1
|
Alessia A, Anastasia G, Alessia DD, Simona B, Alessandro P, Emanuela B, Valentina B, Valeria T, Nicola P, Dario B. Fetal and obstetrics manifestations of mitochondrial diseases. J Transl Med 2024; 22:853. [PMID: 39313811 PMCID: PMC11421203 DOI: 10.1186/s12967-024-05633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
During embryonic and neonatal development, mitochondria have essential effects on metabolic and energetic regulation, shaping cell fate decisions and leading to significant short- and long-term effects on embryonic and offspring health. Therefore, perturbation on mitochondrial function can have a pathological effect on pregnancy. Several shreds of evidence collected in preclinical models revealed that severe mitochondrial dysfunction is incompatible with life or leads to critical developmental defects, highlighting the importance of correct mitochondrial function during embryo-fetal development. The mechanism impairing the correct development is unknown and may include a dysfunctional metabolic switch in differentiating cells due to decreased ATP production or altered apoptotic signalling. Given the central role of mitochondria in embryonic and fetal development, the mitochondrial dysfunction typical of Mitochondrial Diseases (MDs) should, in principle, be detectable during pregnancy. However, little is known about the clinical manifestations of MDs in embryonic and fetal development. In this manuscript, we review preclinical and clinical evidence suggesting that MDs may affect fetal development and highlight the fetal and maternal outcomes that may provide a wake-up call for targeted genetic diagnosis.
Collapse
Affiliation(s)
- Adelizzi Alessia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giri Anastasia
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Di Donfrancesco Alessia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Boito Simona
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Prigione Alessandro
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bottani Emanuela
- Department of Diagnostics and Public Health, University of Verona, Verona, 37124, Italy
| | - Bollati Valentina
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy
| | - Tiranti Valeria
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Persico Nicola
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| | - Brunetti Dario
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| |
Collapse
|
2
|
Cha JH, Lee SH, Yun Y, Choi WH, Koo H, Jung SH, Chae HB, Lee DH, Lee SJ, Jo DH, Kim JH, Song JJ, Chae JH, Lee JH, Park J, Kang JY, Bae S, Lee SY. Discovery of novel disease-causing mutation in SSBP1 and its correction using adenine base editor to improve mitochondrial function. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102257. [PMID: 39104869 PMCID: PMC11299580 DOI: 10.1016/j.omtn.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Mutations in nuclear genes regulating mitochondrial DNA (mtDNA) replication are associated with mtDNA depletion syndromes. Using whole-genome sequencing, we identified a heterozygous mutation (c.272G>A:p.Arg91Gln) in single-stranded DNA-binding protein 1 (SSBP1), a crucial protein involved in mtDNA replisome. The proband manifested symptoms including sensorineural deafness, congenital cataract, optic atrophy, macular dystrophy, and myopathy. This mutation impeded multimer formation and DNA-binding affinity, leading to reduced efficiency of mtDNA replication, altered mitochondria dynamics, and compromised mitochondrial function. To correct this mutation, we tested two adenine base editor (ABE) variants on patient-derived fibroblasts. One variant, NG-Cas9-based ABE8e (NG-ABE8e), showed higher editing efficacy (≤30%) and enhanced mitochondrial replication and function, despite off-target editing frequencies; however, risks from bystander editing were limited due to silent mutations and off-target sites in non-translated regions. The other variant, NG-Cas9-based ABE8eWQ (NG-ABE8eWQ), had a safer therapeutic profile with very few off-target effects, but this came at the cost of lower editing efficacy (≤10% editing). Despite this, NG-ABE8eWQ-edited cells still restored replication and improved mtDNA copy number, which in turn recovery of compromised mitochondrial function. Taken together, base editing-based gene therapies may be a promising treatment for mitochondrial diseases, including those associated with SSBP1 mutations.
Collapse
Affiliation(s)
- Ju Hyuen Cha
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Won Hoon Choi
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hansol Koo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Jung
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho Byung Chae
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jiho Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Xu P, Yang T, Kundnani DL, Sun M, Marsili S, Gombolay A, Jeon Y, Newnam G, Balachander S, Bazzani V, Baccarani U, Park V, Tao S, Lori A, Schinazi R, Kim B, Pursell Z, Tell G, Vascotto C, Storici F. Light-strand bias and enriched zones of embedded ribonucleotides are associated with DNA replication and transcription in the human-mitochondrial genome. Nucleic Acids Res 2024; 52:1207-1225. [PMID: 38117983 PMCID: PMC10853789 DOI: 10.1093/nar/gkad1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
Abundant ribonucleoside-triphosphate (rNTP) incorporation into DNA by DNA polymerases in the form of ribonucleoside monophosphates (rNMPs) is a widespread phenomenon in nature, resulting in DNA-structural change and genome instability. The rNMP distribution, characteristics, hotspots and association with DNA metabolic processes in human mitochondrial DNA (hmtDNA) remain mostly unknown. Here, we utilize the ribose-seq technique to capture embedded rNMPs in hmtDNA of six different cell types. In most cell types, the rNMPs are preferentially embedded on the light strand of hmtDNA with a strong bias towards rCMPs; while in the liver-tissue cells, the rNMPs are predominately found on the heavy strand. We uncover common rNMP hotspots and conserved rNMP-enriched zones across the entire hmtDNA, including in the control region, which links the rNMP presence to the frequent hmtDNA replication-failure events. We show a strong correlation between coding-sequence size and rNMP-embedment frequency per nucleotide on the non-template, light strand in all cell types, supporting the presence of transient RNA-DNA hybrids preceding light-strand replication. Moreover, we detect rNMP-embedment patterns that are only partly conserved across the different cell types and are distinct from those found in yeast mtDNA. The study opens new research directions to understand the biology of hmtDNA and genomic rNMPs.
Collapse
Affiliation(s)
- Penghao Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Deepali L Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Stefania Marsili
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Youngkyu Jeon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Veronica Bazzani
- Department of Medicine, University of Udine, Udine 33100, Italy
- IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Umberto Baccarani
- Department of Medicine, University of Udine, Udine 33100, Italy
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine 33100, Italy
| | - Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, LA 70118, USA
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta 30329, GA, USA
- Department of Population Science, American Cancer Society, Kennesaw 30144, GA, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, LA 70118, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine 33100, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine 33100, Italy
- IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| |
Collapse
|
4
|
Tan BG, Gustafsson CM, Falkenberg M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol 2024; 25:119-132. [PMID: 37783784 DOI: 10.1038/s41580-023-00661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.
Collapse
Affiliation(s)
- Benedict G Tan
- Institute for Mitochondrial Diseases and Ageing, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Nickoloff JA, Jaiswal AS, Sharma N, Williamson EA, Tran MT, Arris D, Yang M, Hromas R. Cellular Responses to Widespread DNA Replication Stress. Int J Mol Sci 2023; 24:16903. [PMID: 38069223 PMCID: PMC10707325 DOI: 10.3390/ijms242316903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Aruna S. Jaiswal
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Elizabeth A. Williamson
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Manh T. Tran
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Dominic Arris
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Ming Yang
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| |
Collapse
|
6
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Protasoni M, Taanman JW. Remodelling of the Mitochondrial Bioenergetic Pathways in Human Cultured Fibroblasts with Carbohydrates. BIOLOGY 2023; 12:1002. [PMID: 37508431 PMCID: PMC10376623 DOI: 10.3390/biology12071002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mitochondrial oxidative phosphorylation defects underlie many neurological and neuromuscular diseases. Patients' primary dermal fibroblasts are one of the most commonly used in vitro models to study mitochondrial pathologies. However, fibroblasts tend to rely more on glycolysis than oxidative phosphorylation for their energy when cultivated in standard high-glucose medium, rendering it difficult to expose mitochondrial dysfunctions. This study aimed to systematically investigate to which extent the use of galactose- or fructose-based medium switches the fibroblasts' energy metabolism to a more oxidative state. Highly proliferative cells depend more on glycolysis than less proliferative cells. Therefore, we investigated two primary dermal fibroblast cultures from healthy subjects: a highly proliferative neonatal culture and a slower-growing adult culture. Cells were cultured with 25 mM glucose, galactose or fructose, and 4 mM glutamine as carbon sources. Compared to glucose, both galactose and fructose reduce the cellular proliferation rate, but the galactose-induced drop in proliferation is much more profound than the one observed in cells cultivated in fructose. Both galactose and fructose result in a modest increase in mitochondrial content, including mitochondrial DNA, and a disproportionate increase in protein levels, assembly, and activity of the oxidative phosphorylation enzyme complexes. Galactose- and fructose-based media induce a switch of the prevalent biochemical pathway in cultured fibroblasts, enhancing aerobic metabolism when compared to glucose-based medium. While both galactose and fructose stimulate oxidative phosphorylation to a comparable degree, galactose decreases the cellular proliferation rate more than fructose, suggesting that a fructose-based medium is a better choice when studying partial oxidative phosphorylation defects in patients' fibroblasts.
