1
|
Li Q, Yang Y, Li R, Yu C, Ren K, Feng Y, Chen X, Luan Y, Kong X. Mutations in GTPBP3 cause aberrant mitochondrial respiration associated with combined oxidative phosphorylation deficiency 23. Genes Dis 2025; 12:101232. [PMID: 39397867 PMCID: PMC11471209 DOI: 10.1016/j.gendis.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 10/15/2024] Open
Affiliation(s)
- Qianqian Li
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Ranran Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Chenguang Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Kaidi Ren
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yin Feng
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xing Chen
- Department of Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yi Luan
- Clinical Systems Biology Laboratories, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
2
|
Lu JL, Dai Y, Ji K, Peng GX, Li H, Yan C, Shen B, Zhou XL. Taurine hypomodification underlies mitochondrial tRNATrp-related genetic diseases. Nucleic Acids Res 2024; 52:13351-13367. [PMID: 39380483 PMCID: PMC11602126 DOI: 10.1093/nar/gkae854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Escherichia coli MnmE and MnmG form a complex (EcMnmEG), generating transfer RNA (tRNA) 5-carboxymethylaminomethyluridine (cmnm5U) modification. Both cmnm5U and equivalent 5-taurinomethyluridine (τm5U, catalyzed by homologous GTPBP3 and MTO1) are found at U34 in several human mitochondrial tRNAs (hmtRNAs). Certain mitochondrial DNA (mtDNA) mutations, including m.3243A > G in tRNALeu(UUR) and m.8344A > G in tRNALys, cause genetic diseases, partially due to τm5U hypomodification. However, whether other mtDNA variants in different tRNAs cause a defect in τm5U biogenesis remains unknown. Here, we purified naturally assembled EcMnmEG from E. coli. Notably, EcMnmEG was able to incorporate both cmnm5U and τm5U into hmtRNATrp (encoded by MT-TW), providing a valuable basis for directly monitoring the effects of mtDNA mutations on U34 modification. In vitro, several clinical hmtRNATrp pathogenic mutations caused U34 hypomodification. A patient harboring an m.5541C > T mutation exhibited hmtRNATrp τm5U hypomodification. Moreover, using mtDNA base editing, we constructed two cell lines carrying m.5532G > A or m.5545C > T mutations, both of which exhibited hmtRNATrp τm5U hypomodification. Taurine supplementation improved mitochondrial translation in patient cells. Our findings describe the third hmtRNA species with mutation-related τm5U-hypomodification and provide new insights into the pathogenesis and intervention strategy for hmtRNATrp-related genetic diseases.
Collapse
Affiliation(s)
- Jia-Li Lu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yichen Dai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Center for Global Health, Gusu School, Nanjing Medical University, 101 Long-Mian Avenue, Nanjing 211166, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan 250012, China
| | - Gui-Xin Peng
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Hong Li
- Core Facility of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan 250012, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao 266035, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Center for Global Health, Gusu School, Nanjing Medical University, 101 Long-Mian Avenue, Nanjing 211166, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Sub-Lane, Hangzhou 310024, China
| |
Collapse
|
3
|
Akar HT, Akduman H, Kolkıran A, Taşadelen E, Aycan N. The rare reason for massive lactic aciduria and mitochondrial disorders: combined oxidative phosphorylation deficiency type 23 (COXPD23). Z Geburtshilfe Neonatol 2024. [PMID: 39577856 DOI: 10.1055/a-2465-3661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Mitochondrial respiratory chain dysfunction and impaired oxidative phosphorylation are rare but significant causes of mitochondrial diseases in children, presenting with diverse clinical features. Combined oxidative phosphorylation deficiency type 23 (COXPD23), an autosomal recessive disorder due to GTPBP3 gene mutations, typically manifests as lactic acidosis, hypertrophic cardiomyopathy, and encephalopathy. This case report describes a male infant born at 35 weeks gestation, who exhibited severe lactic aciduria and hypotonia but no cardiomyopathy, which is atypical for COXPD23. Genetic analysis revealed a novel homozygous missense variant in the GTPBP3 gene. Despite intensive metabolic and supportive treatments, the patient's condition worsened, leading to death on the 23rd day. This case emphasizes the need to consider mitochondrial cytopathies in neonates with persistent metabolic acidosis and hyperlactatemia and highlights the importance of early genetic screening for accurate diagnosis and management.
Collapse
Affiliation(s)
- Halil Tuna Akar
- Department of Pediatric Metabolism, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Hasan Akduman
- Department of Neonatology, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Abdülkerim Kolkıran
- Department of Pediatric Genetics, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Elifcan Taşadelen
- Department of Medical Genetics, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Nur Aycan
- Department of Neonatology, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Guo W, Russo S, Tuorto F. Lost in translation: How neurons cope with tRNA decoding. Bioessays 2024; 46:e2400107. [PMID: 38990077 DOI: 10.1002/bies.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Post-transcriptional tRNA modifications contribute to the decoding efficiency of tRNAs by supporting codon recognition and tRNA stability. Recent work shows that the molecular and cellular functions of tRNA modifications and tRNA-modifying-enzymes are linked to brain development and neurological disorders. Lack of these modifications affects codon recognition and decoding rate, promoting protein aggregation and translational stress response pathways with toxic consequences to the cell. In this review, we discuss the peculiarity of local translation in neurons, suggesting a role for fine-tuning of translation performed by tRNA modifications. We provide several examples of tRNA modifications involved in physiology and pathology of the nervous system, highlighting their effects on protein translation and discussing underlying mechanisms, like the unfolded protein response (UPR), ribosome quality control (RQC), and no-go mRNA decay (NGD), which could affect neuronal functions. We aim to deepen the understanding of the roles of tRNA modifications and the coordination of these modifications with the protein translation machinery in the nervous system.
Collapse
Affiliation(s)
- Wei Guo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefano Russo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
5
|
Yano T, Takeda A, Murayama K. A hidden cause of middle-aged onset heart failure with preserved ejection fraction: a GTPBP3 variant. Eur Heart J 2024; 45:2794. [PMID: 38785384 DOI: 10.1093/eurheartj/ehae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Affiliation(s)
- Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
6
|
Helt TW, Johansen LS, Faurholt-Jepsen D, Larsen VA, Borgwardt L, Mortensen J, Brix Christensen V. Brain imaging in children with neonatal cholestatic liver disease: A systematic review. Acta Paediatr 2024; 113:1168-1185. [PMID: 38406880 DOI: 10.1111/apa.17177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
AIM To determine if children with neonatal cholestatic liver disease had concurrent and later findings on brain imaging studies that could be attributed and the cholestasis to contribute to the understanding of the impaired neuropsychological development. METHODS Ovid MEDLINE and EMBASE were searched on July 21, 2022, and updated on March 26, 2023. Studies with children under 18 years of age with neonatal cholestasis and a brain scan at the time of diagnosis or later in life were included. Excluded studies were non-English, non-human, reviews or conference abstracts. Data were extracted on demographics, brain imaging findings, treatment and outcome. The results were summarised by disease categories. Risk of bias was assessed using JBI critical appraisal tools. RESULTS The search yielded 12 011 reports, of which 1261 underwent full text review and 89 were eligible for inclusion. Haemorrhage was the most common finding, especially in children with bile duct obstruction, including biliary atresia. Some findings were resolved after liver transplantation. CONCLUSION Children with neonatal cholestasis had changes in brain imaging, which might play a role in impaired neuropsychological development, but longitudinal clinical research with structured assessment is needed to better qualify the aetiology of the impairment.
