1
|
Cavusoglu D, Ozturk G, Turkdogan D, Kurul SH, Yis U, Komur M, Incecik F, Kara B, Sahin T, Unver O, Dilber C, Mert GG, Gunay C, Uzan GS, Ersoy O, Oktay Y, Mermer S, Tuncer GO, Gungor O, Ozcora GDK, Gumus U, Sezer O, Cetin GO, Demir F, Yilmaz A, Gurbuz G, Topcu M, Topaloglu H, Ceylan AC, Ceylaner S, Gleeson JG, Icagasioglu DF, Sonmez FM. Evaluation of the Patients with the Diagnosis of Pontocerebellar Hypoplasia: A Multicenter National Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1950-1965. [PMID: 38622473 PMCID: PMC11489189 DOI: 10.1007/s12311-024-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Pontocerebellar hypoplasia (PCH) is a heterogeneous group of neurodegenerative disorders characterized by hypoplasia and degeneration of the cerebellum and pons. We aimed to identify the clinical, laboratory, and imaging findings of the patients with diagnosed PCH with confirmed genetic analysis. We collected available clinical data, laboratory, and imaging findings in our retrospective multicenter national study of 64 patients with PCH in Turkey. The genetic analysis included the whole-exome sequencing (WES), targeted next-generation sequencing (NGS), or single gene analysis. Sixty-four patients with PCH were 28 female (43.8%) and 36 (56.3%) male. The patients revealed homozygous mutation in 89.1%, consanguinity in 79.7%, pregnancy at term in 85.2%, microcephaly in 91.3%, psychomotor retardation in 98.4%, abnormal neurological findings in 100%, seizure in 63.8%, normal biochemistry and metabolic investigations in 92.2%, and dysmorphic findings in 51.2%. The missense mutation was found to be the most common variant type in all patients with PCH. It was detected as CLP1 (n = 17) was the most common PCH related gene. The homozygous missense variant c.419G > A (p.Arg140His) was identified in all patients with CLP1. Moreover, all patients showed the same homozygous missense variant c.919G > T (p.A307S) in TSEN54 group (n = 6). In Turkey, CLP1 was identified as the most common causative gene with the identical variant c.419G > A; p.Arg140His. The current study supports that genotype data on PCH leads to phenotypic variability over a wide phenotypic spectrum.
Collapse
Affiliation(s)
- Dilek Cavusoglu
- Departments of Pediatric Neurology, Afyonkarahisar Health Sciences University, Afyon, Turkey
| | - Gulten Ozturk
- Departments of Pediatric Neurology, Marmara University, Istanbul, Turkey
| | - Dilsad Turkdogan
- Departments of Pediatric Neurology, Marmara University, Istanbul, Turkey
| | - Semra Hiz Kurul
- Departments of Pediatric Neurology, Dokuz Eylul University, Izmir, Turkey
| | - Uluc Yis
- Departments of Pediatric Neurology, Dokuz Eylul University, Izmir, Turkey
| | - Mustafa Komur
- Departments of Pediatric Neurology, Mersin University, Mersin, Turkey
| | - Faruk Incecik
- Departments of Pediatric Neurology, Cukurova University, Adana, Turkey
| | - Bulent Kara
- Departments of Pediatric Neurology, Kocaeli University, Kocaeli, Turkey
| | - Turkan Sahin
- Departments of Pediatric Neurology, Bezmialem Vakif University, Istanbul, Turkey
| | - Olcay Unver
- Departments of Pediatric Neurology, Marmara University, Istanbul, Turkey
| | - Cengiz Dilber
- Departments of Pediatric Neurology, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Gulen Gul Mert
- Departments of Pediatric Neurology, Cukurova University, Adana, Turkey
| | - Cagatay Gunay
- Departments of Pediatric Neurology, Dokuz Eylul University, Izmir, Turkey
| | | | - Ozlem Ersoy
- Departments of Pediatric Neurology, Mersin University, Mersin, Turkey
| | - Yavuz Oktay
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Serdar Mermer
- Departments of Medical Genetics, Mersin University, Mersin, Turkey
| | - Gokcen Oz Tuncer
- Departments of Pediatric Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Olcay Gungor
- Departments of Pediatric Neurology, Pamukkale University, Denizli, Turkey
| | | | - Ugur Gumus
- Departments of Medical Genetics, Dr Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Ozlem Sezer
- Departments of Medical Genetics, Samsun Training and Research Hospital, Samsun, Turkey
| | - Gokhan Ozan Cetin
- Departments of Medical Genetics, Pamukkale University, Denizli, Turkey
| | - Fatma Demir
- Departments of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Arzu Yilmaz
- Departments of Pediatric Neurology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Gurkan Gurbuz
- Departments of Pediatric Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Meral Topcu
- Departments of Pediatric Neurology, Hacettepe University,Retired Lecturer, Ankara, Turkey
| | - Haluk Topaloglu
- Departments of Pediatric Neurology, Yeditepe University, Istanbul, Turkey
| | - Ahmet Cevdet Ceylan
- Departments of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Turkey
| | | | - Joseph G Gleeson
- Department of Neurosciences and Pediatrics, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, La Jolla, San Diego, CA, USA
| | | | - F Mujgan Sonmez
- Departments of Pediatric Neurology, Department of Child Neurology, Karadeniz Technical University Medical Faculty, Retired Lecturer, Trabzon, Turkey.