Collapse
Affiliation(s)
- Margherita Protasoni
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus (M12), Rowland Hill Street, London NW3 2PF, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus (M12), Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
8
|
Erdinc D, Rodríguez‐Luis A, Fassad MR, Mackenzie S, Watson CM, Valenzuela S, Xie X, Menger KE, Sergeant K, Craig K, Hopton S, Falkous G, Poulton J, Garcia‐Moreno H, Giunti P, de Moura Aschoff CA, Morales Saute JA, Kirby AJ, Toro C, Wolfe L, Novacic D, Greenbaum L, Eliyahu A, Barel O, Anikster Y, McFarland R, Gorman GS, Schaefer AM, Gustafsson CM, Taylor RW, Falkenberg M, Nicholls TJ. Pathological variants in TOP3A cause distinct disorders of mitochondrial and nuclear genome stability. EMBO Mol Med 2023; 15:e16775. [PMID: 37013609 PMCID: PMC10165364 DOI: 10.15252/emmm.202216775] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood.
Collapse
Affiliation(s)
- Direnis Erdinc
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Alejandro Rodríguez‐Luis
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Sarah Mackenzie
- The Newcastle Upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Christopher M Watson
- North East and Yorkshire Genomic Laboratory Hub, Central LabSt. James's University HospitalLeedsUK
- Leeds Institute of Medical ResearchUniversity of Leeds, St. James's University HospitalLeedsUK
| | - Sebastian Valenzuela
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Xie Xie
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Katja E Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Kate Sergeant
- Oxford Genetics LaboratoriesOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Kate Craig
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - Joanna Poulton
- Nuffield Department of Women's & Reproductive Health, The Women's CentreUniversity of OxfordOxfordUK
| | - Hector Garcia‐Moreno
- Department of Clinical and Movement Neurosciences, Ataxia CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Paola Giunti
- Department of Clinical and Movement Neurosciences, Ataxia CentreUCL Queen Square Institute of NeurologyLondonUK
| | | | - Jonas A Morales Saute
- Medical Genetics ServiceHospital de Clínicas de Porto Alegre (HCPA)Porto AlegreBrazil
- Department of Internal MedicineUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Graduate Program in Medicine: Medical SciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Amelia J Kirby
- Department of PediatricsWake Forest School of MedicineWinston‐SalemNCUSA
| | - Camilo Toro
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Lynne Wolfe
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Danica Novacic
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Lior Greenbaum
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel HashomerIsrael
- The Joseph Sagol Neuroscience Center, Sheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Aviva Eliyahu
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ortal Barel
- Genomics UnitThe Center for Cancer Research, Sheba Medical CenterTel HashomerIsrael
| | - Yair Anikster
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical CenterTel HashomerIsrael
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Andrew M Schaefer
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
9
|
Yi C, Yang J, Zhang T, Xie S, Li W, Qin L, Chen D. A pan-cancer analysis of RNASEH1, a potential regulator of the tumor microenvironment. Clin Transl Oncol 2023:10.1007/s12094-023-03142-4. [PMID: 37022517 DOI: 10.1007/s12094-023-03142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND RNASEH1 (Ribonuclease H1) encodes an endonuclease that specifically degrades the RNA of RNA-DNA hybrids and acts in DNA replication and repair. Although there are many studies on RNASEH1, the research of RNASEH1 in cancers is still insufficient. Therefore, in order to clarify the physiological mechanism of RNASEH1 in tumor cells, we evaluated the role of RNASEH1 by combining The Cancer Genome Atlas (TCGA) pan-cancer data and Genotype-Tissue Expression (GTEx) normal tissue data. METHODS RNASEH1 expression was analyzed by using RNAseq data from TCGA and the GTEx database. The Human Protein Atlas (HPA), GeneCards and STRING database were used to explore the protein information of RNASEH1. The prognostic value of RNASEH1 was analyzed by using the clinical survival data from TCGA. Differential analysis of RNASEH1 in different cancers was performed by using R package "DESeq2", and enrichment analysis of RNASEH1 was conducted by using R package "clusterProfiler". We downloaded the immune cell infiltration score of TCGA samples from published articles and online databases, and the correlation analysis between immune cell infiltration levels and RNASEH1 expression was performed. Not only that, we further evaluated the association of RNASEH1 with immune activating genes, immunosuppressive genes, chemokines and chemokine receptors. At the end of the article, the differential expression of RNASEH1 in pan-cancer was validated by using GSE54129, GSE40595, GSE90627, GSE106937, GSE145976 and GSE18672, and qRT-PCR was also performed for verification. FINDINGS RNASEH1 was significantly overexpressed in 19 cancers and the overexpression was closely correlated with poor prognosis. Moreover, the expression of RNASEH1 was significantly correlated with the regulation of the tumor microenvironment. In addition, RNASEH1 expression was closely associated with immune cell infiltration, immune checkpoints, immune activators, immunosuppressive factors, chemokines and chemokine receptors. Finally, RNASEH1 also was closely associated with DNA-related physiological activities and mitochondrial-related physiological activities. INTERPRETATION Our studying suggests that RNASEH1 is a potential cancer biomarker. And RNASEH1 may be able to regulate the tumor microenvironment by regulating the relevant physiological activities of mitochondrial and thereby regulating the occurrence and development of tumors. Thus, it could be used to develop new-targeted drugs of tumor therapy.
Collapse
Affiliation(s)
- Chen Yi
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Jiangxi, 330063, China
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Jun Yang
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Jiangxi, 330063, China
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Shien Xie
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Wentao Li
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Liu Qin
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
| |
Collapse
|
10
|
Restrepo-Vera JL, Rovira-Moreno E, Ramón J, Codina-Sola M, Llauradó A, Salvadó M, Sánchez-Tejerina D, Sotoca J, Martínez-Sáez E, Martí R, García-Arumí E, Juntas-Morales R. Identification of two novel RRM2B variants associated with autosomal recessive progressive external ophthalmoplegia in a family with pseudodominant inheritance pattern. J Hum Genet 2023:10.1038/s10038-023-01144-2. [PMID: 36959467 DOI: 10.1038/s10038-023-01144-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
RRM2B encodes the p53-inducible small subunit (p53R2) of ribonucleotide reductase, a key protein for mitochondrial DNA (mtDNA) synthesis. Pathogenic variants in this gene result in familial mitochondrial disease in adults and children, secondary to a maintenance disorder of mtDNA. This study describes two patients, mother and son, with early-onset chronic progressive external ophthalmoplegia (PEO). Skeletal muscle biopsy from the latter was examined: cytochrome c oxidase (COX)-negative fibres were shown, and molecular studies revealed multiple mtDNA deletions. A next-generation sequencing gene panel for nuclear-encoded mitochondrial maintenance genes identified two unreported heterozygous missense variants (c.514 G > A and c.682 G > A) in the clinically affected son. The clinically affected mother harboured the first variant in homozygous state, and the clinically unaffected father harboured the remaining variant in heterozygous state. In silico analyses predicted both variants as deleterious. Cell culture studies revealed that patients' skin fibroblasts, but not fibroblasts from healthy controls, responded to nucleoside supplementation with enhanced mtDNA repopulation, thus suggesting an in vitro functional difference in patients' cells. Our results support the pathogenicity of two novel RRM2B variants found in two patients with autosomal recessive PEO with multiple mtDNA deletions inherited with a pseudodominant pattern.
