1
|
Wei H, Zhao D, Zhi Y, Wu Q, Ma J, Xu J, Liu T, Zhang J, Wang P, Hu Y, He X, Guo F, Jiang M, Zhang D, Nie W, Yang R, Zhao T, Dong Z, Liu K. RTN4IP1 Contributes to ESCC via Regulation of Amino Acid Transporters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406220. [PMID: 39757767 PMCID: PMC11848606 DOI: 10.1002/advs.202406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/19/2024] [Indexed: 01/07/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase. Here, a notable upregulation of RTN4IP1 is demonstrated, which is associated with poor survival in patients with ESCC. RTN4IP1 depletion impairs cell proliferation and induces apoptosis of ESCC cells. Furthermore, c-Myc regulates RTN4IP1 expression via iron regulatory protein 2 (IRP2) at the post-transcriptional level. Mechanistically, RTN4IP1 mRNA harbors functional iron-responsive elements (IREs) in the 3' UTR, which can be targeted by IRP2, resulting in increased mRNA stability. Finally, RTN4IP1 depletion abrogates amino acid uptake and induces amino acid starvation via downregulation of the amino acid transporters SLC1A5, SLC3A2, and SLC7A5, indicating a possible pathway through which RTN4IP1 contributes to ESCC carcinogenesis and progression. In vivo studies using cell-derived xenograft and patient-derived xenograft mouse models as well as a 4-nitroquinoline 1-oxide-induced ESCC model in esophageal-specific Rtn4ip1 knockout mice demonstrate the essential role of RTN4IP1 in ESCC development. Thus, RTN4IP1 emerges as a key cancer-promoting protein in ESCC, suggesting therapeutic RTN4IP1 suppression as a promising strategy for ESCC treatment.
Collapse
Affiliation(s)
- Huifang Wei
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Dengyun Zhao
- Department of PathophysiologySchool of Basic Medical Sciences, Zhengzhou UniversityChina‐US (Henan) Hormel Cancer InstituteChest Hospital of Zhengzhou UniversityZhengzhou450000China
| | - Yafei Zhi
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Qiong Wu
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Jing Ma
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450000China
| | - Jialuo Xu
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450000China
| | - Tingting Liu
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Jing Zhang
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Penglei Wang
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Yamei Hu
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Xinyu He
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Fangqin Guo
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Ming Jiang
- China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Dandan Zhang
- China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Wenna Nie
- China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Ran Yang
- China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Tongjin Zhao
- Department of PathophysiologySchool of Basic Medical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450000China
- State Key Laboratory of Genetic EngineeringShanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyZhongshan HospitalShanghai Qi Zhi InstituteFudan UniversityShanghai200438China
| | - Zigang Dong
- Department of PathophysiologySchool of Basic Medical SciencesThe Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, State Key Laboratory of EsophagealCancer Prevention and TreatmentProvincial Cooperative Innovation Center for Cancer ChemopreventionChina‐US (Henan) Hormel Cancer Institute, Tianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450000China
| | - Kangdong Liu
- Department of PathophysiologySchool of Basic Medical SciencesThe Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, State Key Laboratory of EsophagealCancer Prevention and TreatmentProvincial Cooperative Innovation Center for Cancer ChemopreventionChina‐US (Henan) Hormel Cancer Institute, Tianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450000China
| |
Collapse
|
2
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
4
|
Gupta PR, O'Connell K, Sullivan JM, Huckfeldt RM. RTN4IP1-associated non-syndromic optic neuropathy and rod-cone dystrophy. Ophthalmic Genet 2024; 45:289-293. [PMID: 38224077 DOI: 10.1080/13816810.2024.2303683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Biallelic variants in RTN4IP1 are a well-established cause of syndromic and nonsyndromic early-onset autosomal recessive optic neuropathy. They have more recently been reported to cause a concomitant but later-onset rod-cone dystrophy with or without syndromic features. METHODS A comprehensive evaluation was performed that included assessment of visual and retinal function, clinical examination, and retinal imaging. Childhood ophthalmic records as well as the results of genetic testing were evaluated. RESULTS A 24-year-old female described longstanding reduced visual acuity with more recent subjective impairment of dark adaptation. Visual acuity was subnormal in both eyes. Goldmann kinetic perimetry demonstrated scotomas in a pattern consistent with the presence of both optic neuropathy and rod-cone dystrophy with fundus exam as well as retinal imaging showing corroborating findings. Full-field electroretinography further confirmed the presence of a rod-cone dystrophy. Genetic testing demonstrated biallelic variants in RTN4IP1, one of which was novel, in association with the ocular findings. CONCLUSIONS RTN4IP1-associated early-onset bilateral optic neuropathy with rod-cone dystrophy is a recently described clinical entity with limited reports available to-date. The present case provides additional support for this dual phenotype and identifies a novel causative variant.
Collapse
Affiliation(s)
- Priya R Gupta
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaitlin O'Connell
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Jack M Sullivan
- Ira G. Ross Eye Institute (Department of Ophthalmology), Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
- Department of Ophthalmology, VA Western NY Healthcare System, Buffalo, New York, USA
| | - Rachel M Huckfeldt
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Pommerenke C, Nagel S, Haake J, Koelz AL, Christgen M, Steenpass L, Eberth S. Molecular Characterization and Subtyping of Breast Cancer Cell Lines Provide Novel Insights into Cancer Relevant Genes. Cells 2024; 13:301. [PMID: 38391914 PMCID: PMC10886524 DOI: 10.3390/cells13040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Continuous cell lines are important and commonly used in vitro models in breast cancer (BC) research. Selection of the appropriate model cell line is crucial and requires consideration of their molecular characteristics. To characterize BC cell line models in depth, we profiled a panel of 29 authenticated and publicly available BC cell lines by mRNA-sequencing, mutation analysis, and immunoblotting. Gene expression profiles separated BC cell lines in two major clusters that represent basal-like (mainly triple-negative BC) and luminal BC subtypes, respectively. HER2-positive cell lines were located within the luminal cluster. Mutation calling highlighted the frequent aberration of TP53 and BRCA2 in BC cell lines, which, therefore, share relevant characteristics with primary BC. Furthermore, we showed that the data can be used to find novel, potential oncogenic fusion transcripts, e.g., FGFR2::CRYBG1 and RTN4IP1::CRYBG1 in cell line MFM-223, and to elucidate the regulatory circuit of IRX genes and KLF15 as novel candidate tumor suppressor genes in BC. Our data indicated that KLF15 was activated by IRX1 and inhibited by IRX3. Moreover, KLF15 inhibited IRX1 in cell line HCC-1599. Each BC cell line carries unique molecular features. Therefore, the molecular characteristics of BC cell lines described here might serve as a valuable resource to improve the selection of appropriate models for BC research.
Collapse
Affiliation(s)
- Claudia Pommerenke
- Department of Bioinformatics, IT and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Josephine Haake
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Anne Leena Koelz
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Matthias Christgen
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Laura Steenpass
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| |
Collapse
|
6
|
Guerra RM, Pagliarini DJ. Reducing mitochondrial mysteries. Nat Chem Biol 2024; 20:132-133. [PMID: 37884804 PMCID: PMC11378938 DOI: 10.1038/s41589-023-01435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Defining subcellular locations and interacting partners for proteins accelerates their functional characterization. A new in vivo tagging approach achieves both for mitochondrial matrix proteins and helps connect a key oxidoreductase to coenzyme Q biosynthesis.
Collapse
Affiliation(s)
- Rachel M Guerra
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - David J Pagliarini
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Park I, Kim KE, Kim J, Kim AK, Bae S, Jung M, Choi J, Mishra PK, Kim TM, Kwak C, Kang MG, Yoo CM, Mun JY, Liu KH, Lee KS, Kim JS, Suh JM, Rhee HW. Mitochondrial matrix RTN4IP1/OPA10 is an oxidoreductase for coenzyme Q synthesis. Nat Chem Biol 2024; 20:221-233. [PMID: 37884807 PMCID: PMC10830421 DOI: 10.1038/s41589-023-01452-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/17/2023] [Indexed: 10/28/2023]
Abstract
Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.
Collapse
Affiliation(s)
- Isaac Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Eun Kim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Ae-Kyeong Kim
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Republic of Korea
| | - Subin Bae
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinhyuk Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | | | - Taek-Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chang-Mo Yoo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Jurkute N, Arno G, Webster AR, Yu-Wai-Man P. Whole Genome Sequencing Identifies a Partial Deletion of RTN4IP1 in a Patient With Isolated Optic Atrophy. J Neuroophthalmol 2023; 43:e142-e145. [PMID: 35439212 DOI: 10.1097/wno.0000000000001589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Neringa Jurkute
- Genetics Department, Moorfields Eye Hospital NHS Foundation Trust (NJ, GA, ARW, PY-W-M), London, United Kingdom; Institute of Ophthalmology (NJ, GA, ARW, PY-W-M), University College London, London, United Kingdom; North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children (GA), London, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital (PY-W-M), Cambridge University Hospitals, Cambridge, United Kingdom; and John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit (PY-W-M), Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
9
|
Rocatcher A, Desquiret-Dumas V, Charif M, Ferré M, Gohier P, Mirebeau-Prunier D, Verny C, Milea D, Lenaers G, Bonneau D, Reynier P, Amati-Bonneau P. The top 10 most frequently involved genes in hereditary optic neuropathies in 2186 probands. Brain 2023; 146:455-460. [PMID: 36317462 DOI: 10.1093/brain/awac395] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hereditary optic neuropathies are caused by the degeneration of retinal ganglion cells whose axons form the optic nerves, with a consistent genetic heterogeneity. As part of our diagnostic activity, we retrospectively evaluated the combination of Leber hereditary optic neuropathy mutations testing with the exon sequencing of 87 nuclear genes on 2186 patients referred for suspected hereditary optic neuropathies. The positive diagnosis rate in individuals referred for Leber hereditary optic neuropathy testing was 18% (199/1126 index cases), with 92% (184/199) carrying one of the three main pathogenic variants of mitochondrial DNA (m.11778G>A, 66.5%; m.3460G>A, 15% and m.14484T>C, 11%). The positive diagnosis rate in individuals referred for autosomal dominant or recessive optic neuropathies was 27% (451/1680 index cases), with 10 genes accounting together for 96% of this cohort. This represents an overall positive diagnostic rate of 30%. The identified top 10 nuclear genes included OPA1, WFS1, ACO2, SPG7, MFN2, AFG3L2, RTN4IP1, TMEM126A, NR2F1 and FDXR. Eleven additional genes, each accounting for less than 1% of cases, were identified in 17 individuals. Our results show that 10 major genes account for more than 96% of the cases diagnosed with our nuclear gene panel.