- Yuksek Ihtisas University, Faculty of Medicine, Ankara, Turkey.
- , Aziziye Mah. Cinnah Cad. 102/3, Cankaya, Ankara, Türkiye.
| |
Collapse
|
2
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
3
|
McDonald JT, Kim J, Farmerie L, Johnson ML, Trovao NS, Arif S, Siew K, Tsoy S, Bram Y, Park J, Overbey E, Ryon K, Haltom J, Singh U, Enguita FJ, Zaksas V, Guarnieri JW, Topper M, Wallace DC, Meydan C, Baylin S, Meller R, Muratani M, Porterfield DM, Kaufman B, Mori MA, Walsh SB, Sigaudo-Roussel D, Mebarek S, Bottini M, Marquette CA, Wurtele ES, Schwartz RE, Galeano D, Mason CE, Grabham P, Beheshti A. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs. Nat Commun 2024; 15:4825. [PMID: 38862542 PMCID: PMC11166944 DOI: 10.1038/s41467-024-48920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.
Collapse
Affiliation(s)
- J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Lily Farmerie
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meghan L Johnson
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Krista Ryon
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey Haltom
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Joseph W Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Topper
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Douglas C Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Division of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Stephen Baylin
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Robert Meller
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Brett Kaufman
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Saida Mebarek
- ICBMS, UMR5246, CNRS, INSA, CPE-Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, US.
| |
Collapse
|
4
|
Jia X, He X, Huang C, Li J, Dong Z, Liu K. Protein translation: biological processes and therapeutic strategies for human diseases. Signal Transduct Target Ther 2024; 9:44. [PMID: 38388452 PMCID: PMC10884018 DOI: 10.1038/s41392-024-01749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Protein translation is a tightly regulated cellular process that is essential for gene expression and protein synthesis. The deregulation of this process is increasingly recognized as a critical factor in the pathogenesis of various human diseases. In this review, we discuss how deregulated translation can lead to aberrant protein synthesis, altered cellular functions, and disease progression. We explore the key mechanisms contributing to the deregulation of protein translation, including functional alterations in translation factors, tRNA, mRNA, and ribosome function. Deregulated translation leads to abnormal protein expression, disrupted cellular signaling, and perturbed cellular functions- all of which contribute to disease pathogenesis. The development of ribosome profiling techniques along with mass spectrometry-based proteomics, mRNA sequencing and single-cell approaches have opened new avenues for detecting diseases related to translation errors. Importantly, we highlight recent advances in therapies targeting translation-related disorders and their potential applications in neurodegenerative diseases, cancer, infectious diseases, and cardiovascular diseases. Moreover, the growing interest lies in targeted therapies aimed at restoring precise control over translation in diseased cells is discussed. In conclusion, this comprehensive review underscores the critical role of protein translation in disease and its potential as a therapeutic target. Advancements in understanding the molecular mechanisms of protein translation deregulation, coupled with the development of targeted therapies, offer promising avenues for improving disease outcomes in various human diseases. Additionally, it will unlock doors to the possibility of precision medicine by offering personalized therapies and a deeper understanding of the molecular underpinnings of diseases in the future.
Collapse
Affiliation(s)
- Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Chuntian Huang
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
5
|
Li P, Wang W, Zhou R, Ding Y, Li X. The m 5 C methyltransferase NSUN2 promotes codon-dependent oncogenic translation by stabilising tRNA in anaplastic thyroid cancer. Clin Transl Med 2023; 13:e1466. [PMID: 37983928 PMCID: PMC10659772 DOI: 10.1002/ctm2.1466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Translation dysregulation plays a crucial role in tumourigenesis and cancer progression. Oncogenic translation relies on the stability and availability of tRNAs for protein synthesis, making them potential targets for cancer therapy. METHODS This study performed immunohistochemistry analysis to assess NSUN2 levels in thyroid cancer. Furthermore, to elucidate the impact of NSUN2 on anaplastic thyroid cancer (ATC) malignancy, phenotypic assays were conducted. Drug inhibition and time-dependent plots were employed to analyse drug resistance. Liquid chromatography-mass spectrometry and bisulphite sequencing were used to investigate the m5 C methylation of tRNA at both global and single-base levels. Puromycin intake and high-frequency codon reporter assays verified the protein translation level. By combining mRNA and ribosome profiling, a series of downstream proteins and codon usage bias were identified. The acquired data were further validated by tRNA sequencing. RESULTS This study observed that the tRNA m5 C methyltransferase NSUN2 was up-regulated in ATC and is associated with dedifferentiation. Furthermore, NSUN2 knockdown repressed ATC formation, proliferation, invasion and migration both in vivo and in vitro. Moreover, NSUN2 repression enhanced the sensitivity of ATC to genotoxic drugs. Mechanically, NSUN2 catalyses tRNA structure-related m5 C modification, stabilising tRNA that maintains homeostasis and rapidly transports amino acids, particularly leucine. This stable tRNA has a substantially increased efficiency necessary to support a pro-cancer translation program including c-Myc, BCL2, RAB31, JUNB and TRAF2. Additionally, the NSUN2-mediated variations in m5C levels and different tRNA Leu iso-decoder families, partially contribute to a codon-dependent translation bias. Surprisingly, targeting NSUN2 disrupted the c-Myc to NSUN2 cycle in ATC. CONCLUSIONS This research revealed that a pro-tumour m5C methyltransferase, dynamic tRNA stability regulation and downstream oncogenes, c-Myc, elicits a codon-dependent oncogenic translation network that enhances ATC growth and formation. Furthermore, it provides new opportunities for targeting translation reprogramming in cancer cells.