Collapse
Affiliation(s)
- Juan Luis Restrepo-Vera
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eulàlia Rovira-Moreno
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Codina-Sola
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnau Llauradó
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Salvadó
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Sánchez-Tejerina
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Department of Pathology, Hospital Vall d'Hebron, Universitat Autònoma Barcelona, 08035, Barcelona, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena García-Arumí
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020572. [PMID: 36839894 PMCID: PMC9964608 DOI: 10.3390/pharmaceutics15020572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondria are membrane-bound cellular organelles of high relevance responsible for the chemical energy production used in most of the biochemical reactions of cells. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). Inherited solely from the mother, this genome is quite susceptible to mutations, mainly due to the absence of an effective repair system. Mutations in mtDNA are associated with endocrine, metabolic, neurodegenerative diseases, and even cancer. Currently, therapeutic approaches are based on the administration of a set of drugs to alleviate the symptoms of patients suffering from mitochondrial pathologies. Mitochondrial gene therapy emerges as a promising strategy as it deeply focuses on the cause of mitochondrial disorder. The development of suitable mtDNA-based delivery systems to target and transfect mammalian mitochondria represents an exciting field of research, leading to progress in the challenging task of restoring mitochondria's normal function. This review gathers relevant knowledge on the composition, targeting performance, or release profile of such nanosystems, offering researchers valuable conceptual approaches to follow in their quest for the most suitable vectors to turn mitochondrial gene therapy clinically feasible. Future studies should consider the optimization of mitochondrial genes' encapsulation, targeting ability, and transfection to mitochondria. Expectedly, this effort will bring bright results, contributing to important hallmarks in mitochondrial gene therapy.
Collapse
|
12
|
Durgaryan A, Clausen AR. 5'-End Mapping in Human Mitochondrial DNA. Methods Mol Biol 2023; 2615:315-325. [PMID: 36807801 DOI: 10.1007/978-1-0716-2922-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here, we describe an assay that enables mapping of 5'-ends across the genome using next-generation sequencing on an Illumina platform, 5'-End-sequencing (5'-End-seq). We use this method to map free 5'-ends in mtDNA isolated from fibroblasts. This method can be used to answer key questions regarding DNA integrity, DNA replication mechanisms and to identify priming events, primer processing, nick processing, and double strand break processing on the entire genome.
Collapse
Affiliation(s)
| | - Anders R Clausen
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Abstract
Progressive external ophthalmoplegia (PEO), characterized by ptosis and impaired eye movements, is a clinical syndrome with an expanding number of etiologically distinct subtypes. Advances in molecular genetics have revealed numerous pathogenic causes of PEO, originally heralded in 1988 by the detection of single large-scale deletions of mitochondrial DNA (mtDNA) in skeletal muscle of people with PEO and Kearns-Sayre syndrome. Since then, multiple point variants of mtDNA and nuclear genes have been identified to cause mitochondrial PEO and PEO-plus syndromes, including mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and sensory ataxic neuropathy dysarthria ophthalmoplegia (SANDO). Intriguingly, many of those nuclear DNA pathogenic variants impair maintenance of the mitochondrial genome causing downstream mtDNA multiple deletions and depletion. In addition, numerous genetic causes of nonmitochondrial PEO have been identified.
Collapse
Affiliation(s)
- Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Neuromuscular Medicine Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States.
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
14
|
Faria R, Albuquerque T, Neves AR, Sousa Â, Costa DRB. Nanotechnology to Correct Mitochondrial Disorders in Cancer Diseases. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Misic J, Milenkovic D, Al-Behadili A, Xie X, Jiang M, Jiang S, Filograna R, Koolmeister C, Siira S, Jenninger L, Filipovska A, Clausen A, Caporali L, Valentino M, La Morgia C, Carelli V, Nicholls T, Wredenberg A, Falkenberg M, Larsson NG. Mammalian RNase H1 directs RNA primer formation for mtDNA replication initiation and is also necessary for mtDNA replication completion. Nucleic Acids Res 2022; 50:8749-8766. [PMID: 35947649 PMCID: PMC9410905 DOI: 10.1093/nar/gkac661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022] Open
Abstract
The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication. Without RNase H1, the RNA:DNA hybrids at the replication origins are not processed and mtDNA replication is initiated at non-canonical sites and becomes impaired. Importantly, RNase H1 is also needed for replication completion and in its absence linear deleted mtDNA molecules extending between the two origins of mtDNA replication are formed accompanied by mtDNA depletion. The steady-state levels of mitochondrial transcripts follow the levels of mtDNA, and RNA processing is not altered in the absence of RNase H1. Finally, we report the first patient with a homozygous pathogenic mutation in the hybrid-binding domain of RNase H1 causing impaired mtDNA replication. In contrast to catalytically inactive variants of RNase H1, this mutant version has enhanced enzyme activity but shows impaired primer formation. This finding shows that the RNase H1 activity must be strictly controlled to allow proper regulation of mtDNA replication.
Collapse
Affiliation(s)
- Jelena Misic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Xie Xie
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Min Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Shan Jiang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, Nedlands, WA 6009, Australia
| | - Louise Jenninger
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, Nedlands, WA 6009, Australia,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, Australia
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | | |
Collapse
|
16
|
López-Gómez C, Cámara Y, Hirano M, Martí R. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2022; 32:609-620. [PMID: 35641351 DOI: 10.1016/j.nmd.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Affiliation(s)
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Michio Hirano
- Columbia University Irving Medical Center, New York, USA
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Manini A, Caporali L, Meneri M, Zanotti S, Piga D, Arena IG, Corti S, Toscano A, Comi GP, Musumeci O, Carelli V, Ronchi D. Case Report: Rare Homozygous RNASEH1 Mutations Associated With Adult-Onset Mitochondrial Encephalomyopathy and Multiple Mitochondrial DNA Deletions. Front Genet 2022; 13:906667. [PMID: 35711919 PMCID: PMC9194440 DOI: 10.3389/fgene.2022.906667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance disorders embrace a broad range of clinical syndromes distinguished by the evidence of mtDNA depletion and/or deletions in affected tissues. Among the nuclear genes associated with mtDNA maintenance disorders, RNASEH1 mutations produce a homogeneous phenotype, with progressive external ophthalmoplegia (PEO), ptosis, limb weakness, cerebellar ataxia, and dysphagia. The encoded enzyme, ribonuclease H1, is involved in mtDNA replication, whose impairment leads to an increase in replication intermediates resulting from mtDNA replication slowdown. Here, we describe two unrelated Italian probands (Patient 1 and Patient 2) affected by chronic PEO, ptosis, and muscle weakness. Cerebellar features and severe dysphagia requiring enteral feeding were observed in one patient. In both cases, muscle biopsy revealed diffuse mitochondrial abnormalities and multiple mtDNA deletions. A targeted next-generation sequencing analysis revealed the homozygous RNASEH1 mutations c.129-3C>G and c.424G>A in patients 1 and 2, respectively. The c.129-3C>G substitution has never been described as disease-related and resulted in the loss of exon 2 in Patient 1 muscle RNASEH1 transcript. Overall, we recommend implementing the use of high-throughput sequencing approaches in the clinical setting to reach genetic diagnosis in case of suspected presentations with impaired mtDNA homeostasis.