Collapse
Affiliation(s)
- Aude Rocatcher
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Valérie Desquiret-Dumas
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
| | - Majida Charif
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda 60000, Morocco
| | - Marc Ferré
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
| | - Philippe Gohier
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Delphine Mirebeau-Prunier
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
| | - Christophe Verny
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Neurologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Dan Milea
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
- Singapore National Eye Centre, Singapore Eye Research Institute, Duke-NUS 169857, Singapore
| | - Guy Lenaers
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Neurologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Dominique Bonneau
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Pascal Reynier
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Patrizia Amati-Bonneau
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| |
Collapse
|
10
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
11
|
Aldosary M, Alsagob M, AlQudairy H, González-Álvarez AC, Arold ST, Dababo MA, Alharbi OA, Almass R, AlBakheet A, AlSarar D, Qari A, Al-Ansari MM, Oláhová M, Al-Shahrani SA, AlSayed M, Colak D, Taylor RW, AlOwain M, Kaya N. A Novel Homozygous Founder Variant of RTN4IP1 in Two Consanguineous Saudi Families. Cells 2022; 11:3154. [PMID: 36231115 PMCID: PMC9563936 DOI: 10.3390/cells11193154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
The genetic architecture of mitochondrial disease continues to expand and currently exceeds more than 350 disease-causing genes. Bi-allelic variants in RTN4IP1, also known as Optic Atrophy-10 (OPA10), lead to early-onset recessive optic neuropathy, atrophy, and encephalopathy in the afflicted patients. The gene is known to encode a mitochondrial ubiquinol oxidoreductase that interacts with reticulon 4 and is thought to be a mitochondrial antioxidant NADPH oxidoreductase. Here, we describe two unrelated consanguineous families from the northern region of Saudi Arabia harboring a missense variant (RTN4IP1:NM_032730.5; c.475G
Collapse
Affiliation(s)
- Mazhor Aldosary
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Maysoon Alsagob
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Center of Excellence for Biomedicine, Joint Centers for Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hanan AlQudairy
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Ana C. González-Álvarez
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Stefan T. Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090 Montpellier, France
| | - Mohammad Anas Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Omar A. Alharbi
- Radiology Department, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rawan Almass
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - AlBandary AlBakheet
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Dalia AlSarar
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alya Qari
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Monika Oláhová
- Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Saif A. Al-Shahrani
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Moeenaldeen AlSayed
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Robert W. Taylor
- Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialized Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Mohammed AlOwain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
12
|
Zhou J, Chen F, Yan A, Jiang J, Xia X. Hyperglycemia induces retinal ganglion cell endoplasmic reticulum stress to the involvement of glaucoma in diabetic mice. Transpl Immunol 2022; 73:101636. [PMID: 35659921 DOI: 10.1016/j.trim.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
Glaucoma is a neurodegenerative disease leading to visual loss. Since glaucoma is associated with chronic renal diseases (RDs) their rate is higher in patients with RDs, and end-stage RDs (ESRDs) than in the general population and kidney transplant recipients. OBJECTIVE To explore the molecular mechanism of diabetic internal environment in regulating the endoplasmic reticulum stress of the retinal ganglion cells (RGCs). METHODS Thirty-six SPF grade type 2 diabetes models were divided into 3 groups: Diabetes mellitus (DM), DM + glaucoma and 4-phenylbutyric acid-DM (4-PBA-DM) + glaucoma group. C57BL6 mice of the same week age were taken as the negative control (NC) group. The morphology of RGCs and their axon in the 4 groups were labeled by fluorescent reactive dye Dil. The apoptosis situation of RGCs was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. The protein expression values of RTN4IP1, Protein kinase R-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2A (eIF2a) and X-box-binding Protein 1 (XBP1) were determined by western blot. The relative mRNA levels of cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP), Caspase12 and Bax were determined by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Glaucoma promotes the apoptosis of RGCs. The protein expression values of RTN4IP1, PERK and XBP1 in DM mouse models with glaucoma were much higher compared to only DM mouse models. Further injection of endoplasmic reticulum stress inhibitor 4-PBA decreased the expression values. The relative mRNA levels of CHOP, Cysteine aspartic acid specific protease12 (Caspase12) and BCL2-associated X protein (Bax) in DM + glaucoma were significantly higher compared to those in DM group. Further injection of endoplasmic reticulum stress inhibitor 4-PBA decreased the mRNA levels. CONCLUSION Endoplasmic reticulum stress (ERS) is the underlying cause of glaucoma, which could promote the apoptosis of RGCs in diabetic mice.
Collapse
Affiliation(s)
- Jinzi Zhou
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, Guizhou 550002, PR China.
| | - Fenghua Chen
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, Guizhou 550002, PR China
| | - Aimin Yan
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, Guizhou 550002, PR China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, Hunan 410008, PR China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
13
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
14
|
Garanto A, Ferreira CR, Boon CJF, van Karnebeek CDM, Blau N. Clinical and biochemical footprints of inherited metabolic disorders. VII. Ocular phenotypes. Mol Genet Metab 2022; 135:311-319. [PMID: 35227579 PMCID: PMC10518078 DOI: 10.1016/j.ymgme.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
Ocular manifestations are observed in approximately one third of all inherited metabolic disorders (IMDs). Although ocular involvement is not life-threatening, it can result in severe vision loss, thereby leading to an additional burden for the patient. Retinal degeneration with or without optic atrophy is the most frequent phenotype, followed by oculomotor problems, involvement of the cornea and lens, and refractive errors. These phenotypes can provide valuable clues that contribute to its diagnosis. In this issue we found 577 relevant IMDs leading to ophthalmologic manifestations. This article is the seventh of a series attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital Radboud Center for Mitochondrial and Metabolic Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands and Amsterdam University Medical Centers, Academic Medical Center, Department of Ophthalmology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital Radboud Center for Mitochondrial and Metabolic Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Departments of Pediatrics and Human Genetics, Emma Children's Hospital, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
15
|
Kabanovski A, Donaldson L, Margolin E. Neuro-ophthalmological manifestations of Wolfram syndrome: Case series and review of the literature. J Neurol Sci 2022; 437:120267. [DOI: 10.1016/j.jns.2022.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
|
16
|
Murakhovskaya YK, Sheremet NL, Shmelkova MS, Krylova TD, Tsygankova PG. [Autosomal recessive optic neuropathies: genetic variants, clinical manifestations]. Vestn Oftalmol 2022; 138:116-122. [PMID: 36573955 DOI: 10.17116/oftalma2022138061116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hereditary optic neuropathies (HON) - a group of neurodegenerative diseases characterized by primary loss of structure and function of the retinal ganglion cells and subsequent death of their axons, development of partial optic nerve atrophy. Autosomal dominant optic neuropathy and Leber`s hereditary optic neuropathy until recently were considered the most common genetic hereditary optic neuropathies, while autosomal recessive optic neuropathies (ARON) were described as rare types of HON, usually accompanying severe syndromic pathologies. In the 2000s it has become clear that ARON occur significantly more often, are underestimated, and their clinical variability is poorly studied. Despite the fact that non-syndromic ARON are less common than syndromic optic neuropathies, their contribution to the development of isolated hereditary optic neuropathies should be considered. This article presents a literature review on non-syndromic ARON developing as a result of mutations in the ACO2, MCAT, WFS1, RTN4IP1, TMEM126A, NDUFS2, DNAJC30 genes.
Collapse
Affiliation(s)
- Yu K Murakhovskaya
- Krasnov Research Institute of Eye Diseases, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - N L Sheremet
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - M S Shmelkova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - T D Krylova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | |
Collapse
|
17
|
Zeviani M, Carelli V. Mitochondrial Retinopathies. Int J Mol Sci 2021; 23:210. [PMID: 35008635 PMCID: PMC8745158 DOI: 10.3390/ijms23010210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
The retina is an exquisite target for defects of oxidative phosphorylation (OXPHOS) associated with mitochondrial impairment. Retinal involvement occurs in two ways, retinal dystrophy (retinitis pigmentosa) and subacute or chronic optic atrophy, which are the most common clinical entities. Both can present as isolated or virtually exclusive conditions, or as part of more complex, frequently multisystem syndromes. In most cases, mutations of mtDNA have been found in association with mitochondrial retinopathy. The main genetic abnormalities of mtDNA include mutations associated with neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) sometimes with earlier onset and increased severity (maternally inherited Leigh syndrome, MILS), single large-scale deletions determining Kearns-Sayre syndrome (KSS, of which retinal dystrophy is a cardinal symptom), and mutations, particularly in mtDNA-encoded ND genes, associated with Leber hereditary optic neuropathy (LHON). However, mutations in nuclear genes can also cause mitochondrial retinopathy, including autosomal recessive phenocopies of LHON, and slowly progressive optic atrophy caused by dominant or, more rarely, recessive, mutations in the fusion/mitochondrial shaping protein OPA1, encoded by a nuclear gene on chromosome 3q29.
