1
|
Szabó L, Pollio AR, Vogel GF. Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases. Traffic 2024; 25:e12954. [PMID: 39187475 DOI: 10.1111/tra.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.
Collapse
Affiliation(s)
- Luca Szabó
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adam R Pollio
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Friedrich Vogel
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Hegarty R, Thompson RJ. Genetic aetiologies of acute liver failure. J Inherit Metab Dis 2024; 47:582-597. [PMID: 38499319 DOI: 10.1002/jimd.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Acute liver failure (ALF) is a rare, rapidly evolving, clinical syndrome with devastating consequences where definitive treatment is by emergency liver transplantation. Establishing a diagnosis can be challenging and, historically, the cause of ALF was unidentified in up to half of children. However, recent technological and clinical advances in genomic medicine have led to an increasing proportion being diagnosed with monogenic aetiologies of ALF. The conditions encountered include a diverse group of inherited metabolic disorders each with prognostic and treatment implications. Often these disorders are clinically indistinguishable and may even mimic disorders of immune regulation or red cell disorders. Rapid genomic sequencing for children with ALF is, therefore, a key component in the diagnostic work up today. This review focuses on the monogenic aetiologies of ALF.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| | - Richard J Thompson
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| |
Collapse
|
3
|
Tebbe L, Kakakhel M, Al-Ubaidi MR, Naash MI. The role of syntaxins in retinal function and health. Front Cell Neurosci 2024; 18:1380064. [PMID: 38799985 PMCID: PMC11119284 DOI: 10.3389/fncel.2024.1380064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) superfamily plays a pivotal role in cellular trafficking by facilitating membrane fusion events. These SNARE proteins, including syntaxins, assemble into complexes that actively facilitate specific membrane fusion events. Syntaxins, as integral components of the SNARE complex, play a crucial role in initiating and regulating these fusion activities. While specific syntaxins have been extensively studied in various cellular processes, including neurotransmitter release, autophagy and endoplasmic reticulum (ER)-to-Golgi protein transport, their roles in the retina remain less explored. This review aims to enhance our understanding of syntaxins' functions in the retina by shedding light on how syntaxins mediate membrane fusion events unique to the retina. Additionally, we seek to establish a connection between syntaxin mutations and retinal diseases. By exploring the intricate interplay of syntaxins in retinal function and health, we aim to contribute to the broader comprehension of cellular trafficking in the context of retinal physiology and pathology.
Collapse
Affiliation(s)
| | | | | | - Muna I. Naash
- *Correspondence: Muna I. Naash, ; Muayyad R. Al-Ubaidi,
| |
Collapse
|
4
|
Lenz D, Schlieben LD, Shimura M, Bianzano A, Smirnov D, Kopajtich R, Berutti R, Adam R, Aldrian D, Baric I, Baumann U, Bozbulut NE, Brugger M, Brunet T, Bufler P, Burnytė B, Calvo PL, Crushell E, Dalgiç B, Das AM, Dezsőfi A, Distelmaier F, Fichtner A, Freisinger P, Garbade SF, Gaspar H, Goujon L, Hadzic N, Hartleif S, Hegen B, Hempel M, Henning S, Hoerning A, Houwen R, Hughes J, Iorio R, Iwanicka-Pronicka K, Jankofsky M, Junge N, Kanavaki I, Kansu A, Kaspar S, Kathemann S, Kelly D, Kirsaçlioğlu CT, Knoppke B, Kohl M, Kölbel H, Kölker S, Konstantopoulou V, Krylova T, Kuloğlu Z, Kuster A, Laass MW, Lainka E, Lurz E, Mandel H, Mayerhanser K, Mayr JA, McKiernan P, McClean P, McLin V, Mention K, Müller H, Pasquier L, Pavlov M, Pechatnikova N, Peters B, Petković Ramadža D, Piekutowska-Abramczuk D, Pilic D, Rajwal S, Rock N, Roetig A, Santer R, Schenk W, Semenova N, Sokollik C, Sturm E, Taylor RW, Tschiedel E, Urbonas V, Urreizti R, Vermehren J, Vockley J, Vogel GF, Wagner M, van der Woerd W, Wortmann SB, Zakharova E, Hoffmann GF, Meitinger T, Murayama K, Staufner C, Prokisch H. Genetic landscape of pediatric acute liver failure of indeterminate origin. Hepatology 2024; 79:1075-1087. [PMID: 37976411 PMCID: PMC11020061 DOI: 10.1097/hep.0000000000000684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, the main causes are viral infections (12%-16%) and inherited metabolic diseases (14%-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. APPROACH AND RESULTS With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF. WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (41%), and in children with recurrent acute liver failure (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8), and DGUOK (n=7) were the most frequent findings. When categorizing, the most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%), and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplantation. CONCLUSIONS This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics.
Collapse
Affiliation(s)
- Dominic Lenz
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Lea D. Schlieben
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Masaru Shimura
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
- Department of Metabolism, Chiba Children’s Hospital, Centre for Medical Genetics, Chiba, Japan
| | - Alyssa Bianzano
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Dmitrii Smirnov
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Robert Kopajtich
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Riccardo Berutti
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Rüdiger Adam
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, University Children’s Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Denise Aldrian
- Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivo Baric
- Department of Paediatrics, University Hospital Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ulrich Baumann
- Department of Peadiatric Kidney, Liver, and Metabolic Diseases, Division for Paediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - Neslihan E. Bozbulut
- Department of Paediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Melanie Brugger
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Brunet
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philip Bufler
- Department of Paediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birutė Burnytė
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pier L. Calvo
- Regina Margherita Children’s Hospital, Paediatic Gastroenterology Unit, Torino, Italy
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland, Dublin, Ireland
| | - Buket Dalgiç
- Department of Paediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Anibh M. Das
- Hannover Medical School, Clinic for Paediatric Kidney, Liver, and Metabolic Diseases, Hannover, Germany
| | - Antal Dezsőfi
- First Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Felix Distelmaier
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children’s Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander Fichtner
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Peter Freisinger
- Department of Paediatrics, Hospital Reutlingen, Reutlingen, Germany
| | - Sven F. Garbade
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Harald Gaspar
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Louise Goujon
- CLAD Ouest CHU Hôpital Sud, CRMR Déficiences intellectuelles, Service de Génétique Médicale, Rennes, France
| | - Nedim Hadzic
- King’s College Hospital, Paediatric Liver, GI & Nutrition Centre, London, United Kingdom
| | - Steffen Hartleif
- Eberhard Karls University Tuebingen, Paediatric Gastroenterology and Hepatology, Tuebingen, Germany
| | - Bianca Hegen
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, Institute of Human Genetics, Hamburg
| | - Stephan Henning
- Department of Paediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andre Hoerning
- Department of Paediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Roderick Houwen
- Paediatric Gastroenterology, UMC Utrecht, Utrecht, The Netherlands
| | - Joanne Hughes
- Children’s Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Raffaele Iorio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Martin Jankofsky
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Norman Junge
- Department of Peadiatric Kidney, Liver, and Metabolic Diseases, Division for Paediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - Ino Kanavaki
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Third Department of Paediatrics, Attikon University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aydan Kansu
- Department of Paediatric Gastroenterology, Ankara University, School of Medicine, Ankara, Turkey
| | - Sonja Kaspar
- Department of Paediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Simone Kathemann
- Department of Paediatrics II, Paediatric Gastroenterology, Hepatology and Liver Transplantation, University Hospital Essen, Essen, Germany
| | - Deidre Kelly
- Birmingham Children’s Hospital NHS Trust, Liver Unit, Birmingham, UK
| | - Ceyda T. Kirsaçlioğlu
- Department of Paediatric Gastroenterology, Ankara University, School of Medicine, Ankara, Turkey
| | - Birgit Knoppke
- University Hospital Regensburg, KUNO University Children’s Hospital, Regensburg, Germany
| | - Martina Kohl
- Department of General Paediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Heike Kölbel
- Department of Paediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | | | - Tatiana Krylova
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Zarife Kuloğlu
- Department of Paediatric Gastroenterology, Ankara University, School of Medicine, Ankara, Turkey
| | - Alice Kuster
- Department of Neurometabolism, University Hospital of Nantes, Nantes, France
| | - Martin W. Laass
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Elke Lainka
- Department of Paediatrics II, Paediatric Gastroenterology, Hepatology and Liver Transplantation, University Hospital Essen, Essen, Germany
| | - Eberhard Lurz
- Department of Paediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Mandel
- Department of Paediatrics, Rambam Medical Centre, Meyer Children’s Hospital, Metabolic Unit, Haifa, Israel
| | - Katharina Mayerhanser
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Patrick McKiernan
- University of Pittsburgh and Children’s Hospital of Pittsburgh of UPMC, Pittsburgh Liver Research Centre, Pittsburgh, Pennsylvania, USA
| | | | - Valerie McLin
- Department of Paediatrics, Gynecology, and Obstetrics, Division of Paediatric Subspecialities, Swiss Paediatric Liver Centre, Paediatric Gastroenterology, Hepatology and Nutrition Unit, University of Geneva, Geneva, Switzerland
| | - Karine Mention
- Jeanne de Flandres Hospital, Reference Centre for Inherited Metabolic Diseases, Lille, France
| | - Hanna Müller
- Department of Paediatrics, Division of Neonatology and Paediatric Intensive Care, University Hospital Marburg, Marburg, Germany
| | - Laurent Pasquier
- CLAD Ouest CHU Hôpital Sud, CRMR Déficiences intellectuelles, Service de Génétique Médicale, Rennes, France
| | - Martin Pavlov
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Natalia Pechatnikova
- Healthcare Department Morozov Children’s City Clinical Hospital, Moscow City, Moscow
| | - Bianca Peters
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Danijela Petković Ramadža
- Department of Paediatrics, University Hospital Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | | | - Denisa Pilic
- Department of Paediatrics II, Paediatric Gastroenterology, Hepatology and Liver Transplantation, University Hospital Essen, Essen, Germany
| | - Sanjay Rajwal
- Department of Paediatrics, Gynecology, and Obstetrics, Division of Paediatric Subspecialities, Swiss Paediatric Liver Centre, Paediatric Gastroenterology, Hepatology and Nutrition Unit, University of Geneva, Geneva, Switzerland
| | - Nathalie Rock
- Department of Paediatrics, Gynecology, and Obstetrics, Division of Paediatric Subspecialities, Swiss Paediatric Liver Centre, Paediatric Gastroenterology, Hepatology and Nutrition Unit, University of Geneva, Geneva, Switzerland
| | - Agnès Roetig
- Laboratory of Genetics of Mitochondrial Diseases, Imagine Institute, University Paris Cité, INSERM UMR, Paris, France
| | - René Santer
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Wilfried Schenk
- Department of Paediatrics, University Hospital Augsburg, Augsburg, Germany
| | - Natalia Semenova
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Christiane Sokollik
- Department of Paediatrics, Division of Paediatric Gastroenterology, Hepatology and Nutrition, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ekkehard Sturm
- Eberhard Karls University Tuebingen, Paediatric Gastroenterology and Hepatology, Tuebingen, Germany
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eva Tschiedel
- Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vaidotas Urbonas
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Roser Urreizti
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, IRSJD, Esplugues de Llobregat, Barcelona, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)- Instituto de Salud Carlos III, Spain
| | - Jan Vermehren
- University Hospital Regensburg, KUNO University Children’s Hospital, Regensburg, Germany
| | - Jerry Vockley
- University of Pittsburgh and Children’s Hospital of Pittsburgh of UPMC, Pittsburgh Liver Research Centre, Pittsburgh, Pennsylvania, USA
| | - Georg-Friedrich Vogel
- Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matias Wagner
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Georg F. Hoffmann
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Thomas Meitinger
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Centre for Medical Genetics, Chiba, Japan
| | - Christian Staufner
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| |
Collapse
|
5
|
Yang Y, Fei X, Lei F, Wang L, Yu X, Tang Y. Autoimmune hemolytic anemia and thrombocytopenia in a Chinese patient with heterozygous NBAS mutations: Case report. Medicine (Baltimore) 2024; 103:e36975. [PMID: 38517998 PMCID: PMC10956969 DOI: 10.1097/md.0000000000036975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 03/24/2024] Open
Abstract
RATIONALE Neuroblastoma amplified sequence (NBAS)-associated disease is an autosomal recessive disorder and a broad spectrum of clinical symptoms has been reported. However, autoimmune mediated hemolytic anemia (AIHA) is rarely reported in NBAS disease. PATIENT CONCERNS A now 21-year-old male harbors heterozygous variants of c.6840G>A and c.335 + 1G>A and was found had retarded growth, hypogammaglobulinemia, B lymphopenia, optic atrophy, horizontal nystagmus, slight splenomegaly and hepatomegaly since childhood. This case had normal hemoglobin level and platelet count in his childhood. He developed AIHA first in his adulthood and then thrombocytopenia during the treatment of AIHA. The mechanism underlying a case with pronounced hypogammaglobulinemia and B lymphopenia is elusive. In addition to biallelic NBAS mutations, a germline mutation in the ANKRD26 (c.2356C>T) gene was also detected. So either autoimmune or ANKRD26 mutation-mediated thrombocytopenia is possible in this case. INTERVENTION AND OUTCOME He was initially managed with steroid and intermittent intravenous immunoglobulin supplement. After treatment, he responded well with a normalization of hemoglobin and serum bilirubin. But the patient subsequently experienced severe thrombocytopenia in addition to AIHA. He was then given daily avatrombopag in addition to steroid escalation. He responded again to new treatment, with the hemoglobin levels and platelet counts went back to the normal ranges. Now he was on de-escalated weekly avatrombopag and low-dose steroids maintenance. CONCLUSION The phenotype of this case indicates that c.335 + 1G>A NBAS variant is probably a pathogenic one and c.2356C>T ANKRD26 variant is improbably a pathogenic one. AIHA may respond well to steroid even when happened in patients with NBAS disease.
