest island. However, the difficulty of recovering ancient DNA from fossils in temperate East Asia has limited our understanding of their evolutionary history. Here, we analysed mitochondrial DNA from a 32 500-year-old brown bear fossil from Honshu. Our results show that this individual belonged to a previously unknown lineage that split approximately 160 Ka from its sister lineage, the southern Hokkaido clade. This divergence time and fossil record suggest that brown bears migrated from the Eurasian continent to Honshu at least twice; the first population was an early-diverging lineage (greater than 340 Ka), and the second migrated via Hokkaido after approximately 160 Ka, during the ice age. Thus, glacial-age sea-level falls might have facilitated migrations of large mammals more frequently than previously thought, which may have had a substantial impact on ecosystem dynamics in these isolated islands.
Collapse
Affiliation(s)
- Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Takahiro Yonezawa
- Tokyo University of Agriculture, 1737 Funako, Atsugi City, Kanagawa, Japan
| | - Hiroshi Mori
- National Institute of Genetics, Yata 1111, Mishima City, Shizuoka, Japan
| | - Ayumi Akiyoshi
- National Institute of Polar Research, Midori-cho 10-3, Tachikawa City, Tokyo, Japan
| | - Morten E. Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ayako Kohno
- Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Amakubo, Tsukuba, Ibaraki, Japan
| | - Fuyuki Tokanai
- Faculty of Science, Yamagata University, Jonan 4-3-16, Yonezawa City, Yamagata 990-3101, Japan
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Naoki Kohno
- Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Amakubo, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-S2-17 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
8
|
Roca-Rada X, Politis G, Messineo PG, Scheifler N, Scabuzzo C, González M, Harkins KM, Reich D, Souilmi Y, Teixeira JC, Llamas B, Fehren-Schmitz L. Ancient mitochondrial genomes from the Argentinian Pampas inform the early peopling of the Southern Cone of South America. iScience 2021; 24:102553. [PMID: 34142055 PMCID: PMC8188552 DOI: 10.1016/j.isci.2021.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
The Southern Cone of South America (SCSA) is a key region for investigations about the peopling of the Americas. However, little is known about the eastern sector, the Argentinian Pampas. We analyzed 18 mitochondrial genomes-7 of which are novel-from human skeletal remains from 3 Early to Late Holocene archaeological sites. The Pampas present a distinctive genetic makeup compared to other Middle to Late Holocene pre-Columbian SCSA populations. We also report the earliest individuals carrying SCSA-specific mitochondrial haplogroups D1j and D1g from Early and Middle Holocene, respectively. Using these deep calibration time points in Bayesian phylogenetic reconstructions, we suggest that the first settlers of the Pampas were part of a single and rapid dispersal ∼15,600 years ago. Finally, we propose that present-day genetic differences between the Pampas and the rest of the SCSA are due to founder effects, genetic drift, and a partial population replacement ∼9,000 years ago.
Collapse
Affiliation(s)
- Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gustavo Politis
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Pablo G. Messineo
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Nahuel Scheifler
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Clara Scabuzzo
- CICYTTP-CONICET, Provincia de Entre Ríos-UADER-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Dr. Materi y España (3105), Diamante, Entre Ríos Argentina
| | - Mariela González
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Kelly M. Harkins
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
9
|
Mannen H, Yonezawa T, Murata K, Noda A, Kawaguchi F, Sasazaki S, Olivieri A, Achilli A, Torroni A. Cattle mitogenome variation reveals a post-glacial expansion of haplogroup P and an early incorporation into northeast Asian domestic herds. Sci Rep 2020; 10:20842. [PMID: 33257722 PMCID: PMC7704668 DOI: 10.1038/s41598-020-78040-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Surveys of mitochondrial DNA (mtDNA) variation have shown that worldwide domestic cattle are characterized by just a few major haplogroups. Two, T and I, are common and characterize Bos taurus and Bos indicus, respectively, while the other three, P, Q and R, are rare and are found only in taurine breeds. Haplogroup P is typical of extinct European aurochs, while intriguingly modern P mtDNAs have only been found in northeast Asian cattle. These Asian P mtDNAs are extremely rare with the exception of the Japanese Shorthorn breed, where they reach a frequency of 45.9%. To shed light on the origin of this haplogroup in northeast Asian cattle, we completely sequenced 14 Japanese Shorthorn mitogenomes belonging to haplogroup P. Phylogenetic and Bayesian analyses revealed: (1) a post-glacial expansion of aurochs carrying haplogroup P from Europe to Asia; (2) that all Asian P mtDNAs belong to a single sub-haplogroup (P1a), so far never detected in either European or Asian aurochs remains, which was incorporated into domestic cattle of continental northeastern Asia possibly ~ 3700 years ago; and (3) that haplogroup P1a mtDNAs found in the Japanese Shorthorn breed probably reached Japan about 650 years ago from Mongolia/Russia, in agreement with historical evidence.
Collapse
Affiliation(s)
- Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Takahiro Yonezawa
- Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Kako Murata
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Aoi Noda
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| |
Collapse
|
10
|
Mello B, Tao Q, Barba-Montoya J, Kumar S. Molecular dating for phylogenies containing a mix of populations and species by using Bayesian and RelTime approaches. Mol Ecol Resour 2020; 21:122-136. [PMID: 32881388 DOI: 10.1111/1755-0998.13249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Simultaneous molecular dating of population and species divergences is essential in many biological investigations, including phylogeography, phylodynamics and species delimitation studies. In these investigations, multiple sequence alignments consist of both intra- and interspecies samples (mixed samples). As a result, the phylogenetic trees contain interspecies, interpopulation and within-population divergences. Bayesian relaxed clock methods are often employed in these analyses, but they assume the same tree prior for both inter- and intraspecies branching processes and require specification of a clock model for branch rates (independent vs. autocorrelated rates models). We evaluated the impact of a single tree prior on Bayesian divergence time estimates by analysing computer-simulated data sets. We also examined the effect of the assumption of independence of evolutionary rate variation among branches when the branch rates are autocorrelated. Bayesian approach with coalescent tree priors generally produced excellent molecular dates and highest posterior densities with high coverage probabilities. We also evaluated the performance of a non-Bayesian method, RelTime, which does not require the specification of a tree prior or a clock model. RelTime's performance was similar to that of the Bayesian approach, suggesting that it is also suitable to analyse data sets containing both populations and species variation when its computational efficiency is needed.
Collapse
Affiliation(s)
- Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Brazil.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jose Barba-Montoya
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Postillone MB, Martínez G, Flensborg G, Dejean CB. First analysis of mitochondrial lineages from the eastern Pampa-Patagonia transition during the final late Holocene. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:659-670. [PMID: 32017021 DOI: 10.1002/ajpa.24016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Studies on population genetics have become highly relevant for understanding the evolutionary history of human settlement in southern South America. The eastern Pampa-Patagonia transition is an area that stands out due to its complex population dynamics, especially during the last about 1,000 years BP. The aim of this work is to characterize the maternal lineages of individuals buried in the Paso Alsina 1 archaeological site (ca. 500 years BP) through the analysis of mitochondrial genetic variability, in order to discuss the population models previously proposed for the southern cone of South America. METHODS Mitochondrial HyperVariable Region I sequences were analyzed on teeth belonging to 20 adult individuals. Statistical analyses were carried out to compare the interpopulation and intrapopulation molecular variability between the results obtained in this work and those previously published data from pre-Hispanic human groups. D1 haplotype network was constructed drawing from data on ancient and extant population group samples. RESULTS Thirteen sequences (65%) were obtained from the 20 analyzed samples. The maternal lineages or subhaplogroups identified were D1g (69.24%), C1 (15.38%), D1 (7.69%), and D1j (7.69%). There was low haplotype variability within the site; some individuals could be matrilineally related. DISCUSSION The subhaplogroups registered in Paso Alsina 1 site are in accordance with those reported for ancient and contemporary Patagonian populations. The results suggest that an initial nucleus of individuals carrying mostly subhaplogroup D1g settled in northern Patagonia, from which local diversity of this matrilineage could have arisen. The existence of gene flow in the final late Holocene with groups from Northern Andean Patagonia, as well as from Central Argentina, is proposed. The D1j variant probably developed in the latter region.