Collapse
Affiliation(s)
- Massimo Zeviani
- Department of Neurosciences, The Clinical School, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
- Programma di Neurogenetica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 6, 40139 Bologna, Italy
| |
Collapse
|
18
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Rajabian F, Manitto MP, Palombo F, Caporali L, Grazioli A, Starace V, Arrigo A, Cascavilla ML, La Morgia C, Barboni P, Bandello F, Carelli V, Battaglia Parodi M. Combined Optic Atrophy and Rod-Cone Dystrophy Expands the RTN4IP1 (Optic Atrophy 10) Phenotype. J Neuroophthalmol 2021; 41:e290-e292. [PMID: 33136666 DOI: 10.1097/wno.0000000000001124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Firuzeh Rajabian
- Vita-Salute San Raffaele University Milan (FR, MPM, AG, VS, AA, MLC, PB, FB, MBP), Milan, Italy ; IRCCS San Raffaele Scientific Institute (FR, MPM, AG, VS, AA, MLC, PB, FB, MBP), Milan, Italy ; IRCCS Istituto delle Scienze Neurologiche di Bologna (FP, LC, CLM, VC), Bologna, Italy; and Department of Biomedical and Neuromotor Sciences (DIBINEM) (CLM, VC), University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Meunier I, Bocquet B, Charif M, Dhaenens CM, Manes G, Amati-Bonneau P, Roubertie A, Zanlonghi X, Lenaers G. A ROD-CONE DYSTROPHY IS SYSTEMATICALLY ASSOCIATED TO THE RTN4IP1 RECESSIVE OPTIC ATROPHY. Retina 2021; 41:1771-1779. [PMID: 33315831 PMCID: PMC8297537 DOI: 10.1097/iae.0000000000003054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE RTN4IP1 biallelic mutations cause a recessive optic atrophy, sometimes associated to more severe neurological syndromes, but so far, no retinal phenotype has been reported in RTN4IP1 patients, justifying their reappraisal. METHODS Seven patients from four families carrying biallelic RTN4IP1 variants were retrospectively reviewed, with emphasis on their age of onset, visual acuity, multimodal imaging including color and autofluorescence frames, spectral-domain optical coherence tomography with RNFL and macular analyses. RESULTS Seven patients from four RTN4IP1 families developed in their first decade of life a bilateral recessive optic atrophy with severe central visual loss, and primary nystagmus developed in 5 of 7 patients. Six patients were legally blind. In a second stage, the seven individuals developed a rod-cone dystrophy, sparing the macular zone and the far periphery. This retinal damage was identified by 55° field fundus autofluorescence frames and also by spectral-domain optical coherence tomography scans of the temporal part of the macular zone in five of the seven patients. Full-field electroretinography measurements disclosed reduced b-wave amplitude of the rod responses in all patients but two. Family 4 with the p.R103H and c.601A > T (p.K201*) truncating mutation had further combined neurological signs with cerebellar ataxia, seizures, and intellectual disability. CONCLUSION RTN4IP1 recessive optic atrophy is systematically associated to a rod-cone dystrophy, which suggests that both the retinal ganglion cells and the rods are affected as a result of a deficit in the mitochondrial respiratory chain. Thus, systematic widefield autofluorescence frames and temporal macular scans are recommended for the evaluation of patients with optic neuropathies.
Collapse
Affiliation(s)
- Isabelle Meunier
- Institute for Neurosciences of Montpellier U1051, University of Montpellier, Montpellier, France
- National Center in Rare Diseases, Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Béatrice Bocquet
- Institute for Neurosciences of Montpellier U1051, University of Montpellier, Montpellier, France
- National Center in Rare Diseases, Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Majida Charif
- Genetics, and Immuno-cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Claire-Marie Dhaenens
- Biochemistry and Molecular Biology Department—UF Génopathies, Univ Lille, Lille, France
| | - Gael Manes
- Institute for Neurosciences of Montpellier U1051, University of Montpellier, Montpellier, France
| | | | - Agathe Roubertie
- Institute for Neurosciences of Montpellier U1051, University of Montpellier, Montpellier, France
- National Center in Rare Diseases, Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | | | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015—INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| |
Collapse
|
21
|
Li H, Yuan S, Minegishi Y, Suga A, Yoshitake K, Sheng X, Ye J, Smith S, Bunkoczi G, Yamamoto M, Iwata T. Novel mutations in malonyl-CoA-acyl carrier protein transacylase provoke autosomal recessive optic neuropathy. Hum Mol Genet 2021; 29:444-458. [PMID: 31915829 DOI: 10.1093/hmg/ddz311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Inherited optic neuropathies are rare eye diseases of optic nerve dysfunction that present in various genetic forms. Previously, mutation in three genes encoding mitochondrial proteins has been implicated in autosomal recessive forms of optic atrophy that involve progressive degeneration of optic nerve and retinal ganglion cells (RGC). Using whole exome analysis, a novel double homozygous mutation p.L81R and pR212W in malonyl CoA-acyl carrier protein transacylase (MCAT), a mitochondrial protein involved in fatty acid biosynthesis, has now been identified as responsible for an autosomal recessive optic neuropathy from a Chinese consanguineous family. MCAT is expressed in RGC that are rich in mitochondria. The disease variants lead to structurally unstable MCAT protein with significantly reduced intracellular expression. RGC-specific knockdown of Mcat in mice, lead to an attenuated retinal neurofiber layer, that resembles the phenotype of optic neuropathy. These results indicated that MCAT plays an essential role in mitochondrial function and maintenance of RGC axons, while novel MCAT p.L81R and p.R212W mutations can lead to optic neuropathy.
Collapse
Affiliation(s)
- Huiping Li
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.,Ningxia Clinical Research Center of Blinding Eye Disease, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, No. 936, Huang He East Road,Yinchuan, 750001, China
| | - Shiqin Yuan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.,Ningxia Clinical Research Center of Blinding Eye Disease, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, No. 936, Huang He East Road,Yinchuan, 750001, China
| | - Yuriko Minegishi
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Xunlun Sheng
- Ningxia Clinical Research Center of Blinding Eye Disease, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, No. 936, Huang He East Road,Yinchuan, 750001, China
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University Systems, 6400, Perkin Road, Baton Rouge, LA, 70808, USA
| | - Stuart Smith
- Children's Hospital Oakland Research Institute, 5700, Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Gabor Bunkoczi
- Astex Pharmaceuticals, 436, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Megumi Yamamoto
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| |
Collapse
|
22
|
Gerber S, Orssaud C, Kaplan J, Johansson C, Rozet JM. MCAT Mutations Cause Nuclear LHON-like Optic Neuropathy. Genes (Basel) 2021; 12:genes12040521. [PMID: 33918393 PMCID: PMC8067165 DOI: 10.3390/genes12040521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Pathological variants in the nuclear malonyl-CoA-acyl carrier protein transacylase (MCAT) gene, which encodes a mitochondrial protein involved in fatty-acid biogenesis, have been reported in two siblings from China affected by insidious optic nerve degeneration in childhood, leading to blindness in the first decade of life. After analysing 51 families with negative molecular diagnostic tests, from a cohort of 200 families with hereditary optic neuropathy (HON), we identified two novel MCAT mutations in a female patient who presented with acute, sudden, bilateral, yet asymmetric, central visual loss at the age of 20. This presentation is consistent with a Leber hereditary optic neuropathy (LHON)-like phenotype, whose existence and association with NDUFS2 and DNAJC30 has only recently been described. Our findings reveal a wider phenotypic presentation of MCAT mutations, and a greater genetic heterogeneity of nuclear LHON-like phenotypes. Although MCAT pathological variants are very uncommon, this gene should be investigated in HON patients, irrespective of disease presentation.
Collapse
Affiliation(s)
- Sylvie Gerber
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (S.G.); (J.K.)
| | - Christophe Orssaud
- Unité Ophtalmologie, Hôpital Européen Georges-Pompidou (HEGP), and Centre de Référence des Maladies Rares en Ophtalmologie (OPHTARA), Service d’Ophtalmologie, Hôpital Necker–Enfants Malades, 75015 Paris, France;
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (S.G.); (J.K.)
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, University of Oxford, Oxford OX3 7LD, UK;
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (S.G.); (J.K.)