Collapse
Affiliation(s)
- Peng Li
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
- Department of Hepatobiliary SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wenlong Wang
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Ruixin Zhou
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ying Ding
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Li
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
6
|
Yuan L, Han Y, Zhao J, Zhang Y, Sun Y. Recognition and cleavage mechanism of intron-containing pre-tRNA by human TSEN endonuclease complex. Nat Commun 2023; 14:6071. [PMID: 37770519 PMCID: PMC10539383 DOI: 10.1038/s41467-023-41845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Removal of introns from transfer RNA precursors (pre-tRNAs) occurs in all living organisms. This is a vital phase in the maturation and functionality of tRNA. Here we present a 3.2 Å-resolution cryo-EM structure of an active human tRNA splicing endonuclease complex bound to an intron-containing pre-tRNA. TSEN54, along with the unique regions of TSEN34 and TSEN2, cooperatively recognizes the mature body of pre-tRNA and guides the anticodon-intron stem to the correct position for splicing. We capture the moment when the endonucleases are poised for cleavage, illuminating the molecular mechanism for both 3' and 5' cleavage reactions. Two insertion loops from TSEN54 and TSEN2 cover the 3' and 5' splice sites, respectively, trapping the scissile phosphate in the center of the catalytic triad of residues. Our findings reveal the molecular mechanism for eukaryotic pre-tRNA recognition and cleavage, as well as the evolutionary relationship between archaeal and eukaryotic TSENs.
Collapse
Affiliation(s)
- Ling Yuan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yaoyao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jiazheng Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yixiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
7
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
8
|
Hurtig JE, van Hoof A. An unknown essential function of tRNA splicing endonuclease is linked to the integrated stress response and intron debranching. Genetics 2023; 224:iyad044. [PMID: 36943791 PMCID: PMC10213494 DOI: 10.1093/genetics/iyad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
tRNA splicing endonuclease (TSEN) has a well-characterized role in transfer RNA (tRNA) splicing but also other functions. For yeast TSEN, these other functions include degradation of a subset of mRNAs that encode mitochondrial proteins and an unknown essential function. In this study, we use yeast genetics to characterize the unknown tRNA-independent function(s) of TSEN. Using a high-copy suppressor screen, we found that sen2 mutants can be suppressed by overexpression of SEN54. This effect was seen both for tRNA-dependent and tRNA-independent functions indicating that SEN54 is a general suppressor of sen2, likely through structural stabilization. A spontaneous suppressor screen identified mutations in the intron-debranching enzyme, Dbr1, as tRNA splicing-independent suppressors. Transcriptome analysis showed that sen2 mutation activates the Gcn4 stress response. These Gcn4 target transcripts decreased considerably in the sen2 dbr1 double mutant. We propose that Dbr1 and TSEN may compete for a shared substrate, which TSEN normally processes into an essential RNA, while Dbr1 initiates its degradation. These data provide further insight into the essential function(s) of TSEN. Importantly, single amino acid mutations in TSEN cause the generally fatal neuronal disease pontocerebellar hypoplasia (PCH). The mechanism by which defects in TSEN cause this disease is unknown, and our results reveal new possible mechanisms.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Storkebaum E, Rosenblum K, Sonenberg N. Messenger RNA Translation Defects in Neurodegenerative Diseases. N Engl J Med 2023; 388:1015-1030. [PMID: 36920757 DOI: 10.1056/nejmra2215795] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Erik Storkebaum
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| | - Kobi Rosenblum
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| | - Nahum Sonenberg
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| |
Collapse
|
10
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
11
|
Abstract
tRNAs are key adaptor molecules that decipher the genetic code during translation of mRNAs in protein synthesis. In contrast to the traditional view of tRNAs as ubiquitously expressed housekeeping molecules, awareness is now growing that tRNA-encoding genes display tissue-specific and cell type-specific patterns of expression, and that tRNA gene expression and function are both dynamically regulated by post-transcriptional RNA modifications. Moreover, dysregulation of tRNAs, mediated by alterations in either their abundance or function, can have deleterious consequences that contribute to several distinct human diseases, including neurological disorders and cancer. Accumulating evidence shows that reprogramming of mRNA translation through altered tRNA activity can drive pathological processes in a codon-dependent manner. This Review considers the emerging evidence in support of the precise control of functional tRNA levels as an important regulatory mechanism that coordinates mRNA translation and protein expression in physiological cell homeostasis, and highlights key examples of human diseases that are linked directly to tRNA dysregulation.