Collapse
Affiliation(s)
| | - Gustavo Martínez
- INCUAPA-CONICET, Departamento de Arqueología, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Gustavo Flensborg
- INCUAPA-CONICET, Departamento de Arqueología, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Cristina B Dejean
- Ciudad Autónoma de Buenos Aires (CABA), CEBBAD, Universidad Maimónides, Buenos Aires, Argentina.,Sección Antropología Biológica, Instituto de Ciencias Antropológicas, Facultad de Filosofía y Letras, Universidad de Buenos Aires, CABA, Buenos Aires, Argentina
| |
Collapse
|
12
|
Abdul-Latiff MAB, Baharuddin H, Abdul-Patah P, Md-Zain BM. Is Malaysia's banded langur, Presbytis femoralis femoralis, actually Presbytis neglectus neglectus? Taxonomic revision with new insights on the radiation history of the Presbytis species group in Southeast Asia. Primates 2018; 60:63-79. [PMID: 30471014 DOI: 10.1007/s10329-018-0699-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/08/2018] [Indexed: 11/26/2022]
Abstract
The disjunct distribution of Presbytis femoralis subspecies across Sumatra (P. f. percura), southern (P. f. femoralis) and northern (P. f. robinsoni) Peninsular Malaysia marks the unique vicariance events in the Sunda Shelf. However, the taxonomic positions and evolutionary history of P. f. femoralis are unresolved after decades of research. To elucidate this evolutionary history, we analyzed 501 base pairs of the mitochondrial HVSI gene from 25 individuals representing Malaysia's banded langur, with the addition of 29 sequences of Asian Presbytis from Genbank. Our results revealed closer affinity of P. f. femoralis to P. m. mitrata and P. m. sumatrana while maintaining the monophyletic state of P. f. femoralis as compared to P. f. robinsoni. Two central theses were inferred from the results; (1) P. f. femoralis does not belong in the same species classification as P. f. robinsoni, and (2) P. f. femoralis is the basal lineage of the Presbytis in Peninsular Malaysia. Proving the first hypothesis through genetic analysis, we reassigned P. f. femoralis of Malaysia to Presbytis neglectus (Schlegel's banded langur) (Schlegel in Revue Methodique, Museum d'Histoire Naturelle des Pays-Bas 7:1, 1876) following the International Code of Zoological Nomenclature (article 23.3). The ancestors of P. neglectus are hypothesized to have reached southern Peninsular Malaysia during the Pleistocene and survived in refugium along the western coast. Consequently, they radiated upward, forming P. f. robinsoni and P. siamensis resulting in the highly allopatric distribution in Peninsular Malaysia. This study has successfully resolved the taxonomic position of P. neglectus in Peninsular Malaysia while providing an alternative biogeographic theory for the Asian Presbytis.
Collapse
Affiliation(s)
- Muhammad Abu Bakar Abdul-Latiff
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1, Jalan Panchor, 84600, Muar, Johor, Malaysia
| | - Hanisah Baharuddin
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Pazil Abdul-Patah
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Biodiversity Conservation Division, Department of Wildlife and National Parks (DWNP), KM10 Jalan Cheras, 56100, Kuala Lumpur, Malaysia
| | - Badrul Munir Md-Zain
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
13
|
Perez SI, Postillone MB, Rindel D. Domestication and human demographic history in South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:44-52. [PMID: 28109124 DOI: 10.1002/ajpa.23176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The early groups of hunter-gatherers who peopled South America faced significant ecological changes in their trophic niche for a relatively short period after the initial peopling. In particular, the incorporation of cultigens during the Holocene led to a wider trophic niche and probably to an increased carrying capacity of the environment. Here, we study the relationship between the incorporation of domestic resources during the Holocene and the demographic dynamics of human populations at a regional scale in South America. MATERIAL AND METHODS We employ mitochondrial DNA (mtDNA), radiocarbon data and Bayesian methods to estimate differences in population size, human occupation and explore the demographic changes of human populations in three regions (i.e., South-Central Andes, Northwest, and South Patagonia). We also use archaeological evidence to infer the main diet changes in these regions. RESULTS The absolute population size during the later Late Holocene was fifteen times larger in the South-Central Andes than in Northwest Patagonia, and two times larger in the latter region than in South Patagonia. The South-Central Andes display the earlier and more abrupt population growth, beginning about 9000 years BP, whereas Northwest Patagonia exhibits a more slow growth, beginning about 7000-7500 years BP. South Patagonia represents a later and slower population increase. DISCUSSION In this work we uncovered a well-supported pattern of the demographic change in the populations from South-Central Andes and Patagonia, obtained on the basis of different data and quantitative approaches, which suggests that the incorporation of domestic resources was paramount for the demographic expansion of these populations during the Holocene.
Collapse
Affiliation(s)
- S Ivan Perez
- División Antropología, (FCNyM, UNLP), CONICET, La Plata, Argentina
| | - María Bárbara Postillone
- Departamento de Ciencias Naturales y Antropológicas, (CEBBAD, UM), CONICET, Buenos Aires, Argentina
| | - Diego Rindel
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
14
|
A cryptic mitochondrial DNA link between North European and West African dogs. J Genet Genomics 2016; 44:163-170. [PMID: 28302420 DOI: 10.1016/j.jgg.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/17/2016] [Accepted: 10/21/2016] [Indexed: 01/25/2023]
Abstract
Domestic dogs have an ancient origin and a long history in Africa. Nevertheless, the timing and sources of their introduction into Africa remain enigmatic. Herein, we analyse variation in mitochondrial DNA (mtDNA) D-loop sequences from 345 Nigerian and 37 Kenyan village dogs plus 1530 published sequences of dogs from other parts of Africa, Europe and West Asia. All Kenyan dogs can be assigned to one of three haplogroups (matrilines; clades): A, B, and C, while Nigerian dogs can be assigned to one of four haplogroups A, B, C, and D. None of the African dogs exhibits a matrilineal contribution from the African wolf (Canis lupus lupaster). The genetic signal of a recent demographic expansion is detected in Nigerian dogs from West Africa. The analyses of mitochondrial genomes reveal a maternal genetic link between modern West African and North European dogs indicated by sub-haplogroup D1 (but not the entire haplogroup D) coalescing around 12,000 years ago. Incorporating molecular anthropological evidence, we propose that sub-haplogroup D1 in West African dogs could be traced back to the late-glacial dispersals, potentially associated with human hunter-gatherer migration from southwestern Europe.
Collapse
|
15
|
Ho SYW, Duchêne S, Molak M, Shapiro B. Time-dependent estimates of molecular evolutionary rates: evidence and causes. Mol Ecol 2016; 24:6007-12. [PMID: 26769402 DOI: 10.1111/mec.13450] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/30/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
We are writing in response to a recent critique by Emerson & Hickerson (2015), who challenge the evidence of a time-dependent bias in molecular rate estimates. This bias takes the form of a negative relationship between inferred evolutionary rates and the ages of the calibrations on which these estimates are based. Here, we present a summary of the evidence obtained from a broad range of taxa that supports a time-dependent bias in rate estimates, with a consideration of the potential causes of these observed trends. We also describe recent progress in improving the reliability of evolutionary rate estimation and respond to the concerns raised by Emerson & Hickerson (2015) about the validity of rates estimated from time-structured sequence data. In doing so, we hope to dispel some misconceptions and to highlight several research directions that will improve our understanding of time-dependent biases in rate estimates.