Collapse
Affiliation(s)
- Arianna Manini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Leonardo Caporali
- Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Megi Meneri
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Department of Neuroscience, Milan, Italy
| | - Simona Zanotti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy
| | - Daniela Piga
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Department of Neuroscience, Milan, Italy
| | - Ignazio Giuseppe Arena
- Unit of Neurology and Neuromuscular disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stefania Corti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Department of Neuroscience, Milan, Italy
| | - Antonio Toscano
- Unit of Neurology and Neuromuscular disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Valerio Carelli
- Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Department of Neuroscience, Milan, Italy
| |
Collapse
|
18
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
19
|
How RNases Shape Mitochondrial Transcriptomes. Int J Mol Sci 2022; 23:ijms23116141. [PMID: 35682820 PMCID: PMC9181182 DOI: 10.3390/ijms23116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution. RNA biology is thus particularly diverse in mitochondria. It involves an unexpectedly vast array of factors, some of which being universal to all mitochondria and others being specific from specific eukaryote clades. Among them, ribonucleases are particularly prominent. They play pivotal functions such as the maturation of transcript ends, RNA degradation and surveillance functions that are required to attain the pool of mature RNAs required to synthesize essential mitochondrial proteins such as respiratory chain proteins. Beyond these functions, mitochondrial ribonucleases are also involved in the maintenance and replication of mitochondrial DNA, and even possibly in the biogenesis of mitochondrial ribosomes. The diversity of mitochondrial RNases is reviewed here, showing for instance how in some cases a bacterial-type enzyme was kept in some eukaryotes, while in other clades, eukaryote specific enzymes were recruited for the same function.
Collapse
|
20
|
Biallelic Variants in ENDOG Associated with Mitochondrial Myopathy and Multiple mtDNA Deletions. Cells 2022; 11:cells11060974. [PMID: 35326425 PMCID: PMC8946636 DOI: 10.3390/cells11060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
Endonuclease G (ENDOG) is a nuclear-encoded mitochondrial-localized nuclease. Although its precise biological function remains unclear, its proximity to mitochondrial DNA (mtDNA) makes it an excellent candidate to participate in mtDNA replication, metabolism and maintenance. Indeed, several roles for ENDOG have been hypothesized, including maturation of RNA primers during mtDNA replication, splicing of polycistronic transcripts and mtDNA repair. To date, ENDOG has been deemed as a determinant of cardiac hypertrophy, but no pathogenic variants or genetically defined patients linked to this gene have been described. Here, we report biallelic ENDOG variants identified by NGS in a patient with progressive external ophthalmoplegia, mitochondrial myopathy and multiple mtDNA deletions in muscle. The absence of the ENDOG protein in the patient’s muscle and fibroblasts indicates that the identified variants are pathogenic. The presence of multiple mtDNA deletions supports the role of ENDOG in mtDNA maintenance; moreover, the patient’s clinical presentation is very similar to mitochondrial diseases caused by mutations in other genes involved in mtDNA homeostasis. Although the patient’s fibroblasts did not present multiple mtDNA deletions or delay in the replication process, interestingly, we detected an accumulation of low-level heteroplasmy mtDNA point mutations compared with age-matched controls. This may indicate a possible role of ENDOG in mtDNA replication or repair. Our report provides evidence of the association of ENDOG variants with mitochondrial myopathy.
Collapse
|
21
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
22
|
Berardo A, Engelstad K, Hirano M. Advances in Thymidine Kinase 2 Deficiency: Clinical Aspects, Translational Progress, and Emerging Therapies. J Neuromuscul Dis 2022; 9:225-235. [PMID: 35094997 PMCID: PMC9028656 DOI: 10.3233/jnd-210786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Defects in the replication, maintenance, and repair of mitochondrial DNA (mtDNA) constitute a growing and genetically heterogeneous group of mitochondrial disorders. Multiple genes participate in these processes, including thymidine kinase 2 (TK2) encoding the mitochondrial matrix protein TK2, a critical component of the mitochondrial nucleotide salvage pathway. TK2 deficiency (TK2d) causes mtDNA depletion, multiple deletions, or both, which manifest predominantly as mitochondrial myopathy. A wide clinical spectrum phenotype includes a severe, rapidly progressive, early onset form (median survival: < 2 years); a less severe childhood-onset form; and a late-onset form with a variably slower rate of progression. Clinical presentation typically includes progressive weakness of limb, neck, facial, oropharyngeal, and respiratory muscle, whereas limb myopathy with ptosis, ophthalmoparesis, and respiratory involvement is more common in the late-onset form. Deoxynucleoside monophosphates and deoxynucleosides that can bypass the TK2 enzyme defect have been assessed in a mouse model, as well as under open-label compassionate use (expanded access) in TK2d patients, indicating clinical efficacy with a favorable side-effect profile. This treatment is currently undergoing testing in clinical trials intended to support approval in the US and European Union (EU). In the early expanded access program, growth differentiation factor 15 (GDF-15) appears to be a useful biomarker that correlates with therapeutic response. With the advent of a specific treatment and given the high morbidity and mortality associated with TK2d, clinicians need to know how to recognize and diagnose this disorder. Here, we summarize translational research about this rare condition emphasizing clinical aspects.
Collapse
Affiliation(s)
- Andres Berardo
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Molecular Genetics Overview of Primary Mitochondrial Myopathies. J Clin Med 2022; 11:jcm11030632. [PMID: 35160083 PMCID: PMC8836969 DOI: 10.3390/jcm11030632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial disorders are the most common inherited conditions, characterized by defects in oxidative phosphorylation and caused by mutations in nuclear or mitochondrial genes. Due to its high energy request, skeletal muscle is typically involved. According to the International Workshop of Experts in Mitochondrial Diseases held in Rome in 2016, the term Primary Mitochondrial Myopathy (PMM) should refer to those mitochondrial disorders affecting principally, but not exclusively, the skeletal muscle. The clinical presentation may include general isolated myopathy with muscle weakness, exercise intolerance, chronic ophthalmoplegia/ophthalmoparesis (cPEO) and eyelids ptosis, or multisystem conditions where there is a coexistence with extramuscular signs and symptoms. In recent years, new therapeutic targets have been identified leading to the launch of some promising clinical trials that have mainly focused on treating muscle symptoms and that require populations with defined genotype. Advantages in next-generation sequencing techniques have substantially improved diagnosis. So far, an increasing number of mutations have been identified as responsible for mitochondrial disorders. In this review, we focused on the principal molecular genetic alterations in PMM. Accordingly, we carried out a comprehensive review of the literature and briefly discussed the possible approaches which could guide the clinician to a genetic diagnosis.
Collapse
|
24
|
Guo L, Govindaraj P, Kievit M, de Coo IFM, Gerards M, Hellebrekers DMEI, Stassen APM, Gayathri N, Taly AB, Sankaran BP, Smeets HJM. Whole exome sequencing reveals a homozygous C1QBP deletion as the cause of progressive external ophthalmoplegia and multiple mtDNA deletions. Neuromuscul Disord 2021; 31:859-864. [PMID: 34419324 DOI: 10.1016/j.nmd.2021.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Whole exome sequencing (WES), analyzed with GENESIS and WeGET, revealed a homozygous deletion in the C1QBP gene in a patient with progressive external ophthalmoplegia (PEO) and multiple mtDNA deletions. The gene encodes the mitochondria-located complementary 1 Q subcomponent-binding protein, involved in mitochondrial homeostasis. Biallelic mutations in C1QBP cause mitochondrial cardiomyopathy and/or PEO with variable age of onset. Our patient showed only late-onset PEO-plus syndrome without overt cardiac involvement. Available data suggest that early-onset cardiomyopathy variants localize in important structural domains and PEO-plus variants in the coiled-coil region. Our patient demonstrates that C1QBP mutations should be considered in individuals with PEO with or without cardiomyopathy.
