1
|
Amato ME, Balsells S, Martorell L, Alcalá San Martín A, Ansell K, Børresen ML, Johnson H, Korff C, Garcia-Tarodo S, Lefranc J, Denommé-Pichon AS, Sarrazin E, Szabo NZ, Saraiva JM, Wicher D, Goverde A, Bindels-de Heus KGCB, Barakat TS, Ortigoza-Escobar JD. Developmental and epileptic encephalopathy 56 due to YWHAG variants: 12 new cases and review of the literature. Eur J Paediatr Neurol 2024; 53:63-72. [PMID: 39413657 DOI: 10.1016/j.ejpn.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Developmental and epileptic encephalopathy 56 (DEE-56) is caused by pathogenic variants in YWHAG and is characterized by early-onset epilepsy and neurodevelopmental delay. This study reports on a cohort of DEE-56 individuals, correlating antiseizure medication usage and comorbidities, to aid in understanding disease evolution. METHODS We analyzed data from thirty-nine individuals aged 3-40 years with YWHAG variants, including 12 previously unreported individuals (2 of these with recurrent distal 7q11.23 deletions) and 27 previously published cases (21 families, including 3 adult individuals reported in a family case). Our assessments encompassed clinical, radiological, and genetic evaluations. All procedures adhered to standardized protocols for patient approvals, registrations, and data collection. RESULTS Individuals with YWHAG variants exhibited variable psychomotor delay, with the majority experiencing mild intellectual disability. Early-onset seizures, particularly febrile seizures, were common, with various seizure types reported. Valproic acid has emerged as an effective antiseizure medication. Movement disorders were present in a subset of individuals, primarily manifesting as ataxia and tremor. Comorbidities such as autism spectrum disorders and attention deficit-hyperreactivity disorder were observed in a proportion of individuals. We identified a novel YWHAG variant (c.634_645del/p.Asn212_Ser215del) and expanded the genotypic spectrum of the disease. CONCLUSIONS We provide insights into the clinical, radiological, and genetic features of YWHAG-related epileptic encephalopathy. Despite mild clinical symptoms, affected individuals face challenges in daily functioning, underscoring the need for comprehensive care. Valproic acid has been used for seizure control with variable results.
Collapse
Affiliation(s)
- Maria Eugenia Amato
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Sol Balsells
- Department of Statistics Institut de Recerca Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine-IPER Institut de Recerca Sant Joan de Déu , Barcelona, Spain; U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Salud Carlos III Health Institute, Barcelona, Spain
| | - Adrián Alcalá San Martín
- Department of Genetic and Molecular Medicine-IPER Institut de Recerca Sant Joan de Déu , Barcelona, Spain
| | - Karen Ansell
- Department of pediatric neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Malene Landbo Børresen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Heather Johnson
- Department of Paediatric Neurology, CNP Sanford Children's, South Dakota, USA
| | - Christian Korff
- Pediatric Neurology Unit, Geneva University Hospitals, 1205 Geneva, Switzerland
| | | | - Jeremie Lefranc
- Pediatric Neurophysiology Department, CHU de Brest, Brest, 29200, France
| | - Anne-Sophie Denommé-Pichon
- INSERM UMR1231 GAD "Génétique des Anomalies Du Développement", FHU-TRANSLAD, University of Burgundy, Dijon, France; Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, University Hospital, Dijon, Bourgogne, France
| | - Elisabeth Sarrazin
- Caribbean Reference Center for Neuromuscular Diseases, University Hospital, Fort de France, Martinique, France
| | - Nora Zsuzsanna Szabo
- Saint John's Hospital, Epilepsy-neurology Outpatient Clinic, Child Epilepsy Center, Budapest, Hungary
| | - Jorge M Saraiva
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Portugal; Clinical Academic Center of Coimbra, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Dorota Wicher
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Anne Goverde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Karen G C B Bindels-de Heus
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain; U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain; European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain; U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
2
|
Angel S, Naga Jyothi B, Prakash Ravikumar C, Tamhankar PM. A Rare Co-occurrence of Williams Syndrome and 𝘛𝘕𝘒2 Gene-Related Epilepsy. Cureus 2024; 16:e70777. [PMID: 39493104 PMCID: PMC11531316 DOI: 10.7759/cureus.70777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Williams syndrome is a multisystem disorder characterized by developmental delay, characteristic facial features, growth abnormalities, and cardiovascular abnormalities. The disorder is an autosomal dominant genetic syndrome that occurs due to microdeletion at chromosomal locus 7q11.23. Seizures occur uncommonly in association with Williams syndrome. Mutations in the TNK2 gene have been found in rare cases of autosomal recessive infantile-onset epilepsy. We describe a rare co-occurrence of Williams syndrome and TNK2 gene-related epilepsy in a child born of consanguineous parents. This case report emphasizes the role of genetic testing in the diagnosis of rare diseases. This is the fourth case report of epilepsy with biallelic mutations in the TNK2 gene, to the best of the authors' knowledge.
Collapse
Affiliation(s)
- Sumathi Angel
- Pediatric Neurology, Aster CMI Hospital, Bengaluru, IND
| | | | | | | |
Collapse
|
3
|
Peng Y, Zhu L, Bai Q, Wang L, Li Q. Serum level of YWHAG as a diagnostic marker of cognitive impairment in Parkinson's disease patients. Acta Neurol Belg 2024; 124:879-885. [PMID: 38286872 DOI: 10.1007/s13760-023-02441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/19/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Identifying reliable biomarkers for early detection and prediction of cognitive impairment in Parkinson's disease (PD) is crucial for optimal patient care. This study set out to investigate the potential of YWHAG as a diagnostic biomarker for cognitive impairment in PD. METHODS We enrolled a total of 331 PD patients and selected 241 patients that met the criteria for cognitive impairment analysis. The patients were classified into three groups: PD-NC: PD patients with normal cognition, PD-MCI: PD patients with mild cognitive impairment, and PD-D: PD patients with dementia. ELISA was employed to assess YWHAG expression, as well as the neurofilament light chain (NfL). Additionally, cognitive impairment was evaluated using MoCA scores. Correlation analysis and receiver operating curve analysis (ROC) were performed to clarify the relationship between YWHAG expression and cognitive impairment. RESULTS Our findings revealed a significant upregulation of YWHAG expression in both the PD-MCI and PD-D groups compared to the PD-NC group. This observation aligned with the elevated expression of NfL in the PD-MCI and PD-D groups. YWHAG and NfL expression levels displayed negative correlations with MoCA scores and positive associations with age. Furthermore, ROC curve analysis demonstrated the diagnostic efficacy of YWHAG expression in distinguishing individuals with PD-NC, PD-MCI, and PD-D. CONCLUSIONS Our findings indicate that YWHAG could serve as a promising biomarker for cognitive impairment in PD. The upregulation of YWHAG expression in PD-MCI and PD-D groups, its association with cognitive impairment, and its correlations with MoCA scores and NfL levels support its potential clinical utility.
Collapse
Affiliation(s)
- Yingying Peng
- Department of Neurology, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Lan Zhu
- Department of Neurology, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Qingling Bai
- Department of Neurosurgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061000, Hebei, China.
| | - Limin Wang
- Department of Neurology, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Qian Li
- Department of Neurology, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| |
Collapse
|
4
|
Yang C, Cheng X, Gao S, Pan Q. Integrating bulk and single-cell data to predict the prognosis and identify the immune landscape in HNSCC. J Cell Mol Med 2024; 28:e18009. [PMID: 37882107 PMCID: PMC10805493 DOI: 10.1111/jcmm.18009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The complex interplay between tumour cells and the tumour microenvironment (TME) underscores the necessity for gaining comprehensive insights into disease progression. This study centres on elucidating the elusive the elusive role of endothelial cells within the TME of head and neck squamous cell carcinoma (HNSCC). Despite their crucial involvement in angiogenesis and vascular function, the mechanistic diversity of endothelial cells among HNSCC patients remains largely uncharted. Leveraging advanced single-cell RNA sequencing (scRNA-Seq) technology and the Scissor algorithm, we aimed to bridge this knowledge gap and illuminate the intricate interplay between endothelial cells and patient prognosis within the context of HNSCC. Here, endothelial cells were categorized into Scissorhigh and Scissorlow subtypes. We identified Scissor+ endothelial cells exhibiting pro-tumorigenic profiles and constructed a prognostic risk model for HNSCC. Additionally, four biomarkers also were identified by analysing the gene expression profiles of patients with HNSCC and a prognostic risk prediction model was constructed based on these genes. Furthermore, the correlations between endothelial cells and prognosis of patients with HNSCC were analysed by integrating bulk and single-cell sequencing data, revealing a close association between SHSS and the overall survival (OS) of HNSCC patients with malignant endothelial cells. Finally, we validated the prognostic model by RT-qPCR and IHC analysis. These findings enhance our comprehension of TME heterogeneity at the single-cell level and provide a prognostic model for HNSCC.
Collapse
Affiliation(s)
- Chunlong Yang
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Xiaoning Cheng
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangChina
| | - Shenglan Gao
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Qingjun Pan
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
5
|
Tidball AM, Luo J, Walker JC, Takla TN, Carvill GL, Parent JM. Genome-wide CRISPRi Screen in Human iNeurons to Identify Novel Focal Cortical Dysplasia Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571474. [PMID: 38168415 PMCID: PMC10760100 DOI: 10.1101/2023.12.13.571474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Focal cortical dysplasia (FCD) is a common cause of focal epilepsy that typically results from brain mosaic mutations in the mTOR cell signaling pathway. To identify new FCD genes, we developed an in vitro CRISPRi screen in human neurons and used FACS enrichment based on the FCD biomarker, phosphorylated S6 ribosomal protein (pS6). Using whole-genome (110,000 gRNAs) and candidate (129 gRNAs) libraries, we discovered 12 new genes that significantly increase pS6 levels. Interestingly, positive hits were enriched for brain-specific genes, highlighting the effectiveness of using human iPSC-derived induced neurons (iNeurons) in our screen. We investigated the signaling pathways of six candidate genes: LRRC4, EIF3A, TSN, HIP1, PIK3R3, and URI1. All six genes increased phosphorylation of S6. However, only two genes, PIK3R3 and HIP1, caused hyperphosphorylation more proximally in the AKT/mTOR/S6 signaling pathway. Importantly, these two genes have recently been found independently to be mutated in resected brain tissue from FCD patients, supporting the predictive validity of our screen. Knocking down each of the other four genes (LRRC4, EIF3A, TSN, and URI1) in iNeurons caused them to become resistant to the loss of growth factor signaling; without growth factor stimulation, pS6 levels were comparable to growth factor stimulated controls. Our data markedly expand the set of genes that are likely to regulate mTOR pathway signaling in neurons and provide additional targets for identifying somatic gene variants that cause FCD.