Collapse
Affiliation(s)
- Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sebastián Duchêne
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA.,UCSC Genomics Institute, University of California, Santa Cruz, California, USA
| |
Collapse
|
16
|
Lobon I, Tucci S, de Manuel M, Ghirotto S, Benazzo A, Prado-Martinez J, Lorente-Galdos B, Nam K, Dabad M, Hernandez-Rodriguez J, Comas D, Navarro A, Schierup MH, Andres AM, Barbujani G, Hvilsom C, Marques-Bonet T. Demographic History of the Genus Pan Inferred from Whole Mitochondrial Genome Reconstructions. Genome Biol Evol 2016; 8:2020-30. [PMID: 27345955 PMCID: PMC4943195 DOI: 10.1093/gbe/evw124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 01/02/2023] Open
Abstract
The genus Pan is the closest genus to our own and it includes two species, Pan paniscus (bonobos) and Pan troglodytes (chimpanzees). The later is constituted by four subspecies, all highly endangered. The study of the Pan genera has been incessantly complicated by the intricate relationship among subspecies and the statistical limitations imposed by the reduced number of samples or genomic markers analyzed. Here, we present a new method to reconstruct complete mitochondrial genomes (mitogenomes) from whole genome shotgun (WGS) datasets, mtArchitect, showing that its reconstructions are highly accurate and consistent with long-range PCR mitogenomes. We used this approach to build the mitochondrial genomes of 20 newly sequenced samples which, together with available genomes, allowed us to analyze the hitherto most complete Pan mitochondrial genome dataset including 156 chimpanzee and 44 bonobo individuals, with a proportional contribution from all chimpanzee subspecies. We estimated the separation time between chimpanzees and bonobos around 1.15 million years ago (Mya) [0.81-1.49]. Further, we found that under the most probable genealogical model the two clades of chimpanzees, Western + Nigeria-Cameroon and Central + Eastern, separated at 0.59 Mya [0.41-0.78] with further internal separations at 0.32 Mya [0.22-0.43] and 0.16 Mya [0.17-0.34], respectively. Finally, for a subset of our samples, we compared nuclear versus mitochondrial genomes and we found that chimpanzee subspecies have different patterns of nuclear and mitochondrial diversity, which could be a result of either processes affecting the mitochondrial genome, such as hitchhiking or background selection, or a result of population dynamics.
Collapse
Affiliation(s)
- Irene Lobon
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Serena Tucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marc de Manuel
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | - Kiwoong Nam
- Bioinformatics Research Center, C.F. Møllers Alle, Aarhus University, Denmark
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jessica Hernandez-Rodriguez
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Arcadi Navarro
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, Barcelona, Spain CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mikkel H Schierup
- Bioinformatics Research Center, C.F. Møllers Alle, Aarhus University, Denmark
| | - Aida M Andres
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Tomas Marques-Bonet
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, Barcelona, Spain CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
17
|
Osman SAM, Yonezawa T, Nishibori M. Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region. Poult Sci 2016; 95:1248-56. [PMID: 26994197 DOI: 10.3382/ps/pew029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
Domestic chickens (Gallus gallus) play a significant role, ranging from food and entertainment to religion and ornamentation. However, the details on their domestication process are still controversial, especially the origin and evolution of African chickens. Egypt is thought to be important place for this event because of its geographic location as well as its long history of civilization. However, the genetic component and structure of Egyptian native chicken (ENC) have not been studied so far. The aim of this study is to clarify the origin and evolution of African chickens through assessing the genetic diversities and structure of five ENC breeds using the mitochondrial D-loop sequences. Our results suggest there is genetic differentiation between the pure native breeds and the improved native breeds. The latter breeds were established by the hybridization of the pure native and the exotic breeds. The pure native breeds were estimated to be established about 800 years ago. Subsequently, we extensively analyzed the D-loop sequences from the ENC as well as the globally collected chickens (2,010 individuals in total). Our phylogenetic tree among the regional populations shows African chickens can be separated to two distinct clades. The first clade consists of North African (Egypt), Central African (Sudan and Cameroon), European, and West (and Central) Asian chickens. The second clade consists of East African (Kenya, Malawi, and Zimbabwe) and Pacific chickens. It suggests the dual origins of African native chickens. The first group was probably originated from South Asia, and then migrated to West Asia, and finally arrived to Africa thorough Egypt. The second group migrated from Pacific to East Africa via Indian Ocean probably by Austronesian people. This dual origin hypothesis as well as estimated divergence times in this study is harmonious with the archaeological and historical evidences. Our migration analysis suggests there is limited gene flow within African continent. These obtained findings are important for the better understanding of the diversity and uniqueness of African native chickens.
Collapse
Affiliation(s)
- Sayed A-M Osman
- Laboratory of Animal Genetics, Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan Department of Genetics, Faculty of Agriculture, Minia University, El Minia 61517, Egypt
| | - Takahiro Yonezawa
- School of Life Sciences, Fudan University, SongHu Rd. 2005, Shanghai 200438, China The Institute of Statistical Mathematics, Midori-cho 10-3, Tachikawa, Tokyo 190-8562, Japan
| | - Masahide Nishibori
- Laboratory of Animal Genetics, Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
18
|
Waku D, Segawa T, Yonezawa T, Akiyoshi A, Ishige T, Ueda M, Ogawa H, Sasaki H, Ando M, Kohno N, Sasaki T. Evaluating the Phylogenetic Status of the Extinct Japanese Otter on the Basis of Mitochondrial Genome Analysis. PLoS One 2016; 11:e0149341. [PMID: 26938434 PMCID: PMC4777564 DOI: 10.1371/journal.pone.0149341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/29/2016] [Indexed: 11/19/2022] Open
Abstract
The Japanese otter lived throughout four main Japanese islands, but it has not been observed in the wild since 1979 and was declared extinct in 2012. Although recent taxonomic and molecular phylogenetic studies suggest that it should be treated as an independent species, International Union for Conservation of Nature Red List considers it as subspecies of Lutra lutra. Therefore, the taxonomic status of this species needs to be resolved. Here we determined the complete mitochondrial genome of two Japanese otters caught in Kanagawa and Kochi prefectures and five Eurasian otters (L. lutra). We reconstructed a molecular phylogenetic tree to estimate the phylogenetic position of the Japanese otter in Lutrinae using the Japanese otters and the other 11 Lutrinae species on the basis of ND5 (692 bp) and cytochrome b (1,140 bp) sequences. We observed that the two Japanese otters had close relationships with Eurasian otters, forming a monophyletic group (100% bootstrap probability). To elucidate detailed phylogenetic relationships among the Japanese and Eurasian otters, we reconstructed a maximum likelihood tree according to mitochondrial genome sequences (14,740 bp). The Japanese otter (JO1) collected in Kanagawa was deeply nested in the Eurasian otter clade, whereas the Japanese otter (JO2) collected in Kochi formed a distinct independent lineage in the Lutra clade. The estimated molecular divergences time for the ancestral lineages of the Japanese otters was 0.10 Ma (95%: 0.06-0.16 Ma) and 1.27 Ma (95%: 0.98-1.59 Ma) for JO1 and JO2 lineages, respectively. Thus, JO1 was identified as a member of L. lutra; JO2 represented the old Japanese otter lineage, which may be a distinct new species or subspecies of Lutra. We suggest that the ancestral population of the JO2 lineage migrated to Japan via the land bridge that existed between western Japanese islands and Asian continent at 1.27 Ma.
Collapse
Affiliation(s)
- Daisuke Waku
- Graduate School of Human and Animal-Plant Relationships, Tokyo University of Agriculture, Funako, Atsugi, Kanagawa, Japan
| | - Takahiro Segawa
- National Institute of Polar Research, Midori-cho, Tachikawa-shi, Tokyo, Japan
- Transdisciplinary Research Integration Center, Toranomon, Minato-ku, Tokyo, Japan
| | - Takahiro Yonezawa
- School of Life Sciences, Fudan University, SongHu Rd., Shanghai, China
- School of Advanced Science, The Graduate University for Advanced Studies, Shonan, Hayama-cho, Miura-gun, Kanagawa, Japan
| | - Ayumi Akiyoshi
- National Institute of Polar Research, Midori-cho, Tachikawa-shi, Tokyo, Japan
- Transdisciplinary Research Integration Center, Toranomon, Minato-ku, Tokyo, Japan
| | - Taichiro Ishige
- NODAI Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Miya Ueda
- Yokohama Zoological Gardens, Kamishirane-cho, Asahi-ku, Yokohama-shi, Kanagawa, Japan
| | - Hiroshi Ogawa
- Graduate School of Human and Animal-Plant Relationships, Tokyo University of Agriculture, Funako, Atsugi, Kanagawa, Japan
| | - Hiroshi Sasaki
- Department of Contemporary Social Studies, Chikushi Jogakuen University, Ishizaka, Dazaifu, Fukuoka, Japan
| | - Motokazu Ando
- Graduate School of Human and Animal-Plant Relationships, Tokyo University of Agriculture, Funako, Atsugi, Kanagawa, Japan
| | - Naoki Kohno
- Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Amakubo, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Takeshi Sasaki
- Graduate School of Human and Animal-Plant Relationships, Tokyo University of Agriculture, Funako, Atsugi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
19
|
Hoareau TB. Late Glacial Demographic Expansion Motivates a Clock Overhaul for Population Genetics. Syst Biol 2015; 65:449-64. [PMID: 26683588 DOI: 10.1093/sysbio/syv120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/10/2015] [Indexed: 12/18/2022] Open
Abstract
The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recent demographic calibrations are virtually non-existent in most species, older phylogenetic calibration points (>1 Ma) are commonly used, which overestimate demographic parameters. To obtain more reliable rates of molecular evolution for population studies, I propose the calibration of demographic transition (CDT) method, which uses the timing of climatic changes over the late glacial warming period to calibrate expansions in various species. Simulation approaches and empirical data sets from a diversity of species (from mollusk to humans) confirm that, when compared with other genealogy-based calibration methods, the CDT provides a robust and broadly applicable clock for population genetics. The resulting CDT rates of molecular evolution also confirm rate heterogeneity over time and among taxa. Comparisons of expansion dates with ecological evidence confirm the inaccuracy of phylogenetically derived divergence rates when dating population-level events. The CDT method opens opportunities for addressing issues such as demographic responses to past climate change and the origin of rate heterogeneity related to taxa, genes, time, and genetic information content.