Collapse
Affiliation(s)
- Thora Wesenberg Helt
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Lise Borgwardt
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Jann Mortensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Brix Christensen
- Department of Paediatric Surgery, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Calabrese EJ, Pressman P, Hayes AW, Kapoor R, Dhawan G, Agathokleous E, Calabrese V. Taurine induces hormesis in multiple biological models: May have transformative implications for overall societal health. Chem Biol Interact 2024; 392:110930. [PMID: 38432405 DOI: 10.1016/j.cbi.2024.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
This paper represents the first integrative assessment and documentation of taurine-induced hormetic effects in the biological and biomedical areas, their dose response features, mechanistic frameworks, and possible public health, therapeutic and commercial applications. Taurine-induced hormetic effects are documented in a wide range of experimental models, cell types and for numerous biological endpoints, with most of these experimental findings being reported within the past five years. It is suggested that the concept of hormesis may have a transformative effect on taurine research and its public health and therapeutic applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
8
|
Wang Y, He J, Dong F, Shou W, Feng X, Yang Y, Li C, Wang J, Li B, Xiao S. A novel mutation in GTPBP3 causes combined oxidative phosphorylation deficiency 23 by affecting pre-mRNA splicing. Heliyon 2024; 10:e27199. [PMID: 38515655 PMCID: PMC10955198 DOI: 10.1016/j.heliyon.2024.e27199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Background Combined Oxidative Phosphorylation Deficiency 23 (COXPD23) is a rare mitochondrial disease caused by mutations in the GTPBP3 gene. The rare incidence of the disease and the high clinical heterogeneity pose challenges in making a precise diagnosis. Investigations into the rare COXPD23 patients are of pathophysiological and etiological value. In this study, we investigated the genotype-phenotype relationship in a COXPD23 patient from a Manchu family, with GTPBP3 mutations. Methods Routine physical examinations, laboratory assays and imaging analyses were performed. The metabolic profiles of amino acids in blood, acylcarnitine in blood and organic acids in urine were used to determine the presence of inherited metabolic diseases. Genetic variations in the family were investigated using whole-exome sequencing and Sanger sequencing. Splicing disruption by a mutation was predicted and verified using a minigene assay. Results The patient presented with severe lactic acidosis, neurological symptoms, multiple symmetrical lesions in the brain and serious mitochondrial energy metabolism disturbances. The c.689A > C (p.Q230P) and c.809-1_809delinsA compound heterozygous mutations were detected in GTPBP3. The novel c.809-1_809delinsA mutation was located at the splicing site of exon 7 and intron 6 and multiple tools predicted that it would disrupt the normal splicing. The minigene assay proved that the novel mutation resulted in two aberrant transcripts that created premature termination codons. Conclusions The clinical manifestations, brain imaging change, mitochondrial metabolism disturbances and the detection and validation of the GTPBP3 mutations expand the profile of COXPD23 and the pathogenic mutation spectrum. Our study improves the understanding of the pathophysiology and etiology of COXPD23.
Collapse
Affiliation(s)
- Yanjun Wang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Juan He
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Fangling Dong
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Weihua Shou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Xingxing Feng
- Department of Clinical Laboratory, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ya Yang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Cuifen Li
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Jingjing Wang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Bin Li
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Shufang Xiao
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
9
|
Nardecchia F, Carrozzo R, Innocenti A, Torraco A, Zaccaria V, Rizza T, Pisani F, Bertini E, Leuzzi V. Biallelic variants in GTPBP3: New patients, phenotypic spectrum, and outcome. Ann Clin Transl Neurol 2024; 11:819-825. [PMID: 38327089 DOI: 10.1002/acn3.51980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION COXPD23 is a rare mitochondrial disease caused by biallelic pathogenic variants in GTPBP3. We report on two siblings with a mild phenotype. CASE REPORTS The young boy presented with global developmental delay, ataxic gait and upper limbs tremor, and the older sister with absence seizures and hypertrophic cardiomyopathy. Respiratory chain impairment was confirmed in muscle. DISCUSSION Reviewed cases point toward clustering around two prevalent phenotypes: an early-onset presentation with severe fatal encephalopathy and a late milder presentation with global developmental delay/ID and cardiopathy, with the latter as, is the main feature. Our patients showed an intermediate phenotype with intrafamilial variability.
Collapse
Affiliation(s)
- Francesca Nardecchia
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alice Innocenti
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valerio Zaccaria
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Pisani
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Enrico Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Ahmad RN, Zhang LT, Morita R, Tani H, Wu Y, Chujo T, Ogawa A, Harada R, Shigeta Y, Tomizawa K, Wei FY. Pathological mutations promote proteolysis of mitochondrial tRNA-specific 2-thiouridylase 1 (MTU1) via mitochondrial caseinolytic peptidase (CLPP). Nucleic Acids Res 2024; 52:1341-1358. [PMID: 38113276 PMCID: PMC10853782 DOI: 10.1093/nar/gkad1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.
Collapse
Affiliation(s)
- Raja Norazireen Raja Ahmad
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Long-Teng Zhang
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Haruna Tani
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yong Wu
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Akiko Ogawa
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
11
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
12
|
Díaz-Zaragoza M, Hernández-Ávila R, Landa A, Ostoa-Saloma P. Variation of the 2D Pattern of Brain Proteins in Mice Infected with Taenia crassiceps ORF Strain. Int J Mol Sci 2024; 25:1460. [PMID: 38338740 PMCID: PMC10855729 DOI: 10.3390/ijms25031460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Some parasites are known to influence brain proteins or induce changes in the functioning of the nervous system. In this study, our objective is to demonstrate how the two-dimensional gel technique is valuable for detecting differences in protein expression and providing detailed information on changes in the brain proteome during a parasitic infection. Subsequently, we seek to understand how the parasitic infection affects the protein composition in the brain and how this may be related to changes in brain function. By analyzing de novo-expressed proteins at 2, 4, and 8 weeks post-infection compared to the brains of the control mice, we observed that proteins expressed at 2 weeks are primarily associated with neuroprotection or the initial response of the mouse brain to the infection. At 8 weeks, parasitic infection can induce oxidative stress in the brain, potentially activating signaling pathways related to the response to cellular damage. Proteins expressed at 8 weeks exhibit a pattern indicating that, as the host fails to balance the Neuro-Immuno-Endocrine network of the organism, the brain begins to undergo an apoptotic process and consequently experiences brain damage.