Collapse
Affiliation(s)
- Andrew M. Tidball
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI
| | - Jinghui Luo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - J. Clayton Walker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Taylor N. Takla
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Gemma L. Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jack M. Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|
6
|
Liu X, Li H, Wang L, Zhang L, Wang L. The Effect of Sow Maternal Behavior on the Growth of Piglets and a Genome-Wide Association Study. Animals (Basel) 2023; 13:3753. [PMID: 38136791 PMCID: PMC10740555 DOI: 10.3390/ani13243753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Sows' maternal behavior is important for improving piglet survival and growth; thus, breeding for good mothering sows is necessary for pig production. However, there is little research on the genetic mechanism of maternal behavior. In this study, a comparative analysis of piglets' growth traits between good and bad maternal behavior groups and a genome-wide association study (GWAS) was performed to elucidate the impact of sows' maternal behavior on piglet growth and identify candidate genes and markers of sow's maternal behaviors. Comparing the growth traits of piglets between good and bad sows' maternal behavior groups, the results showed that the growth traits of piglets from sows with good maternal behavior were better than those from sows with bad maternal behavior and especially for the multiparous sows group, this comparative difference was significant. For the intensive study of the genetic mechanisms of sows' maternal behavior, a total of 452 sows were genotyped using the Illumina Porcine 50K SNP Chip, and 4 traits, including biting piglets (BP), crushing piglets (CP), trampling piglets (TP) and screaming test (ST), were examined. Using a GWAS, 20 single nucleotide polymorphisms (SNPs) were found to be associated with these traits. Within 1 Mb upstream and downstream of the significant SNPs screened, 138 genes were obtained. After pathway enrichment and gene annotation, HIP1, FZD9 and HTR7 were identified as important candidate genes affecting sows' maternal behaviors. These findings preliminarily elucidate the genetic basis of sows' maternal behavior traits and provide candidate genes and markers for molecular breeding in pigs.
Collapse
Affiliation(s)
| | | | | | | | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (H.L.); (L.W.); (L.Z.)
| |
Collapse
|
7
|
Piergiorge RM, da Silva Francisco Junior R, de Vasconcelos ATR, Santos-Rebouças CB. Multi-layered transcriptomic analysis reveals a pivotal role of FMR1 and other developmental genes in Alzheimer's disease-associated brain ceRNA network. Comput Biol Med 2023; 166:107494. [PMID: 37769462 DOI: 10.1016/j.compbiomed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Pan X, Yi X, Lan M, Su X, Zhou F, Wu W. Research on the pathological mechanism of rectal adenocarcinoma based on DNA methylation. Medicine (Baltimore) 2023; 102:e32763. [PMID: 36705386 PMCID: PMC9876001 DOI: 10.1097/md.0000000000032763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Colorectal cancer is one of the 3 most common cancers worldwide. In this study, a weighted network-based analysis method was proposed to explore the pathological mechanisms and prognostic targets of rectal adenocarcinoma (READ) at the deoxyribonucleic acid (DNA) methylation level. In this study, we downloaded clinical information and DNA methylation data from The Cancer Genome Atlas database. Differentially methylated gene analysis was used to identify the differential methylated genes in READ. Canonical correlation analysis was used to construct the weighted gene regulatory network for READ. Multilevel analysis and association analyses between gene modules and clinical information were used to mine key modules related to tumor metastasis evaluation. Genetic significance analysis was used to identify methylation sites in key modules. Finally, the importance of these methylation sites was confirmed using survival analysis. DNA methylation datasets from 90 cancer tissue samples and 6 paracancerous tissue samples were selected. A weighted gene regulatory network was constructed, and a multilevel algorithm was used to divide the gene co-expression network into 20 modules. From gene ontology enrichment analysis, characteristic M was related to biological processes such as the chemotaxis of fibroblast growth factors and the activation and regulation of immune cells etc and characteristic N was associated with the regulation of cytoskeleton formation, mainly microtubules and flagella, regulation of synapses, and regulation of cell mitosis. Based on the results of survival analysis, 7 key methylation sites were found closely correlated to the survival rate of READ, such as cg04441191 (microtubule-associated protein 4 [MAP4]), cg05658717 (KSR2), cg09622330 (GRIN2A), cg10698404 (YWHAG), cg17047993 (SPAG9), cg24504843 (CEP135), and cg24531267 (CEP250). Mutational and transcriptomic level studies revealed significant differences in DNA methylation, single nucleotide polymorphism, and transcript levels between YWHAG and MAP4 in normal tissues compared to tumor tissues, and differential expression of the 2 proteins in immunohistochemistry. Therefore, potential targeting drugs were screened for these 2 proteins for molecular docking, and artenimol was found to bind to MAP4 protein and 27-hydroxycholesterol to YWHAG. Our study found that key methylation sites played an important role in tumor metastasis and were associated with the prognosis of READ. Mutations and methylation may jointly regulate the transcription and translation of related genes, which in turn affect cancer progression. This may provide some new potential therapeutic targets and thoughts for the prognosis of READ.
Collapse
Affiliation(s)
- Xiaoqiang Pan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Maozhuo Lan
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoyun Su
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Fang Zhou
- Equipment Division, Zhijiang People’s Hospital, Yichang, Hubei, China
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
- * Correspondence: Wei Wu, Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, China (e-mail: )
| |
Collapse
|
9
|
Gibitova EA, Dobrynin PV, Pomerantseva EA, Musatova EV, Kostareva A, Evsyukov I, Rychkov SY, Zhukova OV, Naumova OY, Grigorenko EL. A Study of the Genomic Variations Associated with Autistic Spectrum Disorders in a Russian Cohort of Patients Using Whole-Exome Sequencing. Genes (Basel) 2022; 13:genes13050920. [PMID: 35627305 PMCID: PMC9141003 DOI: 10.3390/genes13050920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
This study provides new data on the whole-exome sequencing of a cohort of children with autistic spectrum disorders (ASD) from an underexplored Russian population. Using both a cross-sectional approach involving a control cohort of the same ancestry and an annotation-based approach involving relevant public databases, we explored exonic single nucleotide variants and copy-number variation potentially involved in the manifestation of ASD. The study results reveal new potential ASD candidate-variants found in the studied Russian cohort and show a high prevalence of common ASD-associated genomic variants, especially those in the genes known to be associated with the manifestation of intellectual disabilities. Our screening of an ASD cohort from a previously understudied population allowed us to flag at least a few novel genes (IGLJ2, FAM21A, OR11H12, HIP1, PRAMEF10, and ZNF717) regarding their potential involvement in ASD.
Collapse
Affiliation(s)
- Ekaterina A. Gibitova
- Computer Technologies Laboratory, University of Information Technologies, Mechanics and Optics, Saint Petersburg 197101, Russia; (E.A.G.); (P.V.D.); (I.E.)
| | - Pavel V. Dobrynin
- Computer Technologies Laboratory, University of Information Technologies, Mechanics and Optics, Saint Petersburg 197101, Russia; (E.A.G.); (P.V.D.); (I.E.)
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia; (S.Y.R.); (O.V.Z.)
| | - Ekaterina A. Pomerantseva
- The ‘Genetico’ Center for Genetics and Reproductive Medicine, Moscow 119333, Russia; (E.A.P.); (E.V.M.)
| | - Elizaveta V. Musatova
- The ‘Genetico’ Center for Genetics and Reproductive Medicine, Moscow 119333, Russia; (E.A.P.); (E.V.M.)
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia;
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm 17177, Sweden
| | - Igor Evsyukov
- Computer Technologies Laboratory, University of Information Technologies, Mechanics and Optics, Saint Petersburg 197101, Russia; (E.A.G.); (P.V.D.); (I.E.)
| | - Sergey Y. Rychkov
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia; (S.Y.R.); (O.V.Z.)
| | - Olga V. Zhukova
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia; (S.Y.R.); (O.V.Z.)
| | - Oxana Y. Naumova
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia; (S.Y.R.); (O.V.Z.)
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Department of Psychology, Saint-Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (O.Y.N.); (E.L.G.)
| | - Elena L. Grigorenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Department of Psychology, Saint-Petersburg State University, Saint Petersburg 199034, Russia
- Center of Cognitive Research, Sirius University of Science and Technology, Sochi 354340, Russia
- Correspondence: (O.Y.N.); (E.L.G.)
| |
Collapse
|
10
|
Birca V, Myers KA. Genetic Generalized Epilepsy and Intrafamilial Phenotypic Variability with Distal 7q11.23 Deletion. Child Neurol Open 2022; 9:2329048X221093173. [PMID: 35481155 PMCID: PMC9036355 DOI: 10.1177/2329048x221093173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Distal 7q11.23 deletions are variably associated with epilepsy, intellectual disability and neurobehavioural abnormalities. The relative importance of different genes in this region in contributing to different phenotypes is not clear, though HIP1 and YWHAG are both thought to play important roles. Patients and Methods: We performed thorough phenotyping on members of a family in which multiple members carried a relatively small 0.8 Mb distal 7q11.23 deletion, affecting 17 genes. Results: Two brothers and a half-brother had all inherited the 7q11.23 deletion from their mother. The eldest two both had global developmental impairment and genetic generalized epilepsy, involving absence, myoclonic or myoclonic-atonic seizures. There was no history of seizures in the mother or her youngest son, but both also had developmental impairment. Conclusion: Distal 7q11.23 deletions affecting HIP1 and YWHAG may cause developmental impairment and genetic generalized epilepsy, with considerable intrafamilial phenotypic variability.
Collapse
Affiliation(s)
- Veronica Birca
- Division of Child Neurology, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Kenneth A. Myers
- Division of Child Neurology, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Neurology & Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Zhou J, Zheng Y, Liang G, Xu X, Liu J, Chen S, Ge T, Wen P, Zhang Y, Liu X, Zhuang J, Wu Y, Chen J. Atypical deletion of Williams-Beuren syndrome reveals the mechanism of neurodevelopmental disorders. BMC Med Genomics 2022; 15:79. [PMID: 35379245 PMCID: PMC8981662 DOI: 10.1186/s12920-022-01227-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Genes associated with specific neurocognitive phenotypes in Williams–Beuren syndrome are still controversially discussed. This study identified nine patients with atypical deletions out of 111 patients with Williams–Beuren syndrome; these deletions included seven smaller deletions and two larger deletions. One patient had normal neurodevelopment with a deletion of genes on the distal side of the Williams–Beuren syndrome chromosomal region, including GTF2I and GTF2IRD1. However, another patient retained these genes but showed neurodevelopmental abnormalities. By comparing the genotypes and phenotypes of patients with typical and atypical deletions and previous reports in the literature, we hypothesize that the BAZ1B, FZD9, and STX1A genes may play an important role in the neurodevelopment of patients with WBS.