Collapse
Affiliation(s)
- Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Siegal
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Initiative for RNA Medicine, Harvard University, Boston, MA, USA.
| |
Collapse
|
12
|
Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry 2022; 27:3204-3213. [PMID: 35505091 PMCID: PMC9630165 DOI: 10.1038/s41380-022-01585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Transfer (t)RNAs are 70-90 nucleotide small RNAs highly regulated by 43 different types of epitranscriptomic modifications and requiring aminoacylation ('charging') for mRNA decoding and protein synthesis. Smaller cleavage products of mature tRNAs, or tRNA fragments, have been linked to a broad variety of noncanonical functions, including translational inhibition and modulation of the immune response. Traditionally, knowledge about tRNA regulation in brain is derived from phenotypic exploration of monogenic neurodevelopmental and neurodegenerative diseases associated with rare mutations in tRNA modification genes. More recent studies point to the previously unrecognized potential of the tRNA regulome to affect memory, synaptic plasticity, and affective states. For example, in mature cortical neurons, cytosine methylation sensitivity of the glycine tRNA family (tRNAGly) is coupled to glycine biosynthesis and codon-specific alterations in ribosomal translation together with robust changes in cognition and depression-related behaviors. In this Review, we will discuss the emerging knowledge of the neuronal tRNA landscape, with a focus on epitranscriptomic tRNA modifications and downstream molecular pathways affected by alterations in tRNA expression, charging levels, and cleavage while mechanistically linking these pathways to neuropsychiatric disease and provide insight into future areas of study for this field.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Schmidt CA, Min LY, McVay MH, Giusto JD, Brown JC, Salzler HR, Matera AG. Mutations in Drosophila tRNA processing factors cause phenotypes similar to Pontocerebellar Hypoplasia. Biol Open 2022; 11:274283. [PMID: 35132432 PMCID: PMC8935212 DOI: 10.1242/bio.058928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 01/28/2023] Open
Abstract
Mature transfer (t)RNAs are generated by multiple RNA processing events, which can include the excision of intervening sequences. The tRNA splicing endonuclease (TSEN) complex is responsible for cleaving these intron-containing pre-tRNA transcripts. In humans, TSEN copurifies with CLP1, an RNA kinase. Despite extensive work on CLP1, its in vivo connection to tRNA splicing remains unclear. Interestingly, mutations in CLP1 or TSEN genes cause neurological diseases in humans that are collectively termed Pontocerebellar Hypoplasia (PCH). In mice, loss of Clp1 kinase activity results in premature death, microcephaly and progressive loss of motor function. To determine if similar phenotypes are observed in Drosophila, we characterized mutations in crowded-by-cid (cbc), the CLP1 ortholog, as well as in the fly ortholog of human TSEN54. Analyses of organismal viability, larval locomotion and brain size revealed that mutations in both cbc and Tsen54 phenocopy those in mammals in several details. In addition to an overall reduction in brain lobe size, we also found increased cell death in mutant larval brains. Ubiquitous or tissue-specific knockdown of cbc in neurons and muscles reduced viability and locomotor function. These findings indicate that we can successfully model PCH in a genetically-tractable invertebrate.
Collapse
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lucy Y. Min
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle H. McVay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph D. Giusto
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John C. Brown
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA,Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA,Author for correspondence ()
| |
Collapse
|
14
|
Schmidt CA, Min LY, McVay MH, Giusto JD, Brown JC, Salzler HR, Matera AG. Mutations in Drosophila tRNA processing factors cause phenotypes similar to Pontocerebellar Hypoplasia. Biol Open 2022. [PMID: 35132432 DOI: 10.1101/2021.07.09.451847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Mature transfer (t)RNAs are generated by multiple RNA processing events, which can include the excision of intervening sequences. The tRNA splicing endonuclease (TSEN) complex is responsible for cleaving these intron-containing pre-tRNA transcripts. In humans, TSEN copurifies with CLP1, an RNA kinase. Despite extensive work on CLP1, its in vivo connection to tRNA splicing remains unclear. Interestingly, mutations in CLP1 or TSEN genes cause neurological diseases in humans that are collectively termed Pontocerebellar Hypoplasia (PCH). In mice, loss of Clp1 kinase activity results in premature death, microcephaly and progressive loss of motor function. To determine if similar phenotypes are observed in Drosophila, we characterized mutations in crowded-by-cid (cbc), the CLP1 ortholog, as well as in the fly ortholog of human TSEN54. Analyses of organismal viability, larval locomotion and brain size revealed that mutations in both cbc and Tsen54 phenocopy those in mammals in several details. In addition to an overall reduction in brain lobe size, we also found increased cell death in mutant larval brains. Ubiquitous or tissue-specific knockdown of cbc in neurons and muscles reduced viability and locomotor function. These findings indicate that we can successfully model PCH in a genetically-tractable invertebrate.