Collapse
Affiliation(s)
- Thierry B Hoareau
- Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
20
|
Reyes-Centeno H, Hubbe M, Hanihara T, Stringer C, Harvati K. Testing modern human out-of-Africa dispersal models and implications for modern human origins. J Hum Evol 2015; 87:95-106. [DOI: 10.1016/j.jhevol.2015.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/02/2015] [Accepted: 06/14/2015] [Indexed: 11/26/2022]
|
21
|
Phylogeographic and Demographic Analysis of the Asian Black Bear (Ursus thibetanus) Based on Mitochondrial DNA. PLoS One 2015; 10:e0136398. [PMID: 26406587 PMCID: PMC4583410 DOI: 10.1371/journal.pone.0136398] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/04/2015] [Indexed: 11/19/2022] Open
Abstract
The Asian black bear Ursus thibetanus is widely distributed in Asia and is adapted to broad-leaved deciduous forests, playing an important ecological role in the natural environment. Several subspecies of U. thibetanus have been recognized, one of which, the Japanese black bear, is distributed in the Japanese archipelago. Recent molecular phylogeographic studies clarified that this subspecies is genetically distantly related to continental subspecies, suggesting an earlier origin. However, the evolutionary relationship between the Japanese and continental subspecies remained unclear. To understand the evolution of the Asian black bear in relation to geological events such as climatic and transgression-regression cycles, a reliable time estimation is also essential. To address these issues, we determined and analyzed the mt-genome of the Japanese subspecies. This indicates that the Japanese subspecies initially diverged from other Asian black bears in around 1.46Ma. The Northern continental population (northeast China, Russia, Korean peninsula) subsequently evolved, relatively recently, from the Southern continental population (southern China and Southeast Asia). While the Japanese black bear has an early origin, the tMRCAs and the dynamics of population sizes suggest that it dispersed relatively recently in the main Japanese islands: during the late Middle and Late Pleistocene, probably during or soon after the extinction of the brown bear in Honshu in the same period. Our estimation that the population size of the Japanese subspecies increased rapidly during the Late Pleistocene is the first evidential signal of a niche exchange between brown bears and black bears in the Japanese main islands. This interpretation seems plausible but was not corroborated by paleontological evidence that fossil record of the Japanese subspecies limited after the Late Pleistocene. We also report here a new fossil record of the oldest Japanese black bear from the Middle Pleistocene, and it supports our new evolutionary hypothesis of the Japanese black bear.
Collapse
|
22
|
Demographic History of Indigenous Populations in Mesoamerica Based on mtDNA Sequence Data. PLoS One 2015; 10:e0131791. [PMID: 26292226 PMCID: PMC4546282 DOI: 10.1371/journal.pone.0131791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
The genetic characterization of Native American groups provides insights into their history and demographic events. We sequenced the mitochondrial D-loop region (control region) of 520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic diversity, structure and genetic relationship between 28 Native American populations, we applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica. AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS plots showed a central cluster of Oaxaca and Maya populations, whereas those from the North and West were located on the periphery. Demographic reconstruction indicates higher values of the effective number of breeding females (Nef) in Central Mesoamerica during the Preclassic period, whereas this pattern moves toward the Classic period for groups in the North and West. Conversely, Nef minimum values are distributed either in the Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The Mesomerican regions showed differences in population fluctuation as indicated by the maximum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Preclassic; ii) West from the beginning of the Preclassic period until early Classic; iii) North characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our findings are consistent with the genetic variations observed between central, South and Southeast Mesoamerica and the North-West region that are related to differences in genetic drift, structure, and temporal survival strategies (agriculture versus hunter-gathering, respectively). Interestingly, although the European contact had a major negative demographic impact, we detect a previous decline in Mesoamerica that had begun a few hundred years before.
Collapse
|
23
|
Rieux A, Eriksson A, Li M, Sobkowiak B, Weinert LA, Warmuth V, Ruiz-Linares A, Manica A, Balloux F. Improved calibration of the human mitochondrial clock using ancient genomes. Mol Biol Evol 2014; 31:2780-92. [PMID: 25100861 PMCID: PMC4166928 DOI: 10.1093/molbev/msu222] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reliable estimates of the rate at which DNA accumulates mutations (the substitution rate) are crucial for our understanding of the evolution and past demography of virtually any species. In humans, there are considerable uncertainties around these rates, with substantial variation among recent published estimates. Substitution rates have traditionally been estimated by associating dated events to the root (e.g., the divergence between humans and chimpanzees) or to internal nodes in a phylogenetic tree (e.g., first entry into the Americas). The recent availability of ancient mitochondrial DNA sequences allows for a more direct calibration by assigning the age of the sequenced samples to the tips within the human phylogenetic tree. But studies also vary greatly in the methodology employed and in the sequence panels analyzed, making it difficult to tease apart the causes for the differences between previous estimates. To clarify this issue, we compiled a comprehensive data set of 350 ancient and modern human complete mitochondrial DNA genomes, among which 146 were generated for the purpose of this study and estimated substitution rates using calibrations based both on dated nodes and tips. Our results demonstrate that, for the same data set, estimates based on individual dated tips are far more consistent with each other than those based on nodes and should thus be considered as more reliable.
Collapse
Affiliation(s)
- Adrien Rieux
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Anders Eriksson
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Mingkun Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Sobkowiak
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Lucy A Weinert
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Vera Warmuth
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Andres Ruiz-Linares
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - François Balloux
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
24
|
Secher B, Fregel R, Larruga JM, Cabrera VM, Endicott P, Pestano JJ, González AM. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents. BMC Evol Biol 2014; 14:109. [PMID: 24885141 PMCID: PMC4062890 DOI: 10.1186/1471-2148-14-109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/09/2014] [Indexed: 11/26/2022] Open
Abstract
Background Complete mitochondrial DNA (mtDNA) genome analyses have greatly improved the phylogeny and phylogeography of human mtDNA. Human mitochondrial DNA haplogroup U6 has been considered as a molecular signal of a Paleolithic return to North Africa of modern humans from southwestern Asia. Results Using 230 complete sequences we have refined the U6 phylogeny, and improved the phylogeographic information by the analysis of 761 partial sequences. This approach provides chronological limits for its arrival to Africa, followed by its spreads there according to climatic fluctuations, and its secondary prehistoric and historic migrations out of Africa colonizing Europe, the Canary Islands and the American Continent. Conclusions The U6 expansions and contractions inside Africa faithfully reflect the climatic fluctuations that occurred in this Continent affecting also the Canary Islands. Mediterranean contacts drove these lineages to Europe, at least since the Neolithic. In turn, the European colonization brought different U6 lineages throughout the American Continent leaving the specific sign of the colonizers origin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ana M González
- Department of Genetics, Faculty of Biology, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
25
|
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol 2014. [PMID: 24742000 DOI: 10.1186/1472-2148-14-82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics. METHODS We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere. RESULTS We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores. CONCLUSIONS These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets.
Collapse
Affiliation(s)
- Robert Lanfear
- Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | | | | | |
Collapse
|
26
|
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol 2014; 14:82. [PMID: 24742000 PMCID: PMC4012149 DOI: 10.1186/1471-2148-14-82] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics. METHODS We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere. RESULTS We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores. CONCLUSIONS These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets.