Collapse
Affiliation(s)
- Le Guo
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands; Department of Toxicogenomics, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Center for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Mariëlle Kievit
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Irenaeus F M de Coo
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands; Department of Toxicogenomics, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands
| | - Mike Gerards
- Maastricht Center for Systems Biology (MacsBio), Maastricht University, Maastricht, the Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alphons P M Stassen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Neuromuscular Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Bindu Parayil Sankaran
- The Faculty of Medicine and Health, The Children's Hospital at Westmead Clinical School, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Hubert J M Smeets
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands; Department of Toxicogenomics, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
25
|
Uruci S, Lo CSY, Wheeler D, Taneja N. R-Loops and Its Chro-Mates: The Strange Case of Dr. Jekyll and Mr. Hyde. Int J Mol Sci 2021; 22:ijms22168850. [PMID: 34445553 PMCID: PMC8396322 DOI: 10.3390/ijms22168850] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022] Open
Abstract
Since their discovery, R-loops have been associated with both physiological and pathological functions that are conserved across species. R-loops are a source of replication stress and genome instability, as seen in neurodegenerative disorders and cancer. In response, cells have evolved pathways to prevent R-loop accumulation as well as to resolve them. A growing body of evidence correlates R-loop accumulation with changes in the epigenetic landscape. However, the role of chromatin modification and remodeling in R-loops homeostasis remains unclear. This review covers various mechanisms precluding R-loop accumulation and highlights the role of chromatin modifiers and remodelers in facilitating timely R-loop resolution. We also discuss the enigmatic role of RNA:DNA hybrids in facilitating DNA repair, epigenetic landscape and the potential role of replication fork preservation pathways, active fork stability and stalled fork protection pathways, in avoiding replication-transcription conflicts. Finally, we discuss the potential role of several Chro-Mates (chromatin modifiers and remodelers) in the likely differentiation between persistent/detrimental R-loops and transient/benign R-loops that assist in various physiological processes relevant for therapeutic interventions.
Collapse
Affiliation(s)
- Sidrit Uruci
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
| | - Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
- Correspondence:
| |
Collapse
|
26
|
Cheng L, Wang W, Yao Y, Sun Q. Mitochondrial RNase H1 activity regulates R-loop homeostasis to maintain genome integrity and enable early embryogenesis in Arabidopsis. PLoS Biol 2021; 19:e3001357. [PMID: 34343166 PMCID: PMC8330923 DOI: 10.1371/journal.pbio.3001357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Plant mitochondrial genomes undergo frequent homologous recombination (HR). Ectopic HR activity is inhibited by the HR surveillance pathway, but the underlying regulatory mechanism is unclear. Here, we show that the mitochondrial RNase H1 AtRNH1B impairs the formation of RNA:DNA hybrids (R-loops) and participates in the HR surveillance pathway in Arabidopsis thaliana. AtRNH1B suppresses ectopic HR at intermediate-sized repeats (IRs) and thus maintains mitochondrial DNA (mtDNA) replication. The RNase H1 AtRNH1C is restricted to the chloroplast; however, when cells lack AtRNH1B, transport of chloroplast AtRNH1C into the mitochondria secures HR surveillance, thus ensuring the integrity of the mitochondrial genome and allowing embryogenesis to proceed. HR surveillance is further regulated by the single-stranded DNA-binding protein ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN1 (OSB1), which decreases the formation of R-loops. This study uncovers a facultative dual targeting mechanism between organelles and sheds light on the roles of RNase H1 in organellar genome maintenance and embryogenesis. This study clarifies the function of mitochondrial RNase H1 in genome stability and early embryogenesis in plants, and shows that mitochondrial R-loops are involved in homologous recombination surveillance of mtDNA. Facultative re-targeting of the chloroplast RNase H1 protein to mitochondria, in response to cellular conditions, can help guarantee mitochondrial RNase H1 activity.
Collapse
Affiliation(s)
- Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
27
|
Renaudin X, Lee M, Shehata M, Surmann EM, Venkitaraman AR. BRCA2 deficiency reveals that oxidative stress impairs RNaseH1 function to cripple mitochondrial DNA maintenance. Cell Rep 2021; 36:109478. [PMID: 34348152 PMCID: PMC8356021 DOI: 10.1016/j.celrep.2021.109478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is a ubiquitous cellular challenge implicated in aging, neurodegeneration, and cancer. By studying pathogenic mutations in the tumor suppressor BRCA2, we identify a general mechanism by which oxidative stress restricts mitochondrial (mt)DNA replication. BRCA2 inactivation induces R-loop accumulation in the mtDNA regulatory region and diminishes mtDNA replication initiation. In BRCA2-deficient cells, intracellular reactive oxygen species (ROS) are elevated, and ROS scavengers suppress the mtDNA defects. Conversely, wild-type cells exposed to oxidative stress by pharmacologic or genetic manipulation phenocopy these defects. Mechanistically, we find that 8-oxoguanine accumulation in mtDNA caused by oxidative stress suffices to impair recruitment of the mitochondrial enzyme RNaseH1 to sites of R-loop accrual, restricting mtDNA replication initiation. Thus, oxidative stress impairs RNaseH1 function to cripple mtDNA maintenance. Our findings highlight a molecular mechanism that links oxidative stress to mitochondrial dysfunction and is elicited by the inactivation of genes implicated in neurodegeneration and cancer. BRCA2-deficient cells accumulate mtDNA R-loops due to oxidative stress This stress creates 8-oxoguanine lesions impairing RNaseH1 recruitment to mtDNA RNaseH1 impairment triggers R-loop formation and restricts mtDNA replication Other sources of oxidative stress also cripple mtDNA maintenance via this mechanism
Collapse
Affiliation(s)
- Xavier Renaudin
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Mona Shehata
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Eva-Maria Surmann
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
28
|
Ramón J, Vila-Julià F, Molina-Granada D, Molina-Berenguer M, Melià MJ, García-Arumí E, Torres-Torronteras J, Cámara Y, Martí R. Therapy Prospects for Mitochondrial DNA Maintenance Disorders. Int J Mol Sci 2021; 22:6447. [PMID: 34208592 PMCID: PMC8234938 DOI: 10.3390/ijms22126447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.
Collapse
Affiliation(s)
- Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Jesús Melià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena García-Arumí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
29
|
Jacinto S, Guerreiro P, de Oliveira RM, Cunha-Oliveira T, Santos MJ, Grazina M, Rego AC, Outeiro TF. MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile. Front Cell Neurosci 2021; 15:641264. [PMID: 33815063 PMCID: PMC8011494 DOI: 10.3389/fncel.2021.641264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023] Open
Abstract
Mutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel. Although its exact function is unknown, it is thought to be important in the maintenance of mitochondrial membrane potential (ΔΨm). To obtain more information about the role of MPV17 in human disease, we investigated the effect of MPV17 knockdown and of selected known MPV17 mutations associated with MPV17 disease in vitro. We used different approaches in order to evaluate the cellular consequences of MPV17 deficiency. We found that lower levels of MPV17 were associated with impaired mitochondrial respiration and with a quiescent energetic metabolic profile. All the mutations studied destabilized the protein, resulting in reduced protein levels. We also demonstrated that different mutations caused different cellular abnormalities, including increased ROS production, decreased oxygen consumption, loss of ΔΨm, and mislocalization of MPV17 protein. Our study provides novel insight into the molecular effects of MPV17 mutations and opens novel possibilities for testing therapeutic strategies for a devastating group of disorders.
Collapse
Affiliation(s)
- Sandra Jacinto
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Neurologia Pediátrica, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central-EPE, Lisboa, Portugal
| | - Patrícia Guerreiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Switch Laboratory, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Katholiek Universiteit (KU), Leuven, Belgium
| | - Rita Machado de Oliveira
- CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Maria João Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Manuela Grazina
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
30
|
González de Cózar JM, Carretero-Junquera M, Ciesielski GL, Miettinen SM, Varjosalo M, Kaguni LS, Dufour E, Jacobs HT. A second hybrid-binding domain modulates the activity of Drosophila ribonuclease H1. J Biochem 2020; 168:515-533. [PMID: 32589740 PMCID: PMC7657459 DOI: 10.1093/jb/mvaa067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, ribonuclease H1 (RNase H1) is involved in the processing and removal of RNA/DNA hybrids in both nuclear and mitochondrial DNA. The enzyme comprises a C-terminal catalytic domain and an N-terminal hybrid-binding domain (HBD), separated by a linker of variable length, 115 amino acids in Drosophila melanogaster (Dm). Molecular modelling predicted this extended linker to fold into a structure similar to the conserved HBD. Based on a deletion series, both the catalytic domain and the conserved HBD were required for high-affinity binding to heteroduplex substrates, while loss of the novel HBD led to an ∼90% drop in Kcat with a decreased KM, and a large increase in the stability of the RNA/DNA hybrid-enzyme complex, supporting a bipartite-binding model in which the second HBD facilitates processivity. Shotgun proteomics following in vivo cross-linking identified single-stranded DNA-binding proteins from both nuclear and mitochondrial compartments, respectively RpA-70 and mtSSB, as prominent interaction partners of Dm RNase H1. However, we were not able to document direct and stable interactions with mtSSB when the proteins were co-overexpressed in S2 cells, and functional interactions between them in vitro were minor.