Collapse
Affiliation(s)
- Yuanlin Yang
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoming Fei
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fang Lei
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lixia Wang
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xianqiu Yu
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Tang
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Hammann N, Lenz D, Baric I, Crushell E, Vici CD, Distelmaier F, Feillet F, Freisinger P, Hempel M, Khoreva AL, Laass MW, Lacassie Y, Lainka E, Larson-Nath C, Li Z, Lipiński P, Lurz E, Mégarbané A, Nobre S, Olivieri G, Peters B, Prontera P, Schlieben LD, Seroogy CM, Sobacchi C, Suzuki S, Tran C, Vockley J, Wang JS, Wagner M, Prokisch H, Garbade SF, Kölker S, Hoffmann GF, Staufner C. Impact of genetic and non-genetic factors on phenotypic diversity in NBAS-associated disease. Mol Genet Metab 2024; 141:108118. [PMID: 38244286 DOI: 10.1016/j.ymgme.2023.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Biallelic pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause a pleiotropic multisystem disorder. Three clinical subgroups have been defined correlating with the localisation of pathogenic variants in the NBAS gene: variants affecting the C-terminal region of NBAS result in SOPH syndrome (short stature, optic atrophy, Pelger-Huët anomaly), variants affecting the Sec 39 domain are associated with infantile liver failure syndrome type 2 (ILFS2) and variants affecting the ß-propeller domain give rise to a combined phenotype. However, there is still unexplained phenotypic diversity across the three subgroups, challenging the current concept of genotype-phenotype correlations in NBAS-associated disease. Therefore, besides examining the genetic influence, we aim to elucidate the potential impact of pre-symptomatic diagnosis, emergency management and other modifying variables on the clinical phenotype. We investigated genotype-phenotype correlations in individuals sharing the same genotypes (n = 30 individuals), and in those sharing the same missense variants with a loss-of-function variant in trans (n = 38 individuals). Effects of a pre-symptomatic diagnosis and emergency management on the severity of acute liver failure (ALF) episodes also were analysed, comparing liver function tests (ALAT, ASAT, INR) and mortality. A strong genotype-phenotype correlation was demonstrated in individuals sharing the same genotype; this was especially true for the ILFS2 subgroup. Genotype-phenotype correlation in patients sharing only one missense variant was still high, though at a lower level. Pre-symptomatic diagnosis in combination with an emergency management protocol leads to a trend of reduced severity of ALF. High genetic impact on clinical phenotype in NBAS-associated disease facilitates monitoring and management of affected patients sharing the same genotype. Pre-symptomatic diagnosis and an emergency management protocol do not prevent ALF but may reduce its clinical severity.
Collapse
Affiliation(s)
- Nicole Hammann
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Dominic Lenz
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Ivo Baric
- Department of Paediatrics, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Childrens Health Ireland, Temple Street, Dublin 1, Ireland
| | - Carlo Dionisi Vici
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Felix Distelmaier
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Francois Feillet
- Department of Paediatrics, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | | | - Maja Hempel
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna L Khoreva
- Dmitry Rogachev National Research Center for Pediatric Hematology, Oncology, Immunology Moscow, Russia
| | - Martin W Laass
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yves Lacassie
- Department of Pediatrics, Division of Genetics, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Elke Lainka
- Pediatrics II, Department for Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Catherine Larson-Nath
- Pediatric Gastroenterology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zhongdie Li
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Eberhard Lurz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - André Mégarbané
- Department of Human Genetics Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon; Institut Jérôme Lejeune, Paris, France
| | - Susana Nobre
- Pediatric Hepatology and Liver Transplantation Unit, Pediatric Department, Coimbra Hospital and Universitary Centre, Coimbra, Portugal
| | - Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Bianca Peters
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Paolo Prontera
- Medical Genetics Unit, Maternal-Infantile Department, Hospital and University of Perugia, Perugia, Italy
| | - Lea D Schlieben
- School of Medicine, Institute of Human Genetics, Technische Universität München, Munich, Germany; Department Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Christine M Seroogy
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin-Madison, USA
| | - Cristina Sobacchi
- Humanitas Research Hospital IRCCS, Rozzano, Italy; Institute for Genetic and Biomedical Research-National Research Council, Milan Unit, Milan, Italy
| | - Shigeru Suzuki
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Christel Tran
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jerry Vockley
- University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jian-She Wang
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Matias Wagner
- School of Medicine, Institute of Human Genetics, Technische Universität München, Munich, Germany; Department Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technische Universität München, Munich, Germany; Department Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Sven F Garbade
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Christian Staufner
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany.
| |
Collapse
|
7
|
Peters B, Dattner T, Schlieben LD, Sun T, Staufner C, Lenz D. Disorders of vesicular trafficking presenting with recurrent acute liver failure: NBAS, RINT1, and SCYL1 deficiency. J Inherit Metab Dis 2024. [PMID: 38279772 DOI: 10.1002/jimd.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Among genetic disorders of vesicular trafficking, there are three causing recurrent acute liver failure (RALF): NBAS, RINT1, and SCYL1-associated disease. These three disorders are characterized by liver crises triggered by febrile infections and account for a relevant proportion of RALF causes. While the frequency and severity of liver crises in NBAS and RINT1-associated disease decrease with age, patients with SCYL1 variants present with a progressive, cholestatic course. In all three diseases, there is a multisystemic, partially overlapping phenotype with variable expression, including liver, skeletal, and nervous systems, all organ systems with high secretory activity. There are no specific biomarkers for these diseases, and whole exome sequencing should be performed in patients with RALF of unknown etiology. NBAS, SCYL1, and RINT1 are involved in antegrade and retrograde vesicular trafficking. Pathomechanisms remain unclarified, but there is evidence of a decrease in concentration and stability of the protein primarily affected by the respective gene defect and its interaction partners, potentially causing impairment of vesicular transport. The impairment of protein secretion by compromised antegrade transport provides a possible explanation for different organ manifestations such as bone alteration due to lack of collagens or diabetes mellitus when insulin secretion is affected. Dysfunction of retrograde transport impairs membrane recycling and autophagy. The impairment of vesicular trafficking results in increased endoplasmic reticulum stress, which, in hepatocytes, can progress to hepatocytolysis. While there is no curative therapy, an early and consequent implementation of an emergency protocol seems crucial for optimal therapeutic management.
Collapse
Affiliation(s)
- Bianca Peters
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Tal Dattner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Lea D Schlieben
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tian Sun
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Christian Staufner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Dominic Lenz
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Olimpio C, Paramonov I, Matalonga L, Laurie S, Schon K, Polavarapu K, Kirschner J, Schara-Schmidt U, Lochmüller H, Chinnery PF, Horvath R. Increased Diagnostic Yield by Reanalysis of Whole Exome Sequencing Data in Mitochondrial Disease. J Neuromuscul Dis 2024; 11:767-775. [PMID: 38759022 PMCID: PMC11307028 DOI: 10.3233/jnd-240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Background The genetic diagnosis of mitochondrial disorders is complicated by its genetic and phenotypic complexity. Next generation sequencing techniques have much improved the diagnostic yield for these conditions. A cohort of individuals with multiple respiratory chain deficiencies, reported in the literature 10 years ago, had a diagnostic rate of 60% by whole exome sequencing (WES) but 40% remained undiagnosed. Objective We aimed to identify a genetic diagnosis by reanalysis of the WES data for the undiagnosed arm of this 10-year-old cohort of patients with suspected mitochondrial disorders. Methods The WES data was transferred and processed by the RD-Connect Genome-Phenome Analysis Platform (GPAP) using their standardized pipeline. Variant prioritisation was carried out on the RD-Connect GPAP. Results Singleton WES data from 14 individuals was reanalysed. We identified a possible or likely genetic diagnosis in 8 patients (8/14, 57%). The variants identified were in a combination of mitochondrial DNA (n = 1, MT-TN), nuclear encoded mitochondrial genes (n = 2, PDHA1, and SUCLA2) and nuclear genes associated with nonmitochondrial disorders (n = 5, PNPLA2, CDC40, NBAS and SLC7A7). Variants in both the NBAS and CDC40 genes were established as disease causing after the original cohort was published. We increased the diagnostic yield for the original cohort by 15% without generating any further genomic data. Conclusions In the era of multiomics we highlight that reanalysis of existing WES data is a valid tool for generating additional diagnosis in patients with suspected mitochondrial disease, particularly when more time has passed to allow for new bioinformatic pipelines to emerge, for the development of new tools in variant interpretation aiding in reclassification of variants and the expansion of scientific knowledge on additional genes.
Collapse
Affiliation(s)
- Catarina Olimpio
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | | | - Steven Laurie
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Katherine Schon
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kiran Polavarapu
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Hanns Lochmüller
- Centro Nacional de Análisis Genómico, Barcelona, Spain
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Patrick F. Chinnery
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Kong XF, Bogyo K, Kapoor S, Shea PR, Groopman EE, Thomas-Wilson A, Cocchi E, Milo Rasouly H, Zheng B, Sun S, Zhang J, Martinez M, Vittorio JM, Dove LM, Marasa M, Wang TC, Verna EC, Worman HJ, Gharavi AG, Goldstein DB, Wattacheril J. The diagnostic yield of exome sequencing in liver diseases from a curated gene panel. Sci Rep 2023; 13:21540. [PMID: 38057357 PMCID: PMC10700603 DOI: 10.1038/s41598-023-42202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023] Open
Abstract
Exome sequencing (ES) has been used in a variety of clinical settings but there are limited data on its utility for diagnosis and/or prediction of monogenic liver diseases. We developed a curated list of 502 genes for monogenic disorders associated with liver phenotypes and analyzed ES data for these genes in 758 patients with chronic liver diseases (CLD). For comparison, we examined ES data in 7856 self-declared healthy controls (HC), and 2187 patients with chronic kidney disease (CKD). Candidate pathogenic (P) or likely pathogenic (LP) variants were initially identified in 19.9% of participants, most of which were attributable to previously reported pathogenic variants with implausibly high allele frequencies. After variant annotation and filtering based on population minor allele frequency (MAF ≤ 10-4 for dominant disorders and MAF ≤ 10-3 for recessive disorders), we detected a significant enrichment of P/LP variants in the CLD cohort compared to the HC cohort (X2 test OR 5.00, 95% CI 3.06-8.18, p value = 4.5e-12). A second-level manual annotation was necessary to capture true pathogenic variants that were removed by stringent allele frequency and quality filters. After these sequential steps, the diagnostic rate of monogenic disorders was 5.7% in the CLD cohort, attributable to P/LP variants in 25 genes. We also identified concordant liver disease phenotypes for 15/22 kidney disease patients with P/LP variants in liver genes, mostly associated with cystic liver disease phenotypes. Sequencing results had many implications for clinical management, including familial testing for early diagnosis and management, preventative screening for associated comorbidities, and in some cases for therapy. Exome sequencing provided a 5.7% diagnostic rate in CLD patients and required multiple rounds of review to reduce both false positive and false negative findings. The identification of concordant phenotypes in many patients with P/LP variants and no known liver disease also indicates a potential for predictive testing for selected monogenic liver disorders.