Collapse
Affiliation(s)
- Robert Lanfear
- Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | | | | | |
Collapse
|
27
|
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol 2014. [PMID: 24742000 DOI: 10.6084/m9.figshare.938920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics. METHODS We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere. RESULTS We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores. CONCLUSIONS These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets.
Collapse
Affiliation(s)
- Robert Lanfear
- Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | | | | | |
Collapse
|
28
|
Summerer M, Horst J, Erhart G, Weißensteiner H, Schönherr S, Pacher D, Forer L, Horst D, Manhart A, Horst B, Sanguansermsri T, Kloss-Brandstätter A. Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar. BMC Evol Biol 2014; 14:17. [PMID: 24467713 PMCID: PMC3913319 DOI: 10.1186/1471-2148-14-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/26/2014] [Indexed: 12/22/2022] Open
Abstract
Background Myanmar is the largest country in mainland Southeast Asia with a population of 55 million people subdivided into more than 100 ethnic groups. Ruled by changing kingdoms and dynasties and lying on the trade route between India and China, Myanmar was influenced by numerous cultures. Since its independence from British occupation, tensions between the ruling Bamar and ethnic minorities increased. Results Our aim was to search for genetic footprints of Myanmar’s geographic, historic and sociocultural characteristics and to contribute to the picture of human colonization by describing and dating of new mitochondrial DNA (mtDNA) haplogroups. Therefore, we sequenced the mtDNA control region of 327 unrelated donors and the complete mitochondrial genome of 44 selected individuals according to highest quality standards. Conclusion Phylogenetic analyses of the entire mtDNA genomes uncovered eight new haplogroups and three unclassified basal M-lineages. The multi-ethnic population and the complex history of Myanmar were reflected in its mtDNA heterogeneity. Population genetic analyses of Burmese control region sequences combined with population data from neighboring countries revealed that the Myanmar haplogroup distribution showed a typical Southeast Asian pattern, but also Northeast Asian and Indian influences. The population structure of the extraordinarily diverse Bamar differed from that of the Karen people who displayed signs of genetic isolation. Migration analyses indicated a considerable genetic exchange with an overall positive migration balance from Myanmar to neighboring countries. Age estimates of the newly described haplogroups point to the existence of evolutionary windows where climatic and cultural changes gave rise to mitochondrial haplogroup diversification in Asia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Anita Kloss-Brandstätter
- Division of Genetic Epidemiology, Innsbruck Medical University, Schöpfstraße 41, 6020 Innsbruck, Austria.
| |
Collapse
|
29
|
Hvilsom C, Carlsen F, Heller R, Jaffré N, Siegismund HR. Contrasting demographic histories of the neighboring bonobo and chimpanzee. Primates 2013; 55:101-12. [DOI: 10.1007/s10329-013-0373-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/10/2013] [Indexed: 12/01/2022]
|
30
|
Yonezawa T, Hasegawa M. Extreme nearly neutral evolution in mitochondrial genomes of laboratory mouse strains. Gene 2013; 534:444-8. [PMID: 23954256 DOI: 10.1016/j.gene.2013.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Relaxation of the selective constraint during the domestication process is known. In this study, we report unexpected closeness to neutral evolution of mitochondrial genomes of laboratory mouse strains: estimated non-synonymous/synonymous rate ratio being very close to 1 (ω^=1.32). Probably it is due to the extreme inbreeding extending over 100 years as well as to their recent origin (middle of the last millennium). There is no rate difference observed among three codon positions as well as ribosomal RNA and control regions. However, the amino acid substitutions occurred not randomly, and substitutions were more frequent between physico-chemically similar amino acids than between dissimilar ones. Probably this is inevitable consequence caused by the codon table itself, but not by selections. This implies that a large portion of the new mutations are conservative, and most of them are slightly deleterious and not lethal. It seems that, even though the selection pressures do not hold normally, the function of genes may not be impaired in most cases.
Collapse
Affiliation(s)
- Takahiro Yonezawa
- School of Life Sciences, Fudan Univeristy, HanDan Rd. 220, Shanghai, 200433, China; Institute of the Statistical Mathematics, Midori-cho 10-3, Tachikawa, Tokyo, 190-8562, Japan.
| | - Masami Hasegawa
- School of Life Sciences, Fudan Univeristy, HanDan Rd. 220, Shanghai, 200433, China; Institute of the Statistical Mathematics, Midori-cho 10-3, Tachikawa, Tokyo, 190-8562, Japan
| |
Collapse
|
31
|
Huang Y, Guo X, Ho SYW, Shi H, Li J, Li J, Cai B, Wang Y. Diversification and Demography of the Oriental Garden Lizard (Calotes versicolor) on Hainan Island and the Adjacent Mainland. PLoS One 2013; 8:e64754. [PMID: 23840304 PMCID: PMC3694074 DOI: 10.1371/journal.pone.0064754] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/17/2013] [Indexed: 01/16/2023] Open
Abstract
The Oriental garden lizard (Calotes versicolor) is one of the few non-gekkonid lizards that are geographically widespread in the tropics. We investigated its population dynamics on Hainan Island and the adjacent mainland of China and Vietnam, focusing on the impact of cyclic upheaval and submergence of land bridges during the Pleistocene. Our Bayesian phylogenetic analysis reveals two mitochondrial lineages, A and B, which are estimated to have coalesced about 0.26 million years ago (95% credibility interval: 0.05–0.61 million years ago). Lineage A contains individuals mainly from central and southern Wuzhi Mountain on Hainan Island, whereas lineage B mainly comprises individuals from other sites on the island plus the adjacent mainland. The estimated coalescence times within lineages A (0.05 million years ago) and B (0.13 million years ago) fall within a period of cyclical land-bridge formation and disappearance in the Pleistocene. A spatial analysis of molecular variance identified two distinct population groupings: I, primarily containing lineage A, and II, mainly consisting of lineage B. However, haplotypes from lineages A and B occur sympatrically, suggesting that gene flow is ongoing. Neither Wuzhi Mountain nor Qiongzhou Strait and Gulf of Tonkin act as barriers to gene flow among C. versicolor populations. Analyses of the data using mismatch distributions and extended Bayesian skyline plots provide evidence of a relatively stable population size through time for Group I, and moderate population expansions and contractions during the end of the Pleistocene for Group II. We conclude that the phylogeographical patterns of C. versicolor are the combined product of Pleistocene sea-level oscillations and nonphysical barriers to gene flow.
Collapse
Affiliation(s)
- Yong Huang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu Sichuan, P.R. China
- Guangxi Botanical Garden of Medicinal Plants, Nanning Guangxi, P.R. China
| | - Xianguang Guo
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu Sichuan, P.R. China
| | - Simon Y. W. Ho
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | - Haitao Shi
- College of Life Sciences, Hainan Normal University, Haikou Hainan, P.R. China
| | - Jiatang Li
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu Sichuan, P.R. China
| | - Jun Li
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu Sichuan, P.R. China
| | - Bo Cai
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu Sichuan, P.R. China
| | - Yuezhao Wang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu Sichuan, P.R. China
- * E-mail:
| |
Collapse
|
32
|
Purifying selection causes widespread distortions of genealogical structure on the human X chromosome. Genetics 2013; 194:485-92. [PMID: 23589459 DOI: 10.1534/genetics.113.152074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The extent to which selective forces shape patterns of genetic and genealogical variation is unknown in many species. Recent theoretical models have suggested that even relatively weak purifying selection may produce significant distortions in gene genealogies, but few studies have sought to quantify this effect in humans. Here, we employ a reconstruction method based on the ancestral recombination graph to infer genealogies across the length of the human X chromosome and to examine time to most recent common ancestor (TMRCA) and measures of tree imbalance at both broad and very fine scales. In agreement with theory, TMRCA is significantly reduced and genealogies are significantly more imbalanced in coding regions and introns when compared to intergenic regions, and these effects are increased in areas of greater evolutionary constraint. These distortions are present at multiple scales, and chromosomal regions as broad as 5 Mb show a significant negative correlation in TMRCA with exon density. We also show that areas of recent TMRCA are significantly associated with the disease-causing potential of site as measured by the MutationTaster prediction algorithm. Together, these findings suggest that purifying selection has significantly distorted human genealogical structure on both broad and fine scales and that few chromosomal regions escape selection-induced distortions.