Collapse
Affiliation(s)
- Mariana Díaz-Zaragoza
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Guadalajara 46600, Mexico;
| | - Ricardo Hernández-Ávila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico;
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico;
| | - Pedro Ostoa-Saloma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico;
| |
Collapse
|
13
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Tsai PY, Shui B, Lee S, Liu Y, Qu Y, Cheng C, Edwards K, Wong C, Meng-Killeen R, Soloway PD, Barrow JJ. Ado-Mediated Depletion of Taurine Impairs Mitochondrial Respiratory Capacity and Alters the Chromatin Landscape of Inguinal Adipose Tissue. Nutrients 2023; 15:3532. [PMID: 37630723 PMCID: PMC10458711 DOI: 10.3390/nu15163532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Non-shivering thermogenesis (NST) has strong potential to combat obesity; however, a safe molecular approach to activate this process has not yet been identified. The sulfur amino acid taurine has the ability to safely activate NST and confer protection against obesity and metabolic disease in both mice and humans, but the mechanism of this action is unknown. In this study, we discover that a suite of taurine biosynthetic enzymes, especially that of cysteamine dioxygenase (ADO), significantly increases in response to β3 adrenergic signaling in inguinal adipose tissue (IWAT) in order to increase intracellular concentrations of taurine. We further show that ADO is critical for thermogenic mitochondrial respiratory function as its ablation in adipocytes significantly reduces taurine levels, which leads to declines in mitochondrial oxygen consumption rates. Finally, we demonstrate via assay for transposase-accessible chromatin with sequencing (ATAC-seq) that taurine supplementation in beige adipocytes has the ability to remodel the chromatin landscape to increase the chromatin accessibility and transcription of genes, such as glucose-6-phosphate isomerase 1 (Gpi1), which are critical for NST. Taken together, our studies highlight a potential mechanism for taurine in the activation of NST that can be leveraged toward the treatment of obesity and metabolic disease.
Collapse
Affiliation(s)
- Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Bo Shui
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Seoyeon Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yang Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Yue Qu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Chloe Cheng
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Kaydine Edwards
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Callie Wong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Ryan Meng-Killeen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Paul D. Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Joeva J. Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| |
Collapse
|
15
|
Tomoda E, Nagao A, Shirai Y, Asano K, Suzuki T, Battersby B, Suzuki T. Restoration of mitochondrial function through activation of hypomodified tRNAs with pathogenic mutations associated with mitochondrial diseases. Nucleic Acids Res 2023; 51:7563-7579. [PMID: 36928678 PMCID: PMC10415153 DOI: 10.1093/nar/gkad139] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Mutations in mitochondrial (mt-)tRNAs frequently cause mitochondrial dysfunction. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and myoclonus epilepsy associated with ragged red fibers (MERRF) are major clinical subgroups of mitochondrial diseases caused by pathogenic point mutations in tRNA genes encoded in mtDNA. We previously reported a severe reduction in the frequency of 5-taurinomethyluridine (τm5U) and its 2-thiouridine derivative (τm5s2U) in the anticodons of mutant mt-tRNAs isolated from the cells of patients with MELAS and MERRF, respectively. The hypomodified tRNAs fail to decode cognate codons efficiently, resulting in defective translation of respiratory chain proteins in mitochondria. To restore the mitochondrial activity of MELAS patient cells, we overexpressed MTO1, a τm5U-modifying enzyme, in patient-derived myoblasts. We used a newly developed primer extension method and showed that MTO1 overexpression almost completely restored the τm5U modification of the MELAS mutant mt-tRNALeu(UUR). An increase in mitochondrial protein synthesis and oxygen consumption rate suggested that the mitochondrial function of MELAS patient cells can be activated by restoring the τm5U of the mutant tRNA. In addition, we confirmed that MTO1 expression restored the τm5s2U of the mutant mt-tRNALys in MERRF patient cells. These findings pave the way for epitranscriptomic therapies for mitochondrial diseases.
Collapse
Affiliation(s)
- Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Shirai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
16
|
Wang YY, Tian Y, Li YZ, Liu YF, Zhao YY, Chen LH, Zhang C. The role of m5C methyltransferases in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1225014. [PMID: 37476573 PMCID: PMC10354557 DOI: 10.3389/fcvm.2023.1225014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
The global leading cause of death is cardiovascular disease (CVD). Although advances in prevention and treatment have been made, the role of RNA epigenetics in CVD is not fully understood. Studies have found that RNA modifications regulate gene expression in mammalian cells, and m5C (5-methylcytosine) is a recently discovered RNA modification that plays a role in gene regulation. As a result of these developments, there has been renewed interest in elucidating the nature and function of RNA "epitranscriptomic" modifications. Recent studies on m5C RNA methylomes, their functions, and the proteins that initiate, translate and manipulate this modification are discussed in this review. This review improves the understanding of m5C modifications and their properties, functions, and implications in cardiac pathologies, including cardiomyopathy, heart failure, and atherosclerosis.
Collapse
Affiliation(s)
- Yan-Yue Wang
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuan Tian
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong-Zhen Li
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi-Fan Liu
- ResearchLaboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Yu-Yan Zhao
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin-Hui Chen
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chi Zhang
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
17
|
Huang Y, Zhou B. Mitochondrial Dysfunction in Cardiac Diseases and Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11051500. [PMID: 37239170 DOI: 10.3390/biomedicines11051500] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy, and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
18
|
Murakami Y, Wei FY, Kawamura Y, Horiguchi H, Kadomatsu T, Miyata K, Miura K, Oike Y, Ando Y, Ueda M, Tomizawa K, Chujo T. NSUN3-mediated mitochondrial tRNA 5-formylcytidine modification is essential for embryonic development and respiratory complexes in mice. Commun Biol 2023; 6:307. [PMID: 36949224 PMCID: PMC10033821 DOI: 10.1038/s42003-023-04680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
In mammalian mitochondria, translation of the AUA codon is supported by 5-formylcytidine (f5C) modification in the mitochondrial methionine tRNA anticodon. The 5-formylation is initiated by NSUN3 methylase. Human NSUN3 mutations are associated with mitochondrial diseases. Here we show that Nsun3 is essential for embryonic development in mice with whole-body Nsun3 knockout embryos dying between E10.5 and E12.5. To determine the functions of NSUN3 in adult tissue, we generated heart-specific Nsun3 knockout (Nsun3HKO) mice. Nsun3HKO heart mitochondria were enlarged and contained fragmented cristae. Nsun3HKO resulted in enhanced heart contraction and age-associated mild heart enlargement. In the Nsun3HKO hearts, mitochondrial mRNAs that encode respiratory complex subunits were not down regulated, but the enzymatic activities of the respiratory complexes decreased, especially in older mice. Our study emphasizes that mitochondrial tRNA anticodon modification is essential for mammalian embryonic development and shows that tissue-specific loss of a single mitochondrial tRNA modification can induce tissue aberration that worsens in later adulthood.