Collapse
Affiliation(s)
- Xiao-Fei Kong
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, Hammer Health Sciences Building Rm 402, 701 W 168th St, New York, NY, 10032, USA.
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Medicine, McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, 75390-9151, USA.
| | - Kelsie Bogyo
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sheena Kapoor
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick R Shea
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily E Groopman
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Amanda Thomas-Wilson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
| | - Enrico Cocchi
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hila Milo Rasouly
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Beishi Zheng
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, Hammer Health Sciences Building Rm 402, 701 W 168th St, New York, NY, 10032, USA
| | - Siming Sun
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, Hammer Health Sciences Building Rm 402, 701 W 168th St, New York, NY, 10032, USA
| | - Junying Zhang
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mercedes Martinez
- Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, 622 West 168th Street, PH 14-105D, New York, NY, 10032, USA
| | - Jennifer M Vittorio
- Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, 622 West 168th Street, PH 14-105D, New York, NY, 10032, USA
- NYU Transplant Institute, NYU Langone Health, New York, NY, USA
| | - Lorna M Dove
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, Hammer Health Sciences Building Rm 402, 701 W 168th St, New York, NY, 10032, USA
- Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, 622 West 168th Street, PH 14-105D, New York, NY, 10032, USA
| | - Maddalena Marasa
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, Hammer Health Sciences Building Rm 402, 701 W 168th St, New York, NY, 10032, USA
| | - Elizabeth C Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, Hammer Health Sciences Building Rm 402, 701 W 168th St, New York, NY, 10032, USA
- Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, 622 West 168th Street, PH 14-105D, New York, NY, 10032, USA
| | - Howard J Worman
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, Hammer Health Sciences Building Rm 402, 701 W 168th St, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ali G Gharavi
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Julia Wattacheril
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, Hammer Health Sciences Building Rm 402, 701 W 168th St, New York, NY, 10032, USA.
- Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, 622 West 168th Street, PH 14-105D, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Monaghan L, Longman D, Cáceres JF. Translation-coupled mRNA quality control mechanisms. EMBO J 2023; 42:e114378. [PMID: 37605642 PMCID: PMC10548175 DOI: 10.15252/embj.2023114378] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.
Collapse
Affiliation(s)
- Laura Monaghan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
11
|
Shabani‐Mirzaee H, Sayarifard F, Malekiantaghi A, Eftekhari K. Acute infantile liver failure syndrome type 2 in a 2.5-year-old boy: A case report. Clin Case Rep 2023; 11:e7892. [PMID: 37692149 PMCID: PMC10485241 DOI: 10.1002/ccr3.7892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Key Clinical Message Infantile liver failure type 2 is described as repeated attacks of liver dysfunction with remission. This syndrome should be considered in the differential diagnosis of any child with symptoms of recurrent hepatic encephalopathy. Abstract Infantile liver failure syndrome 2 is described as recurrent attacks of liver dysfunction. ILFS2 should be included in the differential diagnosis of children with frequent and acute liver failure. We present a 2.5-year-old boy with clinical manifestation of acute liver failure. In past, he had two similar attacks.
Collapse
Affiliation(s)
- Hosein Shabani‐Mirzaee
- Department of Pediatric EndocrinologyBahrami Children's HospitalTehran University of Medical SciencesTehranIran
| | - Fatemeh Sayarifard
- Department of Pediatric EndocrinologyChildren's Medical Hospital CenterTehran University of Medical SciencesTehranIran
| | - Armen Malekiantaghi
- Department of Pediatric EndocrinologyBahrami Children's HospitalTehran University of Medical SciencesTehranIran
| | - Kambiz Eftekhari
- Pediatric Department, Pediatric Gastroenterology and Hepatology Research CenterBahrami Children's HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Peters B, Wiemers F, Lenz D, Kölker S, Hoffmann GF, Köhler S, Staufner C. Pregnancy, delivery, and postpartum period in infantile liver failure syndrome type 2 due to variants in NBAS. JIMD Rep 2023; 64:246-251. [PMID: 37151364 PMCID: PMC10159861 DOI: 10.1002/jmd2.12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Biallelic pathogenic variants in the neuroblastoma amplified sequence (NBAS) gene affecting the Sec39 domain are associated with a predominant hepatic phenotype named infantile liver failure syndrome type 2 (ILFS2). Individuals are at risk of developing life-threatening acute liver failure episodes, most likely triggered by febrile infections. Pregnancy, delivery, and the postpartum period are well known triggers of decompensation in different inherited metabolic diseases and therefore entail a potential risk also for individuals with ILFS2. We studied pregnancy, birth, and postpartum period in a woman with ILFS2 (homozygous for the NBAS variant c.2708 T > G, p.(Leu903Arg)). During two pregnancies there were no complications associated with the underlying genetic condition. Two healthy boys were born by cesarean section. To reduce the risk of fever and febrile infections, we avoided prolonged labor, epidural analgesia, and breastfeeding. Maternal body temperature and liver function were closely monitored. In case of elevated body temperature, antipyretic treatment (acetaminophen, metamizole) was given without delay. Alanine and aspartate aminotransferases as well as liver function remained normal throughout the observation period. Hence, pregnancy and childbirth are feasible in women with ILFS2 under careful monitoring.
Collapse
Affiliation(s)
- Bianca Peters
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Felix Wiemers
- Center of Obstetrics and GynecologyUniversity of MarburgMarburgGermany
| | - Dominic Lenz
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Georg F. Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Siegmund Köhler
- Center of Obstetrics and GynecologyUniversity of MarburgMarburgGermany
| | - Christian Staufner
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
13
|
Ji J, Yang M, Jia J, Wu Q, Cong R, Cui H, Zhu B, Chu X. A novel variant in NBAS identified from an infant with fever-triggered recurrent acute liver failure disrupts the function of the gene. Hum Genome Var 2023; 10:13. [PMID: 37055399 PMCID: PMC10102179 DOI: 10.1038/s41439-023-00241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/15/2023] Open
Abstract
Mutations in the neuroblastoma amplified sequence (NBAS) gene correlate with infantile acute liver failure (ALF). Herein, we identified a novel NBAS mutation in a female infant diagnosed with recurrent ALF. Whole-exome and Sanger sequencing revealed that the proband carried a compound heterozygous mutation (c.938_939delGC and c.1342 T > C in NBAS). NBAS c.938_939delGC was presumed to encode a truncated protein without normal function, whereas NBAS c.1342 T > C encoded NBAS harboring the conserved Cys448 residue mutated to Arg448 (p.C448R). The proportion of CD4 + T cells decreased in the patient's peripheral CD45 + cells, whereas that of CD8 + T cells increased. Moreover, upon transfecting the same amount of DNA expression vector (ectopic expression) encoding wild-type NBAS and p.C448R NBAS, the group transfected with the p.C448R NBAS-expressing vector expressed less NBAS mRNA and protein. Furthermore, ectopic expression of the same amount of p.C448R NBAS protein as the wild-type resulted in more intracellular reactive oxygen species and the induction of apoptosis and expression of marker proteins correlating with endoplasmic reticulum stress in more cultured cells. This study indicated that p.C448R NBAS has a function different from that of wild-type NBAS and that the p.C448R NBAS mutation potentially affects T-cell function and correlates with ALF.
Collapse
Affiliation(s)
- Juhua Ji
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, 226001, Nantong, Jiangsu, China
| | - JunJun Jia
- Qinshen Traditional Chinese Medicine (TCM) Outpatient Department, 20052, Shanghai, China
| | - Qi Wu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Ruochen Cong
- Department of Radiology, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Medical Research Center, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Baofeng Zhu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Xin Chu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| |
Collapse
|
14
|
Priglinger CS, Rudolph G, Schmid I, Mazzola P, Haack TB, Reith M, Stingl K, Weisschuh N. Characterization of a novel non-canonical splice site variant (c.886-5T>A) in NBAS and description of the associated phenotype. Mol Genet Genomic Med 2023; 11:e2120. [PMID: 36479642 PMCID: PMC10009903 DOI: 10.1002/mgg3.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biallelic pathogenic variants in the neuroblastoma-amplified sequence (NBAS) gene manifest in a broad spectrum of disorders, including, but not limited to recurrent acute liver failure, skeletal dysmorphism, susceptibility to infections, and SOPH syndrome with its cardinal symptoms of short stature, optic atrophy, and Pelger-Huët anomaly. We aimed to present clinical and genetic characteristics of two sisters (20 and 15 years old) who were diagnosed with optic atrophy and cone dystrophy in childhood. Genome sequencing revealed two novel variants in NBAS in compound heterozygous state in both sisters, namely a 1-bp deletion predicted to result in a premature termination codon (c.5104del; p.(Met1702*)), and a non-canonical splice site variant of unclear significance (c.886-5T>A; p.?). RESULTS Clinical examination and history revealed cone dystrophy, optic atrophy, and Pelger-Huët anomaly, but no short stature, recurrent acute liver failure, or susceptibility to infections. RNA analysis revealed that the c.886-5T>A variant results in two aberrant transcripts that are predicted to lead to in frame amino acid changes in the β-propeller region of the protein. CONCLUSION We hypothesize that the phenotype of our subjects, which appears to be at the end of the spectrum of NBAS-related disorders, could be explained by residual protein function mediated by the non-canonical splice site variant c.886-5T>A. Our study contributes to the existing knowledge on the genotypic and phenotypic spectrum of NBAS-related disorders.
Collapse
Affiliation(s)
- Claudia S Priglinger
- University Eye Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Günter Rudolph
- University Eye Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Irene Schmid
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Milda Reith
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Nicole Weisschuh
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Mann JP, Lenz D, Stamataki Z, Kelly D. Common mechanisms in pediatric acute liver failure. Trends Mol Med 2023; 29:228-240. [PMID: 36496278 DOI: 10.1016/j.molmed.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Acute liver failure (ALF) is a rare but potentially fatal disease in children. The etiology is multifactorial, including infection, autoimmune, and genetic disorders, as well as indeterminate hepatitis, which has a higher requirement for liver transplantation. Activation of the innate and adaptive immune systems leads to hepatocyte-specific injury which is mitigated by T regulatory cell activation. Recovery of the native liver depends on activation of apoptotic and regenerative pathways, including the integrated stress response (ISR; e.g., PERK), p53, and HNF4α. Loss-of-function mutations in these pathways cause recurrent ALF in response to non-hepatotropic viruses. Deeper understanding of these mechanisms will lead to improved diagnosis, management, and outcomes for pediatric ALF.
Collapse
Affiliation(s)
- Jake P Mann
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK; Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
16
|
Zhozhikov L, Sukhomyasova A, Gurinova E, Nogovicina A, Vasilev F, Maksimova N. Origins of SOPH syndrome: A study of 93 Yakut patients with review of C-terminal phenotype. Clin Genet 2023; 103:625-635. [PMID: 36843433 DOI: 10.1111/cge.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
Since the first report of SOPH syndrome among the Yakut population in 2010, new clinical data of SOPH-like conditions continue to appear. We expand the phenotypic spectrum of SOPH syndrome and perform a comparative analysis of Yakut SOPH patients' clinical data with SOPH-like conditions reported in the world scientific literature to form a foundation for NBAS pathogenesis discussion. Clinical data from the genetic records of 93 patients with SOPH syndrome and global survey data on patients with pathogenic variants of the C-terminal in the NBAS gene were collected. A detailed phenotype description of patients is presented with a total number of 111 individuals. Underweight below the fifth centile and prone to delayed bone age in Yakut SOPH patients are retrospectively observed. We outline the short stature with optic atrophy as the leading phenotyping trait for C-terminal NBAS patients. The pathophysiology and patients management of SOPH-like conditions are discussed.