Collapse
Affiliation(s)
- Jianrong Zhou
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Zheng
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guiying Liang
- Department of Physical Therapy and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Jian Liu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shaoxian Chen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tongkai Ge
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengju Wen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Zhang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Department of Physical Therapy and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jimei Chen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
12
|
Zhou X, Wang Z, Xu B, Ji N, Meng P, Gu L, Li Y. Long non-coding RNA NORAD protects against cerebral ischemia/reperfusion injury induced brain damage, cell apoptosis, oxidative stress and inflammation by regulating miR-30a-5p/YWHAG. Bioengineered 2021; 12:9174-9188. [PMID: 34709972 PMCID: PMC8810080 DOI: 10.1080/21655979.2021.1995115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
LncRNAs are identified as critical regulators in cerebral ischemia/reperfusion injury (CIRI). In this current work, SH-SY5Y cells suffered from oxygen-glucose deprivation/reperfusion (OGD/R) were applied to analyze the biological role of lncRNA NORAD and underlying molecular mechanism in CIRI in vitro. Levels of lncRNA NORAD, miR-30a-5p and YWHAG were measured using RT-qPCR. Bioinformatics analysis predicted the binding sites of lncRNA NORAD to miR-30a-5p and miR-30a-5p to YWHAG. Luciferase reporter assay verified the binding relationships among lncRNA NORAD, miR-30a-5p and YWHAG. Additionally, cell viability was determined using CCK-8 assay, and cell apoptosis was assessed using TUNEL staining and western blot analysis. Moreover, the levels of ROS, MDA, LDH and SOD as well as IL-1β, TNF-α, and IL-6 were assessed via application of the corresponding assay kits. Decreased cell viability and temporarily increased lncRNA NORAD level were observed in SH-SY5Y cells after OGD/R. It was demonstrated that lncRNA NORAD regulated YWHAG expression by sponging miR-30a-5p. Upregulation of lncRNA NORAD contributed to the enhancement of cell viability, the inhibition of cell apoptosis as well as the alleviation of oxidative stress and inflammation in OGD/R-injured SH-SY5Y cells, which were reversed upon elevation of miR-30a-5p. In contrast, downregulation of lncRNA NORAD reduced cell viability, promoted cell apoptosis as well as aggravated oxidative stress and inflammation under OGD/R challenge, and the functions of lncRNA NORAD knockdown in OGD/R injury were abolished by upregulation of YWHAG. Taken together, lncRNA NORAD exerted protective effects against OGD/R-induced neural injury by sponging miR-30a-5p to upregulate YWHAG expression.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Zhonglong Wang
- Department of Neurology, Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Bingchao Xu
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Niu Ji
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Pin Meng
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Lei Gu
- Rehabilitation Center, Beijing Xiaotangshan Hospital, Beijing, China
| | - Ying Li
- Rehabilitation Center, Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
13
|
Wegscheid ML, Anastasaki C, Hartigan KA, Cobb OM, Papke JB, Traber JN, Morris SM, Gutmann DH. Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis. Cell Rep 2021; 36:109315. [PMID: 34233200 PMCID: PMC8278229 DOI: 10.1016/j.celrep.2021.109315] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
Neurodevelopmental disorders are often caused by chromosomal microdeletions comprising numerous contiguous genes. A subset of neurofibromatosis type 1 (NF1) patients with severe developmental delays and intellectual disability harbors such a microdeletion event on chromosome 17q11.2, involving the NF1 gene and flanking regions (NF1 total gene deletion [NF1-TGD]). Using patient-derived human induced pluripotent stem cell (hiPSC)-forebrain cerebral organoids (hCOs), we identify both neural stem cell (NSC) proliferation and neuronal maturation abnormalities in NF1-TGD hCOs. While increased NSC proliferation results from decreased NF1/RAS regulation, the neuronal differentiation, survival, and maturation defects are caused by reduced cytokine receptor-like factor 3 (CRLF3) expression and impaired RhoA signaling. Furthermore, we demonstrate a higher autistic trait burden in NF1 patients harboring a deleterious germline mutation in the CRLF3 gene (c.1166T>C, p.Leu389Pro). Collectively, these findings identify a causative gene within the NF1-TGD locus responsible for hCO neuronal abnormalities and autism in children with NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelly A Hartigan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia M Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason B Papke
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer N Traber
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Kozel BA, Barak B, Ae Kim C, Mervis CB, Osborne LR, Porter M, Pober BR. Williams syndrome. Nat Rev Dis Primers 2021; 7:42. [PMID: 34140529 PMCID: PMC9437774 DOI: 10.1038/s41572-021-00276-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as many as 1:7,500 individuals. WS arises due to the mispairing of low-copy DNA repetitive elements at meiosis. The deletion size is similar across most individuals with WS and leads to the loss of one copy of 25-27 genes on chromosome 7q11.23. The resulting unique disorder affects multiple systems, with cardinal features including but not limited to cardiovascular disease (characteristically stenosis of the great arteries and most notably supravalvar aortic stenosis), a distinctive craniofacial appearance, and a specific cognitive and behavioural profile that includes intellectual disability and hypersociability. Genotype-phenotype evidence is strongest for ELN, the gene encoding elastin, which is responsible for the vascular and connective tissue features of WS, and for the transcription factor genes GTF2I and GTF2IRD1, which are known to affect intellectual ability, social functioning and anxiety. Mounting evidence also ascribes phenotypic consequences to the deletion of BAZ1B, LIMK1, STX1A and MLXIPL, but more work is needed to understand the mechanism by which these deletions contribute to clinical outcomes. The age of diagnosis has fallen in regions of the world where technological advances, such as chromosomal microarray, enable clinicians to make the diagnosis of WS without formally suspecting it, allowing earlier intervention by medical and developmental specialists. Phenotypic variability is considerable for all cardinal features of WS but the specific sources of this variability remain unknown. Further investigation to identify the factors responsible for these differences may lead to mechanism-based rather than symptom-based therapies and should therefore be a high research priority.
Collapse
Affiliation(s)
- Beth A. Kozel
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Boaz Barak
- The Sagol School of Neuroscience and The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chong Ae Kim
- Department of Pediatrics, Universidade de São Paulo, São Paulo, Brazil
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, USA
| | - Lucy R. Osborne
- Department of Medicine, University of Toronto, Ontario, Canada
| | - Melanie Porter
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Barbara R. Pober
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
15
|
Nicotera AG, Spanò M, Decio A, Valentini G, Saia M, Di Rosa G. Epileptic Phenotype and Cannabidiol Efficacy in a Williams-Beuren Syndrome Patient With Atypical Deletion: A Case Report. Front Neurol 2021; 12:659543. [PMID: 34168609 PMCID: PMC8217744 DOI: 10.3389/fneur.2021.659543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is a rare clinical manifestation in Williams–Beuren syndrome patients. However, some studies report the presence of infantile spasms and epilepsy in patients carrying larger deletions. Herein, we describe a 13-year-old female affected by Williams–Beuren syndrome and pharmacoresistant epilepsy reporting a de novo large heterozygous 7q11.21q21 deletion (19.4 Mb) also including the YWHAG gene. Studies indicate that cannabidiol is effective as adjunctive therapy for seizures associated with tuberous sclerosis complex, and it is under investigation also in focal cortical dysplasia. When treated with cannabidiol, our patient showed a significant reduction in seizure frequency and intensity, and improved motor and social skills. We hypothesized that CBD could exert a gene/disease-specific effect.
Collapse
Affiliation(s)
- Antonio G Nicotera
- Division of Child Neurology and Psychiatry, Department of the Adult and Developmental Age Human Pathology, University of Messina, Messina, Italy
| | - Maria Spanò
- Division of Child Neurology and Psychiatry, Department of the Adult and Developmental Age Human Pathology, University of Messina, Messina, Italy
| | - Alice Decio
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Giulia Valentini
- Division of Child Neurology and Psychiatry, Department of the Adult and Developmental Age Human Pathology, University of Messina, Messina, Italy
| | - Maria Saia
- Division of Child Neurology and Psychiatry, Department of the Adult and Developmental Age Human Pathology, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Division of Child Neurology and Psychiatry, Department of the Adult and Developmental Age Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Wang LX, Leng J, Li ZH, Yan L, Gou P, Tang F, Su N, Gong CZ, Cheng XR. Clinical and genetic characteristics of two cases with Williams-Beuren syndrome. Transl Pediatr 2021; 10:1743-1747. [PMID: 34295790 PMCID: PMC8261582 DOI: 10.21037/tp-21-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Herein, we describe 2 cases of Williams-Beuren syndrome (WBS). In both cases, the patients exhibited mental retardation, characteristic facial features, and indirect inguinal hernia. Case 1, a girl aged 2 years and 5 months old, presented with hypercalcemia, and in case 2, a boy aged 4 years and 11 months old, the disorder manifested as infantile spasms, supravalvular aortic stenosis, and pulmonary stenosis. Brain MRI revealed no abnormalities in either case. The electroencephalogram of case 2 showed hypsarrhythmia. Case 1 was treated with bisphosphonates and somatropin for hypercalcemia and short stature. Case 2 received antiepileptic drug and ketogenic diet therapy. In both cases, a 7q11.23 deletion including fragment deletion of the GTF21 gene was found, which may be associated with mental retardation. Notably, in case 2, a 921.1kb deletion in Yq11.23 was detected, which has not been reported in WBS before. The deletion of Yq11.23 is located in the AZFc region, which is an important factor in male infertility with primary azoospermia and oligozoospermia. The occurrence of hypercalcemia in case 1 may be related to the deletion of BAZ1B, while the supravalvular aortic stenosis and pulmonary stenosis were associated with deletion of the ELN gene. We explored the clinical and genetic characteristics of WBS to better understand disease.