Collapse
|
33
|
Subramanian S, Lambert DM. Selective constraints determine the time dependency of molecular rates for human nuclear genomes. Genome Biol Evol 2013; 4:1127-32. [PMID: 23059453 PMCID: PMC3514959 DOI: 10.1093/gbe/evs092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In contrast to molecular rates for neutral mitochondrial sequences, rates for constrained sites (including nonsynonymous sites, D-loop, and RNA) in the mitochondrial genome are known to vary with the time frame used for their estimation. Here, we examined this issue for the nuclear genomes using single-nucleotide polymorphisms (SNPs) from six complete human genomes of individuals belonging to different populations. We observed a strong time-dependent distribution of nonsynonymous SNPs (nSNPs) in highly constrained genes. Typically, the proportion of young nSNPs specific to a single population was found to be up to three times higher than that of the ancient nSNPs shared between diverse human populations. In contrast, this trend disappeared, and a uniform distribution of young and old nSNPs was observed in genes under relaxed selective constraints. This suggests that because mutations in constrained genes are highly deleterious, they are removed over time, resulting in a relative overabundance of young nSNPs. In contrast, mutations in genes under relaxed constraints are nearly neutral, which leads to similar proportions of young and old SNPs. These results could be useful to researchers aiming to select appropriate genes or genomic regions for estimating evolutionary rates and species or population divergence times.
Collapse
|
34
|
Soares P, Abrantes D, Rito T, Thomson N, Radivojac P, Li B, Macaulay V, Samuels DC, Pereira L. Evaluating purifying selection in the mitochondrial DNA of various mammalian species. PLoS One 2013; 8:e58993. [PMID: 23533597 PMCID: PMC3606437 DOI: 10.1371/journal.pone.0058993] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/08/2013] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial DNA (mtDNA), the circular DNA molecule inside the mitochondria of all eukaryotic cells, has been shown to be under the effect of purifying selection in several species. Traditional testing of purifying selection has been based simply on ratios of nonsynonymous to synonymous mutations, without considering the relative age of each mutation, which can be determined by phylogenetic analysis of this non-recombining molecule. The incorporation of a mutation time-ordering from phylogeny and of predicted pathogenicity scores for nonsynonymous mutations allow a quantitative evaluation of the effects of purifying selection in human mtDNA. Here, by using this additional information, we show that purifying selection undoubtedly acts upon the mtDNA of other mammalian species/genera, namely Bos sp., Canis lupus, Mus musculus, Orcinus orca, Pan sp. and Sus scrofa. The effects of purifying selection were comparable in all species, leading to a significant major proportion of nonsynonymous variants with higher pathogenicity scores in the younger branches of the tree. We also derive recalibrated mutation rates for age estimates of ancestors of these various species and proposed a correction curve in order to take into account the effects of selection. Understanding this selection is fundamental to evolutionary studies and to the identification of deleterious mutations.
Collapse
Affiliation(s)
- Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Scally A, Durbin R. Revising the human mutation rate: implications for understanding human evolution. Nat Rev Genet 2012; 13:745-53. [PMID: 22965354 DOI: 10.1038/nrg3295] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is now possible to make direct measurements of the mutation rate in modern humans using next-generation sequencing. These measurements reveal a value that is approximately half of that previously derived from fossil calibration, and this has implications for our understanding of demographic events in human evolution and other aspects of population genetics. Here, we discuss the implications of a lower-than-expected mutation rate in relation to the timescale of human evolution.
Collapse
|
36
|
de Saint Pierre M, Bravi CM, Motti JMB, Fuku N, Tanaka M, Llop E, Bonatto SL, Moraga M. An alternative model for the early peopling of southern South America revealed by analyses of three mitochondrial DNA haplogroups. PLoS One 2012; 7:e43486. [PMID: 22970129 PMCID: PMC3438176 DOI: 10.1371/journal.pone.0043486] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022] Open
Abstract
After several years of research, there is now a consensus that America was populated from Asia through Beringia, probably at the end of the Pleistocene. But many details such as the timing, route(s), and origin of the first settlers remain uncertain. In the last decade genetic evidence has taken on a major role in elucidating the peopling of the Americas. To study the early peopling of South America, we sequenced the control region of mitochondrial DNA from 300 individuals belonging to indigenous populations of Chile and Argentina, and also obtained seven complete mitochondrial DNA sequences. We identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently described D1g sub-haplogroup have locally high frequencies and are basically restricted to populations from the extreme south of South America. The estimated ages of D1g and B2l, about ~15,000 years BP, together with their similar population dynamics and the high haplotype diversity shown by the networks, suggests that they probably appeared soon after the arrival of the first settlers and agrees with the dating of the earliest archaeological sites in South America (Monte Verde, Chile, 14,500 BP). One further sub-haplogroup, D4h3a5, appears to be restricted to Fuegian-Patagonian populations and reinforces our hypothesis of the continuity of the current Patagonian populations with the initial founders. Our results indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin, and suggest a population break between the extreme south of South America and the more northern part of the continent. Thus the early colonization process was not just an expansion from north to south, but also included movements across the Andes.
Collapse
Affiliation(s)
- Michelle de Saint Pierre
- Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Heller R, Brüniche-Olsen A, Siegismund HR. Cape buffalo mitogenomics reveals a Holocene shift in the African human-megafauna dynamics. Mol Ecol 2012; 21:3947-59. [PMID: 22725969 DOI: 10.1111/j.1365-294x.2012.05671.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Africa is unique among the continents in having maintained an extraordinarily diverse and prolific megafauna spanning the Pleistocene-Holocene epochs. Little is known about the historical dynamics of this community and even less about the reasons for its unique persistence to modern times. We sequenced complete mitochondrial genomes from 43 Cape buffalo (Syncerus caffer caffer) to infer the demographic history of this large mammal. A combination of Bayesian skyline plots, simulations and Approximate Bayesian Computation (ABC) were used to distinguish population size dynamics from the confounding effect of population structure and identify the most probable demographic scenario. Our analyses revealed a late Pleistocene expansion phase concurrent with the human expansion between 80 000 and 10 000 years ago, refuting an adverse ecological effect of Palaeolithic humans on this quarry species, but also showed that the buffalo subsequently declined during the Holocene. The distinct two-phased dynamic inferred here suggests that a major ecological transition occurred in the Holocene. The timing of this transition coincides with the onset of drier conditions throughout tropical Africa following the Holocene Optimum (∼9000-5000 years ago), but also with the explosive growth in human population size associated with the transition from the Palaeolithic to the Neolithic cultural stage. We evaluate each of these possible causal factors and their potential impact on the African megafauna, providing the first systematic assessment of megafauna dynamics on the only continent where large mammals remain abundant.
Collapse
Affiliation(s)
- Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
38
|
Madrigal L, Posthumously LC, Melendez-Obando M, Villegas-Palma R, Barrantes R, Raventos H, Pereira R, Luiselli D, Pettener D, Barbujani G. High mitochondrial mutation rates estimated from deep-rooting Costa Rican pedigrees. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:327-33. [PMID: 22460349 DOI: 10.1002/ajpa.22052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/10/2012] [Indexed: 11/07/2022]
Abstract
Estimates of mutation rates for the noncoding hypervariable Region I (HVR-I) of mitochondrial DNA vary widely, depending on whether they are inferred from phylogenies (assuming that molecular evolution is clock-like) or directly from pedigrees. All pedigree-based studies so far were conducted on populations of European origin. In this article, we analyzed 19 deep-rooting pedigrees in a population of mixed origin in Costa Rica. We calculated two estimates of the HVR-I mutation rate, one considering all apparent mutations, and one disregarding changes at sites known to be mutational hot spots and eliminating genealogy branches which might be suspected to include errors, or unrecognized adoptions along the female lines. At the end of this procedure, we still observed a mutation rate equal to 1.24 × 10(-6) , per site per year, i.e., at least threefold as high as estimates derived from phylogenies. Our results confirm that mutation rates observed in pedigrees are much higher than estimated assuming a neutral model of long-term HVRI evolution. We argue that until the cause of these discrepancies will be fully understood, both lower estimates (i.e., those derived from phylogenetic comparisons) and higher, direct estimates such as those obtained in this study, should be considered when modeling evolutionary and demographic processes.