Collapse
Affiliation(s)
- Yoshitaka Murakami
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, 859-3298, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
19
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
20
|
Suleman MT, Alturise F, Alkhalifah T, Khan YD. iDHU-Ensem: Identification of dihydrouridine sites through ensemble learning models. Digit Health 2023; 9:20552076231165963. [PMID: 37009307 PMCID: PMC10064468 DOI: 10.1177/20552076231165963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023] Open
Abstract
Background Dihydrouridine (D) is one of the most significant uridine modifications that have a prominent occurrence in eukaryotes. The folding and conformational flexibility of transfer RNA (tRNA) can be attained through this modification. Objective The modification also triggers lung cancer in humans. The identification of D sites was carried out through conventional laboratory methods; however, those were costly and time-consuming. The readiness of RNA sequences helps in the identification of D sites through computationally intelligent models. However, the most challenging part is turning these biological sequences into distinct vectors. Methods The current research proposed novel feature extraction mechanisms and the identification of D sites in tRNA sequences using ensemble models. The ensemble models were then subjected to evaluation using k-fold cross-validation and independent testing. Results The results revealed that the stacking ensemble model outperformed all the ensemble models by revealing 0.98 accuracy, 0.98 specificity, 0.97 sensitivity, and 0.92 Matthews Correlation Coefficient. The proposed model, iDHU-Ensem, was also compared with pre-existing predictors using an independent test. The accuracy scores have shown that the proposed model in this research study performed better than the available predictors. Conclusion The current research contributed towards the enhancement of D site identification capabilities through computationally intelligent methods. A web-based server, iDHU-Ensem, was also made available for the researchers at https://taseersuleman-idhu-ensem-idhu-ensem.streamlit.app/.
Collapse
Affiliation(s)
- Muhammad Taseer Suleman
- Department of Computer Science, School of systems and technology, University of Management and Technology, Lahore, Pakistan
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
- Fahad Alturise, Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia.
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of systems and technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
21
|
Starosta RT, Shinawi M. Primary Mitochondrial Disorders in the Neonate. Neoreviews 2022; 23:e796-e812. [PMID: 36450643 DOI: 10.1542/neo.23-12-e796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Primary mitochondrial disorders (PMDs) are a heterogeneous group of disorders characterized by functional or structural abnormalities in the mitochondria that lead to a disturbance of cellular energy, reactive oxygen species, and free radical production, as well as impairment of other intracellular metabolic functions, causing single- or multiorgan dysfunction. PMDs are caused by pathogenic variants in nuclear and mitochondrial genes, resulting in distinct modes of inheritance. Onset of disease is variable and can occur in the neonatal period, with a high morbidity and mortality. In this article, we review the most common methods used for the diagnosis of PMDs, as well as their prenatal and neonatal presentations. We highlight the shift in the diagnostic approach for PMDs since the introduction of nontargeted molecular tests into clinical practice, which has significantly reduced the use of invasive studies. We discuss common PMDs that can present in the neonate, including general, nonsyndromic presentations as well as specific syndromic disorders. We also review current treatment advances, including the use of mitochondrial "cocktails" based on limited scientific evidence and theoretical reasoning, as well as the impending arrival of personalized mitochondrial-specific treatments.
Collapse
Affiliation(s)
| | - Marwan Shinawi
- Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
22
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
23
|
Lopriore P, Gomes F, Montano V, Siciliano G, Mancuso M. Mitochondrial Epilepsy, a Challenge for Neurologists. Int J Mol Sci 2022; 23:ijms232113216. [PMID: 36362003 PMCID: PMC9656379 DOI: 10.3390/ijms232113216] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/29/2023] Open
Abstract
Primary mitochondrial diseases are relatively common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. These disorders typically affect tissues with high energy requirements, including the brain. Epilepsy affects >1% of the worldwide population, making it one of the most common neurological illnesses; it may be the presenting feature of a mitochondrial disease, but is often part of a multisystem clinical presentation. The major genetic causes of mitochondrial epilepsy are mutations in mitochondrial DNA and in the nuclear-encoded gene POLG. Treatment of mitochondrial epilepsy may be challenging, often representing a poor prognostic feature. This narrative review will cover the most recent advances in the field of mitochondrial epilepsy, from pathophysiology and genetic etiologies to phenotype and treatment options.
Collapse
Affiliation(s)
- Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Fábio Gomes
- Neurology Department, Coimbra University Hospital Centre, 3004-561 Coimbra, Portugal
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
24
|
Wang L, Lin S. Emerging functions of tRNA modifications in mRNA translation and diseases. J Genet Genomics 2022; 50:223-232. [PMID: 36309201 DOI: 10.1016/j.jgg.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
tRNAs are essential modulators that recognize mRNA codons and bridge amino acids for mRNA translation. The tRNAs are heavily modified, which is essential for forming a complex secondary structure that facilitates codon recognition and mRNA translation. In recent years, studies have identified the regulatory roles of tRNA modifications in mRNA translation networks. Misregulation of tRNA modifications is closely related to the progression of developmental diseases and cancers. In this review, we summarize the tRNA biogenesis process and then discuss the effects and mechanisms of tRNA modifications on tRNA processing and mRNA translation. Finally, we provide a comprehensive overview of tRNA modifications' physiological and pathological functions, focusing on diseases including cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
25
|
Chattopadhyay A, Shih CY, Hsu YC, Juang JMJ, Chuang EY, Lu TP. CLIN_SKAT: an R package to conduct association analysis using functionally relevant variants. BMC Bioinformatics 2022; 23:441. [PMID: 36274122 PMCID: PMC9590128 DOI: 10.1186/s12859-022-04987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background Availability of next generation sequencing data, allows low-frequency and rare variants to be studied through strategies other than the commonly used genome-wide association studies (GWAS). Rare variants are important keys towards explaining the heritability for complex diseases that remains to be explained by common variants due to their low effect sizes. However, analysis strategies struggle to keep up with the huge amount of data at disposal therefore creating a bottleneck. This study describes CLIN_SKAT, an R package, that provides users with an easily implemented analysis pipeline with the goal of (i) extracting clinically relevant variants (both rare and common), followed by (ii) gene-based association analysis by grouping the selected variants.
Results CLIN_SKAT offers four simple functions that can be used to obtain clinically relevant variants, map them to genes or gene sets, calculate weights from global healthy populations and conduct weighted case–control analysis. CLIN_SKAT introduces improvements by adding certain pre-analysis steps and customizable features to make the SKAT results clinically more meaningful. Moreover, it offers several plot functions that can be availed towards obtaining visualizations for interpretation of the analyses results. CLIN_SKAT is available on Windows/Linux/MacOS and is operative for R version 4.0.4 or later. It can be freely downloaded from https://github.com/ShihChingYu/CLIN_SKAT, installed through devtools::install_github("ShihChingYu/CLIN_SKAT", force=T) and executed by loading the package into R using library(CLIN_SKAT). All outputs (tabular and graphical) can be downloaded in simple, publishable formats.
Conclusions Statistical association analysis is often underpowered due to low sample sizes and high numbers of variants to be tested, limiting detection of causal ones. Therefore, retaining a subset of variants that are biologically meaningful seems to be a more effective strategy for identifying explainable associations while reducing the degrees of freedom. CLIN_SKAT offers users a one-stop R package that identifies disease risk variants with improved power via a series of tailor-made procedures that allows dimension reduction, by retaining functionally relevant variants, and incorporating ethnicity based priors. Furthermore, it also eliminates the requirement for high computational resources and bioinformatics expertise. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04987-2.