Collapse
Affiliation(s)
- Casey A Schmidt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lucy Y Min
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle H McVay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph D Giusto
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John C Brown
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harmony R Salzler
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Canpolat N, Liu D, Atayar E, Saygili S, Kara NS, Westfall TA, Ding Q, Brown BJ, Braun TA, Slusarski D, Oguz KK, Ozluk Y, Tuysuz B, Ozturk TT, Sever L, Sezerman OU, Topaloglu R, Caliskan S, Attanasio M, Ozaltin F. A splice site mutation in the TSEN2 causes a new syndrome with craniofacial and central nervous system malformations, and atypical hemolytic uremic syndrome. Clin Genet 2022; 101:346-358. [PMID: 34964109 PMCID: PMC10357464 DOI: 10.1111/cge.14105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 07/22/2023]
Abstract
Recessive mutations in the genes encoding the four subunits of the tRNA splicing endonuclease complex (TSEN54, TSEN34, TSEN15, and TSEN2) cause various forms of pontocerebellar hypoplasia, a disorder characterized by hypoplasia of the cerebellum and the pons, microcephaly, dysmorphisms, and other variable clinical features. Here, we report an intronic recessive founder variant in the gene TSEN2 that results in abnormal splicing of the mRNA of this gene, in six individuals from four consanguineous families affected with microcephaly, multiple craniofacial malformations, radiological abnormalities of the central nervous system, and cognitive retardation of variable severity. Remarkably, unlike patients with previously described mutations in the components of the TSEN complex, all the individuals that we report developed atypical hemolytic uremic syndrome (aHUS) with thrombotic microangiopathy, microangiopathic hemolytic anemia, thrombocytopenia, proteinuria, severe hypertension, and end-stage kidney disease (ESKD) early in life. Bulk RNA sequencing of peripheral blood cells of four affected individuals revealed abnormal tRNA transcripts, indicating an alteration of the tRNA biogenesis. Morpholino-mediated skipping of exon 10 of tsen2 in zebrafish produced phenotypes similar to human patients. Thus, we have identified a novel syndrome accompanied by aHUS suggesting the existence of a link between tRNA biology and vascular endothelium homeostasis, which we propose to name with the acronym TRACK syndrome (TSEN2 Related Atypical hemolytic uremic syndrome, Craniofacial malformations, Kidney failure).
Collapse
Affiliation(s)
- Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Dingxiao Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Emine Atayar
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Nazli Sila Kara
- Biostatistics and Medical Informatics Program, Faculty of Medicine, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Qiong Ding
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bartley J. Brown
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, Iowa, USA
| | - Terry A. Braun
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, Iowa, USA
| | - Diane Slusarski
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, Iowa, USA
| | - Kader Karli Oguz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yasemin Ozluk
- Department of Pathology, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Tugba Tastemel Ozturk
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Lale Sever
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Osman Ugur Sezerman
- Biostatistics and Medical Informatics Program, Faculty of Medicine, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Salim Caliskan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Massimo Attanasio
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Fatih Ozaltin
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
16
|
Chen H, Li N, Xu Y, Li G, Song C, Yao RE, Yu T, Wang J, Yang L. Novel compound heterozygous variant of TOE1 results in a mild type of pontocerebellar hypoplasia type 7: an expansion of the clinical phenotype. Neurogenetics 2021; 23:11-17. [PMID: 34716526 DOI: 10.1007/s10048-021-00675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
The target of EGR1 protein 1 (TOE1) is a 3-exonuclease belonging to the Asp-Glu-Asp-Asp deadenylase family that plays a vital role in the maturation of a variety of small nuclear RNAs (snRNAs). Bi-allelic variants in TOE1 have been reported to cause a rare and severe neurodegenerative syndrome, pontocerebellar hypoplasia type 7 (PCH7) (OMIM # 614,969), which is characterized by progressive neurodegeneration, developmental delay, and ambiguous genitalia. Here, we describe the case of a 5-year-6-month-old female Chinese patient who presented with cerebral dysplasia, moderate intellectual disability, developmental delay, and dystonia. Trio whole-exome sequencing revealed two previously unreported heterozygous variants of TOE1 in the patient, including a maternal inherited splicing variant c.237-2A > G and a de novo missense variant c.551G > T, p.Arg184Leu. TA clone sequencing showed trans status of the two variants, indicating the missense variant occurred on the paternal strand in the patient. Clinical features of the patient were mostly concordant with previous reports but brain deformities (enlarged lateral ventricle and deepened cerebellum sulcus without microcephaly and reduced cerebellar volume) were less severe than in typical PCH7 patients. Moreover, the patient had no gonadal malformation, which is common and variable in patients with PCH7. In summary, we report the case of a Chinese patient with atypical PCH7 caused by a novel TOE1 compound variant. Our work suggests that variations in the TOE1 gene can lead to highly variable clinical phenotypes.