Collapse
Affiliation(s)
- Lorena Madrigal
- Department of Anthropology, University of South Florida, Tampa, FL 3360, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mourier T, Ho SYW, Gilbert MTP, Willerslev E, Orlando L. Statistical guidelines for detecting past population shifts using ancient DNA. Mol Biol Evol 2012; 29:2241-51. [PMID: 22427706 DOI: 10.1093/molbev/mss094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Populations carry a genetic signal of their demographic past, providing an opportunity for investigating the processes that shaped their evolution. Our ability to infer population histories can be enhanced by including ancient DNA data. Using serial-coalescent simulations and a range of both quantitative and temporal sampling schemes, we test the power of ancient mitochondrial sequences and nuclear single-nucleotide polymorphisms (SNPs) to detect past population bottlenecks. Within our simulated framework, mitochondrial sequences have only limited power to detect subtle bottlenecks and/or fast post-bottleneck recoveries. In contrast, nuclear SNPs can detect bottlenecks followed by rapid recovery, although bottlenecks involving reduction of less than half the population are generally detected with low power unless extensive genetic information from ancient individuals is available. Our results provide useful guidelines for scaling sampling schemes and for optimizing our ability to infer past population dynamics. In addition, our results suggest that many ancient DNA studies may face power issues in detecting moderate demographic collapses and/or highly dynamic demographic shifts when based solely on mitochondrial information.
Collapse
Affiliation(s)
- Tobias Mourier
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
40
|
Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ, Lee DM, Murphy DJ, Sniderman JMK, Udovicic F. Testing the Impact of Calibration on Molecular Divergence Times Using a Fossil-Rich Group: The Case of Nothofagus (Fagales). Syst Biol 2011; 61:289-313. [DOI: 10.1093/sysbio/syr116] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hervé Sauquet
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France
| | - Simon Y. W. Ho
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Maria A. Gandolfo
- L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Gregory J. Jordan
- School of Plant Science, University of Tasmania, Private bag 55, Hobart, TAS 7001, Australia
| | - Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA
| | - David J. Cantrill
- National Herbarium of Victoria, Royal Botanic Gardens Melbourne, Private Bag 2000, South Yarra, VIC 3141, Australia
| | - Michael J. Bayly
- School of Botany, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lindell Bromham
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Gillian K. Brown
- National Herbarium of Victoria, Royal Botanic Gardens Melbourne, Private Bag 2000, South Yarra, VIC 3141, Australia
- School of Botany, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Raymond J. Carpenter
- Department of Ecology and Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Daphne M. Lee
- Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Daniel J. Murphy
- National Herbarium of Victoria, Royal Botanic Gardens Melbourne, Private Bag 2000, South Yarra, VIC 3141, Australia
| | - J. M. Kale Sniderman
- School of Geography and Environmental Science, Monash University, Melbourne, VIC 3800, Australia
| | - Frank Udovicic
- National Herbarium of Victoria, Royal Botanic Gardens Melbourne, Private Bag 2000, South Yarra, VIC 3141, Australia
| |
Collapse
|
41
|
Gamba C, Fernández E, Tirado M, Deguilloux MF, Pemonge MH, Utrilla P, Edo M, Molist M, Rasteiro R, Chikhi L, Arroyo-Pardo E. Ancient DNA from an Early Neolithic Iberian population supports a pioneer colonization by first farmers. Mol Ecol 2011; 21:45-56. [PMID: 22117930 DOI: 10.1111/j.1365-294x.2011.05361.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Neolithic transition has been widely debated particularly regarding the extent to which this revolution implied a demographic expansion from the Near East. We attempted to shed some light on this process in northeastern Iberia by combining ancient DNA (aDNA) data from Early Neolithic settlers and published DNA data from Middle Neolithic and modern samples from the same region. We successfully extracted and amplified mitochondrial DNA from 13 human specimens, found at three archaeological sites dated back to the Cardial culture in the Early Neolithic (Can Sadurní and Chaves) and to the Late Early Neolithic (Sant Pau del Camp). We found that haplogroups with a low frequency in modern populations-N* and X1-are found at higher frequencies in our Early Neolithic population (∼31%). Genetic differentiation between Early and Middle Neolithic populations was significant (F(ST) ∼0.13, P<10(-5)), suggesting that genetic drift played an important role at this time. To improve our understanding of the Neolithic demographic processes, we used a Bayesian coalescence-based simulation approach to identify the most likely of three demographic scenarios that might explain the genetic data. The three scenarios were chosen to reflect archaeological knowledge and previous genetic studies using similar inferential approaches. We found that models that ignore population structure, as previously used in aDNA studies, are unlikely to explain the data. Our results are compatible with a pioneer colonization of northeastern Iberia at the Early Neolithic characterized by the arrival of small genetically distinctive groups, showing cultural and genetic connections with the Near East.
Collapse
Affiliation(s)
- C Gamba
- Laboratorio de Genética Forense y Genética de Poblaciones, Facultad de Medicina, Pabellón 7, 4ª Planta, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Soares P, Alshamali F, Pereira JB, Fernandes V, Silva NM, Afonso C, Costa MD, Musilova E, Macaulay V, Richards MB, Cerny V, Pereira L. The Expansion of mtDNA Haplogroup L3 within and out of Africa. Mol Biol Evol 2011; 29:915-27. [DOI: 10.1093/molbev/msr245] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Abstract
Some previous studies have suggested that rates of evolution inferred using molecular sequences vary substantially depending on the time frame over which they are measured, whereas a number of other studies have argued against this proposition. We examined this issue by separating positions of primate mitochondrial genomes that are under different levels of selection constraints. Our results revealed an order of magnitude variation in the evolutionary rates at constrained sites (including nonsynonymous sites, D-loop, and RNA) and virtually an identical rate of evolution at synonymous sites, independent of the timescales over which they were estimated. Although the evolutionary rate at nonsynonymous sites obtained using the European (H1 haplogroup) mitogenomes is 9–15 times higher than that estimated using the human–chimpanzee pair, in contrast, the rates at synonymous sites are similar between these comparisons. We also show that the ratio of divergence at nonsynonymous to synonymous sites estimated using intra- and interspecific comparisons vary up to nine times, which corroborates our results independent of calibration times.
Collapse
|
44
|
Raff JA, Bolnick DA, Tackney J, O'Rourke DH. Ancient DNA perspectives on American colonization and population history. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:503-14. [PMID: 21913177 DOI: 10.1002/ajpa.21594] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/07/2011] [Indexed: 11/07/2022]
Abstract
Ancient DNA (aDNA) analyses have proven to be important tools in understanding human population dispersals, settlement patterns, interactions between prehistoric populations, and the development of regional population histories. Here, we review the published results of sixty-three human populations from throughout the Americas and compare the levels of diversity and geographic patterns of variation in the ancient samples with contemporary genetic variation in the Americas in order to investigate the evolution of the Native American gene pool over time. Our analysis of mitochondrial haplogroup frequencies and prehistoric population genetic diversity presents a complex evolutionary picture. Although the broad genetic structure of American prehistoric populations appears to have been established relatively early, we nevertheless identify examples of genetic discontinuity over time in select regions. We discuss the implications this finding may have for our interpretation of the genetic evidence for the initial colonization of the Americas and its subsequent population history.
Collapse
Affiliation(s)
- Jennifer A Raff
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
45
|
Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A. Time-dependent rates of molecular evolution. Mol Ecol 2011; 20:3087-101. [PMID: 21740474 DOI: 10.1111/j.1365-294x.2011.05178.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events.