Collapse
Affiliation(s)
- Leonid Zhozhikov
- Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, North-Eastern Federal University, Yakutsk, Russia
| | - Aitalina Sukhomyasova
- Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, North-Eastern Federal University, Yakutsk, Russia
- Medical Genetic Center, Republic Hospital No1 - National Center of Medicine, Yakutsk, Russia
| | - Elizaveta Gurinova
- Medical Genetic Center, Republic Hospital No1 - National Center of Medicine, Yakutsk, Russia
| | - Anna Nogovicina
- Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, North-Eastern Federal University, Yakutsk, Russia
| | - Filipp Vasilev
- Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, North-Eastern Federal University, Yakutsk, Russia
| | - Nadezhda Maksimova
- Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, North-Eastern Federal University, Yakutsk, Russia
| |
Collapse
|
17
|
Akesson LS, Rius R, Brown NJ, Rosenbaum J, Donoghue S, Stormon M, Chai C, Bordador E, Guo Y, Hakonarson H, Compton AG, Thorburn DR, Amarasekera S, Marum J, Monaco A, Lee C, Chong B, Lunke S, Stark Z, Christodoulou J. Distinct diagnostic trajectories in NBAS-associated acute liver failure highlights the need for timely functional studies. JIMD Rep 2022; 63:240-249. [PMID: 35433172 PMCID: PMC8995841 DOI: 10.1002/jmd2.12280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Variants of uncertain significance (VUS) are commonly found following genomic sequencing, particularly in ethnically diverse populations that are underrepresented in large population databases. Functional characterization of VUS may assist in variant reclassification, however these studies are not readily available and often rely on research funding and good will. We present four individuals from three families at different stages of their diagnostic trajectory with recurrent acute liver failure (RALF) and biallelic NBAS variants, confirmed by either trio analysis or cDNA studies. Functional characterization was undertaken, measuring NBAS and p31 levels by Western blotting, demonstrating reduced NBAS levels in two of three families, and reduced p31 levels in all three families. These results provided functional characterization of the molecular impact of a missense VUS, allowing reclassification of the variant and molecular confirmation of NBAS-associated RALF. Importantly, p31 was decreased in all individuals, including an individual with two missense variants where NBAS protein levels were preserved. These results highlight the importance of access to timely functional studies after identification of putative variants, and the importance of considering a range of assays to validate variants whose pathogenicity is uncertain. We suggest that funding models for genomic sequencing should consider incorporating capabilities for adjunct RNA, protein, biochemical, and other specialized tests to increase the diagnostic yield which will lead to improved medical care, increased equity, and access to molecular diagnoses for all patients.
Collapse
Affiliation(s)
- Lauren S. Akesson
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- SA PathologySA HealthAdelaideSAAustralia
- School of Biomedicine, Faculty of Medicine, Dentistry and Health SciencesUniversity of AdelaideAdelaideAustraliaAustralia
| | - Rocio Rius
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Natasha J. Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jeremy Rosenbaum
- Department of GastroenterologyRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Sarah Donoghue
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Michael Stormon
- Department of GastroenterologyChildren's Hospital WestmeadSydneyNew South WalesAustralia
- Discipline of Child & Adolescent Health, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Charmaine Chai
- Department of GastroenterologyChildren's Hospital WestmeadSydneyNew South WalesAustralia
| | - Esmeralda Bordador
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Yiran Guo
- Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Data‐Driven Discovery in BiomedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alison G. Compton
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - David R. Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Sumudu Amarasekera
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Justine Marum
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Alisha Monaco
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Crystle Lee
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PathologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - John Christodoulou
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
- Discipline of Child & Adolescent Health, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
18
|
Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, Alston CL, Ban R, Beblo S, Berutti R, Blessing H, Ciara E, Distelmaier F, Freisinger P, Häberle J, Hayflick SJ, Hempel M, Itkis YS, Kishita Y, Klopstock T, Krylova TD, Lamperti C, Lenz D, Makowski C, Mosegaard S, Müller MF, Muñoz-Pujol G, Nadel A, Ohtake A, Okazaki Y, Procopio E, Schwarzmayr T, Smet J, Staufner C, Stenton SL, Strom TM, Terrile C, Tort F, Van Coster R, Vanlander A, Wagner M, Xu M, Fang F, Ghezzi D, Mayr JA, Piekutowska-Abramczuk D, Ribes A, Rötig A, Taylor RW, Wortmann SB, Murayama K, Meitinger T, Gagneur J, Prokisch H. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med 2022; 14:38. [PMID: 35379322 PMCID: PMC8981716 DOI: 10.1186/s13073-022-01019-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.
Collapse
Affiliation(s)
- Vicente A. Yépez
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Mertes
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Nicholas H. Smith
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Rui Ban
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Center for Rare Diseases, University Hospitals, University of Leipzig, Leipzig, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Blessing
- Department for Inborn Metabolic Diseases, Children’s and Adolescents’ Hospital, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elżbieta Ciara
- Department of Medical Genetics, Children’s Memorial Health Institute, Warsaw, Poland
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zürich, Switzerland
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Makowski
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michaela F. Müller
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnieszka Nadel
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Anna Meyer Children Hospital, Florence, Italy
| | - Thomas Schwarzmayr
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah L. Stenton
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M. Strom
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caterina Terrile
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manting Xu
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fang Fang
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnès Rötig
- Université de Paris, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Saskia B. Wortmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
19
|
Cheng Y, Xia Z, Huang C, Xu H. Case report: A novel cause of acute liver failure in children: A combination of human herpesvirus‐6 infection and homozygous mutation in
NBAS
gene. J Clin Lab Anal 2022; 36:e24343. [PMID: 35349761 PMCID: PMC9102514 DOI: 10.1002/jcla.24343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Etiologies of acute liver failure in children can be multiple factors including virus infection, drug‐induced damage, and different pathogens. Next‐generation sequencing (NGS) is an emerging method for pan‐pathogen screening. Here we reported a case of acute liver failure in a 15‐month‐old male, using NGS and gene sequencing to determine the cause of acute liver failure may be caused by pathogens, drug‐induction and pathogenic variant gene.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Pediatric Intensive Care Unit Maternal and Child Health Hospital of Hubei Province (Women and Children’s Hospital of Hubei Province) Wuhan China
| | - Zhi Xia
- Department of Pediatric Intensive Care Unit Maternal and Child Health Hospital of Hubei Province (Women and Children’s Hospital of Hubei Province) Wuhan China
| | - Chengjiao Huang
- Department of Pediatric Intensive Care Unit Maternal and Child Health Hospital of Hubei Province (Women and Children’s Hospital of Hubei Province) Wuhan China
| | - Hui Xu
- Department of Pediatric Intensive Care Unit Maternal and Child Health Hospital of Hubei Province (Women and Children’s Hospital of Hubei Province) Wuhan China
| |
Collapse
|
20
|
Zellos A, Debray D, Indolfi G, Czubkowski P, Samyn M, Hadzic N, Gupte G, Fischler B, Smets F, de Cléty SC, Grenda R, Mozer Y, Mancell S, Jahnel J, Auzinger G, Worth A, Lisman T, Staufner C, Baumann U, Dhawan A, Alonso E, Squires RH, Verkade HJ. Proceedings of ESPGHAN Monothematic Conference 2020: "Acute Liver Failure in Children": Diagnosis and Initial Management. J Pediatr Gastroenterol Nutr 2022; 74:e45-e56. [PMID: 35226643 DOI: 10.1097/mpg.0000000000003341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The Hepatology Committee of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) aims to educate pediatric gastroenterologists, members of ESPGHAN and professionals from other specialties promoting an exchange of clinical expertise in the field of pediatric hepatology. Herewith we have concentrated on detailing the recent advances in acute liver failure in infants and children. METHODS The 2020 ESPGHAN monothematic three-day conference on pediatric hepatology disease, entitled "acute liver failure" (ALF), was organized in Athens, Greece. ALF is a devastating disease with high mortality and most cases remain undiagnosed. As knowledge in diagnosis and treatment of ALF in infants and children has increased in the past decades, the objective was to update physicians in the field with the latest research and developments in early recognition, curative therapies and intensive care management, imaging techniques and treatment paradigms in these age groups. RESULTS In the first session, the definition, epidemiology, various causes of ALF, in neonates and older children and recurrent ALF (RALF) were discussed. The second session was dedicated to new aspects of ALF management including hepatic encephalopathy (HE), coagulopathy, intensive care interventions, acute on chronic liver failure, and the role of imaging in treatment and prognosis. Oral presentations by experts in various fields are summarized highlighting key learning points. CONCLUSIONS The current report summarizes the major learning points from this meeting. It also identifies areas where there is gap of knowledge, thereby identifying the research agenda for the near future.
Collapse
Affiliation(s)
- Aglaia Zellos
- First Department of Pediatrics, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dominique Debray
- Pediatric Hepatology Unit, Hôpital Necker-Enfants Malades, Reference Center for Rare Pediatric Liver Diseases, ERN Rare Liver and Transplant Child, Paris, France
| | - Giuseppe Indolfi
- Department Neurofarba University of Florence, Meyer Children's University Hospital of Florence, Florence, Italy
| | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology and Nutritional Disorders and Pediatrics. The Children's Memorial Health Institute, Warsaw, Poland
| | - Marianne Samyn
- Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital
| | | | - Girish Gupte
- Birmingham Children's Hospital NHS Trust, Birmingham, UK
| | - Björn Fischler
- Department of Pediatrics, CLINTEC Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Françoise Smets
- Pediatrics, Cliniques universitaires Saint-Luc, Université Catholique de Louvain
| | - Stéphan Clément de Cléty
- Paediatric intensive care, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation & Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Yael Mozer
- Schneider Children's Medical Center, Israel
| | | | | | - Georg Auzinger
- King's College Hospital, Department Chair, Critical Care Cleveland Clinic
| | - Austen Worth
- Great Ormond Street Hospital for Children, London, UK
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Anil Dhawan
- Variety Children Hospital, Director Paediatric Liver GI and Nutrition and Mowat Labs, King's College Hospital, London, UK
| | - Estelle Alonso
- Siragusa Transplant Center, Ann and Robert H. Lurie Children' Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Henkjan J Verkade
- Department of Paediatrics, University of Groningen, Beatrix Children's Hospital, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
21
|
Meng X, Jiang L. Prenatal detection of chromosomal abnormalities and copy number variants in fetuses with congenital gastrointestinal obstruction. BMC Pregnancy Childbirth 2022; 22:50. [PMID: 35045821 PMCID: PMC8772214 DOI: 10.1186/s12884-022-04401-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Congenital gastrointestinal obstruction (CGIO) mainly refers to the stenosis or atresia of any part from the esophagus to the anus and is one of the most common surgical causes in the neonatal period. The concept of genetic factors as an etiology of CGIO has been accepted, but investigations about CGIO have mainly focused on aneuploidy, and the focus has been on duodenal obstruction. The objective of this study was to evaluate the risk of chromosome aberrations (including numeric and structural aberrations) in different types of CGIO. A second objective was to assess the risk of abnormal CNVs detected by copy number variation sequencing (CNV-seq) in fetuses with different types of CGIO. Methods Data from pregnancies referred for invasive testing and CNV-seq due to sonographic diagnosis of fetal CGIO from 2015 to 2020 were obtained retrospectively from the computerized database. The rates of chromosome aberrations and abnormal CNV-seq findings for isolated CGIOs and complicated CGIOs and different types of CGIOs were calculated. Results Of the 240 fetuses with CGIO that underwent karyotyping, the detection rate of karyotype abnormalities in complicated CGIO was significantly higher than that of the isolated group (33.8% vs. 10.8%, p < 0.01). Ninety-three cases with normal karyotypes further underwent CNV-seq, and CNV-seq revealed an incremental diagnostic value of 9.7% over conventional karyotyping. In addition, the incremental diagnostic yield of CNV-seq analysis in complicated CGIOs (20%) was higher than that in isolated CGIOs (4.8%), and the highest prevalence of pathogenic CNVs/likely pathogenic CNVs was found in the duodenal stenosis/atresia group (17.5%), followed by the anorectal malformation group (15.4%). The 13q deletion, 10q26 deletion, 4q24 deletion, and 2p24 might be additional genetic etiologies of duodenal stenosis/atresia. Conclusions The risk of pathogenic chromosomal abnormalities and CNVs increased in the complicated CGIO group compared to that in the isolated CGIO group, especially when fetuses presented duodenal obstruction (DO) and anorectal malformation. CNV-seq was recommended to detect submicroscopic chromosomal aberrations for DO and anorectal malformation when the karyotype was normal. The relationship between genotypes and phenotypes needs to be explored in the future to facilitate prenatal diagnosis of fetal CGIO and yield new clues into their etiologies.