Collapse
Affiliation(s)
- Hongzhu Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, People's Republic of China.,Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai, People's Republic of China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Cui Song
- Department of Endocrinology and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ru-En Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, People's Republic of China.,Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, People's Republic of China.,Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China. .,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, People's Republic of China. .,Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai, People's Republic of China.
| | - Lin Yang
- Department of Clinical laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Hamad L, Kreidieh K, Hamdan MB, Nakouzi G, Yazbek S. Mapping the Diverse Genetic Disorders and Rare Diseases Among the Syrian Population: Implications on Refugee Health and Health Services in Host Countries. J Immigr Minor Health 2021; 22:1347-1367. [PMID: 32172498 DOI: 10.1007/s10903-020-00987-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this systematic review is to provide physicians and researchers with a comprehensive list of reported genetic disorders in patients of Syrian origin-those who have become part of the largest displaced population globally-and to highlight the need to consider migrant population-based risk for the development of genetic disease control and prevention programs. This review was performed based on the 2015 PRISMA and the international prospective register of systematic reviews. The present review reports on a total of 166 genetic disorders (only 128 reported on OMIM) identified in the Syrian population. Of these disorders, 27% are endocrine-, nutritional- and metabolic-related diseases. Second to metabolic disorders are congenital malformations, deformations and chromosomal abnormalities. Diseases of the blood and the blood-forming organs accounted for 13% of the total genetic disorders. The majority of the genetic disorders reported in Syrian patients followed an autosomal recessive mode of inheritance. These findings are a reflection of the high rates of consanguineous marriages that favor the increase in incidence of these diseases. From the diseases that followed an autosomal recessive mode of inheritance, 22% are reported to be only present in Syria and other regional countries. Twelve of these genetic diseases were identified to be strictly diagnosed in individuals of Syrian origin. The present systematic review highlights the need to develop programs that target genetic disorders affecting Syrian migrants in host countries. These programs would have potential financial and economic benefits, as well as a positive impact on the physical and mental health of members of the Syrian refugee community and those of their host societies. In turn, this would decrease the burden on the health systems in host countries.
Collapse
Affiliation(s)
- Lina Hamad
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Khalil Kreidieh
- Office of Faculty Affairs, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mirna Bou Hamdan
- Medical Laboratory Sciences Program, Faculty of Health Sciences, American University of Beirut, Riad El Solh, P.O Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Ghunwa Nakouzi
- Department of Clinical Pathology, Cleveland Clinic Hospital, Cleveland, OH, USA.
| | - Soha Yazbek
- Medical Laboratory Sciences Program, Faculty of Health Sciences, American University of Beirut, Riad El Solh, P.O Box 11-0236, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
18
|
Three-Dimensional X-ray Imaging of β-Galactosidase Reporter Activity by Micro-CT: Implication for Quantitative Analysis of Gene Expression. Brain Sci 2021; 11:brainsci11060746. [PMID: 34199780 PMCID: PMC8230009 DOI: 10.3390/brainsci11060746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Acquisition of detailed anatomical and molecular knowledge from intact biological samples while preserving their native three-dimensional structure is still a challenging issue for imaging studies aiming to unravel a system's functions. Three-dimensional micro-CT X-ray imaging with a high spatial resolution in minimally perturbed naive non-transparent samples has recently gained increased popularity and broad application in biomedical research. Here, we describe a novel X-ray-based methodology for analysis of β-galactosidase (lacZ) reporter-driven gene expression in an intact murine brain ex vivo by micro-CT. The method relies on detection of bromine molecules in the product of the enzymatic β-galactosidase reaction. Enhancement of the X-ray signal is observed specifically in the regions of the murine brain where expression of the lacZ reporter gene is also detected histologically. We performed quantitative analysis of the expression levels of lacZ reporter activity by relative radiodensity estimation of the β-galactosidase/X-gal precipitate in situ. To demonstrate the feasibility of the method, we performed expression analysis of the Tsen54-lacZ reporter gene in the murine brain in a semi-quantitative manner. Human mutations in the Tsen54 gene cause pontocerebellar hypoplasia (PCH), a group of severe neurodegenerative disorders with both mental and motor deficits. Comparing relative levels of Tsen54 gene expression, we demonstrate that the highest Tsen54 expression is observed in anatomical brain substructures important for the normal motor and memory functions in mice.