Collapse
Affiliation(s)
- Simon Y W Ho
- Centre for Macroevolution and Macroecology, Evolution Ecology & Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Peng MS, Zhang YP. Inferring the population expansions in peopling of Japan. PLoS One 2011; 6:e21509. [PMID: 21747908 PMCID: PMC3126835 DOI: 10.1371/journal.pone.0021509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 06/02/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Extensive studies in different fields have been performed to reconstruct the prehistory of populations in the Japanese archipelago. Estimates the ancestral population dynamics based on Japanese molecular sequences can extend our understanding about the colonization of Japan and the ethnogenesis of modern Japanese. METHODOLOGY/PRINCIPAL FINDINGS We applied Bayesian skyline plot (BSP) with a dataset based on 952 Japanese mitochondrial DNA (mtDNA) genomes to depict the female effective population size (N(ef)) through time for the total Japanese and each of the major mtDNA haplogroups in Japanese. Our results revealed a rapid N(ef) growth since ∼5 thousand years ago had left ∼72% Japanese mtDNA lineages with a salient signature. The BSP for the major mtDNA haplogroups indicated some different demographic history. CONCLUSIONS/SIGNIFICANCE The results suggested that the rapid population expansion acted as a major force in shaping current maternal pool of Japanese. It supported a model for population dynamics in Japan in which the prehistoric population growth initiated in the Middle Jomon Period experienced a smooth and swift transition from Jomon to Yayoi, and then continued through the Yayoi Period. The confounding demographic backgrounds of different mtDNA haplogroups could also have some implications for some related studies in future.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, People's Republic of China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, Yunnan, People's Republic of China
- * E-mail:
| |
Collapse
|
47
|
Pierron D, Chang I, Arachiche A, Heiske M, Thomas O, Borlin M, Pennarun E, Murail P, Thoraval D, Rocher C, Letellier T. Mutation rate switch inside Eurasian mitochondrial haplogroups: impact of selection and consequences for dating settlement in Europe. PLoS One 2011; 6:e21543. [PMID: 21738700 PMCID: PMC3125290 DOI: 10.1371/journal.pone.0021543] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 06/03/2011] [Indexed: 01/27/2023] Open
Abstract
R-lineage mitochondrial DNA represents over 90% of the European population and is significantly present all around the planet (North Africa, Asia, Oceania, and America). This lineage played a major role in migration “out of Africa” and colonization in Europe. In order to determine an accurate dating of the R lineage and its sublineages, we analyzed 1173 individuals and complete mtDNA sequences from Mitomap. This analysis revealed a new coalescence age for R at 54.500 years, as well as several limitations of standard dating methods, likely to lead to false interpretations. These findings highlight the association of a striking under-accumulation of synonymous mutations, an over-accumulation of non-synonymous mutations, and the phenotypic effect on haplogroup J. Consequently, haplogroup J is apparently not a Neolithic group but an older haplogroup (Paleolithic) that was subjected to an underestimated selective force. These findings also indicated an under-accumulation of synonymous and non-synonymous mutations localized on coding and non-coding (HVS1) sequences for haplogroup R0, which contains the major haplogroups H and V. These new dates are likely to impact the present colonization model for Europe and confirm the late glacial resettlement scenario.
Collapse
Affiliation(s)
- Denis Pierron
- Laboratoire de Physiopathologie Mitochondriale U688, INSERM - Université Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Ivan Chang
- Institute of Genomic Biology, University of California Irvine, Irvine, California, United States of America
| | - Amal Arachiche
- Laboratoire de Physiopathologie Mitochondriale U688, INSERM - Université Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Margit Heiske
- Laboratoire de Physiopathologie Mitochondriale U688, INSERM - Université Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Olivier Thomas
- Laboratoire de Physiopathologie Mitochondriale U688, INSERM - Université Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Marine Borlin
- Laboratoire de Physiopathologie Mitochondriale U688, INSERM - Université Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Erwan Pennarun
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, Tartu, Estonia
| | - Pacal Murail
- Laboratoire d'Anthropologie des Populations du Passé PACEA UMR 5199, CNRS - Université Bordeaux 1, Talence, France
| | - Didier Thoraval
- Institut de Biochimie et Génétique Cellulaires UMR 5095, CNRS - Université Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Christophe Rocher
- Laboratoire de Physiopathologie Mitochondriale U688, INSERM - Université Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Thierry Letellier
- Laboratoire de Physiopathologie Mitochondriale U688, INSERM - Université Victor Segalen-Bordeaux 2, Bordeaux, France
- * E-mail:
| |
Collapse
|
48
|
Knaus BJ, Cronn R, Liston A, Pilgrim K, Schwartz MK. Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecol 2011; 11:10. [PMID: 21507265 PMCID: PMC3108907 DOI: 10.1186/1472-6785-11-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 04/20/2011] [Indexed: 01/09/2023] Open
Abstract
Background Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the attention focused on the non-coding displacement ("D") loop. We used massively parallel multiplexed sequencing to sequence complete mitochondrial genomes from 40 fishers, a threatened carnivore that possesses low mitogenomic diversity. This allowed us to test a key assumption of conservation genetics, specifically, that the D-loop accurately reflects genealogical relationships and variation of the larger mitochondrial genome. Results Overall mitogenomic divergence in fishers is exceedingly low, with 66 segregating sites and an average pairwise distance between genomes of 0.00088 across their aligned length (16,290 bp). Estimates of variation and genealogical relationships from the displacement (D) loop region (299 bp) are contradicted by the complete mitochondrial genome, as well as the protein coding fraction of the mitochondrial genome. The sources of this contradiction trace primarily to the near-absence of mutations marking the D-loop region of one of the most divergent lineages, and secondarily to independent (recurrent) mutations at two nucleotide position in the D-loop amplicon. Conclusions Our study has two important implications. First, inferred genealogical reconstructions based on the fisher D-loop region contradict inferences based on the entire mitogenome to the point that the populations of greatest conservation concern cannot be accurately resolved. Whole-genome analysis identifies Californian haplotypes from the northern-most populations as highly distinctive, with a significant excess of amino acid changes that may be indicative of molecular adaptation; D-loop sequences fail to identify this unique mitochondrial lineage. Second, the impact of recurrent mutation appears most acute in closely related haplotypes, due to the low level of evolutionary signal (unique mutations that mark lineages) relative to evolutionary noise (recurrent, shared mutation in unrelated haplotypes). For wildlife managers, this means that the populations of greatest conservation concern may be at the highest risk of being misidentified by D-loop haplotyping. This message is timely because it highlights the new opportunities for basing conservation decisions on more accurate genetic information.
Collapse
Affiliation(s)
- Brian J Knaus
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
49
|
Pereira L, Soares P, Radivojac P, Li B, Samuels D. Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity. Am J Hum Genet 2011; 88:433-9. [PMID: 21457906 DOI: 10.1016/j.ajhg.2011.03.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 02/06/2023] Open
Abstract
We used detailed phylogenetic trees for human mtDNA, combined with pathogenicity predictions for each amino acid change, to evaluate selection on mtDNA-encoded protein variants. Protein variants with high pathogenicity scores were significantly rarer in the older branches of the tree. Variants that have formed and survived multiple times in the human phylogenetics tree had significantly lower pathogenicity scores than those that only appear once in the tree. We compared the distribution of pathogenicity scores observed on the human phylogenetic tree to the distribution of all possible protein variations to define a measure of the effect of selection on these protein variations. The measured effect of selection increased exponentially with increasing pathogenicity score. We found no measurable difference in this measure of purifying selection in mtDNA across the global population, represented by the macrohaplogroups L, M, and N. We provide a list of all possible single amino acid variations for the human mtDNA-encoded proteins with their predicted pathogenicity scores and our measured selection effect as a tool for assessing novel protein variations that are often reported in patients with mitochondrial disease of unknown origin or for assessing somatic mutations acquired through aging or detected in tumors.
Collapse
|
50
|
Torres C, Piñeiro y Leone FG, Pezzano SC, Mbayed VA, Campos RH. New perspectives on the evolutionary history of hepatitis B virus genotype F. Mol Phylogenet Evol 2011; 59:114-22. [PMID: 21296172 DOI: 10.1016/j.ympev.2011.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/25/2010] [Accepted: 01/11/2011] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is a globally distributed human pathogen. The aim of this work was to analyze the evolutionary history of HBV genotype F, emphasizing on the study of subgenotypes prevalent in the Southern area of South America. Complete genomes of HBV genotype F from 36 samples from Argentina and Chile were sequenced and analyzed by phylogenetic and Bayesian coalescent methods along with sequences obtained from GenBank database. The phylogeography separated not only Central American from South American isolates but also revealed that different subgenotypes are distributed in constrained although not exclusive areas of the continent. The result obtained with time-stamped complete genomes failed to explain the wide geographical distribution and the clustering observed in this genotype. Conversely, the use of Bayesian coalescent analyses with substitution rates as priors, instead of the co-estimation of tMRCA and substitution rate, allowed us to propose a far origin for the HBV genotype F based on the phylogeographical and epidemiological data.
Collapse
Affiliation(s)
- Carolina Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 4° piso, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina.
| | | | | | | | | |
Collapse
|