Collapse
Affiliation(s)
| | | | - Grzegorz L Ciesielski
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - Sini M Miettinen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Laurie S Kaguni
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Dufour
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| |
Collapse
|
31
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
32
|
Falkenberg M, Gustafsson CM. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit Rev Biochem Mol Biol 2020; 55:509-524. [DOI: 10.1080/10409238.2020.1818684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
|
34
|
Del Dotto V, Ullah F, Di Meo I, Magini P, Gusic M, Maresca A, Caporali L, Palombo F, Tagliavini F, Baugh EH, Macao B, Szilagyi Z, Peron C, Gustafson MA, Khan K, La Morgia C, Barboni P, Carbonelli M, Valentino ML, Liguori R, Shashi V, Sullivan J, Nagaraj S, El-Dairi M, Iannaccone A, Cutcutache I, Bertini E, Carrozzo R, Emma F, Diomedi-Camassei F, Zanna C, Armstrong M, Page M, Stong N, Boesch S, Kopajtich R, Wortmann S, Sperl W, Davis EE, Copeland WC, Seri M, Falkenberg M, Prokisch H, Katsanis N, Tiranti V, Pippucci T, Carelli V. SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder. J Clin Invest 2020; 130:108-125. [PMID: 31550240 DOI: 10.1172/jci128514] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/19/2019] [Indexed: 01/07/2023] Open
Abstract
Inherited optic neuropathies include complex phenotypes, mostly driven by mitochondrial dysfunction. We report an optic atrophy spectrum disorder, including retinal macular dystrophy and kidney insufficiency leading to transplantation, associated with mitochondrial DNA (mtDNA) depletion without accumulation of multiple deletions. By whole-exome sequencing, we identified mutations affecting the mitochondrial single-strand binding protein (SSBP1) in 4 families with dominant and 1 with recessive inheritance. We show that SSBP1 mutations in patient-derived fibroblasts variably affect the amount of SSBP1 protein and alter multimer formation, but not the binding to ssDNA. SSBP1 mutations impaired mtDNA, nucleoids, and 7S-DNA amounts as well as mtDNA replication, affecting replisome machinery. The variable mtDNA depletion in cells was reflected in severity of mitochondrial dysfunction, including respiratory efficiency, OXPHOS subunits, and complex amount and assembly. mtDNA depletion and cytochrome c oxidase-negative cells were found ex vivo in biopsies of affected tissues, such as kidney and skeletal muscle. Reduced efficiency of mtDNA replication was also reproduced in vitro, confirming the pathogenic mechanism. Furthermore, ssbp1 suppression in zebrafish induced signs of nephropathy and reduced optic nerve size, the latter phenotype complemented by WT mRNA but not by SSBP1 mutant transcripts. This previously unrecognized disease of mtDNA maintenance implicates SSBP1 mutations as a cause of human pathology.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Farid Ullah
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Pamela Magini
- Medical Genetics Unit, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Evan Harris Baugh
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Zsolt Szilagyi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Camille Peron
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Margaret A Gustafson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Chiara La Morgia
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Piero Barboni
- Department of Ophthalmology, Studio Oculistico d'Azeglio, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria Lucia Valentino
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | | | | | - Shashi Nagaraj
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Alessandro Iannaccone
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases and Visual Function Diagnostic Laboratory, Duke Eye Center, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | | | - Matthew Page
- Translational Medicine, UCB Pharma, Slough, United Kingdom
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Kopajtich
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Saskia Wortmann
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany.,Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Marco Seri
- Medical Genetics Unit, Sant'Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Departments of Pediatrics and Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
35
|
Zhao L, Sumberaz P. Mitochondrial DNA Damage: Prevalence, Biological Consequence, and Emerging Pathways. Chem Res Toxicol 2020; 33:2491-2502. [PMID: 32486637 DOI: 10.1021/acs.chemrestox.0c00083] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria have a plethora of functions within a eukaryotic cell, ranging from energy production, cell signaling, and protein cofactor synthesis to various aspects of metabolism. Mitochondrial dysfunction is known to cause over 200 named disorders and has been implicated in many human diseases and aging. Mitochondria have their own genetic material, mitochondrial DNA (mtDNA), which encodes 13 protein subunits in the oxidative phosphorylation system and a full set of transfer and rRNAs. Although more than 99% of the proteins in mitochondria are nuclear DNA (nDNA)-encoded, the integrity of mtDNA is critical for mitochondrial functions, as evidenced by mitochondrial diseases sourced from mtDNA mutations and depletions and the vital role of fragmented mtDNA molecules in cell signaling pathways. Previous research has shown that mtDNA is an important target of genotoxic assaults by a variety of chemical and physical factors. This Perspective discusses the prevalence of mtDNA damage by comparing the abundance of lesions in mDNA and nDNA and summarizes current knowledge on the biological pathways to cope with mtDNA damage, including mtDNA repair, mtDNA degradation, and mitochondrial fission and fusion. Also, emerging roles of mtDNA damage in mutagenesis and immune responses are reviewed.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| | - Philip Sumberaz
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
36
|
Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. Int J Mol Sci 2020; 21:E1706. [PMID: 32131532 PMCID: PMC7084774 DOI: 10.3390/ijms21051706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| |
Collapse
|
37
|
Petr MA, Tulika T, Carmona-Marin LM, Scheibye-Knudsen M. Protecting the Aging Genome. Trends Cell Biol 2020; 30:117-132. [DOI: 10.1016/j.tcb.2019.12.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
|
38
|
Reyes A, Rusecka J, Tońska K, Zeviani M. RNase H1 Regulates Mitochondrial Transcription and Translation via the Degradation of 7S RNA. Front Genet 2020; 10:1393. [PMID: 32082360 PMCID: PMC7006045 DOI: 10.3389/fgene.2019.01393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/19/2019] [Indexed: 02/02/2023] Open
Abstract
RNase H1 is able to recognize DNA/RNA heteroduplexes and to degrade their RNA component. As a consequence, it has been implicated in different aspects of mtDNA replication such as primer formation, primer removal, and replication termination, and significant differences have been reported between control and mutant RNASEH1 skin fibroblasts from patients. However, neither mtDNA depletion nor the presence of deletions have been described in skin fibroblasts while still presenting signs of mitochondrial dysfunction (lower mitochondrial membrane potential, reduced oxygen consumption, slow growth in galactose). Here, we show that RNase H1 has an effect on mtDNA transcripts, most likely through the regulation of 7S RNA and other R-loops. The observed effect on both mitochondrial mRNAs and 16S rRNA results in decreased mitochondrial translation and subsequently mitochondrial dysfunction in cells carrying mutations in RNASEH1.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Aurelio Reyes, ; Massimo Zeviani,
| | - Joanna Rusecka
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Aurelio Reyes, ; Massimo Zeviani,
| |
Collapse
|
39
|
Abstract
The POLG gene encodes the mitochondrial DNA polymerase that is responsible for replication of the mitochondrial genome. Mutations in POLG can cause early childhood mitochondrial DNA (mtDNA) depletion syndromes or later-onset syndromes arising from mtDNA deletions. POLG mutations are the most common cause of inherited mitochondrial disorders, with as many as 2% of the population carrying these mutations. POLG-related disorders comprise a continuum of overlapping phenotypes with onset from infancy to late adulthood. The six leading disorders caused by POLG mutations are Alpers-Huttenlocher syndrome, which is one of the most severe phenotypes; childhood myocerebrohepatopathy spectrum, which presents within the first 3 years of life; myoclonic epilepsy myopathy sensory ataxia; ataxia neuropathy spectrum; autosomal recessive progressive external ophthalmoplegia; and autosomal dominant progressive external ophthalmoplegia. This Review describes the clinical features, pathophysiology, natural history and treatment of POLG-related disorders, focusing particularly on the neurological manifestations of these conditions.