Collapse
Affiliation(s)
- Liu-Xu Wang
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Leng
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhong-Hui Li
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Yan
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Gou
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Tang
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Na Su
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun-Zhu Gong
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin-Ran Cheng
- Department of Pediatric Endocrine Genetics and Metabolism, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Albuz B, Ozdemir O, Silan F. The high frequency of chromosomal copy number variations and candidate genes in epilepsy patients. Clin Neurol Neurosurg 2021; 202:106487. [PMID: 33484953 DOI: 10.1016/j.clineuro.2021.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/29/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Epilepsy is a chronic brain disease and is estimated to affect more than 50 million people worldwide.Epilepsy is a polygenic and multifactorial disease.Genetic causes play a major role in 40-60 % of all epilepsies.Copy number variations(CNVs) have been reported in approximately 5-12 % of patients with different types of epilepsy.Here we aimed to determine the diagnostic yield of the aCGH in epilepsy and to reveal new candidate genes and CNVs by analyzing aCGH data retrospectively. METHODS The clinical data of 80 patients with the diagnosis of epilepsy were examined retrospectively and the raw data of aCGH of these patients were reanalyzed in the light of current literature. RESULTS Pathogenic/likely pathogenic CNVs were detected in 14 of 80 patients and 12 of these CNVs (15 %) were associated with epilepsy phenotype. In addition, 18 CNVs in 16 different chromosomal loci that were evaluated as the variant of unknown clinical significance(VOUS). In four cases (5%), CNVs associated with epilepsy were less than 100 kb and these accounted for 13.3 % of all epilepsy associated CNVs. CONCLUSION The diagnostic yield of aCGH in epilepsy patients was found to be higher than most studies in the literature. MACROD2,ADGRB3(BAI3),SOX8,HIP1,PARK2 and TAFA2 genes were evaluated as potential epilepsy-related genes and NEDD9,RASAL2 and TNR genes thought to be the candidate genes for epilepsy. Our study showed that the diagnostic efficiency of aCGH in epilepsy is high and with more comprehensive studies, it will contribute to the elucidation of genes involved in genetic etiology in epilepsy patients.
Collapse
Affiliation(s)
- Burcu Albuz
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| |
Collapse
|
18
|
Abstract
14-3-3 proteins are mostly expressed in the brain and are closely involved in numerous brain functions and various brain disorders. Among the isotypes of the 14-3-3 proteins, 14-3-3γ is mainly expressed in neurons and is highly produced during brain development, which could indicate that it has a significance in neural development. Furthermore, the distinctive levels of temporally and locally regulated 14-3-3γ expression in various brain disorders suggest that it could play a substantial role in brain plasticity of the diseased states. In this review, we introduce the various brain disorders reported to be involved with 14-3-3γ, and summarize the changes of 14-3-3γ expression in each brain disease. We also discuss the potential of 14-3-3γ for treatment and the importance of research on specific 14-3-3 isotypes for an effective therapeutic approach.
Collapse
Affiliation(s)
- Eunsil Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02708, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02708, Korea
| |
Collapse
|
19
|
Zhou H, Li F, Ye W, Wang M, Zhou X, Feng J, Liu L, Wang X. Correlation Between Plasma CircRNA-089763 and Postoperative Cognitive Dysfunction in Elderly Patients Undergoing Non-cardiac Surgery. Front Behav Neurosci 2020; 14:587715. [PMID: 33132863 PMCID: PMC7573279 DOI: 10.3389/fnbeh.2020.587715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
In our previous experiment, we found that there were abnormal levels of circRNA-089763 in the plasma exosomes of patients with postoperative cognitive dysfunction (POCD) after cardiac surgery. Therefore, the aim of this study was to further investigate the relationship between plasma circRNA-089763 level and POCD in elderly patients after non-cardiac surgery. A prospective cohort study was conducted to select elderly patients undergoing elective non-cardiac surgery. A total of 72 patients were enrolled in this study, and cognitive functions were assessed 1 day before and 3 days after surgery by a series of neuropsychological measurements. Next, patients were divided into POCD and non-POCD (NPOCD) groups according to the Z score method. Blood was collected the day before and 3 days after surgery, and the plasma circRNA-089763 level was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Then, the difference and correlation in plasma circRNA-089763 levels between the POCD and NPOCD groups were analyzed. On the third day after surgery, the incidence of POCD was 30.56%. The relative level of circRNA-089763 in the POCD group was 2.41 times higher than that in the NPOCD group (t = 4.711, p < 0.001), patients in POCD group had higher age (t = 5.971, p < 0.001), higher American Society of Anesthesiologists classification (χ2 = 14.726, p < 0.001), less years of education (t = 2.449, p = 0.017), more intraoperative blood loss (t = 3.196, p = 0.002), and higher visual analog scale (VAS) scores (t = 10.45, p < 0.001). The binary logistic regression analysis showed that the circRNA-089763 level, age, and intraoperative blood loss were independently associated with POCD (OR: 2.75, 95% CI: 1.261–5.999, p = 0.011; OR: 1.32, 95% CI: 1.114–1.565, p = 0.001; OR: 1.017, 95% CI: 1.004–1.03, p = 0.011). These results demonstrated that the circRNA-089763 plasma level was related to POCD after non-cardiac surgery in elderly patients.
Collapse
Affiliation(s)
- Hongli Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fuyu Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wanlin Ye
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Maozhou Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xian Zhou
- Department of Internal Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Torrico B, Antón-Galindo E, Fernàndez-Castillo N, Rojo-Francàs E, Ghorbani S, Pineda-Cirera L, Hervás A, Rueda I, Moreno E, Fullerton JM, Casadó V, Buitelaar JK, Rommelse N, Franke B, Reif A, Chiocchetti AG, Freitag C, Kleppe R, Haavik J, Toma C, Cormand B. Involvement of the 14-3-3 Gene Family in Autism Spectrum Disorder and Schizophrenia: Genetics, Transcriptomics and Functional Analyses. J Clin Med 2020; 9:E1851. [PMID: 32545830 PMCID: PMC7356291 DOI: 10.3390/jcm9061851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). Here, we explored the contribution of the seven human 14-3-3 family members in ASD and other psychiatric disorders by investigating the: (i) functional impact of the 14-3-3ζ mutation p.L220Ffs*18 by assessing solubility, target binding and dimerization; (ii) contribution of common risk variants in 14-3-3 genes to ASD and additional psychiatric disorders; (iii) burden of rare variants in ASD and schizophrenia; and iv) 14-3-3 gene expression using ASD and schizophrenia transcriptomic data. We found that the mutant 14-3-3ζ protein had decreased solubility and lost its ability to form heterodimers and bind to its target tyrosine hydroxylase. Gene-based analyses using publicly available datasets revealed that common variants in YWHAE contribute to schizophrenia (p = 6.6 × 10-7), whereas ultra-rare variants were found enriched in ASD across the 14-3-3 genes (p = 0.017) and in schizophrenia for YWHAZ (meta-p = 0.017). Furthermore, expression of 14-3-3 genes was altered in post-mortem brains of ASD and schizophrenia patients. Our study supports a role for the 14-3-3 family in ASD and schizophrenia.
Collapse
Affiliation(s)
- Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Eva Rojo-Francàs
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Sadaf Ghorbani
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Amaia Hervás
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
- IGAIN, Global Institute of Integral Attention to Neurodevelopment, 08007 Barcelona, Spain
| | - Isabel Rueda
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
| | - Estefanía Moreno
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vicent Casadó
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Christine Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Rune Kleppe
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Claudio Toma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid/CSIC, C/Nicolás Cabrera, 1, Campus UAM, 28049 Madrid, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
21
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
22
|
Lugo M, Wong ZC, Billington CJ, Parrish PCR, Muldoon G, Liu D, Pober BR, Kozel BA. Social, neurodevelopmental, endocrine, and head size differences associated with atypical deletions in Williams-Beuren syndrome. Am J Med Genet A 2020; 182:1008-1020. [PMID: 32077592 DOI: 10.1002/ajmg.a.61522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Williams-Beuren syndrome (WBS) is a multisystem disorder caused by a hemizygous deletion on 7q11.23 encompassing 26-28 genes. An estimated 2-5% of patients have "atypical" deletions, which extend in the centromeric and/or telomeric direction from the WBS critical region. To elucidate clinical differentiators among these deletion types, we evaluated 10 individuals with atypical deletions in our cohort and 17 individuals with similarly classified deletions previously described in the literature. Larger deletions in either direction often led to more severe developmental delays, while deletions containing MAGI2 were associated with infantile spasms and seizures in patients. In addition, head size was notably smaller in those with centromeric deletions including AUTS2. Because children with atypical deletions were noted to be less socially engaged, we additionally sought to determine how atypical deletions relate to social phenotypes. Using the Social Responsiveness Scale-2, raters scored individuals with atypical deletions as having different social characteristics to those with typical WBS deletions (p = .001), with higher (more impaired) scores for social motivation (p = .005) in the atypical deletion group. In recognizing these distinctions, physicians can better identify patients, including those who may already carry a clinical or FISH WBS diagnosis, who may benefit from additional molecular evaluation, screening, and therapy. In addition to the clinical findings, we note mild endocrine findings distinct from those typically seen in WBS in several patients with telomeric deletions that included POR. Further study in additional telomeric deletion cases will be needed to confirm this observation.
Collapse
Affiliation(s)
- Michael Lugo
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.,Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Zoë C Wong
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Charles J Billington
- Medical Genetics and Genomic Medicine Training Program, National Human Genetics Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Phoebe C R Parrish
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Glennis Muldoon
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Delong Liu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Barbara R Pober
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
23
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
24
|
Wang M, Su P, Liu Y, Zhang X, Yan J, An X, Wang X, Gu S. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with post‑operative cognitive dysfunction after coronary artery bypass grafting. Mol Med Rep 2019; 20:2549-2562. [PMID: 31524256 PMCID: PMC6691254 DOI: 10.3892/mmr.2019.10521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Post-operative cognitive dysfunction (POCD) is a complication of the central nervous system characterized by mental disorders, anxiety, personality changes and impaired memory. POCD occurs frequently after coronary artery bypass grafting (CABG) and can severely affect quality of life for patients. To date, the development of POCD biomarkers remains a challenge. Alterations in the expression of non-coding RNAs from brain tissue and peripheral blood have been linked to POCD. The present study aimed to detect the differential circular RNAs (circRNAs) in plasma exosomes of patients with POCD after CABG. The relative expression levels of circRNAs were analyzed using circRNA microarray analysis in the plasma exosomes of patients with POCD. Differentially altered circRNAs (P<0.05, fold change >1.5) were validated by reverse transcription-quantitative PCR in the plasma exosomes of patients with POCD. The target genes of the microRNAs were predicted using bioinformatics analysis. The functions and signaling pathways of these target genes were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. The microarray results indicated that the levels of nine circRNAs in patients with POCD were higher than those in the control subjects; and six circRNAs were at a lower level than those in control subjects. The RT-qPCR results from patients with POCD showed that only circRNA_089763 of the 15 circRNAs identified was significantly increased compared with control subjects. circRNA target gene prediction and functional annotation analysis showed significant enrichment in several GO terms and pathways associated with POCD. The present study provides evidence for the abnormal expression of POCD-induced circRNA_089763 in human plasma exosomes, as well as the involvement of POCD.