Collapse
|
22
|
Palagano E, Gordon CT, Uva P, Strina D, Dimartino C, Villa A, Amiel J, Guion-Almeida ML, Vendramini-Pittoli S, Kokitsu-Nakata NM, Zechi-Ceide RM, Sobacchi C. A novel intronic variant in PIGB in Acrofrontofacionasal dysostosis type 1 patients expands the spectrum of phenotypes associated with GPI biosynthesis defects. Bone 2021; 153:116152. [PMID: 34400385 DOI: 10.1016/j.bone.2021.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/15/2022]
Abstract
Acrofrontofacionasal dysostosis type 1 (AFFND1) is an extremely rare disorder characterized by several dysmorphic features, skeletal abnormalities and intellectual disability, and described only in seven patients in the literature. A biallelic variant in the Neuroblastoma Amplified Sequence (NBAS) gene was recently identified in two Indian patients with AFFND1. Here we report genetic investigation of AFFND1 in the originally described Brazilian families and the identification of an extremely rare, recessively-inherited, intronic variant in the Phosphatidylinositol Glycan class B (PIGB) gene NC_000015.10 (NM_004855.4): c.795-19T > G) in the affected individuals. The PIGB gene encodes an enzyme involved in the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor, which is required for the post-translational modification of a large variety of proteins, enabling their correct cellular localization and function. Recessive variants in PIGB have previously been reported in individuals with a neurodevelopmental syndrome having partial overlap with AFFND1. In vitro assays demonstrated that the intronic variant leads to exon skipping, suggesting the Brazilian AFFND1 patients may be null for PIGB, in agreement with their severe clinical phenotype. These data increase the number of pathogenic variants in the PIGB gene, place AFFND1 among GPI deficiencies and extend the spectrum of phenotypes associated with GPI biosynthesis defects.
Collapse
Affiliation(s)
- Eleonora Palagano
- CNR-IRGB, Milan Unit, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | | | - Paolo Uva
- IRCCS G. Gaslini, Genoa, Italy; Italian Institute of Technology, Genoa, Italy
| | - Dario Strina
- CNR-IRGB, Milan Unit, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | | | - Anna Villa
- CNR-IRGB, Milan Unit, Milan, Italy; San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jeanne Amiel
- INSERM UMR1163, Institut Imagine, Université de Paris, Paris, France; Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Maria L Guion-Almeida
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Siulan Vendramini-Pittoli
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Nancy M Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Roseli M Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, Brazil
| | - Cristina Sobacchi
- CNR-IRGB, Milan Unit, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano (MI), Italy.
| |
Collapse
|
23
|
Dirim AB, Kalayci T, Guzel Dirim M, Demir S, Cavus B, Cifcibasi Ormeci A, Akyuz F, Kaymakoglu S. A mysterious cause of recurrent acute liver dysfunction for over a decade. Gastroenterol Rep (Oxf) 2021; 10:goab053. [PMID: 35382171 PMCID: PMC8973007 DOI: 10.1093/gastro/goab053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Ahmet Burak Dirim
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tugba Kalayci
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Merve Guzel Dirim
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Demir
- Division of Allergy and Immunology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Bilger Cavus
- Division of Gastroenterology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Asli Cifcibasi Ormeci
- Division of Gastroenterology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Filiz Akyuz
- Division of Gastroenterology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sabahattin Kaymakoglu
- Division of Gastroenterology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
24
|
Geem D, Jiang W, Rytting HB, Chandrakasan S, Salem A, Stevens JP, Karpen SJ, Magliocca JF, Romero R, Rodriguez DS. Resolution of recurrent pediatric acute liver failure with liver transplantation in a patient with NBAS mutation. Pediatr Transplant 2021; 25:e14084. [PMID: 34288298 PMCID: PMC8515489 DOI: 10.1111/petr.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/17/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pediatric acute liver failure (PALF) remains an enigmatic process of rapid end-organ dysfunction associated with a variety of pathologic conditions though the predominant cause is indeterminate. A growing body of research has identified mutations in the NBAS gene to be associated with recurrent acute liver failure and multi-systemic disease including short stature, skeletal dysplasia, facial dysmorphism, immunologic abnormalities, and Pelger-Huët anomaly. METHODS AND RESULTS Here, we describe a 4-year-old girl who presented with dehydration in the setting of acute gastroenteritis and fever but went on to develop PALF on day 2 of hospitalization. She clinically recovered with supportive measures, but after discharge, had at least 2 additional episodes of PALF. Ultimately, she underwent liver transplant and her recurrent episodes of PALF did not recur throughout a 6-year follow-up period. Whole-exome sequencing post-liver transplant initially revealed two variants of uncertain significance in the NBAS gene. Parental studies confirmed the c.1549C > T(p.R517C; now likely pathogenic) variant from her mother and a novel c.4646T > C(p.L1549P) variant from her father. In silico analyses predicted these variants to have a deleterious effect on protein function. Consistent with previously characterized NBAS mutation-associated disease (NMAD), our patient demonstrated the following features: progeroid facial features, hypoplasia of the 12th ribs, Pelger-Huët anomaly on peripheral blood smear, and abnormal B and NK cell function. CONCLUSION Altogether, we describe a novel pathogenic variant in the NBAS gene of a patient with NMAD and report the resolution of recurrent PALF secondary to NMAD following liver transplantation.
Collapse
Affiliation(s)
- Duke Geem
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Heather B. Rytting
- Department of Pathology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Anand Salem
- Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - James P. Stevens
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F. Magliocca
- Department of Surgery, Transplant, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Rene Romero
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Dellys Soler Rodriguez
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Lenz D, Pahl J, Hauck F, Alameer S, Balasubramanian M, Baric I, Boy N, Church JA, Crushell E, Dick A, Distelmaier F, Gujar J, Indolfi G, Lurz E, Peters B, Schwerd T, Serranti D, Kölker S, Klein C, Hoffmann GF, Prokisch H, Greil J, Cerwenka A, Giese T, Staufner C. NBAS Variants Are Associated with Quantitative and Qualitative NK and B Cell Deficiency. J Clin Immunol 2021; 41:1781-1793. [PMID: 34386911 PMCID: PMC8604887 DOI: 10.1007/s10875-021-01110-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Biallelic pathogenic NBAS variants manifest as a multisystem disorder with heterogeneous clinical phenotypes such as recurrent acute liver failure, growth retardation, and susceptibility to infections. This study explores how NBAS-associated disease affects cells of the innate and adaptive immune system. METHODS Clinical and laboratory parameters were combined with functional multi-parametric immunophenotyping methods in fifteen NBAS-deficient patients to discover possible alterations in their immune system. RESULTS Our study revealed reduced absolute numbers of mature CD56dim natural killer (NK) cells. Notably, the residual NK cell population in NBAS-deficient patients exerted a lower potential for activation and degranulation in response to K562 target cells, suggesting an NK cell-intrinsic role for NBAS in the release of cytotoxic granules. NBAS-deficient NK cell activation and degranulation was normalized upon pre-activation by IL-2 in vitro, suggesting that functional impairment was reversible. In addition, we observed a reduced number of naïve B cells in the peripheral blood associated with hypogammaglobulinemia. CONCLUSION In summary, we demonstrate that pathogenic biallelic variants in NBAS are associated with dysfunctional NK cells as well as impaired adaptive humoral immunity.
Collapse
Affiliation(s)
- Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Jens Pahl
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Munich Centre for Rare Diseases (M-ZSELMU), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Seham Alameer
- Pediatric Department, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Ivo Baric
- Department of Pediatrics, School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Nikolas Boy
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Joseph A Church
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Anke Dick
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jidnyasa Gujar
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Giuseppe Indolfi
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Firenze, Italy
| | - Eberhard Lurz
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Bianca Peters
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Daniele Serranti
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Firenze, Italy
| | - Stefan Kölker
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Munich Centre for Rare Diseases (M-ZSELMU), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Georg F Hoffmann
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Johann Greil
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Heidelberg, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Thomas Giese
- Institute of Immunology and German Center for Infection Research (DZIF), Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
26
|
Nazmi F, Ozdogan E, Mungan NO, Arikan C. Liver involvement in neuroblastoma amplified sequence gene deficiency is not limited to acute injury: Fibrosis silently continues. Liver Int 2021; 41:2433-2439. [PMID: 34396667 DOI: 10.1111/liv.15038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 02/13/2023]
Abstract
Biallelic mutations in neuroblastoma amplified sequence gene (NBAS) is a rare disease which is characterized by recurrent liver failure (RALF). We reported the novel mutations, clinical characteristics and long-term outcomes of 5 patients with novel biallelic NBAS variants. Four patients (80%) had acute, episodic liver crises (LC) triggered by fever, with a median age of onset of 8.5 months. The median age in the last episode was 34 months. Median number of liver episodes was 4. The course of ALF was complicated by hepatic encephalopathy and hypoglycaemia in all patients with ALF. Two patients recovered with conservative treatment, 2 required liver transplantation (LT) and 1 died during the fourth episode. Long-term post-transplant follow-up showed normal liver function and histology. There is no hepatic or extrahepatic recurrence after LT. Non-transplanted patients exhibited fibrosis in either biopsy or elastography. Despite a reduction in the frequency of clinically significant episodes, patients may exhibit ongoing liver injury and fibrosis. An acute on chronic liver failure with predominant cholestasis can be an alternative presentation.
Collapse
Affiliation(s)
- Farinaz Nazmi
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
| | - Elif Ozdogan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Koc University School of Medicine, Istanbul, Turkey
| | - Neslihan O Mungan
- Pediatric Metabolism and Nutrition, Cukurova University, Adana, Turkey
| | - Cigdem Arikan
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey.,Department of Pediatric Gastroenterology, Hepatology and Nutrition, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
27
|
Lipiński P, Greczan M, Piekutowska-Abramczuk D, Jurkiewicz E, Bakuła A, Socha P, Jankowska I, Rokicki D, Tylki-Szymańska A. NBAS deficiency due to biallelic c.2809C > G variant presenting with recurrent acute liver failure with severe hyperammonemia, acquired microcephaly and progressive brain atrophy. Metab Brain Dis 2021; 36:2169-2172. [PMID: 34427841 PMCID: PMC8437862 DOI: 10.1007/s11011-021-00827-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/14/2021] [Indexed: 12/04/2022]
Abstract
Biallelic pathogenic variants in the neuroblastoma amplified sequence (NBAS) gene were firstly (2015) identified as a cause of fever-triggered recurrent acute liver failure (RALF). Since then, some patients with NBAS deficiency presenting with neurologic features, including a motor delay, intellectual disability, muscular hypotonia and a mild brain atrophy, have been reported. Here, we describe a case of pediatric patient diagnosed with NBAS deficiency due to a homozygous c.2809C > G, p.(Pro937Ala) variant presenting with RALF with severe hyperammonemia, acquired microcephaly and progressive brain atrophy. Not reported in the literature findings include severe hyperammonemia during ALF episode, and neurologic features in the form of acquired progressive microcephaly with brain atrophy. The latter raises the hypothesis about a primary neurologic phenotype in NBAS deficiency.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, al. Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | | | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children's Memorial Health Institute, Warsaw, Poland
| | - Agnieszka Bakuła
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| |
Collapse
|
28
|
Hegarty R, Gibson P, Sambrotta M, Strautnieks S, Foskett P, Ellard S, Baptista J, Lillis S, Bansal S, Vara R, Dhawan A, Grammatikopoulos T, Thompson RJ. Study of Acute Liver Failure in Children Using Next Generation Sequencing Technology. J Pediatr 2021; 236:124-130. [PMID: 34023347 DOI: 10.1016/j.jpeds.2021.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To use next generation sequencing (NGS) technology to identify undiagnosed, monogenic diseases in a cohort of children who suffered from acute liver failure (ALF) without an identifiable etiology. STUDY DESIGN We identified 148 under 10 years of age admitted to King's College Hospital, London, with ALF of indeterminate etiology between 2000 and 2018. A custom NGS panel of 64 candidate genes known to cause ALF and/or metabolic liver disease was constructed. Targeted sequencing was carried out on 41 children in whom DNA samples were available. Trio exome sequencing was performed on 4 children admitted during 2019. A comparison of the clinical characteristics of those identified with biallelic variants against those without biallelic variants was then made. RESULTS Homozygous and compound heterozygous variants were identified in 8 out of 41 children (20%) and 4 out of 4 children (100%) in whom targeted and exome sequencing were carried out, respectively. The genes involved were NBAS (3 children); DLD (2 children); and CPT1A, FAH, LARS1, MPV17, NPC1, POLG, SUCLG1, and TWINK (1 each). The 12 children who were identified with biallelic variants were younger at presentation and more likely to die in comparison with those who did not: median age at presentation of 3 months and 30 months and survival rate 75% and 97%, respectively. CONCLUSIONS NGS was successful in identifying several specific etiologies of ALF. Variants in NBAS and mitochondrial DNA maintenance genes were the most common findings. In the future, a rapid sequencing NGS workflow could help in reaching a timely diagnosis and facilitate clinical decision making in children with ALF.