Collapse
|
26
|
Taurine protects R28 cells from hypoxia/re-oxygenation-induced damage via regulation of mitochondrial energy metabolism. Amino Acids 2022; 54:1585-1599. [PMID: 36056163 DOI: 10.1007/s00726-022-03199-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Oxidative-induced damage and hypoxia/re-oxygenation (H/R) injury are common causes of irreversible visual impairment. The goals of this study were to explore the effects of taurine on R28 cells under the two damage models and the underlying mechanisms. Low doses of taurine supplementation promoted cell viability, mitochondrial membrane potential (MMP), SOD levels, ATP contents and attenuated cytotoxicity and intracellular ROS generation of the R28 cells under the two kinds of damage. The expression level of GTPBP3, a mitochondrial-tRNA (mt-tRNA) modification enzyme that catalyzes the taurine involved modification, was decreased under the two damage and taurine could reverse the reduction. After knocking down GTPBP3, the R28 cells become vulnerable to damage. The viability, cytotoxicity, MMP and intracellular ROS level of knockdown cells changed more obviously under the H/R injury than those of control cell. We also found that knockdown of GTPBP3 significantly decreased mitochondrial energy metabolism by measuring the oxidative respiration rate by the Seahorse XFe24 extracellular flux analyzer. The protection of low doses of taurine disappeared on knockdown R28 cells, indicating that GTPBP3 is crucial in the protection mechanisms of taurine. However, the impacts of the reduction of GTPBP3 level can be reversed by relatively high doses of taurine, implying the protection effects of taurine were dose-dependent, and there were more complicated mechanisms remain to be explored. This study explored a new mechanism of the neuroprotective effects of taurine, which depend on the GTPBP3-mediated taurine modification of mt-tRNAs and the promotion of mitochondrial energy metabolism.
Collapse
|
27
|
Boutoual R, Jo H, Heckenbach I, Tiwari R, Kasler H, Lerner CA, Shah S, Schilling B, Calvanese V, Rardin MJ, Scheibye-Knudsen M, Verdin E. A novel splice variant of Elp3/Kat9 regulates mitochondrial tRNA modification and function. Sci Rep 2022; 12:14804. [PMID: 36045139 PMCID: PMC9433433 DOI: 10.1038/s41598-022-18114-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modifications, such as lysine acetylation, regulate the activity of diverse proteins across many cellular compartments. Protein deacetylation in mitochondria is catalyzed by the enzymatic activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3), however it remains unclear whether corresponding mitochondrial acetyltransferases exist. We used a bioinformatics approach to search for mitochondrial proteins with an acetyltransferase catalytic domain, and identified a novel splice variant of ELP3 (mt-ELP3) of the elongator complex, which localizes to the mitochondrial matrix in mammalian cells. Unexpectedly, mt-ELP3 does not mediate mitochondrial protein acetylation but instead induces a post-transcriptional modification of mitochondrial-transfer RNAs (mt-tRNAs). Overexpression of mt-ELP3 leads to the protection of mt-tRNAs against the tRNA-specific RNase angiogenin, increases mitochondrial translation, and furthermore increases expression of OXPHOS complexes. This study thus identifies mt-ELP3 as a non-canonical mt-tRNA modifying enzyme.
Collapse
Affiliation(s)
- Rachid Boutoual
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.
| | - Hyunsun Jo
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Indra Heckenbach
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Herbert Kasler
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Chad A Lerner
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Samah Shah
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | | | - Vincenzo Calvanese
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA
| | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA. .,Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
28
|
Inoue Y, Machida O, Kita Y, Yamamoto T. Need for revision of the ACMG/AMP guidelines for interpretation of X-linked variants. Intractable Rare Dis Res 2022; 11:120-124. [PMID: 36200025 PMCID: PMC9437996 DOI: 10.5582/irdr.2022.01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
The guidelines provided by American College of Medical Genetics and Genomics (ACMG) and the Association of Molecular Pathology (AMP) (ACMG/AMP guidelines) suggest a framework for the classification of clinical variants. However, the interpretations can be inconsistent, with each definition sometimes proving to be ambiguous. In particular, there can be difficulty with interpretation of variants related to the X-linked recessive trait. To confirm whether there are biases in the interpretation of inherited traits, we reanalyzed variants reported prior to the release of the ACMG/AMP guidelines. As expected, the interpretation ratio as pathogenic or likely pathogenic was significantly lower for variants related to the X-linked recessive trait. Evaluation of variants related to the X-linked recessive trait, hence, need to consider whether the variant is identified only in males in accordance with the X-linked recessive trait. The ACMG/AMP guidelines should be revised to eliminate the bias revealed in this study.
Collapse
Affiliation(s)
- Yoko Inoue
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Osamu Machida
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yosuke Kita
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
29
|
Phenotype-Genotype Analysis Based on Molecular Classification in 135 Children With Mitochondrial Disease. Pediatr Neurol 2022; 132:11-18. [PMID: 35598585 DOI: 10.1016/j.pediatrneurol.2022.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Over the past decades, mitochondrial disease classification has been mainly based on molecular defects. We aim to analyze phenotype-genotype correlation of mitochondrial disorders according to molecular classification. METHODS In this cohort study, we identified 135 individuals diagnosed with mitochondrial disorders, and all patients were divided into four subgroups based on molecular functions: the Respiratory Chain group (including subunits and assembly proteins in the respiratory chain), the Protein Synthesis group (including mitochondrial RNA metabolism, mitochondrial translation), the mitcohindrial DNA (mtDNA) Replication group, and the Others group (including cofactors, homeostasis, substrates, and inhibitors). RESULTS We found that in China, patients with the mtDNA variant constituted a large percentage of mitochondrial disease and were associated with a male preponderance in the Respiratory Chain group, whereas those in the Protein Synthesis group showed a relatively later onset and higher serum lactate level. In contrast, patients with nuclear DNA variants were younger at onset, with no specific lactate or cranial imaging features, especially in the Others group, which contained several mitochondrial diseases with corresponding treatment. CONCLUSION The mtDNA was recommended to detect first in patients with typical lactate and cranial imaging features. A broader consideration and detection are necessary for a better prognosis in an atypical patient.
Collapse
|
30
|
Wang C, Yuan C, Ji Z, Yin J, Zhang Z, Zhang H, Zheng B, Zhou W, Yang S. Generation of patient-derived IPSC lines from a girl with Combined Oxidative Phosphorylation Deficiency 23 (COXPD23) caused by compound heterozygous GTPBP3 variants. Stem Cell Res 2022; 61:102775. [DOI: 10.1016/j.scr.2022.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
|
31
|
Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, Alston CL, Ban R, Beblo S, Berutti R, Blessing H, Ciara E, Distelmaier F, Freisinger P, Häberle J, Hayflick SJ, Hempel M, Itkis YS, Kishita Y, Klopstock T, Krylova TD, Lamperti C, Lenz D, Makowski C, Mosegaard S, Müller MF, Muñoz-Pujol G, Nadel A, Ohtake A, Okazaki Y, Procopio E, Schwarzmayr T, Smet J, Staufner C, Stenton SL, Strom TM, Terrile C, Tort F, Van Coster R, Vanlander A, Wagner M, Xu M, Fang F, Ghezzi D, Mayr JA, Piekutowska-Abramczuk D, Ribes A, Rötig A, Taylor RW, Wortmann SB, Murayama K, Meitinger T, Gagneur J, Prokisch H. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med 2022; 14:38. [PMID: 35379322 PMCID: PMC8981716 DOI: 10.1186/s13073-022-01019-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.