Collapse
Affiliation(s)
- Maozhou Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Pixiong Su
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xitao Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jun Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiangguang An
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Song Gu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
25
|
Sathe G, Na CH, Renuse S, Madugundu AK, Albert M, Moghekar A, Pandey A. Quantitative Proteomic Profiling of Cerebrospinal Fluid to Identify Candidate Biomarkers for Alzheimer's Disease. Proteomics Clin Appl 2019; 13:e1800105. [PMID: 30578620 PMCID: PMC6639119 DOI: 10.1002/prca.201800105] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this study is to identify the potential cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease and to evaluate these markers on independent CSF samples using parallel reaction monitoring (PRM) assays. EXPERIMENTAL DESIGN High-Resolution mass spectrometry and tandem mass tag (TMT) multiplexing technology are employed to identify potential biomarkers for Alzheimer's disease. Some of the identified potential biomarkers are validated using PRM assays. RESULTS A total of 2327 proteins are identified in the CSF of which 139 are observed to be significantly altered in the CSF of AD patients. The proteins altered in AD includes a number of known AD marker such as MAPT, NPTX2, VGF, GFAP, and NCAM1 as well as novel biomarkers such as PKM and YWHAG. These findings are validated in a separate set of CSF specimens from AD dementia patients and controls. NPTX2, in combination with PKM or YWHAG, leads to the best results with AUCs of 0.935 and 0.933, respectively. CONCLUSIONS AND CLINICAL RELEVANCE The proteins that are found to be altered in the CSF of patients with AD could be used for monitoring disease progression and therapeutic response and perhaps also for early detection once they are validated in larger studies.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Chan Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
26
|
Leiter O, Seidemann S, Overall RW, Ramasz B, Rund N, Schallenberg S, Grinenko T, Wielockx B, Kempermann G, Walker TL. Exercise-Induced Activated Platelets Increase Adult Hippocampal Precursor Proliferation and Promote Neuronal Differentiation. Stem Cell Reports 2019; 12:667-679. [PMID: 30905740 PMCID: PMC6450435 DOI: 10.1016/j.stemcr.2019.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Physical activity is a strong positive physiological modulator of adult neurogenesis in the hippocampal dentate gyrus. Although the underlying regulatory mechanisms are still unknown, systemic processes must be involved. Here we show that platelets are activated after acute periods of running, and that activated platelets promote neurogenesis, an effect that is likely mediated by platelet factor 4. Ex vivo, the beneficial effects of activated platelets and platelet factor 4 on neural precursor cells were dentate gyrus specific and not observed in the subventricular zone. Moreover, the depletion of circulating platelets in mice abolished the running-induced increase in precursor cell proliferation in the dentate gyrus following exercise. These findings demonstrate that platelets and their released factors can modulate adult neural precursor cells under physiological conditions and provide an intriguing link between running-induced platelet activation and the modulation of neurogenesis after exercise.
Collapse
Affiliation(s)
- Odette Leiter
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany; Queensland Brain Institute (QBI), The University of Queensland, Brisbane 4072, Australia
| | - Suse Seidemann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Rupert W Overall
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany
| | - Beáta Ramasz
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nicole Rund
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany
| | - Sonja Schallenberg
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Tatyana Grinenko
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gerd Kempermann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany
| | - Tara L Walker
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany; Queensland Brain Institute (QBI), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
27
|
Coppola A, Cellini E, Stamberger H, Saarentaus E, Cetica V, Lal D, Djémié T, Bartnik‐Glaska M, Ceulemans B, Helen Cross J, Deconinck T, Masi SD, Dorn T, Guerrini R, Hoffman‐Zacharska D, Kooy F, Lagae L, Lench N, Lemke JR, Lucenteforte E, Madia F, Mefford HC, Morrogh D, Nuernberg P, Palotie A, Schoonjans A, Striano P, Szczepanik E, Tostevin A, Vermeesch JR, Van Esch H, Van Paesschen W, Waters JJ, Weckhuysen S, Zara F, Jonghe PD, Sisodiya SM, Marini C. Diagnostic implications of genetic copy number variation in epilepsy plus. Epilepsia 2019; 60:689-706. [PMID: 30866059 PMCID: PMC6488157 DOI: 10.1111/epi.14683] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.
Collapse
Affiliation(s)
- Antonietta Coppola
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyWC1N3BGUK
- The Chalfont Centre for EpilepsyChesham Lane, Chalfont St PeterBucksUK
- Epilepsy CentreDepartment of Neuroscience, Reproductive and Odontostomatological SciencesFederico II UniversityNaplesItaly
| | - Elena Cellini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesNeuroscience DepartmentA Meyer Children‘s HospitalUniversity of FlorenceFlorenceItaly
| | - Hannah Stamberger
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Elmo Saarentaus
- Analytic and Translational Genetics UnitMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Institute of Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesNeuroscience DepartmentA Meyer Children‘s HospitalUniversity of FlorenceFlorenceItaly
| | - Dennis Lal
- Analytic and Translational Genetics UnitMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOH44195US
- Genomic Medicine InstituteLerner Research Institute Cleveland ClinicClevelandOH44195US
- Cologne Center for GenomicsUniversity of CologneGermany
| | - Tania Djémié
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
| | | | - Berten Ceulemans
- Department of Neurology‐Pediatric NeurologyUniversity and University Hospital AntwerpAntwerpBelgium
| | - J. Helen Cross
- Neurology DepartmentGreat Ormond Street HospitalNHS Foundation TrustLondonUK
- Clinical NeuroscienceUCL GOSH Institute of Child HealthLondonUK
- Young EpilepsyLingfieldUK
| | - Tine Deconinck
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
| | | | - Thomas Dorn
- Swiss Epilepsy CenterBleulerstrasse 60CH‐8008Switzerland
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesNeuroscience DepartmentA Meyer Children‘s HospitalUniversity of FlorenceFlorenceItaly
| | | | - Frank Kooy
- Department of Medical GeneticsUniversity of AntwerpAntwerpBelgium
| | - Lieven Lagae
- Department of Development and RegenerationSection Pediatric NeurologyUniversity Hospital KU Leuven3000LeuvenBelgium
| | - Nicholas Lench
- North East Thames Regional Genetics ServiceGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - Johannes R. Lemke
- Institute of Human GeneticsUniversity of Leipzig Hospitals and ClinicsLeipzigGermany
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental MedicineUniversity of Pisa, ItalyClinical Trial OfficeMeyer Children‘s HospitalFlorenceItaly
| | - Francesca Madia
- Neurogenetic LaboratoryScientific Institute for Research, Hospitalisation and Health Care (IRCCS) G. Gaslini InstituteGenovaItaly
| | - Heather C. Mefford
- Department of PediatricsDivision of Genetic MedicineUniversity of WashingtonSeattleUSA
| | - Deborah Morrogh
- North East Thames Regional Genetics ServiceGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | | | - Aarno Palotie
- Analytic and Translational Genetics UnitMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Institute of Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - An‐Sofie Schoonjans
- Department of Neurology‐Pediatric NeurologyUniversity and University Hospital AntwerpAntwerpBelgium
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases UnitDINOGMI‐Department of Neurosciences, Rehabilitation, Ophthalmology Genetics, Maternal and Child HealthUniversity of Genoa, ‘G. Gaslini’ InstituteGenovaItaly
| | - Elzbieta Szczepanik
- Clinic of Neurology of Children and AdolescentsInstitute of Mother and ChildWarsawPoland
| | - Anna Tostevin
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyWC1N3BGUK
- The Chalfont Centre for EpilepsyChesham Lane, Chalfont St PeterBucksUK
| | - Joris R. Vermeesch
- Center for Human GeneticsUniversity Hospitals LeuvenHerestraat 493000LeuvenBelgium
| | - Hilde Van Esch
- Center for Human GeneticsUniversity Hospitals LeuvenHerestraat 493000LeuvenBelgium
| | - Wim Van Paesschen
- Department of NeurologyUniversity Hospitals LeuvenHerestraat 493000LeuvenBelgium
| | - Jonathan J Waters
- North East Thames Regional Genetics ServiceGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - Sarah Weckhuysen
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Federico Zara
- Neurogenetic LaboratoryScientific Institute for Research, Hospitalisation and Health Care (IRCCS) G. Gaslini InstituteGenovaItaly
| | - Peter De Jonghe
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyWC1N3BGUK
- The Chalfont Centre for EpilepsyChesham Lane, Chalfont St PeterBucksUK
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesNeuroscience DepartmentA Meyer Children‘s HospitalUniversity of FlorenceFlorenceItaly
| | | |
Collapse
|
28
|
Kim DE, Cho CH, Sim KM, Kwon O, Hwang EM, Kim HW, Park JY. 14-3-3γ Haploinsufficient Mice Display Hyperactive and Stress-sensitive Behaviors. Exp Neurobiol 2019; 28:43-53. [PMID: 30853823 PMCID: PMC6401549 DOI: 10.5607/en.2019.28.1.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 02/03/2023] Open
Abstract
14-3-3γ plays diverse roles in different aspects of cellular processes. Especially in the brain where 14-3-3γ is enriched, it has been reported to be involved in neurological and psychiatric diseases (e.g. Williams-Beuren syndrome and Creutzfeldt-Jakob disease). However, behavioral abnormalities related to 14-3-3γ deficiency are largely unknown. Here, by using 14-3-3γ deficient mice, we found that homozygous knockout mice were prenatally lethal, and heterozygous mice showed developmental delay relative to wild-type littermate mice. In addition, in behavioral analyses, we found that 14-3-3γ heterozygote mice display hyperactive and depressive-like behavior along with more sensitive responses to acute stress than littermate control mice. These results suggest that 14-3-3γ levels may be involved in the developmental manifestation of related neuropsychiatric diseases. In addition, 14-3-3γ heterozygote mice may be a potential model to study the molecular pathophysiology of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Do Eon Kim
- College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02708, Korea
| | - Kyoung Mi Sim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02708, Korea
| | - Osung Kwon
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02708, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02708, Korea
| |
Collapse
|
29
|
Independent occurrence of de novo HSPD1 and HIP1 variants in brothers with different neurological disorders - leukodystrophy and autism. Hum Genome Var 2018; 5:18. [PMID: 30083362 PMCID: PMC6053359 DOI: 10.1038/s41439-018-0020-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 11/23/2022] Open
Abstract
Consecutive occurrence of de novo variants in the same family is an extremely rare phenomenon. Two siblings, a younger brother with hypomyelinating leukodystrophy and an elder brother with severe intellectual disability and autistic features, had independent de novo variants of HSPD1 c.139T > G (p.Leu47Val) and HIP1 c.1393G > A (p.Glu465Lys), respectively. These novel variants were predicted to be pathogenic. Both patients also had a known MECP2 variant, c.499C > T (p.Arg167Trp).