Collapse
Affiliation(s)
- Robert Hegarty
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Institute of Liver Studies, King's College London, London, United Kingdom; Pediatric Liver, GI and Nutrition Center and MowatLabs, King's College Hospital, London, United Kingdom.
| | - Philippa Gibson
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Melissa Sambrotta
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Sandra Strautnieks
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Pierre Foskett
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Sian Ellard
- Exeter Genetics Laboratory at Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Julia Baptista
- Exeter Genetics Laboratory at Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Suzanne Lillis
- Molecular Genetics Laboratory at Guy's Hospital, London, United Kingdom
| | - Sanjay Bansal
- Pediatric Liver, GI and Nutrition Center and MowatLabs, King's College Hospital, London, United Kingdom
| | - Roshni Vara
- Pediatric Liver, GI and Nutrition Center and MowatLabs, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Institute of Liver Studies, King's College London, London, United Kingdom; Pediatric Liver, GI and Nutrition Center and MowatLabs, King's College Hospital, London, United Kingdom
| | - Tassos Grammatikopoulos
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Institute of Liver Studies, King's College London, London, United Kingdom; Pediatric Liver, GI and Nutrition Center and MowatLabs, King's College Hospital, London, United Kingdom
| | - Richard J Thompson
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Institute of Liver Studies, King's College London, London, United Kingdom; Pediatric Liver, GI and Nutrition Center and MowatLabs, King's College Hospital, London, United Kingdom
| |
Collapse
|
29
|
Foveal hypoplasia in short stature with optic atrophy and Pelger-Huët anomaly syndrome with neuroblastoma-amplified sequence (NBAS) gene mutation. J AAPOS 2021; 25:257-259.e2. [PMID: 28115293 DOI: 10.1016/j.jaapos.2016.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 11/24/2022]
Abstract
Short stature with optic atrophy and Pelger-Huët anomaly (SOPH) syndrome has been known to cause optic atrophy and achromatopsia resulting from stationary cone dysfunction. This report describes foveal hypoplasia in a brother and sister with SOPH syndrome, which is associated with defects in the neuroblastoma amplified sequence (NBAS) gene. As NBAS gene may play an important role in retinal homeostasis, patients with SOPH should be monitored carefully for ocular abnormalities.
Collapse
|
30
|
Cotrina-Vinagre FJ, Rodríguez-García ME, Martín-Hernández E, Durán-Aparicio C, Merino-López A, Medina-Benítez E, Martínez-Azorín F. Characterization of a complex phenotype (fever-dependent recurrent acute liver failure and osteogenesis imperfecta) due to NBAS and P4HB variants. Mol Genet Metab 2021; 133:201-210. [PMID: 33707149 DOI: 10.1016/j.ymgme.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/26/2023]
Abstract
We report the clinical, biochemical and genetic findings from a Spanish boy of Caucasian origin who presented with fever-dependent RALF (recurrent acute liver failure) and osteogenesis imperfecta (OI). Whole-exome sequencing (WES) uncovered two compound heterozygous variants in NBAS (c.[1265 T > C];[1549C > T]:p.[(Leu422Pro)];[(Arg517Cys)]), and a heterozygous variant in P4HB (c.[194A > G];[194=]:p.[(Lys65Arg)];[(Lys65=)]) that was transmitted from the clinically unaffected mother who was mosaic carrier of the variant. Variants in NBAS protein have been associated with ILFS2 (infantile liver failure syndrome-2), SOPH syndrome (short stature, optic nerve atrophy, and Pelger-Huët anomaly syndrome), and multisystem diseases. Several patients showed clinical manifestations affecting the skeletal system, such as osteoporosis, pathologic fractures and OI. Experiments in the patient's fibroblasts demonstrated that mutated NBAS protein is overexpressed and thermally unstable, and reduces the expression of MGP, a regulator of bone homeostasis. Variant in PDI (protein encoded by P4HB) has been associated with CLCRP1 (Cole-Carpenter syndrome-1), a type of severe OI. An increase of COL1A2 protein retention was observed in the patient's fibroblasts. In order to study if the variant in P4HB was involved in the alteration in collagen trafficking, overexpression experiments of PDI were carried out. These experiments showed that overexpression of mutated PDI protein produces an increase in COL1A2 retention. In conclusion, these results corroborate that the variants in NBAS are responsible for the liver phenotype, and demonstrate that the variant in P4HB is involved in the bone phenotype, probably in synergy with NBAS variants.
Collapse
Affiliation(s)
- Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain
| | - María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain
| | - Elena Martín-Hernández
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain; Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Cristina Durán-Aparicio
- Departamento de Pediatría, Unidad de Gastroenterología y Hepatología Pediátricas, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Abraham Merino-López
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain
| | - Enrique Medina-Benítez
- Departamento de Pediatría, Unidad de Gastroenterología y Hepatología Pediátricas, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain.
| |
Collapse
|
31
|
Krishnan S, Rughani A, Tsai A, Palle S. Novel compound heterozygous variants in the NBAS gene in a child with osteogenesis imperfecta and recurrent acute liver failure. BMJ Case Rep 2021; 14:14/2/e234993. [PMID: 33542026 PMCID: PMC7868262 DOI: 10.1136/bcr-2020-234993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteogenesis imperfecta (OI) consists of a group of genetically and phenotypically heterogeneous diseases characterised by bone fragility. Recent improvement in gene sequencing methods has helped us identify rare forms of OI that are inherited in an autosomal recessive manner. Paediatric endocrinology was consulted on a newborn girl with multiple fractures and wavy thin ribs noted on X-rays. In addition to the bone phenotype, she also has short stature and recurrent acute liver failure (ALF) episodes triggered by intercurrent illness. Whole exome sequencing revealed two novel compound heterozygous variants in neuroblastoma amplified sequence (NBAS) gene. NBAS gene codes for a protein that is involved in nonsense-mediated decay pathway and retrograde transport of proteins from Golgi to endoplasmic reticulum. Recognition of pathogenic variants in this gene as a rare cause of autosomal recessive OI and recurrent ALF has important therapeutic implications.
Collapse
Affiliation(s)
- Sowmya Krishnan
- Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ankur Rughani
- Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anne Tsai
- Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sirish Palle
- Pediatrics, Section of Gastroenterology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
32
|
Brauner R, Bignon-Topalovic J, Bashamboo A, McElreavey K. Pituitary stalk interruption syndrome is characterized by genetic heterogeneity. PLoS One 2020; 15:e0242358. [PMID: 33270637 PMCID: PMC7714207 DOI: 10.1371/journal.pone.0242358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pituitary stalk interruption syndrome is a rare disorder characterized by an absent or ectopic posterior pituitary, interrupted pituitary stalk and anterior pituitary hypoplasia, as well as in some cases, a range of heterogeneous somatic anomalies. A genetic cause is identified in only around 5% of all cases. Here, we define the genetic variants associated with PSIS followed by the same pediatric endocrinologist. Exome sequencing was performed in 52 (33 boys and 19 girls), including 2 familial cases single center pediatric cases, among them associated 36 (69.2%) had associated symptoms or syndromes. We identified rare and novel variants in genes (37 families with 39 individuals) known to be involved in one or more of the following-midline development and/or pituitary development or function (BMP4, CDON, GLI2, GLI3, HESX1, KIAA0556, LHX9, NKX2-1, PROP1, PTCH1, SHH, TBX19, TGIF1), syndromic and non-syndromic forms of hypogonadotropic hypogonadism (CCDC141, CHD7, FANCA, FANCC, FANCD2, FANCE, FANCG, IL17RD, KISS1R, NSMF, PMM2, SEMA3E, WDR11), syndromic forms of short stature (FGFR3, NBAS, PRMT7, RAF1, SLX4, SMARCA2, SOX11), cerebellum atrophy with optic anomalies (DNMT1, NBAS), axonal migration (ROBO1, SLIT2), and agenesis of the corpus callosum (ARID1B, CC2D2A, CEP120, CSPP1, DHCR7, INPP5E, VPS13B, ZNF423). Pituitary stalk interruption syndrome is characterized by a complex genetic heterogeneity, that reflects a complex phenotypic heterogeneity. Seizures, intellectual disability, micropenis or cryptorchidism, seen at presentation are usually considered as secondary to the pituitary deficiencies. However, this study shows that they are due to specific gene mutations. PSIS should therefore be considered as part of the phenotypic spectrum of other known genetic syndromes rather than as specific clinical entity.
Collapse
Affiliation(s)
- Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | | | - Anu Bashamboo
- Human Developmental Genetics Unit, Institute Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institute Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Ritelli M, Palagano E, Cinquina V, Beccagutti F, Chiarelli N, Strina D, Hall IF, Villa A, Sobacchi C, Colombi M. Genome-first approach for the characterization of a complex phenotype with combined NBAS and CUL4B deficiency. Bone 2020; 140:115571. [PMID: 32768688 DOI: 10.1016/j.bone.2020.115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022]
Abstract
Biallelic variants in neuroblastoma-amplified sequence (NBAS) cause an extremely broad spectrum of phenotypes. Clinical features range from isolated recurrent episodes of liver failure to multisystemic syndrome including short stature, skeletal osteopenia and dysplasia, optic atrophy, and a variable immunological, cutaneous, muscular, and neurological abnormalities. Hemizygous variants in CUL4B cause syndromic X-linked intellectual disability characterized by limitations in intellectual functions, developmental delays in gait, cognitive, and speech functioning, and other features including short stature, dysmorphism, and cerebral malformations. In this study, we report on a 4.5-month-old preterm infant with a complex phenotype mainly characterized by placental-related severe intrauterine growth restriction, post-natal growth failure with spontaneous bone fractures, which led to a suspicion of osteogenesis imperfecta, and lethal bronchopulmonary dysplasia with pulmonary hypertension. Whole exome sequencing identified compound heterozygosity for a known frameshift and a novel missense variant in NBAS and hemizygosity for a known CUL4B nonsense mutation. In vitro functional studies on the novel NBAS missense substitution demonstrated altered Golgi-to-endoplasmic reticulum retrograde vesicular trafficking and reduced collagen secretion, likely explaining part of the patient's phenotype. We also provided a comprehensive overview of the phenotypic features of NBAS and CUL4B deficiency, thus updating the recently emerging NBAS genotype-phenotype correlations. Our findings highlight the power of a genome-first approach for an early diagnosis of complex phenotypes.
Collapse
Affiliation(s)
- Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Beccagutti
- Fondazione Poliambulanza, Department of Neonatal Intensive Care, 25124 Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | | | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy.
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
34
|
Li ZD, Abuduxikuer K, Zhang J, Yang Y, Qiu YL, Huang Y, Xie XB, Lu Y, Wang JS. NBAS disease: 14 new patients, a recurrent mutation, and genotype-phenotype correlation among 24 Chinese patients. Hepatol Res 2020; 50:1306-1315. [PMID: 32812336 DOI: 10.1111/hepr.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/12/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022]
Abstract
AIM Neuroblastoma amplified sequence (NBAS)-associated disease has a wide phenotypic spectrum, including infantile liver failure syndrome type 2 (ILFS2, OMIM #616483), short stature with optic nerve atrophy and Pelger-Huët anomaly (SOPH) syndrome (OMIM #614800), and a combined phenotype overlapping ILFS2 and SOPH syndrome. The mutation spectra of NBAS and its genotype-phenotype correlation among Chinese were not clear. METHODS Clinical and genetic data were retrospectively collected from the medical charts of patients with biallelic NBAS mutations, as well as from Chinese patients in previously published reports. RESULTS Fourteen new patients were identified, including 10 novel mutations: c.648-1G>A, c.2563_c.2577+5del/p.His855_Gln859del, c.3115C>T/p.Gln1039Ter, c.3284G>A/p.Trp1095Ter, c.2570C>T/p.Ala857Val, c.6859G>T/p.Asp2287Tyr, c.1028G>A/p.Ser343Asn, c.1177_1182delinsAGATAGA/p.Val393ArgfsTer2, c.3432_3435dupCAGT/p.Ala1146GlnfsTer14, and c.680_690dupACTGTTTCAGC/p.Phe231ThrfsTer35. All 14 patients presented as fever-triggered liver injury, including nine patients that satisfied the criteria of acute liver failure (ALF) in whom c.3596G>A/p.Cys1199Tyr occurred five times. Nine patients had extrahepatic manifestations including short stature, skeletal abnormalities, intellectual disability, ophthalmic abnormalities, low levels of serum immunoglobulins, facial dysmorphism, and cardiac abnormalities. Ten other Chinese patients were collected through a review of published works. Genotype-phenotype analysis in 24 Chinese patients revealed that the percentage of ALF patients with variants in the Sec39 domain was significantly higher than that in the C-terminal (100% vs. 12.5%, P = 0.000), and the percentage of multi-organ/system involvement in patients with variants in the Sec39 domain was significantly lower than that in the C-terminal (40% vs. 100%, P = 0.0128). CONCLUSIONS We reported 14 new patients, 10 novel mutations, and a unique recurrent mutation. Correlation analysis indicated that the domain of missense and non-frameshift insertion/deletion mutations in NBAS protein is related to phenotype among Chinese patients.