Collapse
|
19
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
20
|
Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly. Neuron 2020; 109:241-256.e9. [PMID: 33220177 DOI: 10.1016/j.neuron.2020.10.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022]
Abstract
Autosomal-recessive cerebellar hypoplasia and ataxia constitute a group of heterogeneous brain disorders caused by disruption of several fundamental cellular processes. Here, we identified 10 families showing a neurodegenerative condition involving pontocerebellar hypoplasia with microcephaly (PCHM). Patients harbored biallelic mutations in genes encoding the spliceosome components Peptidyl-Prolyl Isomerase Like-1 (PPIL1) or Pre-RNA Processing-17 (PRP17). Mouse knockouts of either gene were lethal in early embryogenesis, whereas PPIL1 patient mutation knockin mice showed neuron-specific apoptosis. Loss of either protein affected splicing integrity, predominantly affecting short and high GC-content introns and genes involved in brain disorders. PPIL1 and PRP17 form an active isomerase-substrate interaction, but we found that isomerase activity is not critical for function. Thus, we establish disrupted splicing integrity and "major spliceosome-opathies" as a new mechanism underlying PCHM and neurodegeneration and uncover a non-enzymatic function of a spliceosomal proline isomerase.
Collapse
|
21
|
Appelhof B, Wagner M, Hoefele J, Heinze A, Roser T, Koch-Hogrebe M, Roosendaal SD, Dehghani M, Mehrjardi MYV, Torti E, Houlden H, Maroofian R, Rajabi F, Sticht H, Baas F, Wieczorek D, Jamra RA. Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1. Eur J Hum Genet 2020; 29:411-421. [PMID: 33168985 PMCID: PMC7940488 DOI: 10.1038/s41431-020-00749-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Pontocerebellar hypoplasia (PCH) describes a group of rare heterogeneous neurodegenerative diseases with prenatal onset. Here we describe eight children with PCH from four unrelated families harboring the homozygous MINPP1 (NM_004897.4) variants; c.75_94del, p.(Leu27Argfs*39), c.851 C > A, p.(Ala284Asp), c.1210 C > T, p.(Arg404*), and c.992 T > G, p.(Ile331Ser). The homozygous p.(Leu27Argfs*39) change is predicted to result in a complete absence of MINPP1. The p.(Arg404*) would likely lead to a nonsense mediated decay, or alternatively, a loss of several secondary structure elements impairing protein folding. The missense p.(Ala284Asp) affects a buried, hydrophobic residue within the globular domain. The introduction of aspartic acid is energetically highly unfavorable and therefore predicted to cause a significant reduction in protein stability. The missense p.(Ile331Ser) affects the tight hydrophobic interactions of the isoleucine by the disruption of the polar side chain of serine, destabilizing the structure of MINPP1. The overlap of the above-mentioned genotypes and phenotypes is highly improbable by chance. MINPP1 is the only enzyme that hydrolyses inositol phosphates in the endoplasmic reticulum lumen and several studies support its role in stress induced apoptosis. The pathomechanism explaining the disease mechanism remains unknown, however several others genes of the inositol phosphatase metabolism (e.g., INPP5K, FIG4, INPP5E, ITPR1) are correlated with phenotypes of neurodevelopmental disorders. Taken together, we present MINPP1 as a novel autosomal recessive pontocerebellar hypoplasia gene.
Collapse
Affiliation(s)
- Bart Appelhof
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anja Heinze
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Children's Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
| | | | - Stefan D Roosendaal
- Department of Radiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Farrah Rajabi
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachussetts, USA
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander -Nürnberg, Erlangen, Germany
| | - Frank Baas
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany.