Collapse
|
30
|
Zhang L, Zhang X, You G, Yu Y, Fu Q. A novel dNTP-limited PCR and HRM assay to detect Williams-Beuren syndrome. Clin Chim Acta 2018; 481:171-176. [PMID: 29550276 DOI: 10.1016/j.cca.2018.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Williams-Beuren syndrome (WBS) is caused by a microdeletion of chromosome arm 7q11.23. A rapid and inexpensive genotyping method to detect microdeletion on 7q11.23 needs to be developed for the diagnosis of WBS. This study describes the development of a new type of molecular diagnosis method to detect microdeletion on 7q11.23 based upon high-resolution melting (HRM). METHODS Four genes on 7q11.23 were selected as the target genes for the deletion genotyping. dNTP-limited duplex PCR was used to amplify the reference gene, CFTR, and one of the four genes respectively on 7q11.23. An HRM assay was performed on the PCR products, and the height ratio of the negative derivative peaks between the target gene and reference gene was employed to analyze the copy number variation of the target region. RESULTS A new genotyping method for detecting 7q11.23 deletion was developed based upon dNTP-limited PCR and HRM, which cost only 96 min. Samples from 15 WBS patients and 12 healthy individuals were genotyped by this method in a blinded fashion, and the sensitivity and specificity was 100% (95% CI, 0.80-1, and 95% CI, 0.75-1, respectively) which was proved by CytoScan HD array. SIGNIFICANCE The HRM assay we developed is an rapid, inexpensive, and highly accurate method for genotyping 7q11.23 deletion. It is potentially useful in the clinical diagnosis of WBS.
Collapse
Affiliation(s)
- Lichen Zhang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xiaoqing Zhang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Guoling You
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Yongguo Yu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Institute for Pediatric Research, Shanghai, China.
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China.
| |
Collapse
|
31
|
Cornell B, Toyo-Oka K. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Front Mol Neurosci 2017; 10:318. [PMID: 29075177 PMCID: PMC5643407 DOI: 10.3389/fnmol.2017.00318] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
The 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are highly expressed in the brain during development. Cumulatively, the seven 14-3-3 isoforms make up approximately 1% of total soluble brain protein. Over the last decade, evidence has accumulated implicating the importance of the 14-3-3 protein family in the development of the nervous system, in particular cortical development, and have more recently been recognized as key regulators in a number of neurodevelopmental processes. In this review we will discuss the known roles of each 14-3-3 isoform in the development of the cortex, their relation to human neurodevelopmental disorders, as well as the challenges and questions that are left to be answered. In particular, we focus on the 14-3-3 isoforms and their involvement in the three key stages of cortical development; neurogenesis and differentiation, neuronal migration and neuromorphogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Brett Cornell
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
32
|
Chiariello AM, Esposito A, Annunziatella C, Bianco S, Fiorillo L, Prisco A, Nicodemi M. A Polymer Physics Investigation of the Architecture of the Murine Orthologue of the 7q11.23 Human Locus. Front Neurosci 2017; 11:559. [PMID: 29066944 PMCID: PMC5641313 DOI: 10.3389/fnins.2017.00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
In the last decade, the developments of novel technologies, such as Hi-C or GAM methods, allowed to discover that chromosomes in the nucleus of mammalian cells have a complex spatial organization, encompassing the functional contacts between genes and regulators. In this work, we review recent progresses in chromosome modeling based on polymer physics to understand chromatin structure and folding mechanisms. As an example, we derive in mouse embryonic stem cells the full 3D structure of the Bmp7 locus, a genomic region that plays a key role in osteoblastic differentiation. Next, as an application to Neuroscience, we present the first 3D model for the mouse orthologoue of the Williams-Beuren syndrome 7q11.23 human locus. Deletions and duplications of the 7q11.23 region generate neurodevelopmental disorders with multi-system involvement and variable expressivity, and with autism. Understanding the impact of such mutations on the rewiring of the interactions of genes and regulators could be a new key to make sense of their related diseases, with potential applications in biomedicine.
Collapse
Affiliation(s)
- Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Antonella Prisco
- Institute of Genetics and Biophysics, Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
33
|
Guella I, McKenzie MB, Evans DM, Buerki SE, Toyota EB, Van Allen MI, Suri M, Elmslie F, Simon ME, van Gassen KL, Héron D, Keren B, Nava C, Connolly MB, Demos M, Farrer MJ, Adam S, Boelman C, Bolbocean C, Candido T, Eydoux P, Horvath G, Huh L, Nelson TN, Sinclair G, van Karnebeek C, Vercauteren S. De Novo Mutations in YWHAG Cause Early-Onset Epilepsy. Am J Hum Genet 2017; 101:300-310. [PMID: 28777935 DOI: 10.1016/j.ajhg.2017.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Massively parallel sequencing has revealed many de novo mutations in the etiology of developmental and epileptic encephalopathies (EEs), highlighting their genetic heterogeneity. Additional candidate genes have been prioritized in silico by their co-expression in the brain. Here, we evaluate rare coding variability in 20 candidates nominated with the use of a reference gene set of 51 established EE-associated genes. Variants within the 20 candidate genes were extracted from exome-sequencing data of 42 subjects with EE and no previous genetic diagnosis. We identified 7 rare non-synonymous variants in 7 of 20 genes and performed Sanger sequence validation in affected probands and parental samples. De novo variants were found only in SLC1A2 (aka EAAT2 or GLT1) (c.244G>A [p.Gly82Arg]) and YWHAG (aka 14-3-3γ) (c.394C>T [p.Arg132Cys]), highlighting the potential cause of EE in 5% (2/42) of subjects. Seven additional subjects with de novo variants in SLC1A2 (n = 1) and YWHAG (n = 6) were subsequently identified through online tools. We identified a highly significant enrichment of de novo variants in YWHAG, establishing their role in early-onset epilepsy, and we provide additional support for the prior assignment of SLC1A2. Hence, in silico modeling of brain co-expression is an efficient method for nominating EE-associated genes to further elucidate the disorder's etiology and genotype-phenotype correlations.
Collapse
|
34
|
Faundes V, Santa María L, Morales P, Curotto B, Parraguez MM. Distal 7q11.23 Duplication, an Emerging Microduplication Syndrome: A Case Report and Further Characterisation. Mol Syndromol 2016; 7:287-291. [PMID: 27867344 DOI: 10.1159/000448698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Chromosome 7q11.23 duplication syndrome is a well-recognised syndrome which involves the duplication of the same genes located in the Williams-Beuren critical region. However, in 2010, 4 patients were reported with a microduplication only in the HIP1 and YWHAG genes. We refer to this as a distal 7q11.23 duplication (dup7q11.23D). Here, we report the fifth de novo patient with dup7q11.23D, whose symptoms may be explained by YWHAG overexpression as was demonstrated recently in mice and obese patients. Finally, further studies will be necessary to delineate this emerging microduplication syndrome.
Collapse
Affiliation(s)
- Víctor Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Lorena Santa María
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Paulina Morales
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Bianca Curotto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
35
|
Wachi T, Cornell B, Toyo-Oka K. Complete ablation of the 14-3-3epsilon protein results in multiple defects in neuropsychiatric behaviors. Behav Brain Res 2016; 319:31-36. [PMID: 27845227 DOI: 10.1016/j.bbr.2016.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
Previous studies show that mice with Ywhae deficiency show abnormalities in brain development including defects in neuronal migration of post-mitotic pyramidal neurons as well as neuronal differentiation and proliferation in neuronal progenitor cells. Also, our previous research indicated that the Ywhae knockout mice show moderate defects in working memory and anxiety-like behavior. This previous work was performed using heterozygous mutant mice. Here we performed behavioral analyses using homozygous Ywhae knockout mice and found that the homozygous Ywhae knockout mice have increased locomotor activity, decreased working memory, and increased sociability. Taken together with the results obtained from the previous pathophysiological analyses in the Ywhae knockout mice, the Ywhae knockout mouse is useful for pathophysiological analyses of neuropsychiatric disorders caused by defects during neurodevelopment.
Collapse
Affiliation(s)
- Tomoka Wachi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Tokyo Nishi Tokushukai Hospital, Akishima, Tokyo 196-0003, Japan.
| | - Brett Cornell
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
36
|
Celentano A, Mignogna MD, McCullough M, Cirillo N. Pathophysiology of the Desmo-Adhesome. J Cell Physiol 2016; 232:496-505. [PMID: 27505028 DOI: 10.1002/jcp.25515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Advances in our understanding of desmosomal diseases have provided a clear demonstration of the key role played by desmosomes in tissue and organ physiology, highlighting the importance of their dynamic and finely regulated structure. In this context, non-desmosomal regulatory molecules have acquired increasing relevance in the study of this organelle resulting in extending the desmosomal interactome, named the "desmo-adhesome." Spatiotemporal changes in the expression and regulation of the desmo-adhesome underlie a number of genetic, infectious, autoimmune, and malignant conditions. The aim of the present article was to examine the structural and functional relationship of the desmosome, by providing a comprehensive, yet focused overview of the constituents targeted in human disease. The inclusion of the novel regulatory network in the desmo-adhesome pathophysiology opens new avenues to a deeper understanding of desmosomal diseases, potentially unveiling pathogenic mechanisms waiting to be explored. J. Cell. Physiol. 232: 496-505, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonio Celentano
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy.,Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Michael McCullough
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia.,Oral Health Cooperative Research Centre (CRC), University of Melbourne, Carlton, Victoria, Australia
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia.,Oral Health Cooperative Research Centre (CRC), University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
37
|
Do the exome: A case of Williams-Beuren syndrome with severe epilepsy due to a truncating de novo variant in GABRA1. Eur J Med Genet 2016; 59:549-53. [DOI: 10.1016/j.ejmg.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/04/2016] [Indexed: 01/04/2023]
|
38
|
Cornell B, Wachi T, Zhukarev V, Toyo-Oka K. Overexpression of the 14-3-3gamma protein in embryonic mice results in neuronal migration delay in the developing cerebral cortex. Neurosci Lett 2016; 628:40-6. [PMID: 27288018 DOI: 10.1016/j.neulet.2016.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 11/27/2022]
Abstract
The 14-3-3 protein family is a group of multifunctional proteins that are highly expressed in the brain; however, their functions in brain development are largely unknown. Williams Syndrome is a neurodevelopmental disorder caused by a deletion in the 7q11.23 chromosome locus, including the gene encoding 14-3-3gamma, resulting in developmental delay, intellectual disabilities and epilepsy. We have previously shown that knocking down the 14-3-3gamma protein in utero in mice results in delays in neuronal migration of pyramidal neurons in the cortex. Importantly, there is a reciprocal duplication syndrome to Williams Syndrome where the 7q11.23 locus is duplicated, resulting in epilepsy and intellectual disabilities. Thus, the deletion or the duplication of the 7q11.23 chromosome locus results in epilepsy. Taken together with the fact that defects in neuronal migration are one of main causes for epilepsy, we analyzed if the overexpression of 14-3-3gamma causes neuronal migration defects. In this work, we found that the overexpression of 14-3-3gamma in utero in the developing mouse cortex results in delays in pyramidal neuron migration, similar to what was previously observed when 14-3-3gamma was knocked down. These results, in conjunction with our previous research, indicate that a balance of 14-3-3gamma expression is required during cortical development to prevent delays in neuronal migration. This work provides clear evidence as to the involvement of 14-3-3gamma in neurodevelopmental disorders and how a disruption in 14-3-3gamma expression may contribute to the neurodevelopmental disorders that manifest when the 7q11.23 locus is altered.