Collapse
Affiliation(s)
- Zhong Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Kuerbanjiang Abuduxikuer
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ye Yang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuge Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
35
|
Dayan RR, Bignall Ii ONR, Johnson S, Flores F, Volovelsky O. Neuroblastoma Amplified Sequence Gene Mutations Inducing Acute Kidney and Liver Injury in an Adolescent Female. Case Rep Nephrol Dial 2020; 10:117-123. [PMID: 33173785 PMCID: PMC7588679 DOI: 10.1159/000508784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/16/2020] [Indexed: 01/05/2023] Open
Abstract
Acute liver injury (ALI) in children is a life-threatening event, and a definitive etiology can be identified in approximately 50% of cases. Neuroblastoma amplified sequence (NBAS) gene mutations have been associated with a broad phenotypic spectrum of this disease, ranging from recurrent episodes of fever-induced liver injuries to multiorgan involvement, including frequent infections as well as skeletal and immunological abnormalities. Here, we describe an adolescent female with a confirmed compound heterozygous NBAS gene mutation who presented with an episode of ALI complicated by severe acute kidney injury (AKI). The kidney injury was most probably driven by an intrinsic insult, as noted by elevated neutrophil gelatinase-associated lipocalin levels and a kidney biopsy demonstrating severe tubular damage consistent with acute tubular necrosis. While the patient's liver function and mental status showed significant improvement with supportive care, recovery of kidney function was delayed, and the patient required acute hemodialysis. We suggest a causative relation between the NBAS gene mutation and severe AKI.
Collapse
Affiliation(s)
- Roy Rafael Dayan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - O N Ray Bignall Ii
- Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sheryl Johnson
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Francisco Flores
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Oded Volovelsky
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pediatric Nephrology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
36
|
Li W, Zhu Y, Guo Q, Wan C. Infantile fever-triggered acute liver failure caused by novel neuroblastoma amplified sequence mutations: a case report. BMC Gastroenterol 2020; 20:308. [PMID: 32957979 PMCID: PMC7507814 DOI: 10.1186/s12876-020-01451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/11/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Infantile liver failure syndrome-2 (ILFS2) is caused by neuroblastoma amplified sequence (NBAS) mutation. The disease is characterized by recurrent episodes of acute liver failure (ALF) or by liver crisis triggered by recurrent episodes of fever and complete recovery. CASE PRESENTATION Here, we describe the case of a Chinese girl with typical clinical manifestation of ILFS2 without exhibition of extrahepatic involvement. The patient harbored novel compound heterozygous mutations in the NBAS region (c.3386C > T (p.Ser1129Phe), c.1A > C (p.Met1Leu) and c.875G > A (p.Gly292Glu)), mutations which have not been previously reported. After administration of antipyretics and intravenous glucose and electrolyte administration, the patient recovered fully. CONCLUSION Through the present study, we recommend that ILFS2 should be taken into consideration during the differential diagnosis of children with recurrent, fever-triggered ALF. While the definitive diagnosis of ILFS2 remains dependent on genetic sequencing and discovery of NBAS, early antipyretic treatment is recommended to prevent liver crisis.
Collapse
Affiliation(s)
- Weiran Li
- Department of Paediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu, 610041 PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Yu Zhu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu, 610041 PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Qin Guo
- Department of Paediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu, 610041 PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Chaomin Wan
- Department of Paediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu, 610041 PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| |
Collapse
|
37
|
Suzuki S, Kokumai T, Furuya A, Nagamori T, Matsuo K, Ueda O, Mukai T, Ito Y, Yano K, Fujieda K, Okuno A, Tanahashi Y, Azuma H. A 34-year-old Japanese patient exhibiting NBAS deficiency with a novel mutation and extended phenotypic variation. Eur J Med Genet 2020; 63:104039. [PMID: 32805445 DOI: 10.1016/j.ejmg.2020.104039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Biallelic neuroblastoma amplified sequence (NBAS) gene mutations have recently been identified to cause a reduction in its protein expression and a broad phenotypic spectrum, from isolated short stature, optic nerve atrophy, and Pelger-Huët anomaly (SOPH) syndrome or infantile liver failure syndrome 2 to a combined, multi-systemic disease including skeletal dysplasia and immunological and neurological abnormalities. Herein, we report a 34-year-old patient with a range of phenotypes for NBAS deficiency due to compound heterozygous variants; one is a SOPH-specific variant, p.Arg1914His, and the other is a novel splice site variant, c.6433-2A>G. The patient experienced recurrent acute liver failure until early childhood. Hypogammaglobulinemia, a decrease in natural killer cells, and optic nerve atrophy were evident from infancy to childhood. In adulthood, the patient exhibited novel phenotypic features such as hepatic cirrhosis complicated by portal hypertension and autoimmune hemolytic anemia. The patient also suffered from childhood-onset insulin-requiring diabetes with progressive beta cell dysfunction. The patient had severe short stature and exhibited dysmorphic features compatible with SOPH, intellectual disability, and epilepsy. NBAS protein expression in the patient's fibroblasts was severely low. RNA expression analysis for the c.6433-2A>G variant showed that this variant activated two cryptic splice sites in intron 49 and exon 50, for which the predicted consequences at the protein level were an in-frame deletion/insertion, p.(Ile2199_Asn2202delins16), and a premature termination codon, p.(Ile2199Tyrfs*17), respectively. These findings indicate that NBAS deficiency is a multi-systemic progressive disease. The results of this study extend the spectrum of clinical and genetic findings related to NBAS deficiency.
Collapse
Affiliation(s)
- Shigeru Suzuki
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan.
| | - Takahide Kokumai
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Akiko Furuya
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Tsunehisa Nagamori
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Kumihiro Matsuo
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan; Department of Pediatrics, Mombetsu General Hospital, Mombetsu, Japan
| | - Osamu Ueda
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan; Department of Internal Medicine, Toya Onsen Hospital, Toyako, Japan
| | - Tokuo Mukai
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan; Department of Pediatrics, Japanese Red Cross Asahikawa Hospital, Asahikawa, Japan
| | - Yoshiya Ito
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan; Faculty of Nursing, Japanese Red Cross Hokkaido College of Nursing, Kitami, Japan
| | - Koichi Yano
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan; Health & Welfare Bureau, Sapporo City Government, Sapporo, Japan
| | - Kenji Fujieda
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan; Deceased Former Professor, Department of Pediatrics, Asahikawa Medial University, Asahikawa, Japan
| | - Akimasa Okuno
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan; Emeritus Professor, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Tanahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroshi Azuma
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
38
|
Longman D, Jackson-Jones KA, Maslon MM, Murphy LC, Young RS, Stoddart JJ, Hug N, Taylor MS, Papadopoulos DK, Cáceres JF. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes Dev 2020; 34:1075-1088. [PMID: 32616520 PMCID: PMC7397857 DOI: 10.1101/gad.338061.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
Nonsense-mediated decay (NMD) is a translation-dependent RNA quality control mechanism that occurs in the cytoplasm. However, it is unknown how NMD regulates the stability of RNAs translated at the endoplasmic reticulum (ER). Here, we identify a localized NMD pathway dedicated to ER-translated mRNAs. We previously identified NBAS, a component of the Syntaxin 18 complex involved in Golgi-to-ER trafficking, as a novel NMD factor. Furthermore, we show that NBAS fulfills an independent function in NMD. This ER-NMD pathway requires the interaction of NBAS with the core NMD factor UPF1, which is partially localized at the ER in the proximity of the translocon. NBAS and UPF1 coregulate the stability of ER-associated transcripts, in particular those associated with the cellular stress response. We propose a model where NBAS recruits UPF1 to the membrane of the ER and activates an ER-dedicated NMD pathway, thus providing an ER-protective function by ensuring quality control of ER-translated mRNAs.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kathryn A Jackson-Jones
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robert S Young
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Jack J Stoddart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dimitrios K Papadopoulos
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
39
|
Genotypic diversity and phenotypic spectrum of infantile liver failure syndrome type 1 due to variants in LARS1. Genet Med 2020; 22:1863-1873. [PMID: 32699352 DOI: 10.1038/s41436-020-0904-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Biallelic variants in LARS1, coding for the cytosolic leucyl-tRNA synthetase, cause infantile liver failure syndrome 1 (ILFS1). Since its description in 2012, there has been no systematic analysis of the clinical spectrum and genetic findings. METHODS Individuals with biallelic variants in LARS1 were included through an international, multicenter collaboration including novel and previously published patients. Clinical variables were analyzed and functional studies were performed in patient-derived fibroblasts. RESULTS Twenty-five individuals from 15 families were ascertained including 12 novel patients with eight previously unreported variants. The most prominent clinical findings are recurrent elevation of liver transaminases up to liver failure and encephalopathic episodes, both triggered by febrile illness. Magnetic resonance image (MRI) changes during an encephalopathic episode can be consistent with metabolic stroke. Furthermore, growth retardation, microcytic anemia, neurodevelopmental delay, muscular hypotonia, and infection-related seizures are prevalent. Aminoacylation activity is significantly decreased in all patient cells studied upon temperature elevation in vitro. CONCLUSION ILFS1 is characterized by recurrent elevation of liver transaminases up to liver failure in conjunction with abnormalities of growth, blood, nervous system, and musculature. Encephalopathic episodes with seizures can occur independently from liver crises and may present with metabolic stroke.
Collapse
|
40
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
41
|
Lacassie Y, Johnson B, Lay-Son G, Quintana R, King A, Cortes F, Alvarez C, Gomez R, Vargas A, Chalew S, King A, Guardia S, Sorensen RU, Aradhya S. Severe SOPH syndrome due to a novel NBAS mutation in a 27-year-old woman-Review of this pleiotropic, autosomal recessive disorder: Mystery solved after two decades. Am J Med Genet A 2020; 182:1767-1775. [PMID: 32297715 DOI: 10.1002/ajmg.a.61597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Autosomal recessive SOPH syndrome was first described in the Yakuts population of Asia by Maksimova et al. in 2010. It arises from biallelic pathogenic variants in the NBAS gene and is characterized by severe postnatal growth retardation, senile facial appearance, small hands and feet, optic atrophy with loss of visual acuity and color vision, and normal intelligence (OMIM #614800). The presence of Pelger-Hüet anomaly in this disorder led to its name as an acronym for Short stature, Optic nerve atrophy, and Pelger-Hüet anomaly. Recent publications have further contributed to the characterization of this syndrome through additional phenotype-genotype correlations. We review the clinical features described in these publications and report on a 27-year-old woman with dwarfism with osteolysis and multiple skeletal problems, minor anomalies, immunodeficiency, diabetes mellitus, and multiple secondary medical problems. Her condition was considered an unknown autosomal recessive disorder for many years until exome sequencing provided the diagnosis by revealing a founder disease-causing variant that was compound heterozygous with a novel pathogenic variant in NBAS. Based on the major clinical features of this individual and others reported earlier, a revision of the acronym is warranted to facilitate clinical recognition.