Collapse
Affiliation(s)
- Vicente A. Yépez
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Mertes
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Nicholas H. Smith
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Rui Ban
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Center for Rare Diseases, University Hospitals, University of Leipzig, Leipzig, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Blessing
- Department for Inborn Metabolic Diseases, Children’s and Adolescents’ Hospital, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elżbieta Ciara
- Department of Medical Genetics, Children’s Memorial Health Institute, Warsaw, Poland
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zürich, Switzerland
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Makowski
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michaela F. Müller
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnieszka Nadel
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Anna Meyer Children Hospital, Florence, Italy
| | - Thomas Schwarzmayr
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah L. Stenton
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M. Strom
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caterina Terrile
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manting Xu
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fang Fang
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnès Rötig
- Université de Paris, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Saskia B. Wortmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
32
|
Zhou JB, Wang ED, Zhou XL. Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cell Mol Life Sci 2021; 78:7087-7105. [PMID: 34605973 PMCID: PMC11071707 DOI: 10.1007/s00018-021-03948-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Transfer RNAs (tRNAs) harbor the most diverse posttranscriptional modifications. Among such modifications, those in the anticodon loop, either on nucleosides or base groups, compose over half of the identified posttranscriptional modifications. The derivatives of modified nucleotides and the crosstalk of different chemical modifications further add to the structural and functional complexity of tRNAs. These modifications play critical roles in maintaining anticodon loop conformation, wobble base pairing, efficient aminoacylation, and translation speed and fidelity as well as mediating various responses to different stress conditions. Posttranscriptional modifications of tRNA are catalyzed mainly by enzymes and/or cofactors encoded by nuclear genes, whose mutations are firmly connected with diverse human diseases involving genetic nervous system disorders and/or the onset of multisystem failure. In this review, we summarize recent studies about the mechanisms of tRNA modifications occurring at tRNA anticodon loops. In addition, the pathogenesis of related disease-causing mutations at these genes is briefly described.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 93 Middle Huaxia Road, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
33
|
Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1700. [PMID: 34664402 DOI: 10.1002/wrna.1700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Naturally occurring post-transcriptional chemical modifications serve critical roles in impacting RNA structure and function. More directly, modifications may affect RNA stability, intracellular transport, translational efficiency, and fidelity. The combination of effects caused by modifications are ultimately linked to gene expression regulation at a genome-wide scale. The latter is especially true in systems that undergo rapid metabolic and or translational remodeling in response to external stimuli, such as the presence of stressors, but beyond that, modifications may also affect cell homeostasis. Although examples of the importance of RNA modifications in translation are accumulating rapidly, still what these contribute to the function of complex physiological systems such as muscle is only recently emerging. In the present review, we will introduce key information on various modifications and highlight connections between those and cellular malfunctions. In passing, we will describe well-documented roles for modifications in the nervous system and use this information as a stepping stone to emphasize a glaring paucity of knowledge on the role of RNA modifications in heart and skeletal muscle, with particular emphasis on mitochondrial function in those systems. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
35
|
Yan HM, Liu ZM, Cao B, Zhang VW, He YD, Jia ZJ, Xi H, Liu J, Fang F, Wang H. Novel Mutations in the GTPBP3 Gene for Mitochondrial Disease and Characteristics of Related Phenotypic Spectrum: The First Three Cases From China. Front Genet 2021; 12:611226. [PMID: 34276756 PMCID: PMC8281222 DOI: 10.3389/fgene.2021.611226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
Combined Oxidative Phosphorylation Deficiency 23 (COXPD23) caused by mutations in GTPBP3 gene is a rare mitochondrial disease, and this disorder identified from the Chinese population has not been described thus far. Here, we report a case series of three patients with COXPD23 caused by GTPBP3 mutations, from a severe to a mild phenotype. The main clinical features of these patients include lactic acidosis, myocardial damage, and neurologic symptoms. Whole genome sequencing and targeted panels of candidate human mitochondrial genome revealed that patient 1 was a compound heterozygote with novel mutations c.413C > T (p. A138V) and c.509_510del (p. E170Gfs∗42) in GTPBP3. Patient 2 was a compound heterozygote with novel mutations c.544G > T (p. G182X) and c.785A > C (p.Q262P), while patient 3 was a compound heterozygote with a previously reported mutation c.424G > A (p.E142K) and novel mutation c.785A > C (p.Q262P). In conclusion, we first describe three Chinese individuals with COXPD23, and discuss the genotype-phenotype correlations of GTPBP3 mutations. Our findings provide novel information in the diagnosis and genetic counseling of patients with mitochondrial disease.
Collapse
Affiliation(s)
- Hui-Ming Yan
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| | - Zhi-Mei Liu
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Bei Cao
- Department of Neonatology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Victor Wei Zhang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, United States.,AmCare Genomics Lab, Guangzhou, China
| | - Yi-Duo He
- AmCare Genomics Lab, Guangzhou, China
| | - Zheng-Jun Jia
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| | - Hui Xi
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| | - Jing Liu
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hua Wang
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,National Health Commission Key Laboratory of Birth Defect, Research and Prevention, Changsha, China.,Newborn Screening Center of Hunan Province, Changsha, China
| |
Collapse
|
36
|
Liang H, Liu J, Su S, Zhao Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol 2021; 18:2168-2182. [PMID: 34110970 DOI: 10.1080/15476286.2021.1935572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial noncoding RNAs (mt-ncRNAs) include noncoding RNAs inside the mitochondria that are transcribed from the mitochondrial genome or nuclear genome, and noncoding RNAs transcribed from the mitochondrial genome that are transported to the cytosol or nucleus. Recent findings have revealed that mt-ncRNAs play important roles in not only mitochondrial functions, but also other cellular activities. This review proposes a classification of mt-ncRNAs and outlines the emerging understanding of mitochondrial circular RNAs (mt-circRNAs), mitochondrial microRNAs (mitomiRs), and mitochondrial long noncoding RNAs (mt-lncRNAs), with an emphasis on their identification and functions.