Collapse
Affiliation(s)
- Brett Cornell
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Tomoka Wachi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vladimir Zhukarev
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
39
|
New discoveries in schizophrenia genetics reveal neurobiological pathways: A review of recent findings. Eur J Med Genet 2015; 58:704-14. [PMID: 26493318 DOI: 10.1016/j.ejmg.2015.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023]
Abstract
Schizophrenia research has undergone a recent transformation. By leveraging large sample sizes, genome-wide association studies of common genetic variants have approximately tripled the number of candidate genetic loci. Rare variant studies have identified copy number variants that are schizophrenia risk loci. Among these, the 3q29 microdeletion is now known to be the single largest schizophrenia risk factor. Next-generation sequencing studies are increasingly used for rare variant association testing, and have already facilitated identification of large effect alleles. Collectively, recent findings implicate voltage-gated calcium channel and cytoskeletal pathways in the pathogenesis of schizophrenia. Taken together, these results suggest the possibility of imminent breakthroughs in the molecular understanding of schizophrenia.
Collapse
|
40
|
Nicita F, Garone G, Spalice A, Savasta S, Striano P, Pantaleoni C, Spartà MV, Kluger G, Capovilla G, Pruna D, Freri E, D'Arrigo S, Verrotti A. Epilepsy is a possible feature in Williams-Beuren syndrome patients harboring typical deletions of the 7q11.23 critical region. Am J Med Genet A 2015; 170A:148-55. [PMID: 26437767 DOI: 10.1002/ajmg.a.37410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/17/2015] [Indexed: 11/11/2022]
Abstract
Seizures are rarely reported in Williams-Beuren syndrome (WBS)--a contiguous-gene-deletion disorder caused by a 7q11.23 heterozygous deletion of 1.5-1.8 Mb--and no previous study evaluated electro-clinical features of epilepsy in this syndrome. Furthermore, it has been hypothesized that atypical deletion (e.g., larger than 1.8 Mb) may be responsible for a more pronounced neurological phenotypes, especially including seizures. Our objectives are to describe the electro-clinical features in WBS and to correlate the epileptic phenotype with deletion of the 7q11.23 critical region. We evaluate the electro-clinical features in one case of distal 7q11.23 deletion syndrome and in eight epileptic WBS (eWBS) patients. Additionally, we compare the deletion size-and deleted genes-of four epileptic WBS (eWBS) with that of four non-epileptic WBS (neWBS) patients. Infantile spasms, focal (e.g., motor and dyscognitive with autonomic features) and generalized (e.g., tonic-clonic, tonic, clonic, myoclonic) seizures were encountered. Drug-resistance was observed in one patient. Neuroimaging discovered one case of focal cortical dysplasia, one case of fronto-temporal cortical atrophy and one case of periventricular nodular heterotopia. Comparison of deletion size between eWBS and neWBS patients did not reveal candidate genes potentially underlying epilepsy. This is the largest series describing electro-clinical features of epilepsy in WBS. In WBS, epilepsy should be considered both in case of typical and atypical deletions, which do not involve HIP1, YWHAG or MAGI2.
Collapse
Affiliation(s)
- Francesco Nicita
- Child Neurology Division, Department of Pediatrics, Umberto I Hospital, Sapienza University, Roma, Italy
| | - Giacomo Garone
- Child Neurology Division, Department of Pediatrics, Umberto I Hospital, Sapienza University, Roma, Italy
| | - Alberto Spalice
- Child Neurology Division, Department of Pediatrics, Umberto I Hospital, Sapienza University, Roma, Italy
| | - Salvatore Savasta
- Department of Pediatrics, University of Pavia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 'G. Gaslini' Institute, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Maria Valentina Spartà
- Department of Pediatrics, University of Pavia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gerhard Kluger
- Sch, ö, n Klinik Vogtareuth, Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany
| | - Giuseppe Capovilla
- Epilepsy Center, Department of Child Neuropsychiatry, C Poma Hospital, Mantova, Italy
| | - Dario Pruna
- Epilepsy Unit, Child Neuropsychiatry Department, University Hospital, Cagliari, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | | |
Collapse
|
41
|
Sharma P, Gupta N, Chowdhury MR, Phadke SR, Sapra S, Halder A, Ghosh M, Kabra M. Williams-Beuren Syndrome: Experience of 43 Patients and a Report of an Atypical Case from a Tertiary Care Center in India. Cytogenet Genome Res 2015; 146:187-94. [PMID: 26352091 DOI: 10.1159/000439205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Williams-Beuren syndrome (WBS) or Williams syndrome (OMIM 194050) is a multisystem disorder manifested by neurodevelopmental delay and is caused by a hemizygous deletion of ∼ 1.5-1.8 Mb in the 7q11.23 region. Clinical features include cardiovascular anomalies (mainly supravalvular aortic stenosis), peripheral pulmonary stenosis, distinctive facies, intellectual disability (usually mild), unique personality characteristics, and growth and endocrine abnormalities. Clinical diagnostic criteria are available for WBS; however, the mainstay of diagnosis is the detection of the contiguous gene deletion. Although FISH remains the most widely used laboratory test, the diagnosis can also be established by means of qPCR, MLPA, microsatellite marker analysis, and chromosomal microarray (CMA). We evaluated the utility of MLPA to detect deletion/duplication in the 7q11.23 region in 43 patients suspected to have WBS using MLPA kits for microdeletion syndromes. A hemizygous deletion in the 7q11.23 region was found in 41 (95.3%) patients using MLPA. One patient had an atypical deletion detected by CMA. During the initial period of this study, the results of 12 patients tested by MLPA were also confirmed by FISH. Compared to FISH and CMA, MLPA is a cheaper, high-throughput, less labor-intensive and less time-consuming technique for the diagnosis of WBS. Although CMA is expensive and labor-intensive, its effectiveness is demonstrated to detect an atypical deletion and to delineate the breakpoints.
Collapse
Affiliation(s)
- Pankaj Sharma
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022392. [PMID: 25934463 DOI: 10.1101/cshperspect.a022392] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malformations of cortical development (MCDs) are an important cause of epilepsy and an extremely interesting group of disorders from the perspective of brain development and its perturbations. Many new MCDs have been described in recent years as a result of improvements in imaging, genetic testing, and understanding of the effects of mutations on the ability of their protein products to correctly function within the molecular pathways by which the brain functions. In this review, most of the major MCDs are reviewed from a clinical, embryological, and genetic perspective. The most recent literature regarding clinical diagnosis, mechanisms of development, and future paths of research are discussed.
Collapse
Affiliation(s)
- A James Barkovich
- Department of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, California 94143-0628
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer, University of Florence, Florence 50139, Italy
| |
Collapse
|
43
|
Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations. Mol Psychiatry 2014; 19:784-90. [PMID: 23999528 DOI: 10.1038/mp.2013.106] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/23/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
Abstract
Autism is a severe neurodevelopmental disorder, the aetiology of which remains mainly unknown. Family and twin studies provide strong evidence that genetic factors have a major role in the aetiology of this disease. Recently, whole exome sequencing (WES) efforts have focused mainly on rare de novo variants in singleton families. Although these studies have provided pioneering insights, de novo variants probably explain only a small proportion of the autism risk variance. In this study, we performed exome sequencing of 10 autism multiplex families with the aim of investigating the role of rare variants that are coinherited in the affected sibs. The pool of variants selected in our study is enriched with genes involved in neuronal functions or previously reported in psychiatric disorders, as shown by Gene Ontology analysis and by browsing the Neurocarta database. Our data suggest that rare truncating heterozygous variants have a predominant role in the aetiology of autism. Using a multiple linear regression model, we found that the burden of truncating mutations correlates with a lower non-verbal intelligence quotient (NVIQ). Also, the number of truncating mutations that were transmitted to the affected sibs was significantly higher (twofold) than those not transmitted. Protein-protein interaction analysis performed with our list of mutated genes revealed that the postsynaptic YWHAZ is the most interconnected node of the network. Among the genes found disrupted in our study, there is evidence suggesting that YWHAZ and also the X-linked DRP2 may be considered as novel autism candidate genes.
Collapse
|
44
|
Ebert G, Steininger A, Weißmann R, Boldt V, Lind-Thomsen A, Grune J, Badelt S, Heßler M, Peiser M, Hitzler M, Jensen LR, Müller I, Hu H, Arndt PF, Kuss AW, Tebel K, Ullmann R. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7. BMC Genomics 2014; 15:537. [PMID: 24973960 PMCID: PMC4092221 DOI: 10.1186/1471-2164-15-537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome. Despite these adverse effects, SDs have become fixed in the human genome. Focusing on chromosome 7, which is particularly rich in interstitial SDs, we have investigated the distribution of SDs in the context of evolution and the three dimensional organisation of the chromosome in order to gain insights into the mutual relationship of SDs and chromatin topology. RESULTS Intrachromosomal SDs preferentially accumulate in those segments of chromosome 7 that are homologous to marmoset chromosome 2. Although this formerly compact segment has been re-distributed to three different sites during primate evolution, we can show by means of public data on long distance chromatin interactions that these three intervals, and consequently the paralogous SDs mapping to them, have retained their spatial proximity in the nucleus. Focusing on SD clusters implicated in the aetiology of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation. CONCLUSIONS Our study suggests a link of nuclear architecture and the propagation of SDs across chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome.