Collapse
|
40
|
|
41
|
Ronchi D, Liu C, Caporali L, Piga D, Li H, Tagliavini F, Valentino ML, Ferrò MT, Bini P, Zheng L, Carelli V, Shen B, Comi GP. Novel mutations in DNA2 associated with myopathy and mtDNA instability. Ann Clin Transl Neurol 2019; 6:1893-1899. [PMID: 31478350 PMCID: PMC6764641 DOI: 10.1002/acn3.50888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/03/2023] Open
Abstract
The maintenance of mitochondrial DNA (mtDNA) relies on proteins encoded by nuclear genes. Mutations in their coding sequences result in heterogenous clinical presentations featuring mtDNA instability in affected tissues. DNA2 is a multi-catalytic protein involved in the removal of single strand DNA during mtDNA replication or Long Patch Base Excision Repair pathway. We have previously described DNA2 mutations in adult patients affected with familial and sporadic forms of mitochondrial myopathy. Here we describe four novel probands presenting with limb weakness associated with novel DNA2 molecular defects. Biochemical assays were established to investigate the functional effects of these variants.
Collapse
Affiliation(s)
- Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Leonardo Caporali
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Daniela Piga
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Hongzhi Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Francesca Tagliavini
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria Lucia Valentino
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | | | - Paola Bini
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Valerio Carelli
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neuroscience, Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| |
Collapse
|
42
|
Carreño-Gago L, Blázquez-Bermejo C, Díaz-Manera J, Cámara Y, Gallardo E, Martí R, Torres-Torronteras J, García-Arumí E. Identification and Characterization of New RNASEH1 Mutations Associated With PEO Syndrome and Multiple Mitochondrial DNA Deletions. Front Genet 2019; 10:576. [PMID: 31258551 PMCID: PMC6588129 DOI: 10.3389/fgene.2019.00576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) depletion and deletion syndrome encompasses a group of disorders caused by mutations in genes involved in mtDNA replication and maintenance. The clinical phenotype ranges from fatal infantile hepatocerebral forms to mild adult onset progressive external ophthalmoplegia (PEO). We report the case of a patient with PEO and multiple mtDNA deletions, with two new homozygous mutations in RNASEH1. The first mutation (c.487T>C) is located in the same catalytic domain as the four previously reported mutations, and the second (c.258_260del) is located in the connection domain, where no mutations have been reported. In silico study of the mutations predicted only the first mutation as pathogenic, but functional studies showed that both mutations cause loss of ribonuclease H1 activity. mtDNA replication dysfunction was demonstrated in patient fibroblasts, which were unable to recover normal mtDNA copy number after ethidium bromide-induced mtDNA depletion. Our results demonstrate the pathogenicity of two new RNASEH1 variants found in a patient with PEO syndrome, multiple deletions, and mild mitochondrial myopathy.
Collapse
Affiliation(s)
- Lidia Carreño-Gago
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cora Blázquez-Bermejo
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Jordi Díaz-Manera
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Servei de Neurologia, Malalties Neuromusculars, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yolanda Cámara
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Eduard Gallardo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Servei de Neurologia, Malalties Neuromusculars, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Martí
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Javier Torres-Torronteras
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Elena García-Arumí
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
43
|
Holt IJ. The Jekyll and Hyde character of RNase H1 and its multiple roles in mitochondrial DNA metabolism. DNA Repair (Amst) 2019; 84:102630. [PMID: 31178343 DOI: 10.1016/j.dnarep.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
The activity and specificity of ribonuclease H1, RNase H1, has been known for over half a century; like all enzymes in its class, it degrades RNA only when it is hybridized to DNA. However, the essential role of RNase H1 in mitochondrial DNA maintenance was not recognized until 2003, and empirical evidence that it is required to process RNA primers of mitochondrial DNA had to wait until 2015. In the same year, mutations in the RNASEH1 gene were linked to human mitochondrial diseases. The most recent studies suggest that in addition to primer-processing, RNase H1 determines the fate of R-loops, although not primarily those that might present an obstacle to DNA replication, but ones that contribute to the organization of mitochondrial DNA and the unusual mechanism of replication in mitochondria that utilizes transcripts for the strand-asynchronous mechanism of mitochondrial DNA replication. A full understanding of the role of RNase H1 in mtDNA metabolism will depend on further study, including careful consideration of its ability to stabilize, as well as to degrade RNA/DNA hybrids, and its regulation by oxidation or other mechanisms. Nevertheless, RNase H1 is already staking a strong claim to be the most versatile factor involved in propagating the DNA in the mitochondria.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain.
| |
Collapse
|
44
|
Wanrooij PH, Chabes A. Ribonucleotides in mitochondrial DNA. FEBS Lett 2019; 593:1554-1565. [PMID: 31093968 DOI: 10.1002/1873-3468.13440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 01/05/2023]
Abstract
The incorporation of ribonucleotides (rNMPs) into DNA during genome replication has gained substantial attention in recent years and has been shown to be a significant source of genomic instability. Studies in yeast and mammals have shown that the two genomes, the nuclear DNA (nDNA) and the mitochondrial DNA (mtDNA), differ with regard to their rNMP content. This is largely due to differences in rNMP repair - whereas rNMPs are efficiently removed from the nuclear genome, mitochondria lack robust mechanisms for removal of single rNMPs incorporated during DNA replication. In this minireview, we describe the processes that determine the frequency of rNMPs in the mitochondrial genome and summarise recent findings regarding the effect of incorporated rNMPs on mtDNA stability and function.
Collapse
Affiliation(s)
- Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Sweden
| |
Collapse
|
45
|
Chen Z, Zhang F, Xu H. Human mitochondrial DNA diseases and Drosophila models. J Genet Genomics 2019; 46:201-212. [DOI: 10.1016/j.jgg.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
46
|
Blázquez-Bermejo C, Carreño-Gago L, Molina-Granada D, Aguirre J, Ramón J, Torres-Torronteras J, Cabrera-Pérez R, Martín MÁ, Domínguez-González C, de la Cruz X, Lombès A, García-Arumí E, Martí R, Cámara Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts. FASEB J 2019; 33:7168-7179. [PMID: 30848931 DOI: 10.1096/fj.201801591r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polymerase γ catalytic subunit (POLG) gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting POLG are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency. In this study, we studied mtDNA copy number recovery rates following ethidium bromide-forced depletion in quiescent fibroblasts from patients harboring mutations in different domains of POLG. Whereas control cells spontaneously recovered initial mtDNA levels, POLG-deficient cells experienced a more severe depletion and could not repopulate mtDNA. However, activation of deoxyribonucleoside (dN) salvage by supplementation with dNs plus erythro-9-(2-hydroxy-3-nonyl) adenine (inhibitor of deoxyadenosine degradation) led to increased mitochondrial dNTP pools and promoted mtDNA repopulation in all tested POLG-mutant cells independently of their specific genetic defect. The treatment did not compromise POLG fidelity because no increase in multiple deletions or point mutations was detected. Our study suggests that physiologic dNTP concentration limits the mtDNA replication rate. We thus propose that increasing mitochondrial dNTP availability could be of therapeutic interest for POLG deficiency and other conditions in which mtDNA maintenance is challenged.-Blázquez-Bermejo, C., Carreño-Gago, L., Molina-Granada, D., Aguirre, J., Ramón, J., Torres-Torronteras, J., Cabrera-Pérez, R., Martín, M. Á., Domínguez-González, C., de la Cruz, X., Lombès, A., García-Arumí, E., Martí, R., Cámara, Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.