Collapse
Affiliation(s)
- Huixin Liang
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shicheng Su
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
37
|
Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P, Paavola J. Zebrafish Heart Failure Models. Front Cell Dev Biol 2021; 9:662583. [PMID: 34095129 PMCID: PMC8173159 DOI: 10.3389/fcell.2021.662583] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Heart failure causes significant morbidity and mortality worldwide. The understanding of heart failure pathomechanisms and options for treatment remain incomplete. Zebrafish has proven useful for modeling human heart diseases due to similarity of zebrafish and mammalian hearts, fast easily tractable development, and readily available genetic methods. Embryonic cardiac development is rapid and cardiac function is easy to observe and quantify. Reverse genetics, by using morpholinos and CRISPR-Cas9 to modulate gene function, make zebrafish a primary animal model for in vivo studies of candidate genes. Zebrafish are able to effectively regenerate their hearts following injury. However, less attention has been given to using zebrafish models to increase understanding of heart failure and cardiac remodeling, including cardiac hypertrophy and hyperplasia. Here we discuss using zebrafish to study heart failure and cardiac remodeling, and review zebrafish genetic, drug-induced and other heart failure models, discussing the advantages and weaknesses of using zebrafish to model human heart disease. Using zebrafish models will lead to insights on the pathomechanisms of heart failure, with the aim to ultimately provide novel therapies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Hong Wang
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Zhang Q, He X, Yao S, Lin T, Zhang L, Chen D, Chen C, Yang Q, Li F, Zhu YM, Guan MX. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res 2021; 49:4689-4704. [PMID: 33836087 PMCID: PMC8096277 DOI: 10.1093/nar/gkab228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Deficient maturations of mitochondrial transcripts are linked to clinical abnormalities but their pathophysiology remains elusive. Previous investigations showed that pathogenic variants in MTO1 for the biosynthesis of τm5U of tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR) were associated with hypertrophic cardiomyopathy (HCM). Using mto1 knock-out(KO) zebrafish generated by CRISPR/Cas9 system, we demonstrated the pleiotropic effects of Mto1 deficiency on mitochondrial RNA maturations. The perturbed structure and stability of tRNAs caused by mto1 deletion were evidenced by conformation changes and sensitivity to S1-mediated digestion of tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). Notably, mto1KO zebrafish exhibited the global decreases in the aminoacylation of mitochondrial tRNAs with the taurine modification. Strikingly, ablated mto1 mediated the expression of MTPAP and caused the altered polyadenylation of cox1, cox3, and nd1 mRNAs. Immunoprecipitation assay indicated the interaction of MTO1 with MTPAP related to mRNA polyadenylation. These alterations impaired mitochondrial translation and reduced activities of oxidative phosphorylation complexes. These mitochondria dysfunctions caused heart development defects and hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the mto1KO zebrafish recapitulated the clinical phenotypes in HCM patients carrying the MTO1 mutation(s). Our findings highlighted the critical role of MTO1 in mitochondrial transcript maturation and their pathological consequences in hypertrophic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/physiopathology
- Gene Expression Profiling
- Heart/embryology
- Heart/physiopathology
- In Situ Hybridization
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Polyadenylation/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transfer RNA Aminoacylation/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiao He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingxian Yang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feng Li
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi-Min Zhu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
39
|
McMahon M, Forester C, Buffenstein R. Aging through an epitranscriptomic lens. NATURE AGING 2021; 1:335-346. [PMID: 37117595 DOI: 10.1038/s43587-021-00058-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 04/30/2023]
Abstract
The mechanistic causes of aging, the time-related decline in function and good health that leads to increased mortality, remain poorly understood. Here we propose that age-dependent alteration of the epitranscriptome, encompassing more than 150 chemically distinct post-transcriptional modifications or editing events, warrants exploration as an important modulator of aging. The epitranscriptome is a potent regulator of RNA function, diverse cellular processes and tissue regenerative capacity. To date, only a few studies link alterations in the epitranscriptome to molecular and physiological changes during aging; however, epitranscriptome dysfunction is associated with and underlies several age-associated pathologies, including cancer and neurodegenerative, cardiovascular and autoimmune diseases. For example, changes in RNA modifications (such as N6-methyladenosine and inosine) impact cardiac physiology and are linked to cardiac fibrosis. Although an uncharted research focus, mapping epitranscriptome alterations in the context of aging may elucidate novel predictors of both health and lifespan, and may identify therapeutic targets for attenuating aging and abrogating age-related diseases.
Collapse
Affiliation(s)
- Mary McMahon
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| | - Craig Forester
- Department of Pediatrics, University of Colorado, Denver, CO, USA
- Children's Hospital Colorado, Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
40
|
Peng GX, Zhang Y, Wang QQ, Li QR, Xu H, Wang ED, Zhou XL. The human tRNA taurine modification enzyme GTPBP3 is an active GTPase linked to mitochondrial diseases. Nucleic Acids Res 2021; 49:2816-2834. [PMID: 33619562 PMCID: PMC7969015 DOI: 10.1093/nar/gkab104] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/03/2023] Open
Abstract
GTPBP3 and MTO1 cooperatively catalyze 5-taurinomethyluridine (τm5U) biosynthesis at the 34th wobble position of mitochondrial tRNAs. Mutations in tRNAs, GTPBP3 or MTO1, causing τm5U hypomodification, lead to various diseases. However, efficient in vitro reconstitution and mechanistic study of τm5U modification have been challenging, in part due to the lack of pure and active enzymes. A previous study reported that purified human GTPBP3 (hGTPBP3) is inactive in GTP hydrolysis. Here, we identified the mature form of hGTPBP3 and showed that hGTPBP3 is an active GTPase in vitro that is critical for tRNA modification in vivo. Unexpectedly, the isolated G domain and a mutant with the N-terminal domain truncated catalyzed GTP hydrolysis to only a limited extent, exhibiting high Km values compared with that of the mature enzyme. We further described several important pathogenic mutations of hGTPBP3, associated with alterations in hGTPBP3 localization, structure and/or function in vitro and in vivo. Moreover, we discovered a novel cytoplasm-localized isoform of hGTPBP3, indicating an unknown potential noncanonical function of hGTPBP3. Together, our findings established, for the first time, the GTP hydrolysis mechanism of hGTPBP3 and laid a solid foundation for clarifying the τm5U modification mechanism and etiology of τm5U deficiency-related diseases.
Collapse
Affiliation(s)
- Gui-Xin Peng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Hua Xia Road, Shanghai 201210, China
| | - Yong Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qin-Qin Wang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Hua Xia Road, Shanghai 201210, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hong Xu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Heng Shan Road, Shanghai 200030, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Hua Xia Road, Shanghai 201210, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
41
|
Kazuhito T, Wei FY. Posttranscriptional modifications in mitochondrial tRNA and its implication in mitochondrial translation and disease. J Biochem 2021; 168:435-444. [PMID: 32818253 DOI: 10.1093/jb/mvaa098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
A fundamental aspect of mitochondria is that they possess DNA and protein translation machinery. Mitochondrial DNA encodes 22 tRNAs that translate mitochondrial mRNAs to 13 polypeptides of respiratory complexes. Various chemical modifications have been identified in mitochondrial tRNAs via complex enzymatic processes. A growing body of evidence has demonstrated that these modifications are essential for translation by regulating tRNA stability, structure and mRNA binding, and can be dynamically regulated by the metabolic environment. Importantly, the hypomodification of mitochondrial tRNA due to pathogenic mutations in mitochondrial tRNA genes or nuclear genes encoding modifying enzymes can result in life-threatening mitochondrial diseases in humans. Thus, the mitochondrial tRNA modification is a fundamental mechanism underlying the tight regulation of mitochondrial translation and is essential for life. In this review, we focus on recent findings on the physiological roles of 5-taurinomethyl modification (herein referred as taurine modification) in mitochondrial tRNAs. We summarize the findings in human patients and animal models with a deficiency of taurine modifications and provide pathogenic links to mitochondrial diseases. We anticipate that this review will help understand the complexity of mitochondrial biology and disease.