Collapse
Affiliation(s)
- Grit Ebert
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Anne Steininger
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Robert Weißmann
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Vivien Boldt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Allan Lind-Thomsen
- />Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Jana Grune
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Stefan Badelt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Institute for Theoretical Chemistry, University of Vienna, Waehringer Straße 17, A-1090 Vienna, Austria
| | - Melanie Heßler
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Matthias Peiser
- />Unit Experimental Research, Department of Product Safety, Federal Institute for Bundeswehr Institute of Radiobiology affiliated, the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Manuel Hitzler
- />Unit Experimental Research, Department of Product Safety, Federal Institute for Bundeswehr Institute of Radiobiology affiliated, the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Lars R Jensen
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Ines Müller
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Hao Hu
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Peter F Arndt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Andreas W Kuss
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Katrin Tebel
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Reinhard Ullmann
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| |
Collapse
|
45
|
6q22.1 microdeletion and susceptibility to pediatric epilepsy. Eur J Hum Genet 2014; 23:173-9. [PMID: 24824130 DOI: 10.1038/ejhg.2014.75] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 12/31/2022] Open
Abstract
Genomic copy-number variations (CNVs) constitute an important cause of epilepsies and other human neurological disorders. Recent advancement of technologies integrating genome-wide CNV mapping and sequencing is rapidly expanding the molecular field of pediatric neurodevelopmental disorders. In a previous study, a novel epilepsy locus was identified on 6q16.3q22.31 by linkage analysis in a large pedigree. Subsequent array comparative genomic hybridization (array CGH) analysis of four unrelated cases narrowed this region to ∼5 Mb on 6q22.1q22.31. We sought to further narrow the critical region on chromosome 6q22. Array CGH analysis was used in genome-wide screen for CNVs of a large cohort of patients with neurological abnormalities. Long-range PCR and DNA sequencing were applied to precisely map chromosomal deletion breakpoints. Finally, real-time qPCR was used to estimate relative expression in the brain of the candidate genes. We identified six unrelated patients with overlapping microdeletions within 6q22.1q22.31 region, three of whom manifested seizures. Deletions were found to be de novo in 5/6 cases, including all subjects presenting with seizures. We sequenced the deletion breakpoints in four patients and narrowed the critical region to a ∼250-kb segment at 6q22.1 that includes NUS1, several expressed sequence tags (ESTs) that are highly expressed in the brain, and putative regulatory sequences of SLC35F1. Our findings indicate that dosage alteration in particular, of NUS1, EST AI858607, or SLC35F1 are important contributors to the neurodevelopmental phenotype associated with 6q22 deletion, including epilepsy and tremors.
Collapse
|
46
|
Watson CT, Marques-Bonet T, Sharp AJ, Mefford HC. The genetics of microdeletion and microduplication syndromes: an update. Annu Rev Genomics Hum Genet 2014; 15:215-244. [PMID: 24773319 DOI: 10.1146/annurev-genom-091212-153408] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromosomal abnormalities, including microdeletions and microduplications, have long been associated with abnormal developmental outcomes. Early discoveries relied on a common clinical presentation and the ability to detect chromosomal abnormalities by standard karyotype analysis or specific assays such as fluorescence in situ hybridization. Over the past decade, the development of novel genomic technologies has allowed more comprehensive, unbiased discovery of microdeletions and microduplications throughout the human genome. The ability to quickly interrogate large cohorts using chromosome microarrays and, more recently, next-generation sequencing has led to the rapid discovery of novel microdeletions and microduplications associated with disease, including very rare but clinically significant rearrangements. In addition, the observation that some microdeletions are associated with risk for several neurodevelopmental disorders contributes to our understanding of shared genetic susceptibility for such disorders. Here, we review current knowledge of microdeletion/duplication syndromes, with a particular focus on recurrent rearrangement syndromes.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra/CSIC, 08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Centro Nacional de Análisis Genómico, 08023 Barcelona, Spain
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
47
|
Hoehndorf R, Schofield PN, Gkoutos GV. An integrative, translational approach to understanding rare and orphan genetically based diseases. Interface Focus 2013; 3:20120055. [PMID: 23853703 PMCID: PMC3638468 DOI: 10.1098/rsfs.2012.0055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 12/07/2012] [Indexed: 01/15/2023] Open
Abstract
PhenomeNet is an approach for integrating phenotypes across species and identifying candidate genes for genetic diseases based on the similarity between a disease and animal model phenotypes. In contrast to ‘guilt-by-association’ approaches, PhenomeNet relies exclusively on the comparison of phenotypes to suggest candidate genes, and can, therefore, be applied to study the molecular basis of rare and orphan diseases for which the molecular basis is unknown. In addition to disease phenotypes from the Online Mendelian Inheritance in Man (OMIM) database, we have now integrated the clinical signs from Orphanet into PhenomeNet. We demonstrate that our approach can efficiently identify known candidate genes for genetic diseases in Orphanet and OMIM. Furthermore, we find evidence that mutations in the HIP1 gene might cause Bassoe syndrome, a rare disorder with unknown genetic aetiology. Our results demonstrate that integration and computational analysis of human disease and animal model phenotypes using PhenomeNet has the potential to reveal novel insights into the pathobiology underlying genetic diseases.
Collapse
Affiliation(s)
- Robert Hoehndorf
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK ; Department of Computer Science, University of Aberystwyth, Old College, King Street, Aberystwyth SY23 2AX, UK
| | | | | |
Collapse
|
48
|
Smaller and larger deletions of the Williams Beuren syndrome region implicate genes involved in mild facial phenotype, epilepsy and autistic traits. Eur J Hum Genet 2013; 22:64-70. [PMID: 23756441 DOI: 10.1038/ejhg.2013.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/06/2013] [Accepted: 04/10/2013] [Indexed: 11/08/2022] Open
Abstract
Williams Beuren syndrome (WBS) is a multisystemic disorder caused by a hemizygous deletion of 1.5 Mb on chromosome 7q11.23 spanning 28 genes. A few patients with larger and smaller WBS deletion have been reported. They show clinical features that vary between isolated SVAS to the full spectrum of WBS phenotype, associated with epilepsy or autism spectrum behavior. Here we describe four patients with atypical WBS 7q11.23 deletions. Two carry ~3.5 Mb larger deletion towards the telomere that includes Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxigenase activation protein gamma (YWHAG) genes. Other two carry a shorter deletion of ~1.2 Mb at centromeric side that excludes the distal WBS genes BAZ1B and FZD9. Along with previously reported cases, genotype-phenotype correlation in the patients described here further suggests that haploinsufficiency of HIP1 and YWHAG might cause the severe neurological and neuropsychological deficits including epilepsy and autistic traits, and that the preservation of BAZ1B and FZD9 genes may be related to mild facial features and moderate neuropsychological deficits. This report highlights the importance to characterize additional patients with 7q11.23 atypical deletions comparing neuropsychological and clinical features between these individuals to shed light on the pathogenic role of genes within and flanking the WBS region.
Collapse
|
49
|
Sheen VL. Periventricular Heterotopia: Shuttling of Proteins through Vesicles and Actin in Cortical Development and Disease. SCIENTIFICA 2012; 2012:480129. [PMID: 24278701 PMCID: PMC3820590 DOI: 10.6064/2012/480129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/14/2012] [Indexed: 06/02/2023]
Abstract
During cortical development, proliferating neural progenitors exhibit polarized apical and basolateral membranes that are maintained by tightly controlled and membrane-specific vesicular trafficking pathways. Disruption of polarity through impaired delivery of proteins can alter cell fate decisions and consequent expansion of the progenitor pool, as well as impact the integrity of the neuroependymal lining. Loss of neuroependymal integrity disrupts radial glial scaffolding and alters initial neuronal migration from the ventricular zone. Vesicle trafficking is also required for maintenance of lipid and protein cycling within the leading and trailing edge of migratory neurons, as well as dendrites and synapses of mature neurons. Defects in this transport machinery disrupt neuronal identity, migration, and connectivity and give rise to a malformation of cortical development termed as periventricular heterotopia (PH). PH is characterized by a reduction in brain size, ectopic clusters of neurons localized along the lateral ventricle, and epilepsy and dyslexia. These anatomical anomalies correlate with developmental impairments in neural progenitor proliferation and specification, migration from loss of neuroependymal integrity and neuronal motility, and aberrant neuronal process extension. Genes causal for PH regulate vesicle-mediated endocytosis along an actin cytoskeletal network. This paper explores the role of these dynamic processes in cortical development and disease.
Collapse
Affiliation(s)
- Volney L. Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Bartnik M, Szczepanik E, Derwińska K, Wiśniowiecka-Kowalnik B, Gambin T, Sykulski M, Ziemkiewicz K, Kędzior M, Gos M, Hoffman-Zacharska D, Mazurczak T, Jeziorek A, Antczak-Marach D, Rudzka-Dybała M, Mazurkiewicz H, Goszczańska-Ciuchta A, Zalewska-Miszkurka Z, Terczyńska I, Sobierajewicz M, Shaw CA, Gambin A, Mierzewska H, Mazurczak T, Obersztyn E, Bocian E, Stankiewicz P. Application of array comparative genomic hybridization in 102 patients with epilepsy and additional neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:760-71. [PMID: 22825934 DOI: 10.1002/ajmg.b.32081] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/02/2012] [Indexed: 01/19/2023]
Abstract
Copy-number variants (CNVs) collectively represent an important cause of neurodevelopmental disorders such as developmental delay (DD)/intellectual disability (ID), autism, and epilepsy. In contrast to DD/ID, for which the application of microarray techniques enables detection of pathogenic CNVs in -10-20% of patients, there are only few studies of the role of CNVs in epilepsy and genetic etiology in the vast majority of cases remains unknown. We have applied whole-genome exon-targeted oligonucleotide array comparative genomic hybridization (array CGH) to a cohort of 102 patients with various types of epilepsy with or without additional neurodevelopmental abnormalities. Chromosomal microarray analysis revealed 24 non-polymorphic CNVs in 23 patients, among which 10 CNVs are known to be clinically relevant. Two rare deletions in 2q24.1q24.3, including KCNJ3 and 9q21.13 are novel pathogenic genetic loci and 12 CNVs are of unknown clinical significance. Our results further support the notion that rare CNVs can cause different types of epilepsy, emphasize the efficiency of detecting novel candidate genes by whole-genome array CGH, and suggest that the clinical application of array CGH should be extended to patients with unexplained epilepsies.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|