- Correspondence:
| |
Collapse
|
23
|
Charif M, Bris C, Goudenège D, Desquiret-Dumas V, Colin E, Ziegler A, Procaccio V, Reynier P, Bonneau D, Lenaers G, Amati-Bonneau P. Use of Next-Generation Sequencing for the Molecular Diagnosis of 1,102 Patients With a Autosomal Optic Neuropathy. Front Neurol 2021; 12:602979. [PMID: 33841295 PMCID: PMC8027346 DOI: 10.3389/fneur.2021.602979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) facilitate the diagnosis of genetic disorders. To evaluate its use for the molecular diagnosis of inherited optic neuropathy (ION), a blinding disease caused by the degeneration of retinal ganglion cells, we performed genetic analysis using targeted NGS of 22 already known and candidate genes in a cohort of 1,102 affected individuals. The panel design, library preparation, and sequencing reactions were performed using the Ion AmpliSeq technology. Pathogenic variants were detected in 16 genes in 245 patients (22%), including 186 (17%) and 59 (5%) dominant and recessive cases, respectively. Results confirmed that OPA1 variants are responsible for the majority of dominant IONs, whereas ACO2 and WFS1 variants are also frequently involved in both dominant and recessive forms of ION. All pathogenic variants were found in genes encoding proteins involved in the mitochondrial function, highlighting the importance of mitochondria in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Majida Charif
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Céline Bris
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - David Goudenège
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Valérie Desquiret-Dumas
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Estelle Colin
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Alban Ziegler
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Vincent Procaccio
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Guy Lenaers
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France
| | - Patrizia Amati-Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| |
Collapse
|
24
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
25
|
Charif M, Gueguen N, Ferré M, Elkarhat Z, Khiati S, LeMao M, Chevrollier A, Desquiret-Dumas V, Goudenège D, Bris C, Kane S, Alban J, Chupin S, Wetterwald C, Caporali L, Tagliavini F, LaMorgia C, Carbonelli M, Jurkute N, Barakat A, Gohier P, Verny C, Barth M, Procaccio V, Bonneau D, Zanlonghi X, Meunier I, Weisschuh N, Schimpf-Linzenbold S, Tonagel F, Kellner U, Yu-Wai-Man P, Carelli V, Wissinger B, Amati-Bonneau P, Reynier P, Lenaers G. Dominant ACO2 mutations are a frequent cause of isolated optic atrophy. Brain Commun 2021; 3:fcab063. [PMID: 34056600 PMCID: PMC8152918 DOI: 10.1093/braincomms/fcab063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Majida Charif
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Naïg Gueguen
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Marc Ferré
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Zouhair Elkarhat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Salim Khiati
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Morgane LeMao
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Arnaud Chevrollier
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Valerie Desquiret-Dumas
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - David Goudenège
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Céline Bris
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Selma Kane
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Jennifer Alban
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Stéphanie Chupin
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | | | - Leonardo Caporali
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Tagliavini
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara LaMorgia
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Michele Carbonelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Neringa Jurkute
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Philippe Gohier
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Christophe Verny
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Centre de référence des Maladies Neurogénétiques, Département de Neurologie, CHU d’Angers, Angers, France
| | - Magalie Barth
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Angers Hospital, Angers, France
| | - Vincent Procaccio
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Dominique Bonneau
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | | | - Isabelle Meunier
- National Center for Rare Diseases, Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Felix Tonagel
- Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ulrich Kellner
- Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany
- RetinaScience, 53113 Bonn, Germany
| | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Patrizia Amati-Bonneau
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Pascal Reynier
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | | | - Guy Lenaers
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Correspondence to: Guy Lenaers MitoLab Team, Mitochondrial Medicine Research Centre, MitoVasc Unit, Université d'Angers UMR CNRS 6015, INSERM U1083, CHU Bât IRIS/IBS, Rue des Capucins 49933 Angers cedex 9, France E-mail:
| |
Collapse
|
26
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
27
|
Giacomini T, Gamucci A, Pisciotta L, Nesti C, Fiorillo C, Doccini S, Morana G, Nobili L, Santorelli FM, Mancardi MM, De Grandis E. Optic Atrophy and Generalized Chorea in a Patient Harboring an OPA10/RTN4IP1 Pathogenic Variant. Neuropediatrics 2020; 51:425-429. [PMID: 32392611 DOI: 10.1055/s-0040-1708539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
RTN4IP1 pathogenic variants (OPA10 syndrome) have been described in patients with early-onset recessive optic neuropathy and recently associated with a broader clinical spectrum, from isolated optic neuropathy to severe encephalopathies with epilepsy. Here we present a case of a patient with a complex clinical picture characterized by bilateral optic nerve atrophy, horizontal nystagmus, myopia, mild intellectual disability, generalized chorea, isolated small subependymal heterotopia, and asynchronous self-resolving midbrain MRI (magnetic resonance imaging) lesions. By using massive gene sequencing, we identified in this patient the c.308G > A (p.Arg103His) homozygous pathogenic variant in the RTN4IP1 gene. Complex movement disorders and relapsing-remitting neuroradiological lesions have not been previously reported in this condition. Our case expands the clinical spectrum of OPA10 syndrome and opens new opportunities for the molecular diagnosis.
Collapse
Affiliation(s)
- Thea Giacomini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal, and Child Health, University of Genoa, Genoa, Italy
| | - Alessandra Gamucci
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal, and Child Health, University of Genoa, Genoa, Italy
| | - Livia Pisciotta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal, and Child Health, University of Genoa, Genoa, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal, and Child Health, University of Genoa, Genoa, Italy.,Unit of Paediatric Neurology and Muscular Diseases, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giovanni Morana
- Unit of Neuroradiology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal, and Child Health, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | | | - Elisa De Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal, and Child Health, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
28
|
D'Gama AM, England E, Madden JA, Shi J, Chao KR, Wojcik MH, Torres AR, Tan WH, Berry GT, Prabhu SP, Agrawal PB. Exome sequencing identifies novel missense and deletion variants in RTN4IP1 associated with optic atrophy, global developmental delay, epilepsy, ataxia, and choreoathetosis. Am J Med Genet A 2020; 185:203-207. [PMID: 33037779 DOI: 10.1002/ajmg.a.61910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 11/05/2022]
Abstract
Inherited optic neuropathies (IONs) are neurodegenerative disorders characterized by optic atrophy with or without extraocular manifestations. Optic atrophy-10 (OPA10) is an autosomal recessive ION recently reported to be caused by mutations in RTN4IP1, which encodes reticulon 4 interacting protein 1 (RTN4IP1), a mitochondrial ubiquinol oxydo-reductase. Here we report novel compound heterozygous mutations in RTN4IP1 in a male proband with developmental delay, epilepsy, optic atrophy, ataxia, and choreoathetosis. Workup was notable for transiently elevated lactate and lactate-to-pyruvate ratio, brain magnetic resonance imaging with optic atrophy and T2 signal abnormalities, and a nondiagnostic initial genetic workup, including chromosomal microarray and mitochondrial panel testing. Exome sequencing identified a paternally inherited missense variant (c.263T>G, p.Val88Gly) predicted to be deleterious and a maternally inherited deletion encompassing RTN4IP1. To our knowledge, this is the first report of a non-single nucleotide pathogenic variant associated with OPA10. This case highlights the expanding phenotypic spectrum of OPA10, the association between "syndromic" cases and severe RTN4IP1 mutations, and the importance of nonbiased genetic testing, such as ES, to analyze multiple genes and variants types, in patients suspected of having genetic disease.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eleina England
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jill A Madden
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Katherine R Chao
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Monica H Wojcik
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alcy R Torres
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sanjay P Prabhu
- Neuroradiology Division, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
30
|
Lee J, Freeman JL. Exposure to the Heavy-Metal Lead Induces DNA Copy Number Alterations in Zebrafish Cells. Chem Res Toxicol 2020; 33:2047-2053. [PMID: 32567310 DOI: 10.1021/acs.chemrestox.0c00156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA copy number variants are associated with the development of complex neurological diseases and disorders including autism spectrum disorder, schizophrenia, Alzheimer's disease, and Parkinson's disease. Exposure to multiple environmental chemicals including various heavy metals is suggested as a risk factor in these neurological diseases and disorders, but few studies have addressed if heavy-metal exposure can result in de novo DNA copy number changes as a genetic mechanism contributing to these disease outcomes. In this study to further investigate the relationship between heavy-metal exposure and de novo copy number alterations (CNAs), zebrafish fibroblast cells were exposed to the neurotoxicant lead (Pb). A crystal violet assay was first used to determine exposure concentrations with >80% cell confluency. Then a zebrafish-specific array comparative genomic hybridization platform was used to detect CNAs following a 72 h Pb exposure (0.24, 2.4, or 24 μM). The Pb exposure resulted in 72 CNA amplifications ranging in size from 5 to 329 kb. No deletions were detected. CNAs resulted in 15 CNA regions (CNARs), leaving 7 singlet CNAs. Two of the singlets were within high repeat genomic locations. The number of CNAs tended to increase in a concentration-dependent manner. Several CNARs encompassed genes previously reported to have altered expression with Pb exposure, suggesting a mechanistic link. In addition, almost all genes are associated within a molecular network with amyloid precursor protein, a key molecular target associated with the pathophysiology of Alzheimer's disease. Overall, these findings show that Pb exposure results in de novo CNAs that could serve as a mechanism driving adverse health outcomes associated with Pb toxicity including neurological disease pathogenesis for further study.