Collapse
Affiliation(s)
- Cora Blázquez-Bermejo
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Carreño-Gago
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Josu Aguirre
- Translational Bioinformatics Group, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ángel Martín
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Cristina Domínguez-González
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Neuromuscular, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Xavier de la Cruz
- Translational Bioinformatics Group, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; and
| | - Anne Lombès
- Institut Cochin, INSERM Unité 1016-Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104-Service de Biochimie Métabolique et Centre de Génétique Moléculaire et Chromosomique, Groupement Hospitalier Universitaire (GHU) Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris (AP-HP)-Université Paris Descartes, Paris, France
| | - Elena García-Arumí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
González de Cózar JM, Gerards M, Teeri E, George J, Dufour E, Jacobs HT, Jõers P. RNase H1 promotes replication fork progression through oppositely transcribed regions of Drosophila mitochondrial DNA. J Biol Chem 2019; 294:4331-4344. [PMID: 30635398 PMCID: PMC6433063 DOI: 10.1074/jbc.ra118.007015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) replication uses a simple core machinery similar to those of bacterial viruses and plasmids, but its components are challenging to unravel. Here, we found that, as in mammals, the single Drosophila gene for RNase H1 (rnh1) has alternative translational start sites, resulting in two polypeptides, targeted to either mitochondria or the nucleus. RNAi-mediated rnh1 knockdown did not influence growth or viability of S2 cells, but compromised mtDNA integrity and copy number. rnh1 knockdown in intact flies also produced a phenotype of impaired mitochondrial function, characterized by respiratory chain deficiency, locomotor dysfunction, and decreased lifespan. Its overexpression in S2 cells resulted in cell lethality after 5–9 days, attributable to the nuclearly localized isoform. rnh1 knockdown and overexpression produced opposite effects on mtDNA replication intermediates. The most pronounced effects were seen in genome regions beyond the major replication pauses where the replication fork needs to progress through a gene cluster that is transcribed in the opposite direction. RNase H1 deficiency led to an accumulation of replication intermediates in these zones, abundant mtDNA molecules joined by four-way junctions, and species consistent with fork regression from the origin. These findings indicate replication stalling due to the presence of unprocessed RNA/DNA heteroduplexes, potentially leading to the degradation of collapsed forks or to replication restart by a mechanism involving strand invasion. Both mitochondrial RNA and DNA syntheses were affected by rnh1 knockdown, suggesting that RNase H1 also plays a role in integrating or coregulating these processes in Drosophila mitochondria.
Collapse
Affiliation(s)
- Jose M González de Cózar
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Mike Gerards
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Eveliina Teeri
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Jack George
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Eric Dufour
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Howard T Jacobs
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland, .,Institute of Biotechnology, FI-00014 University of Helsinki, Finland, and
| | - Priit Jõers
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland.,Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
48
|
Posse V, Al-Behadili A, Uhler JP, Clausen AR, Reyes A, Zeviani M, Falkenberg M, Gustafsson CM. RNase H1 directs origin-specific initiation of DNA replication in human mitochondria. PLoS Genet 2019; 15:e1007781. [PMID: 30605451 PMCID: PMC6317783 DOI: 10.1371/journal.pgen.1007781] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022] Open
Abstract
Human mitochondrial DNA (mtDNA) replication is first initiated at the origin of H-strand replication. The initiation depends on RNA primers generated by transcription from an upstream promoter (LSP). Here we reconstitute this process in vitro using purified transcription and replication factors. The majority of all transcription events from LSP are prematurely terminated after ~120 nucleotides, forming stable R-loops. These nascent R-loops cannot directly prime mtDNA synthesis, but must first be processed by RNase H1 to generate 3′-ends that can be used by DNA polymerase γ to initiate DNA synthesis. Our findings are consistent with recent studies of a knockout mouse model, which demonstrated that RNase H1 is required for R-loop processing and mtDNA maintenance in vivo. Both R-loop formation and DNA replication initiation are stimulated by the mitochondrial single-stranded DNA binding protein. In an RNase H1 deficient patient cell line, the precise initiation of mtDNA replication is lost and DNA synthesis is initiated from multiple sites throughout the mitochondrial control region. In combination with previously published in vivo data, the findings presented here suggest a model, in which R-loop processing by RNase H1 directs origin-specific initiation of DNA replication in human mitochondria. Human mitochondria contain a double-stranded DNA genome that codes for key components of the oxidative phosphorylation system. The mitochondrial DNA (mtDNA) is replicated by a replication machinery distinct from that operating in the nucleus and mutations affecting individual replication factors have been associated with an array of rare, human diseases. In the present work, we demonstrate that RNase H1 directs origin-specific initiation of DNA replication in human mitochondria and that disease-causing mutations may impair this process. A unique feature of mtDNA replication is that primers required for initiation of leading-strand DNA replication are produced by the mitochondrial transcription machinery. A substantial fraction of all transcription events is prematurely terminated about 120 nucleotides downstream of the promoter and the RNA remains firmly associated with the genome, forming R-loops. Interestingly, the free 3′-end of these R-loops cannot directly prime initiation of DNA synthesis, but must first be processed by RNase H1. The process is stimulated by the mitochondrial single-stranded DNA binding protein and faithfully reconstitutes replication events mapped in vivo. In combination with mapping of replication events in fibroblasts derived from patients with mutations in RNASEH1, our findings point to a possible model for replication initiation in human mitochondria similar to that previously described in the E. coli plasmid, ColE1.
Collapse
Affiliation(s)
- Viktor Posse
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jay P Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Al-Behadili A, Uhler JP, Berglund AK, Peter B, Doimo M, Reyes A, Wanrooij S, Zeviani M, Falkenberg M. A two-nuclease pathway involving RNase H1 is required for primer removal at human mitochondrial OriL. Nucleic Acids Res 2018; 46:9471-9483. [PMID: 30102370 PMCID: PMC6182146 DOI: 10.1093/nar/gky708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 11/12/2022] Open
Abstract
The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.
Collapse
Affiliation(s)
- Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Jay P Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Anna-Karin Berglund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Mara Doimo
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Aurelio Reyes
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| |
Collapse
|
50
|
Reyes A, Melchionda L, Burlina A, Robinson AJ, Ghezzi D, Zeviani M. Mutations in TIMM50 compromise cell survival in OxPhos-dependent metabolic conditions. EMBO Mol Med 2018; 10:emmm.201708698. [PMID: 30190335 PMCID: PMC6180300 DOI: 10.15252/emmm.201708698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
TIMM50 is an essential component of the TIM23 complex, the mitochondrial inner membrane machinery that imports cytosolic proteins containing a mitochondrial targeting presequence into the mitochondrial inner compartment. Whole exome sequencing (WES) identified compound heterozygous pathogenic mutations in TIMM50 in an infant patient with rapidly progressive, severe encephalopathy. Patient fibroblasts presented low levels of TIMM50 and other components of the TIM23 complex, lower mitochondrial membrane potential, and impaired TIM23-dependent protein import. As a consequence, steady-state levels of several components of mitochondrial respiratory chain were decreased, resulting in decreased respiration and increased ROS production. Growth of patient fibroblasts in galactose shifted energy production metabolism toward oxidative phosphorylation (OxPhos), producing an apparent improvement in most of the above features but also increased apoptosis. Complementation of patient fibroblasts with TIMM50 improved or restored these features to control levels. Moreover, RNASEH1 and ISCU mutant fibroblasts only shared a few of these features with TIMM50 mutant fibroblasts. Our results indicate that mutations in TIMM50 cause multiple mitochondrial bioenergetic dysfunction and that functional TIMM50 is essential for cell survival in OxPhos-dependent conditions.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Laura Melchionda
- Unit of Molecular NeurogeneticsFoundation Carlo Besta Neurological Institute‐IRCCSMilanItaly
| | - Alberto Burlina
- Division of Inherited Metabolic DiseasesDepartment of PediatricsUniversity Hospital PadovaPadovaItaly
| | - Alan J Robinson
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Daniele Ghezzi
- Unit of Molecular NeurogeneticsFoundation Carlo Besta Neurological Institute‐IRCCSMilanItaly
| | - Massimo Zeviani
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|