Collapse
Affiliation(s)
- Yves Lacassie
- Department of Pediatrics, Division of Genetics, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | | | - Guillermo Lay-Son
- Servicio de Genética, Clínica Alemana y División de Pediatría, Escuela de Medicina Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Andrew King
- Department of Orthopedics, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Fanny Cortes
- Unidad de Genética, INTA, Universidad de Chile, Santiago, Chile
| | - Cecilia Alvarez
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ricardo Gomez
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Alfonso Vargas
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Stuart Chalew
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Alejandra King
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sylvia Guardia
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ricardo U Sorensen
- Department of Pediatrics, Division of Immunology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana and Honorary Professor Universidad de la Frontera, Temuco, Chile
| | | |
Collapse
|
42
|
Chavany J, Cano A, Roquelaure B, Bourgeois P, Boubnova J, Gaignard P, Hoebeke C, Reynaud R, Rhomer B, Slama A, Badens C, Chabrol B, Fabre A. Mutations in NBAS and SCYL1, genetic causes of recurrent liver failure in children: Three case reports and a literature review. Arch Pediatr 2020; 27:155-159. [DOI: 10.1016/j.arcped.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/15/2019] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
|
43
|
Yıldız Y, Sivri HS. Inborn errors of metabolism in the differential diagnosis of fatty liver disease. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:3-16. [PMID: 32009609 DOI: 10.5152/tjg.2019.19367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease across all age groups. Obesity, diabetes, and metabolic syndrome, are the primary causes that are closely linked with the development of NAFLD. However, in young children, rare inborn errors of metabolism are predominant secondary causes of NAFLD. Furthermore, inborn errors of metabolism causing hepatosteatosis are often misdiagnosed as NAFLD in adolescents and adults. Many inborn errors of metabolism are treatable disorders and therefore require special consideration. This review aims to summarize the basic characteristics and diagnostic clues of inborn errors of metabolism associated with fatty liver disease. A suggested clinical and laboratory diagnostic approach is also discussed.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Pediatric Metabolic Diseases Unit, Dr. Sami Ulus Training and Research Hospital for Maternity and Children's Health and Diseases, Ankara, Turkey
| | - Hatice Serap Sivri
- Division of Metabolic Diseases, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
44
|
Defining the clinical phenotype of Saul-Wilson syndrome. Genet Med 2020; 22:857-866. [PMID: 31949312 PMCID: PMC7205587 DOI: 10.1038/s41436-019-0737-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022] Open
Abstract
Purpose: Four patients with Saul-Wilson syndrome were reported between 1982 and 1994, but no additional individuals were described until 2018, when the molecular etiology of the disease was elucidated. Hence, the clinical phenotype of the disease remains poorly defined. We address this shortcoming by providing a detailed characterization of its phenotype. Methods: Retrospective chart reviews were performed and primary radiographs assessed for all 14 individuals. Four individuals underwent detailed ophthalmologic examination by the same physician. Two individuals underwent gynecologic evaluation. Z-scores for height, weight, head circumference and BMI were calculated at different ages. Results: All patients exhibited short stature, with sharp decline from the mean within the first months of life, and a final height Z-score between −4 and −8.5 standard deviations. The facial and radiographic features evolved over time. Intermittent neutropenia was frequently observed. Novel findings included elevation of liver transaminases, skeletal fragility, rod-cone dystrophy, and cystic macular changes. Conclusion: Saul-Wilson syndrome presents a remarkably uniform phenotype, and the comprehensive description of our cohort allows for improved understanding of the long-term morbidity of the condition, establishment of follow-up recommendations for affected individuals, and documentation of the natural history into adulthood for comparison with treated patients, when therapeutics become available.
Collapse
|
45
|
Jiang B, Xiao F, Li X, Xiao Y, Wang Y, Zhang T. Case Report: Pediatric Recurrent Acute Liver Failure Caused by Neuroblastoma Amplified Sequence ( NBAS) Gene Mutations. Front Pediatr 2020; 8:607005. [PMID: 33520894 PMCID: PMC7838493 DOI: 10.3389/fped.2020.607005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Acute liver failure (ALF) in childhood is a rapidly progressive, potentially life-threatening condition that occurs in previously healthy children of all ages. However, the etiology of ~50% of cases with pediatric ALF remains unknown. We herein report a 4-year-old Chinese girl with recurrent ALF (RALF) due to a mutation in the neuroblastoma amplified sequence (NBAS) gene. The patient had suffered from multiple episodes of fever-related ALF since early childhood. She had also suffered from acute kidney injury, hypertension, mild pulmonary hypertension, pleural effusion, and hypothyroidism. A novel compound heterozygote mutation, c.3596G> A (p.C1199Y)/ex.9del (p.216-248del), in the NBAS gene was identified by whole-exome sequencing (WES). The missense mutation c.3596G> A (p. C1199Y) was inherited from her father, and ex.9del (p.216-248del) was inherited from her mother. The patient was managed with intensive treatments, such as renal replacement therapy (CRRT), intravenous antibiotics, and glucose infusion, and was discharged after full recovery. We identified a novel compound heterozygote mutation in the NBAS gene that caused fever-related RALF in a Chinese child, which further expands the mutational spectrum of NBAS.
Collapse
Affiliation(s)
- Bingxin Jiang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolu Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Khoreva A, Pomerantseva E, Belova N, Povolotskaya I, Konovalov F, Kaimonov V, Gavrina A, Zimin S, Pershin D, Davydova N, Burlakov V, Viktorova E, Roppelt A, Kalinina E, Novichkova G, Shcherbina A. Complex Multisystem Phenotype With Immunodeficiency Associated With NBAS Mutations: Reports of Three Patients and Review of the Literature. Front Pediatr 2020; 8:577. [PMID: 33042920 PMCID: PMC7522312 DOI: 10.3389/fped.2020.00577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/06/2020] [Indexed: 11/20/2022] Open
Abstract
Objectives: Mutations in the neuroblastoma-amplified sequence (NBAS) gene were originally described in patients with skeletal dysplasia or isolated liver disease of variable severity. Subsequent publications reported a more complex phenotype. Among multisystemic clinical symptoms, we were particularly interested in the immunological consequences of the NBAS deficiency. Methods: Clinical and laboratory data of 3 patients ages 13, 6, and 5 in whom bi-allelic NBAS mutations had been detected via next-generation sequencing were characterized. Literature review of 23 publications describing 74 patients was performed. Results: We report three Russian patients with compound heterozygous mutations of the NBAS gene who had combined immunodeficiency characterized by hypogammaglobulinemia, low T-cells, and near-absent B-cells, along with liver disease, skeletal dysplasia, optic-nerve atrophy, and dysmorphic features. Analysis of the data of 74 previously reported patients who carried various NBAS mutations demonstrated that although the most severe form of liver disease seems to require disruption of the N-terminal or middle part of NBAS, mutations of variable localizations in the gene have been associated with some form of liver disease, as well as immunological disorders. Conclusions: NBAS deficiency has a broad phenotype, and referral to an immunologist should be made in order to screen for immunodeficiency.
Collapse
Affiliation(s)
- Anna Khoreva
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Inna Povolotskaya
- Genetics and Reproductive Medicine Center "GENETICO" Ltd., Moscow, Russia.,Veltischev Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Vladimir Kaimonov
- Genetics and Reproductive Medicine Center "GENETICO" Ltd., Moscow, Russia
| | - Alena Gavrina
- Center of Inborn Pathology, GMS Clinic, Moscow, Russia
| | | | - Dmitrii Pershin
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Vasilii Burlakov
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Viktorova
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Roppelt
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Kalinina
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
47
|
Kuo ME, Antonellis A. Ubiquitously Expressed Proteins and Restricted Phenotypes: Exploring Cell-Specific Sensitivities to Impaired tRNA Charging. Trends Genet 2019; 36:105-117. [PMID: 31839378 DOI: 10.1016/j.tig.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Aminoacyl-tRNA synthetases (ARS) are ubiquitously expressed, essential enzymes that charge tRNA with cognate amino acids. Variants in genes encoding ARS enzymes lead to myriad human inherited diseases. First, missense alleles cause dominant peripheral neuropathy. Second, missense, nonsense, and frameshift alleles cause recessive multisystem disorders that differentially affect tissues depending on which ARS is mutated. A preponderance of evidence has shown that both phenotypic classes are associated with loss-of-function alleles, suggesting that tRNA charging plays a central role in disease pathogenesis. However, it is currently unclear how perturbation in the function of these ubiquitously expressed enzymes leads to tissue-specific or tissue-predominant phenotypes. Here, we review our current understanding of ARS-associated disease phenotypes and discuss potential explanations for the observed tissue specificity.
Collapse
Affiliation(s)
- Molly E Kuo
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Staufner C, Peters B, Wagner M, Alameer S, Barić I, Broué P, Bulut D, Church JA, Crushell E, Dalgıç B, Das AM, Dick A, Dikow N, Dionisi-Vici C, Distelmaier F, Bozbulut NE, Feillet F, Gonzales E, Hadzic N, Hauck F, Hegarty R, Hempel M, Herget T, Klein C, Konstantopoulou V, Kopajtich R, Kuster A, Laass MW, Lainka E, Larson-Nath C, Leibner A, Lurz E, Mayr JA, McKiernan P, Mention K, Moog U, Mungan NO, Riedhammer KM, Santer R, Palafoll IV, Vockley J, Westphal DS, Wiedemann A, Wortmann SB, Diwan GD, Russell RB, Prokisch H, Garbade SF, Kölker S, Hoffmann GF, Lenz D. Defining clinical subgroups and genotype–phenotype correlations in NBAS-associated disease across 110 patients. Genet Med 2019; 22:610-621. [DOI: 10.1038/s41436-019-0698-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
|
49
|
A locus on chromosome 5 shows African ancestry-limited association with alloimmunization in sickle cell disease. Blood Adv 2019; 2:3637-3647. [PMID: 30578281 DOI: 10.1182/bloodadvances.2018020594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Red blood cell (RBC) transfusion remains a critical therapeutic intervention in sickle cell disease (SCD); however, the apparent propensity of some patients to regularly develop RBC alloantibodies after transfusion presents a significant challenge to finding compatible blood for so-called alloimmunization responders. Predisposing genetic loci have long been thought to contribute to the responder phenomenon, but to date, no definitive loci have been identified. We undertook a genome-wide association study of alloimmunization responder status in 267 SCD multiple transfusion recipients, using genetic estimates of ancestral admixture to bolster our findings. Analyses revealed single nucleotide polymorphisms (SNPs) on chromosomes 2 and 5 approaching genome-wide significance (minimum P = 2.0 × 10-8 and 8.4 × 10-8, respectively), with local ancestry analysis demonstrating similar levels of admixture in responders and nonresponders at implicated loci. Association at chromosome 5 was nominally replicated in an independent cohort of 130 SCD transfusion recipients, with meta-analysis surpassing genome-wide significance (rs75853687, P meta = 6.6 × 10-9), and this extended to individuals forming multiple (>3) alloantibodies (P meta = 9.4 × 10-5). The associated variant is rare outside of African populations, and orthogonal genome-wide haplotype analyses, contingent on local ancestry, revealed genome-wide significant sharing of a ∼60-kb haplotype of African ancestry at the chromosome 5 locus (Bayes Factor = 4.95). This locus overlaps a putative cis-acting enhancer predicted to regulate transcription of ADRA1B and the lncRNA LINC01847, both members of larger ontologies associated with immune regulation. Our findings provide potential insights to the pathophysiology underlying the development of alloantibodies and implicate non-RBC ancestry-limited loci in the susceptibility to alloimmunization.
Collapse
|
50
|
Ricci S, Lodi L, Serranti D, Moroni M, Belli G, Mancano G, La Barbera A, Forzano G, Mangone G, Indolfi G, Azzari C. Immunological Features of Neuroblastoma Amplified Sequence Deficiency: Report of the First Case Identified Through Newborn Screening for Primary Immunodeficiency and Review of the Literature. Front Immunol 2019; 10:1955. [PMID: 31507590 PMCID: PMC6718460 DOI: 10.3389/fimmu.2019.01955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/02/2019] [Indexed: 01/30/2023] Open
Abstract
This is the first case of NBAS disease detected by NBS for primary immunodeficiency. NBS with KRECs is revealing unknown potentialities detecting conditions that benefit from early recognition like NBAS deficiency. Immune phenotyping should be mandatory in patients with NBAS deficiency since they can exhibit severe immunodeficiency with hypogammaglobulinemia as the most frequent finding. Fever during infections is a known trigger of acute liver failure in this syndrome, so immune dysfunction, should never go unnoticed in NBAS deficiency in order to start adequate therapy and prophylaxis.
Collapse
Affiliation(s)
- Silvia Ricci
- Section of Pediatrics, Division of Immunology, Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | - Lorenzo Lodi
- Section of Pediatrics, Division of Immunology, Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | - Daniele Serranti
- Pediatric and Liver Unit, Meyer Children's University Hospital, Florence, Italy
| | - Marco Moroni
- Neonatal Intensive Care Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Gilda Belli
- Neonatal Intensive Care Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Giorgia Mancano
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Andrea La Barbera
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Giusi Mangone
- Section of Pediatrics, Division of Immunology, Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | - Giuseppe Indolfi
- Pediatric and Liver Unit, Meyer Children's University Hospital, Florence, Italy
| | - Chiara Azzari
- Section of Pediatrics, Division of Immunology, Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|