Collapse
Affiliation(s)
- Jinyoung Lee
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Li JK, Li W, Gao FJ, Qu SF, Hu FY, Zhang SH, Li LL, Wang ZW, Qiu Y, Wang LS, Huang J, Wu JH, Chen F. Mutation Screening of mtDNA Combined Targeted Exon Sequencing in a Cohort With Suspected Hereditary Optic Neuropathy. Transl Vis Sci Technol 2020; 9:11. [PMID: 32855858 PMCID: PMC7422818 DOI: 10.1167/tvst.9.8.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) are the two commonest forms of hereditary optic neuropathy. The aim of this study was to comprehensively investigate the incidence and spectrum of mutations in patients with suspected hereditary optic neuropathy by combining mitochondrial DNA (mtDNA) genome-wide and targeted exon sequencing. Methods A cohort of 1101 subjects were recruited to participate in the study, comprising 177 families (177 probands and their family members, a total of 537 subjects, including 254 patients) and 164 sporadic cases with suspected hereditary optic neuropathy, and 400 unrelated control subjects for genetic analysis: all subjects (including control subjects) underwent a comprehensive ophthalmologic examination and were subjected to sequencing analysis of mtDNA genome-wide and targeted exon. Overall, targeted exon sequencing was used to screen 792 genes associated with common hereditary eye diseases, and the mtDNA genome-wide were screened by next-generation sequencing. Results We found variants detected in 168 (40.2%, 168/418) of the 418 patients screened. Among these, 132 cases (78.6%, 132/168) were detected with known LHON disease-causing mtDNA variants; 40 cases (23.8%, 40/168) were detected with nuclear DNA (ntDNA) variants, which included 36 cases (21.4%, 36/168) with detected OPA1 mutations, 4 patients (2.4%, 4/168) with detected OPA3 mutations, and 2 patients (1.2%, 2/168) with detected TMEM126A homozygous mutation. Coexistence variation (mtDNA/mtDNA [n = 16], ntDNA/ntDNA [n = 4], mtDNA/ntDNA [n = 7]) was found in 27 patients (16.4%, 27/165), including mtDNA/ntDNA coexistence variation that was detected in seven patients. Among these ntDNA mutations, 38 distinct disease-causing variants, including autosomal recessive heterozygous mutations, were detected, which included 22 novel variants and two de novo variants. Total haplogroup distribution showed that 34.5% (29/84) and 28.6% (24/84) of the affected subjects with m.11778G>A belonged to haplogroup D and M, with a high frequency of subhaplogroups D4, D5, and M7. Conclusions The LHON-mtDNA mutations are the commonest genetic defects in this Chinese cohort, followed by the OPA1 mutations. To our knowledge, this is the first comprehensive study of LHON, ADOA, and autosomal recessive optic atrophy combined with mtDNA genome-wide and targeted exon sequencing, as well as haplogroup analysis, in a large cohort of Chinese patients with suspected hereditary optic neuropathy. Our findings provide a powerful basis for genetic counseling in patients with suspected hereditary optic neuropathy. Translational Relevance We applied mtDNA genome-wide sequencing combined with panel-based targeted exon sequencing to explore the pathogenic variation spectrum and genetic characteristics of patients with suspected hereditary optic neuropathy, providing a comprehensive research strategy for clinical assistant diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Jian-Kang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.,BGI-Shenzhen, Shenzhen, China
| | - Wei Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Feng-Juan Gao
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Shou-Fang Qu
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Fang-Yuan Hu
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Li-Li Li
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Zi-Wei Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Yong Qiu
- BGI-Shenzhen, Shenzhen, China.,MGI, BGI-Shenzhen, Shenzhen, China
| | - Lu-Sheng Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.,BGI-Shenzhen, Shenzhen, China
| | - Jie Huang
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Ji-Hong Wu
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, China.,MGI, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
32
|
Arribat Y, Mysiak KS, Lescouzères L, Boizot A, Ruiz M, Rossel M, Bomont P. Sonic Hedgehog repression underlies gigaxonin mutation-induced motor deficits in giant axonal neuropathy. J Clin Invest 2020; 129:5312-5326. [PMID: 31503551 DOI: 10.1172/jci129788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence shows that alterations occurring at early developmental stages contribute to symptoms manifested in adulthood in the setting of neurodegenerative diseases. Here, we studied the molecular mechanisms causing giant axonal neuropathy (GAN), a severe neurodegenerative disease due to loss-of-function of the gigaxonin-E3 ligase. We showed that gigaxonin governs Sonic Hedgehog (Shh) induction, the developmental pathway patterning the dorso-ventral axis of the neural tube and muscles, by controlling the degradation of the Shh-bound Patched receptor. Similar to Shh inhibition, repression of gigaxonin in zebrafish impaired motor neuron specification and somitogenesis and abolished neuromuscular junction formation and locomotion. Shh signaling was impaired in gigaxonin-null zebrafish and was corrected by both pharmacological activation of the Shh pathway and human gigaxonin, pointing to an evolutionary-conserved mechanism regulating Shh signaling. Gigaxonin-dependent inhibition of Shh activation was also demonstrated in primary fibroblasts from patients with GAN and in a Shh activity reporter line depleted in gigaxonin. Our findings establish gigaxonin as a key E3 ligase that positively controls the initiation of Shh transduction, and reveal the causal role of Shh dysfunction in motor deficits, thus highlighting the developmental origin of GAN.
Collapse
Affiliation(s)
- Yoan Arribat
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Karolina S Mysiak
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Léa Lescouzères
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Alexia Boizot
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Maxime Ruiz
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Mireille Rossel
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL Research University, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
33
|
Nosacka RL, Delitto AE, Delitto D, Patel R, Judge SM, Trevino JG, Judge AR. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J Cachexia Sarcopenia Muscle 2020; 11:820-837. [PMID: 32039571 PMCID: PMC7296265 DOI: 10.1002/jcsm.12550] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer cachexia is a life-threatening metabolic syndrome that causes significant loss of skeletal muscle mass and significantly increases mortality in cancer patients. Currently, there is an urgent need for better understanding of the molecular pathophysiology of this disease so that effective therapies can be developed. The majority of pre-clinical studies evaluating skeletal muscle's response to cancer have focused on one or two pre-clinical models, and almost all have focused specifically on limb muscles. In the current study, we reveal key differences in the histology and transcriptomic signatures of a limb muscle and a respiratory muscle in orthotopic pancreatic cancer patient-derived xenograft (PDX) mice. METHODS To create four cohorts of PDX mice evaluated in this study, tumours resected from four pancreatic ductal adenocarcinoma patients were portioned and attached to the pancreas of immunodeficient NSG mice. RESULTS Body weight, muscle mass, and fat mass were significantly decreased in each PDX line. Histological assessment of cryosections taken from the tibialis anterior (TA) and diaphragm (DIA) revealed differential effects of tumour burden on their morphology. Subsequent genome-wide microarray analysis on TA and DIA also revealed key differences between their transcriptomes in response to cancer. Genes up-regulated in the DIA were enriched for extracellular matrix protein-encoding genes and genes related to the inflammatory response, while down-regulated genes were enriched for mitochondria related protein-encoding genes. Conversely, the TA showed up-regulation of canonical atrophy-associated pathways such as ubiquitin-mediated protein degradation and apoptosis, and down-regulation of genes encoding extracellular matrix proteins. CONCLUSIONS These data suggest that distinct biological processes may account for wasting in different skeletal muscles in response to the same tumour burden. Further investigation into these differences will be critical for the future development of effective clinical strategies to counter cancer cachexia.
Collapse
Affiliation(s)
- Rachel L Nosacka
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Andrea E Delitto
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Dan Delitto
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, USA
| | - Rohan Patel
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Jose G Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| |
Collapse
|
34
|
Le Roux B, Lenaers G, Zanlonghi X, Amati-Bonneau P, Chabrun F, Foulonneau T, Caignard A, Leruez S, Gohier P, Procaccio V, Milea D, den Dunnen JT, Reynier P, Ferré M. OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database. Orphanet J Rare Dis 2019; 14:214. [PMID: 31500643 PMCID: PMC6734442 DOI: 10.1186/s13023-019-1187-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The dysfunction of OPA1, a dynamin GTPase involved in mitochondrial fusion, is responsible for a large spectrum of neurological disorders, each of which includes optic neuropathy. The database dedicated to OPA1 ( https://www.lovd.nl/OPA1 ), created in 2005, has now evolved towards a centralized and more reliable database using the Global Variome shared Leiden Open-source Variation Database (LOVD) installation. RESULTS The updated OPA1 database, which registers all the patients from our center as well as those reported in the literature, now covers a total of 831 patients: 697 with isolated dominant optic atrophy (DOA), 47 with DOA "plus", and 83 with asymptomatic or unclassified DOA. It comprises 516 unique OPA1 variants, of which more than 80% (414) are considered pathogenic. Full clinical data for 118 patients are documented using the Human Phenotype Ontology, a standard vocabulary for referencing phenotypic abnormalities. Contributors may now make online submissions of phenotypes related to OPA1 mutations, giving clinical and molecular descriptions together with detailed ophthalmological and neurological data, according to an international thesaurus. CONCLUSIONS The evolution of the OPA1 database towards the LOVD, using unified nomenclature, should ensure its interoperability with other databases and prove useful for molecular diagnoses based on gene-panel sequencing, large-scale mutation statistics, and genotype-phenotype correlations.
Collapse
Affiliation(s)
- Bastien Le Roux
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
| | - Xavier Zanlonghi
- Centre de Compétence Maladie Rare, Clinique Jules Verne, Nantes, France
| | - Patrizia Amati-Bonneau
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Floris Chabrun
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Thomas Foulonneau
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
| | - Angélique Caignard
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Stéphanie Leruez
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Philippe Gohier
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Vincent Procaccio
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Dan Milea
- Singapore National Eye Center, Singapore Eye Research Institute, Duke-NUS, Singapore, Singapore
| | - Johan T den Dunnen
- Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pascal Reynier
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Marc Ferré
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.
| |
Collapse
|
35
|
Zou XH, Guo XX, Su HZ, Wang C, Dong EL, Wang N, Chen WJ, Zhang QJ. Whole Exome Sequencing Identifies Two Novel Mutations in the Reticulon 4-Interacting Protein 1 Gene in a Chinese Family with Autosomal Recessive Optic Neuropathies. J Mol Neurosci 2019; 68:640-646. [PMID: 31077085 DOI: 10.1007/s12031-019-01319-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
Autosomal recessive optic neuropathies (IONs) are extremely rare disorders affecting retinal ganglion cells and the nervous system. RTN4IP1 has recently been identified as the third known gene associated with the autosomal recessive ION optic atrophy 10 (OPA10). Patients with RTN4IP1 mutations show early-onset optic neuropathy that can be followed by additional neurological symptoms such as seizures, ataxia, mental retardation, or even severe encephalopathy. Here, we report two siblings from a Chinese family who presented with early-onset optic neuropathy, epilepsy, and mild intellectual disability. Using whole exome sequencing combined with Sanger sequencing, we identified novel compound heterozygous RTN4IP1 mutations (c.646G > A, p.G216R and c.1162C > T, p.R388X) which both co-segregated with the disease phenotype and were predicted to be disease-causing by prediction software. An in vitro functional study in urine cells obtained from one of the patients revealed low expression of the RTN4IP1 protein. Our results identify novel compound heterozygous mutations in RTN4IP1 which are associated with OPA10, highlighting the frequency of RTN4IP1 mutations in human autosomal recessive IONs. To our knowledge, this is the first report of RTN4IP1 carriers from China.