Collapse
Affiliation(s)
- Tomizawa Kazuhito
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan.,Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Seriyo-machi 4-1, Aoba-ku, Sendai-shi, Miyagi 980-8575, Japan
| |
Collapse
|
42
|
The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375-392. [PMID: 33658722 DOI: 10.1038/s41580-021-00342-0] [Citation(s) in RCA: 343] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.
Collapse
|
43
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
44
|
Meng F, Zhou M, Xiao Y, Mao X, Zheng J, Lin J, Lin T, Ye Z, Cang X, Fu Y, Wang M, Guan MX. A deafness-associated tRNA mutation caused pleiotropic effects on the m1G37 modification, processing, stability and aminoacylation of tRNAIle and mitochondrial translation. Nucleic Acids Res 2021; 49:1075-1093. [PMID: 33398350 PMCID: PMC7826259 DOI: 10.1093/nar/gkaa1225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023] Open
Abstract
Defects in the posttranscriptional modifications of mitochondrial tRNAs have been linked to human diseases, but their pathophysiology remains elusive. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAIle 4295A>G mutation affecting a highly conserved adenosine at position 37, 3′ adjacent to the tRNA’s anticodon. Primer extension and methylation activity assays revealed that the m.4295A>G mutation introduced a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAIle. Molecular dynamics simulations suggested that the m.4295A>G mutation affected tRNAIle structure and function, supported by increased melting temperature, conformational changes and instability of mutated tRNA. An in vitro processing experiment revealed that the m.4295A>G mutation reduced the 5′ end processing efficiency of tRNAIle precursors, catalyzed by RNase P. We demonstrated that cybrid cell lines carrying the m.4295A>G mutation exhibited significant alterations in aminoacylation and steady-state levels of tRNAIle. The aberrant tRNA metabolism resulted in the impairment of mitochondrial translation, respiratory deficiency, decreasing membrane potentials and ATP production, increasing production of reactive oxygen species and promoting autophagy. These demonstrated the pleiotropic effects of m.4295A>G mutation on tRNAIle and mitochondrial functions. Our findings highlighted the essential role of deficient posttranscriptional modifications in the structure and function of tRNA and their pathogenic consequence of deafness.
Collapse
Affiliation(s)
- Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mi Zhou
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoting Mao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Fu
- Division of Otolaryngology-Head and Neck Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
45
|
Chujo T, Tomizawa K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J 2021; 288:7096-7122. [PMID: 33513290 PMCID: PMC9255597 DOI: 10.1111/febs.15736] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
tRNA molecules are post-transcriptionally modified by tRNA modification enzymes. Although composed of different chemistries, more than 40 types of human tRNA modifications play pivotal roles in protein synthesis by regulating tRNA structure and stability as well as decoding genetic information on mRNA. Many tRNA modifications are conserved among all three kingdoms of life, and aberrations in various human tRNA modification enzymes cause life-threatening diseases. Here, we describe the class of diseases and disorders caused by aberrations in tRNA modifications as 'tRNA modopathies'. Aberrations in over 50 tRNA modification enzymes are associated with tRNA modopathies, which most frequently manifest as dysfunctions of the brain and/or kidney, mitochondrial diseases, and cancer. However, the molecular mechanisms that link aberrant tRNA modifications to human diseases are largely unknown. In this review, we provide a comprehensive compilation of human tRNA modification functions, tRNA modification enzyme genes, and tRNA modopathies, and we summarize the elucidated pathogenic mechanisms underlying several tRNA modopathies. We will also discuss important questions that need to be addressed in order to understand the molecular pathogenesis of tRNA modopathies.
Collapse
Affiliation(s)
- Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
46
|
Aetiology and 30-Year Long-Term Outcome of Children with Cardiomyopathy Necessitating Heart Transplantation. J Pers Med 2020; 10:jpm10040251. [PMID: 33260794 PMCID: PMC7712803 DOI: 10.3390/jpm10040251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Studies assessing the long-term outcome after heart transplantation HTX in patients with cardiomyopathy (CM) in the paediatric age range are rare. The aim of this study was to determine the survival rate of children with CM undergoing HTX and to analyse how aetiology of cardiomyopathy influenced morbidity and mortality. We retrospectively analysed the medical records of children; who were transplanted in our centre between June 1988 and October 2019. 236 heart transplantations were performed since 1988 (9 re-transplants). 98 of 227 patients (43.2%) were transplanted because of CM. Survival rates were 93% after 1; 84% after 10 and 75% after 30 years. Overall; the aetiology of CM could be clearly identified in 37 subjects (37.7%). This rate increased up to 66.6% (12/19) by applying a comprehensive diagnostic workup since 2016. The survival rate was lower (p < 0.05) and neurocognitive deficits were more frequent (p = 0.001) in subjects with systemic diseases than in individuals with cardiac-specific conditions. These data indicate that the long-term survival rate of children with CM after HTX in experienced centers is high. A comprehensive diagnostic workup allows unraveling the basic defect in the majority of patients with CM undergoing HTX. Aetiology of CM affects morbidity and mortality in subjects necessitating HTX.
Collapse
|
47
|
Chen Y, Ho L, Tergaonkar V. sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. Cancer Lett 2020; 500:263-270. [PMID: 33157158 DOI: 10.1016/j.canlet.2020.10.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022]
Abstract
Significant technological advances have enabled the discovery and identification of a new class of molecules, micropeptides or small ORF encoded peptides (SEPs) within non-coding RNAs (ncRNAs). As ncRNAs are well known to be transcriptionally silent, the discovery of SEPs implies that many ncRNAs are misannotated or play both coding and non-coding functions. SEPs have reportedly diverse regulatory roles in embryogenesis, myogenesis, inflammation, diseases, and cancer. SEPs appearing in different subcellular compartments show distinct functions. In this review, we summarized the functions of SEPs that have been characterized thus far. As SEPs are amenable to therapeutic development as biologics, understanding their underlying functions will provide novel targets for the treatment of inflammatory or metabolic disorders.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| | - Lena Ho
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Cardiovascular Metabolic Disorders Program, Duke-NUS Graduate School, Singapore; Institute of Medical Biology, A*STAR, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
| |
Collapse
|
48
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
49
|
Suzuki T, Yashiro Y, Kikuchi I, Ishigami Y, Saito H, Matsuzawa I, Okada S, Mito M, Iwasaki S, Ma D, Zhao X, Asano K, Lin H, Kirino Y, Sakaguchi Y, Suzuki T. Complete chemical structures of human mitochondrial tRNAs. Nat Commun 2020; 11:4269. [PMID: 32859890 PMCID: PMC7455718 DOI: 10.1038/s41467-020-18068-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications.
Collapse
Affiliation(s)
- Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuka Yashiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ittoku Kikuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hironori Saito
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Ikuya Matsuzawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan
| | - Mari Mito
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Ding Ma
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Xuewei Zhao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Huan Lin
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228, Haikou, Hainan, P.R. China
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
50
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|