Collapse
Affiliation(s)
- Xiao-Huan Zou
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Xin-Xin Guo
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Hui-Zhen Su
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Chong Wang
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - En-Lin Dong
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Ning Wang
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Department of Neurology and Institute of Neurology, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China. .,Department of Neurology and Institute of Neurology, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| | - Qi-Jie Zhang
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China. .,Department of Neurology and Institute of Neurology, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
36
|
La Morgia C, Caporali L, Tagliavini F, Palombo F, Carbonelli M, Liguori R, Barboni P, Carelli V. First TMEM126A missense mutation in an Italian proband with optic atrophy and deafness. NEUROLOGY-GENETICS 2019; 5:e329. [PMID: 31119195 PMCID: PMC6499220 DOI: 10.1212/nxg.0000000000000329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M., L.C., F.T., F.P., M.C., R.L., V.C.), UOC Clinica Neurologica; Dipartimento di Scienze Biomediche e Neuromotorie (C.L.M., R.L., V.C.), Università di Bologna; and Studio Oculistico d'Azeglio (P.B.), Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M., L.C., F.T., F.P., M.C., R.L., V.C.), UOC Clinica Neurologica; Dipartimento di Scienze Biomediche e Neuromotorie (C.L.M., R.L., V.C.), Università di Bologna; and Studio Oculistico d'Azeglio (P.B.), Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M., L.C., F.T., F.P., M.C., R.L., V.C.), UOC Clinica Neurologica; Dipartimento di Scienze Biomediche e Neuromotorie (C.L.M., R.L., V.C.), Università di Bologna; and Studio Oculistico d'Azeglio (P.B.), Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M., L.C., F.T., F.P., M.C., R.L., V.C.), UOC Clinica Neurologica; Dipartimento di Scienze Biomediche e Neuromotorie (C.L.M., R.L., V.C.), Università di Bologna; and Studio Oculistico d'Azeglio (P.B.), Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M., L.C., F.T., F.P., M.C., R.L., V.C.), UOC Clinica Neurologica; Dipartimento di Scienze Biomediche e Neuromotorie (C.L.M., R.L., V.C.), Università di Bologna; and Studio Oculistico d'Azeglio (P.B.), Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M., L.C., F.T., F.P., M.C., R.L., V.C.), UOC Clinica Neurologica; Dipartimento di Scienze Biomediche e Neuromotorie (C.L.M., R.L., V.C.), Università di Bologna; and Studio Oculistico d'Azeglio (P.B.), Bologna, Italy
| | - Piero Barboni
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M., L.C., F.T., F.P., M.C., R.L., V.C.), UOC Clinica Neurologica; Dipartimento di Scienze Biomediche e Neuromotorie (C.L.M., R.L., V.C.), Università di Bologna; and Studio Oculistico d'Azeglio (P.B.), Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M., L.C., F.T., F.P., M.C., R.L., V.C.), UOC Clinica Neurologica; Dipartimento di Scienze Biomediche e Neuromotorie (C.L.M., R.L., V.C.), Università di Bologna; and Studio Oculistico d'Azeglio (P.B.), Bologna, Italy
| |
Collapse
|
37
|
Kelman JC, Kamien BA, Murray NC, Goel H, Fraser CL, Grigg JR. A sibling study of isolated optic neuropathy associated with novel variants in the ACO2 gene. Ophthalmic Genet 2018; 39:648-651. [PMID: 30118607 DOI: 10.1080/13816810.2018.1509353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Inherited optic neuropathy is a rare cause of debilitating vision loss. It may occur in constellation with other syndromic features of neurological impairment, or present as an isolated finding. We describe a sibling pair, without a family history of vision loss, who developed visual impairment in early childhood consistent with optic neuropathy. Genetic testing identified novel compound heterozygous variants in the aconitase 2 (ACO2) gene. To date, seven families hosting ACO2 variants have been described in the literature. We describe the second family with ACO2 variants to have an isolated optic neuropathy highlighting the importance of including this gene in genomic panels assessing inherited optic neuropathies.
Collapse
Affiliation(s)
| | | | - Natalia C Murray
- b Hunter Genetics , Waratah , NSW , Australia.,c The University of Newcastle, University Dr , Callaghan , NSW , Australia
| | - Himanshu Goel
- b Hunter Genetics , Waratah , NSW , Australia.,c The University of Newcastle, University Dr , Callaghan , NSW , Australia
| | | | - John R Grigg
- a Save Sight Institute , Sydney , NSW , Australia
| |
Collapse
|
38
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
39
|
Neuropathies optiques héréditaires en ophtalmo-pédiatrie. J Fr Ophtalmol 2018; 41:402-406. [DOI: 10.1016/j.jfo.2017.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022]
|
40
|
Carelli V, La Morgia C, Ross-Cisneros FN, Sadun AA. Optic neuropathies: the tip of the neurodegeneration iceberg. Hum Mol Genet 2018; 26:R139-R150. [PMID: 28977448 PMCID: PMC5886475 DOI: 10.1093/hmg/ddx273] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 01/06/2023] Open
Abstract
The optic nerve and the cells that give origin to its 1.2 million axons, the retinal ganglion cells (RGCs), are particularly vulnerable to neurodegeneration related to mitochondrial dysfunction. Optic neuropathies may range from non-syndromic genetic entities, to rare syndromic multisystem diseases with optic atrophy such as mitochondrial encephalomyopathies, to age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease where optic nerve involvement has, until recently, been a relatively overlooked feature. New tools are available to thoroughly investigate optic nerve function, allowing unparalleled access to this part of the central nervous system. Understanding the molecular pathophysiology of RGC neurodegeneration and optic atrophy, is key to broadly understanding the pathogenesis of neurodegenerative disorders, for monitoring their progression in describing the natural history, and ultimately as outcome measures to evaluate therapies. In this review, the different layers, from molecular to anatomical, that may contribute to RGC neurodegeneration and optic atrophy are tackled in an integrated way, considering all relevant players. These include RGC dendrites, cell bodies and axons, the unmyelinated retinal nerve fiber layer and the myelinated post-laminar axons, as well as olygodendrocytes and astrocytes, looked for unconventional functions. Dysfunctional mitochondrial dynamics, transport, homeostatic control of mitobiogenesis and mitophagic removal, as well as specific propensity to apoptosis may target differently cell types and anatomical settings. Ultimately, we can envisage new investigative approaches and therapeutic options that will speed the early diagnosis of neurodegenerative diseases and their cure.
Collapse
Affiliation(s)
- Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA 90033, USA.,Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Charif M, Nasca A, Thompson K, Gerber S, Makowski C, Mazaheri N, Bris C, Goudenège D, Legati A, Maroofian R, Shariati G, Lamantea E, Hopton S, Ardissone A, Moroni I, Giannotta M, Siegel C, Strom TM, Prokisch H, Vignal-Clermont C, Derrien S, Zanlonghi X, Kaplan J, Hamel CP, Leruez S, Procaccio V, Bonneau D, Reynier P, White FE, Hardy SA, Barbosa IA, Simpson MA, Vara R, Perdomo Trujillo Y, Galehdari H, Deshpande C, Haack TB, Rozet JM, Taylor RW, Ghezzi D, Amati-Bonneau P, Lenaers G. Neurologic Phenotypes Associated With Mutations in RTN4IP1 (OPA10) in Children and Young Adults. JAMA Neurol 2018; 75:105-113. [PMID: 29181510 PMCID: PMC5833489 DOI: 10.1001/jamaneurol.2017.2065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/08/2017] [Indexed: 01/10/2023]
Abstract
Importance Neurologic disorders with isolated symptoms or complex syndromes are relatively frequent among mitochondrial inherited diseases. Recessive RTN4IP1 gene mutations have been shown to cause isolated and syndromic optic neuropathies. Objective To define the spectrum of clinical phenotypes associated with mutations in RTN4IP1 encoding a mitochondrial quinone oxidoreductase. Design, Setting, and Participants This study involved 12 individuals from 11 families with severe central nervous system diseases and optic atrophy. Targeted and whole-exome sequencing were performed-at Hospital Angers (France), Institute of Neurology Milan (Italy), Imagine Institute Paris (France), Helmoltz Zentrum of Munich (Germany), and Beijing Genomics Institute (China)-to clarify the molecular diagnosis of patients. Each patient's neurologic, ophthalmologic, magnetic resonance imaging, and biochemical features were investigated. This study was conducted from May 1, 2014, to June 30, 2016. Main Outcomes and Measures Recessive mutations in RTN4IP1 were identified. Clinical presentations ranged from isolated optic atrophy to severe encephalopathies. Results Of the 12 individuals in the study, 6 (50%) were male and 6 (50%) were female. They ranged in age from 5 months to 32 years. Of the 11 families, 6 (5 of whom were consanguineous) had a member or members who presented isolated optic atrophy with the already reported p.Arg103His or the novel p.Ile362Phe, p.Met43Ile, and p.Tyr51Cys amino acid changes. The 5 other families had a member or members who presented severe neurologic syndromes with a common core of symptoms, including optic atrophy, seizure, intellectual disability, growth retardation, and elevated lactate levels. Additional clinical features of those affected were deafness, abnormalities on magnetic resonance images of the brain, stridor, and abnormal electroencephalographic patterns, all of which eventually led to death before age 3 years. In these patients, novel and very rare homozygous and compound heterozygous mutations were identified that led to the absence of the protein and complex I disassembly as well as mild mitochondrial network fragmentation. Conclusions and Relevance A broad clinical spectrum of neurologic features, ranging from isolated optic atrophy to severe early-onset encephalopathies, is associated with RTN4IP1 biallelic mutations and should prompt RTN4IP1 screening in both syndromic neurologic presentations and nonsyndromic recessive optic neuropathies.
Collapse
Affiliation(s)
- Majida Charif
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Alessia Nasca
- Unit of Molecular Neurogenetics, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Sylvie Gerber
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris, France
| | - Christine Makowski
- Department of Paediatrics, Technische Universität München, Munich, Germany
| | - Neda Mazaheri
- Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Céline Bris
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - David Goudenège
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Andrea Legati
- Unit of Molecular Neurogenetics, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Reza Maroofian
- University of Exeter Medical School, Research, Innovation, Learning and Development, Wellcome Wolfson Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, England
| | - Gholamreza Shariati
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Anna Ardissone
- Child Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Melania Giannotta
- Child Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Corinna Siegel
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Tim M. Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Catherine Vignal-Clermont
- Département de Neurochirurgie, Service Explorations Neuro-Ophtalmologiques, Fondation Rothschild, Paris, France
| | - Sabine Derrien
- Département de Neurochirurgie, Service Explorations Neuro-Ophtalmologiques, Fondation Rothschild, Paris, France
| | | | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris, France
| | - Christian P. Hamel
- INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Stephanie Leruez
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Vincent Procaccio
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Dominique Bonneau
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Pascal Reynier
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Frances E. White
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Steven A. Hardy
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Inês A. Barbosa
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, London, England
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, London, England
| | - Roshni Vara
- Department of Paediatric Inherited Metabolic Diseases, Evelina Children's Hospital, London, England
| | - Yaumara Perdomo Trujillo
- Centre de Référence Pour Les Affections Rares en Génétique Ophtalmologique, CHU de Strasbourg, Strasbourg, France
| | - Hamind Galehdari
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Charu Deshpande
- Clinical Genetics Unit, Guy’s and St Thomas’ National Health Service Foundation Trust, London, England
| | - Tobias B. Haack
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris, France
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Patrizia Amati-Bonneau
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Guy Lenaers
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| |
Collapse
|
42
|
Finsterer J, Mancuso M, Pareyson D, Burgunder JM, Klopstock T. Mitochondrial disorders of the retinal ganglion cells and the optic nerve. Mitochondrion 2017; 42:1-10. [PMID: 29054473 DOI: 10.1016/j.mito.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To summarise and discuss recent findings and future perspectives concerning mitochondrial disorders (MIDs) affecting the retinal ganglion cells and the optic nerve (mitochondrial optic neuropathy. MON). METHOD Literature review. RESULTS MON in MIDs is more frequent than usually anticipated. MON may occur in specific as well as non-specific MIDs. In specific and non-specific MIDs, MON may be a prominent or non-prominent phenotypic feature and due to mutations in genes located either in the mitochondrial DNA (mtDNA) or the nuclear DNA (nDNA). Clinically, MON manifests with painless, bilateral or unilateral, slowly or rapidly progressive visual impairment and visual field defects. In some cases, visual impairment may spontaneously recover. The most frequent MIDs with MON include LHON due to mutations in mtDNA-located genes and autosomal dominant optic atrophy (ADOA) or autosomal recessive optic atrophy (AROA) due to mutations in nuclear genes. Instrumental investigations for diagnosing MON include fundoscopy, measurement of visual acuity, visual fields, and color vision, visually-evoked potentials, optical coherence tomography, fluorescein angiography, electroretinography, and MRI of the orbita and cerebrum. In non-prominent MON, work-up of the muscle biopsy with transmission electron microscopy may indicate mitochondrial destruction. Treatment is mostly supportive but idebenone has been approved for LHON and experimental approaches are promising. CONCLUSIONS MON needs to be appreciated, requires extensive diagnostic work-up, and supportive treatment should be applied although loss of vision, as the most severe outcome, can often not be prevented.
Collapse
Affiliation(s)
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Davide Pareyson
- Department of Clinical Neurosciences, C. Besta Neurological Institute, IRCCS Foundation, Milan, Italy.
| | - Jean-Marc Burgunder
- Department of Neurology, University of Bern, Switzerland; Department of Neurology, Sun Yat Sen University, Guangzhou, China; Department of Neurology, Sichuan University, Chendgu, China.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur Institute, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
43
|
Gerber S, Charif M, Chevrollier A, Chaumette T, Angebault C, Kane MS, Paris A, Alban J, Quiles M, Delettre C, Bonneau D, Procaccio V, Amati-Bonneau P, Reynier P, Leruez S, Calmon R, Boddaert N, Funalot B, Rio M, Bouccara D, Meunier I, Sesaki H, Kaplan J, Hamel CP, Rozet JM, Lenaers G. Mutations in DNM1L, as in OPA1, result in dominant optic atrophy despite opposite effects on mitochondrial fusion and fission. Brain 2017; 140:2586-2596. [PMID: 28969390 DOI: 10.1093/brain/awx219] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/08/2017] [Indexed: 12/24/2022] Open
Abstract
Dominant optic atrophy is a blinding disease due to the degeneration of the retinal ganglion cells, the axons of which form the optic nerves. In most cases, the disease is caused by mutations in OPA1, a gene encoding a mitochondrial large GTPase involved in cristae structure and mitochondrial network fusion. Using exome sequencing, we identified dominant mutations in DNM1L on chromosome 12p11.21 in three large families with isolated optic atrophy, including the two families that defined the OPA5 locus on chromosome 19q12.1-13.1, the existence of which is denied by the present study. Analyses of patient fibroblasts revealed physiological abundance and homo-polymerization of DNM1L, forming aggregates in the cytoplasm and on highly tubulated mitochondrial network, whereas neither structural difference of the peroxisome network, nor alteration of the respiratory machinery was noticed. Fluorescence microscopy of wild-type mouse retina disclosed a strong DNM1L expression in the ganglion cell layer and axons, and comparison between 3-month-old wild-type and Dnm1l+/- mice revealed increased mitochondrial length in retinal ganglion cell soma and axon, but no degeneration. Thus, our results disclose that in addition to OPA1, OPA3, MFN2, AFG3L2 and SPG7, dominant mutations in DNM1L jeopardize the integrity of the optic nerve, suggesting that alterations of the opposing forces governing mitochondrial fusion and fission, similarly affect retinal ganglion cell survival.
Collapse
Affiliation(s)
- Sylvie Gerber
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Imagine - Institute of Genetic Diseases, Paris Descartes University, 75015 Paris, France
| | - Majida Charif
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Tanguy Chaumette
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Claire Angebault
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, France
| | - Mariame Selma Kane
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Aurélien Paris
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Jennifer Alban
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Mélanie Quiles
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, France
| | - Cécile Delettre
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, France
| | - Dominique Bonneau
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Vincent Procaccio
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Pascal Reynier
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Stéphanie Leruez
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| | - Raphael Calmon
- Department of Pediatric Neurology, IHU Necker Enfants Malades and Image at Imagine, INSERM UMR1163, Imagine - Institute of Genetic Diseases, Paris Descartes University, 75015 Paris, France
| | - Nathalie Boddaert
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, 75015 Paris, France; Department of Genetics, GHU Henri Mondor, 94010 Créteil, France
| | - Benoit Funalot
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, 75015 Paris, France; Department of Genetics, GHU Henri Mondor, 94010 Créteil, France
| | - Marlène Rio
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, 75015 Paris, France; Department of Genetics, GHU Henri Mondor, 94010 Créteil, France
| | - Didier Bouccara
- Service d'ORL, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
| | - Isabelle Meunier
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, France
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Imagine - Institute of Genetic Diseases, Paris Descartes University, 75015 Paris, France
| | - Christian P Hamel
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Imagine - Institute of Genetic Diseases, Paris Descartes University, 75015 Paris, France
| | - Guy Lenaers
- MitoLab, Mitochondrial Medicine Research Centre, UMR CNRS 6015-INSERM 1083, Institut MitoVasc, University of Angers, 49933 Angers, France
| |
Collapse
|
44
|
Gaier ED, Boudreault K, Nakata I, Janessian M, Skidd P, DelBono E, Allen KF, Pasquale LR, Place E, Cestari DM, Stacy RC, Rizzo JF, Wiggs JL. Diagnostic genetic testing for patients with bilateral optic neuropathy and comparison of clinical features according to OPA1 mutation status. Mol Vis 2017; 23:548-560. [PMID: 28848318 PMCID: PMC5561143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/08/2017] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Inherited optic neuropathy is genetically heterogeneous, and genetic testing has an important role in risk assessment and counseling. The purpose of this study is to determine the prevalence and spectrum of mutations in a group of patients referred for genetic testing to a tertiary center in the United States. In addition, we compared the clinical features of patients with and without mutations in OPA1, the gene most commonly involved in dominantly inherited optic atrophy. METHODS Clinical data and genetic testing results were reviewed for 74 unrelated, consecutive patients referred with a history of insidious, relatively symmetric, bilateral visual loss secondary to an optic neuropathy. Patients were evaluated for disease-causing variants in OPA1, OPA3, WFS1, and the entire mitochondrial genome with DNA sequencing and copy number variation (CNV) testing. RESULTS Pathogenic DNA variants were found in 25 cases, with the majority (24 patients) located in OPA1. Demographics, clinical history, and clinical features for the group of patients with mutations in OPA1 were compared to those without disease-causing variants. Compared to the patients without mutations, cases with mutations in OPA1 were more likely to have a family history of optic nerve disease (p = 0.027); however, 30.4% of patients without a family history of disease also had mutations in OPA1. OPA1 mutation carriers had less severe mean deviation and pattern standard deviation on automated visual field testing than patients with optic atrophy without mutations in OPA1 (p<0.005). Other demographic and ocular features were not statistically significantly different between the two groups, including the fraction of patients with central scotomas (42.9% of OPA1 mutation positive and 66.0% of OPA1 mutation negative). CONCLUSIONS Genetic testing identified disease-causing mutations in 34% of referred cases, with the majority of these in OPA1. Patients with mutations in OPA1 were more likely to have a family history of disease; however, 30.4% of patients without a family history were also found to have an OPA1 mutation. This observation, as well as similar frequencies of central scotomas in the groups with and without mutations in OPA1, underscores the need for genetic testing to establish an OPA1 genetic diagnosis.
Collapse
Affiliation(s)
- Eric D. Gaier
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Katherine Boudreault
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Isao Nakata
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Maria Janessian
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Philip Skidd
- Departments of Ophthalmology and Neurology, University of Vermont College of Medicine, Burlington, MA
| | - Elizabeth DelBono
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Keri F. Allen
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Louis R. Pasquale
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA,Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Emily Place
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Dean M. Cestari
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Rebecca C. Stacy
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Joseph F. Rizzo
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary Boston, MA
| |
Collapse
|
45
|
Okamoto N, Miya F, Hatsukawa Y, Suzuki Y, Kawato K, Yamamoto Y, Tsunoda T, Kato M, Saitoh S, Yamasaki M, Kanemura Y, Kosaki K. Siblings with optic neuropathy and RTN4IP1 mutation. J Hum Genet 2017. [PMID: 28638143 DOI: 10.1038/jhg.2017.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherited optic neuropathies (IONs) are neurodegenerative disorders affecting the optic nerve and the nervous system. Dominant and recessive IONs are known. Many of the dominant IONs are caused by mutations of OPA1. Autosomal-recessive IONs are rare. OPA10 is an autosomal-recessive ION due to mutations in RTN4IP1. Patients with RTN4IP1 mutations show extraocular manifestations. We report brothers with optic neuropathy who had novel mutations in the RTN4IP1 gene. This is the first report of Japanese patients with OPA10. They showed extraocular manifestations resembling mitochondrial encephalopathy.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Yoshikazu Hatsukawa
- Department of Ophthalmology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yasuhiro Suzuki
- Department of Pediatric Neurology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Kazumi Kawato
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuto Yamamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mami Yamasaki
- Department of Pediatric Neurosurgery, Takatsuki General Hospital, Osaka, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Knowlton WM, Hubert T, Wu Z, Chisholm AD, Jin Y. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans. Front Neurosci 2017; 11:263. [PMID: 28539870 PMCID: PMC5423972 DOI: 10.3389/fnins.2017.00263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo, we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1. Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7, and isp-1, and the putative oxidoreductase rad-8. In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1. Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the cellular adaptations used by neurons under conditions of injury.
Collapse
Affiliation(s)
- Wendy M Knowlton
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA
| | - Thomas Hubert
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA
| | - Zilu Wu
- Howard Hughes Medical Institute, University of CaliforniaSan Diego, CA, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA.,Howard Hughes Medical Institute, University of CaliforniaSan Diego, CA, USA.,Department of Cellular and Molecular Medicine, School of Medicine, University of CaliforniaSan Diego, CA, USA
| |
Collapse
|
47
|
Chursa U, Nuñez-Durán E, Cansby E, Amrutkar M, Sütt S, Ståhlman M, Olsson BM, Borén J, Johansson ME, Bäckhed F, Johansson BR, Sihlbom C, Mahlapuu M. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle. Diabetologia 2017; 60:553-567. [PMID: 27981357 PMCID: PMC6518105 DOI: 10.1007/s00125-016-4171-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Understanding the molecular networks controlling ectopic lipid deposition and insulin responsiveness in skeletal muscle is essential for developing new strategies to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator of liver steatosis, hepatic lipid metabolism and whole body glucose and insulin homeostasis. Here, we assessed the role of STK25 in control of ectopic fat storage and insulin responsiveness in skeletal muscle. METHODS Skeletal muscle morphology was studied by histological examination, exercise performance and insulin sensitivity were assessed by treadmill running and euglycaemic-hyperinsulinaemic clamp, respectively, and muscle lipid metabolism was analysed by ex vivo assays in Stk25 transgenic and wild-type mice fed a high-fat diet. Lipid accumulation and mitochondrial function were also studied in rodent myoblasts overexpressing STK25. Global quantitative phosphoproteomics was performed in skeletal muscle of Stk25 transgenic and wild-type mice fed a high-fat diet to identify potential downstream mediators of STK25 action. RESULTS We found that overexpression of STK25 in transgenic mice fed a high-fat diet increases intramyocellular lipid accumulation, impairs skeletal muscle mitochondrial function and sarcomeric ultrastructure, and induces perimysial and endomysial fibrosis, thereby reducing endurance exercise capacity and muscle insulin sensitivity. Furthermore, we observed enhanced lipid accumulation and impaired mitochondrial function in rodent myoblasts overexpressing STK25, demonstrating an autonomous action for STK25 within cells. Global phosphoproteomic analysis revealed alterations in the total abundance and phosphorylation status of different target proteins located predominantly to mitochondria and sarcomeric contractile elements in Stk25 transgenic vs wild-type muscle, respectively, providing a possible molecular mechanism for the observed phenotype. CONCLUSIONS/INTERPRETATION STK25 emerges as a new regulator of the complex interplay between lipid storage, mitochondrial energetics and insulin action in skeletal muscle, highlighting the potential of STK25 antagonists for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Urszula Chursa
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Blå stråket 5, SE-41345, Gothenburg, Sweden
| | - Esther Nuñez-Durán
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Blå stråket 5, SE-41345, Gothenburg, Sweden
| | - Emmelie Cansby
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Blå stråket 5, SE-41345, Gothenburg, Sweden
| | - Manoj Amrutkar
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Blå stråket 5, SE-41345, Gothenburg, Sweden
| | - Silva Sütt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Blå stråket 5, SE-41345, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bengt R Johansson
- Institute of Biomedicine, Electron Microscopy Unit, University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Margit Mahlapuu
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Blå stråket 5, SE-41345, Gothenburg, Sweden.
| |
Collapse
|
48
|
Gerber S, Ding MG, Gérard X, Zwicker K, Zanlonghi X, Rio M, Serre V, Hanein S, Munnich A, Rotig A, Bianchi L, Amati-Bonneau P, Elpeleg O, Kaplan J, Brandt U, Rozet JM. Compound heterozygosity for severe and hypomorphic NDUFS2 mutations cause non-syndromic LHON-like optic neuropathy. J Med Genet 2016; 54:346-356. [PMID: 28031252 DOI: 10.1136/jmedgenet-2016-104212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND Non-syndromic hereditary optic neuropathy (HON) has been ascribed to mutations in mitochondrial fusion/fission dynamics genes, nuclear and mitochondrial DNA-encoded respiratory enzyme genes or nuclear genes of poorly known mitochondrial function. However, the disease causing gene remains unknown in many families. The objective of the present study was to identify the molecular cause of non-syndromic LHON-like disease in siblings born to non-consanguineous parents of French origin. METHODS We used a combination of genetic analysis (gene mapping and whole-exome sequencing) in a multiplex family of non-syndromic HON and of functional analyses in patient-derived cultured skin fibroblasts and the yeast Yarrowia lipolytica. RESULTS We identified compound heterozygote NDUFS2 disease-causing mutations (p.Tyr53Cys; p.Tyr308Cys). Studies using patient-derived cultured skin fibroblasts revealed mildly decreased NDUFS2 and complex I abundance but apparently normal respiratory chain activity. In the yeast Y. lipolytica ortholog NUCM, the mutations resulted in absence of complex I and moderate reduction in nicotinamide adenine dinucleotide-ubiquinone oxidoreductase activity, respectively. CONCLUSIONS Biallelism for NDUFS2 mutations causing severe complex I deficiency has been previously reported to cause Leigh syndrome with optic neuropathy. Our results are consistent with the view that compound heterozygosity for severe and hypomorphic NDUFS2 mutations can cause non-syndromic HON. This observation suggests a direct correlation between the severity of NDUFS2 mutations and that of the disease and further support that there exist a genetic overlap between non-syndromic and syndromic HON due to defective mitochondrial function.
Collapse
Affiliation(s)
- Sylvie Gerber
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris Descartes University, Paris, France
| | - Martina G Ding
- Molecular Bioenergetics Group, Goethe-University Medical School, Frankfurt am Main, Germany
| | - Xavier Gérard
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris Descartes University, Paris, France
| | - Klaus Zwicker
- Institute of Biochemistry I, Goethe-University Medical School, Frankfurt am Main, Germany
| | | | - Marlène Rio
- Department of Genetics, Necker Hospital, Paris, France
| | - Valérie Serre
- UMR7592 CNRS, Jacques Monod Institute, Paris Diderot University, Paris, France.,Laboratory of Genetics in Mitochondrial Diseases, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris Descartes University, Paris, France
| | - Sylvain Hanein
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris Descartes University, Paris, France
| | | | - Agnès Rotig
- Laboratory of Genetics in Mitochondrial Diseases, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris Descartes University, Paris, France
| | - Lucas Bianchi
- Laboratory of Genetics in Mitochondrial Diseases, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris Descartes University, Paris, France
| | - Patrizia Amati-Bonneau
- Department of Biochemistry and Genetics, UMR CNRS 6214-INSERM U1083, CHU Angers, Angers, France
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris Descartes University, Paris, France
| | - Ulrich Brandt
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris Descartes University, Paris, France
| |
Collapse
|
49
|
A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol 2016; 132:789-806. [PMID: 27696015 PMCID: PMC5106504 DOI: 10.1007/s00401-016-1625-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 12/15/2022]
Abstract
Mitochondrial optic neuropathies constitute an important cause of chronic visual morbidity and registrable blindness in both the paediatric and adult population. It is a genetically heterogeneous group of disorders caused by both mitochondrial DNA (mtDNA) mutations and a growing list of nuclear genetic defects that invariably affect a critical component of the mitochondrial machinery. The two classical paradigms are Leber hereditary optic neuropathy (LHON), which is a primary mtDNA disorder, and autosomal dominant optic atrophy (DOA) secondary to pathogenic mutations within the nuclear gene OPA1 that encodes for a mitochondrial inner membrane protein. The defining neuropathological feature is the preferential loss of retinal ganglion cells (RGCs) within the inner retina but, rather strikingly, the smaller calibre RGCs that constitute the papillomacular bundle are particularly vulnerable, whereas melanopsin-containing RGCs are relatively spared. Although the majority of patients with LHON and DOA will present with isolated optic nerve involvement, some individuals will also develop additional neurological complications pointing towards a greater vulnerability of the central nervous system (CNS) in susceptible mutation carriers. These so-called “plus” phenotypes are mechanistically important as they put the loss of RGCs within the broader perspective of neuronal loss and mitochondrial dysfunction, highlighting common pathways that could be modulated to halt progressive neurodegeneration in other related CNS disorders. The management of patients with mitochondrial optic neuropathies still remains largely supportive, but the development of effective disease-modifying treatments is now within tantalising reach helped by major advances in drug discovery and delivery, and targeted genetic manipulation.
Collapse
|
50
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|