| |
Collapse
|
22
|
Hayne CK, Schmidt CA, Haque MI, Matera AG, Stanley RE. Reconstitution of the human tRNA splicing endonuclease complex: insight into the regulation of pre-tRNA cleavage. Nucleic Acids Res 2020; 48:7609-7622. [PMID: 32476018 PMCID: PMC7641302 DOI: 10.1093/nar/gkaa438] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023] Open
Abstract
The splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34 and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1's role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Casey A Schmidt
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Maira I Haque
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - A Gregory Matera
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
23
|
Payea MJ, Hauke AC, De Zoysa T, Phizicky EM. Mutations in the anticodon stem of tRNA cause accumulation and Met22-dependent decay of pre-tRNA in yeast. RNA (NEW YORK, N.Y.) 2020; 26:29-43. [PMID: 31619505 PMCID: PMC6913130 DOI: 10.1261/rna.073155.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
During tRNA maturation in yeast, aberrant pre-tRNAs are targeted for 3'-5' degradation by the nuclear surveillance pathway, and aberrant mature tRNAs are targeted for 5'-3' degradation by the rapid tRNA decay (RTD) pathway. RTD is catalyzed by the 5'-3' exonucleases Xrn1 and Rat1, which act on tRNAs with an exposed 5' end due to the lack of certain body modifications or the presence of destabilizing mutations in the acceptor stem, T-stem, or tRNA fold. RTD is inhibited by mutation of MET22, likely due to accumulation of the Met22 substrate adenosine 3',5' bis-phosphate, which inhibits 5'-3' exonucleases. Here we provide evidence for a new tRNA quality control pathway in which intron-containing pre-tRNAs with destabilizing mutations in the anticodon stem are targeted for Met22-dependent pre-tRNA decay (MPD). Multiple SUP4οc anticodon stem variants that are subject to MPD each perturb the bulge-helix-bulge structure formed by the anticodon stem-loop and intron, which is important for splicing, resulting in substantial accumulation of end-matured unspliced pre-tRNA as well as pre-tRNA decay. Mutations that restore exon-intron structure commensurately reduce pre-tRNA accumulation and MPD. The MPD pathway can contribute substantially to decay of anticodon stem variants, since pre-tRNA decay is largely suppressed by removal of the intron or by restoration of exon-intron structure, each also resulting in increased tRNA levels. The MPD pathway is general as it extends to variants of tRNATyr(GUA) and tRNASer(CGA) These results demonstrate that the integrity of the anticodon stem-loop and the efficiency of tRNA splicing are monitored by a quality control pathway.
Collapse
Affiliation(s)
- Matthew J Payea
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Alayna C Hauke
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Thareendra De Zoysa
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
24
|
Schmidt CA, Matera AG. tRNA introns: Presence, processing, and purpose. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1583. [DOI: 10.1002/wrna.1583] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
- Department of Biology, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
- Department of Genetics, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
25
|
Pontocerebellar hypoplasia with rhombencephalosynapsis and microlissencephaly expands the spectrum of PCH type 1B. Eur J Med Genet 2019; 63:103814. [PMID: 31770597 DOI: 10.1016/j.ejmg.2019.103814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022]
Abstract
Rhombencephalosynapsis is a rare cerebellar malformation developing during embryogenesis defined by vermian agenesis or hypogenesis with fusion of the cerebellar hemispheres. It occurs either alone or in association with other cerebral and/or extracerebral anomalies. Its association with microlissencephaly is exceedingly rare and to date, only a heterozygous de novo missense variant in ADGRL2, a gene encoding Adhesion G-Protein-Coupled Receptor L2, has been identified. We report on two siblings of Roma origin presenting with severe growth retardation, fetal akinesia, microlissencephaly and small cerebellum with vermian agenesis. Neuropathological studies revealed extreme paucity in pontine transverse fibres, rudimentary olivary nuclei and rhombencephalosynapsis with vanishing spinal motoneurons in both fetuses. Comparative fetus-parent exome sequencing revealed in both fetuses a homozygous variant in exon 1 of the EXOSC3 gene encoding a core component of the RNA exosome, c.92G > C; p.(Gly31Ala). EXOSC3 accounts for 40%-75% of patients affected by ponto-cerebellar hypoplasia with spinal muscular atrophy (PCH1B). The c.92G > C variant is a founder mutation in the Roma population and has been reported in severe PCH1B. PCH1B is characterized by a broad phenotypic spectrum, ranging from mild phenotypes with spasticity, mild to moderate intellectual disability, pronounced distal muscular and cerebellar atrophy/hypoplasia, to severe phenotypes with profound global developmental delay, progressive microcephaly and atrophy of the cerebellar hemispheres. In PCH1B, the usual cerebellar lesions affect mainly the hemispheres with relative sparing of vermis that radically differs from rhombencephalosynapsis. This unusual foetal presentation expands the spectrum of PCH1B and highlights the diversity of rhombencephalosynapsis etiologies.
Collapse
|
26
|
Schaffer AE, Pinkard O, Coller JM. tRNA Metabolism and Neurodevelopmental Disorders. Annu Rev Genomics Hum Genet 2019; 20:359-387. [PMID: 31082281 DOI: 10.1146/annurev-genom-083118-015334] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
tRNAs are short noncoding RNAs required for protein translation. The human genome includes more than 600 putative tRNA genes, many of which are considered redundant. tRNA transcripts are subject to tightly controlled, multistep maturation processes that lead to the removal of flanking sequences and the addition of nontemplated nucleotides. Furthermore, tRNAs are highly structured and posttranscriptionally modified. Together, these unique features have impeded the adoption of modern genomics and transcriptomics technologies for tRNA studies. Nevertheless, it has become apparent from human neurogenetic research that many tRNA biogenesis proteins cause brain abnormalities and other neurological disorders when mutated. The cerebral cortex, cerebellum, and peripheral nervous system show defects, impairment, and degeneration upon tRNA misregulation, suggesting that they are particularly sensitive to changes in tRNA expression or function. An integrated approach to identify tRNA species and contextually characterize tRNA function will be imperative to drive future tool development and novel therapeutic design for tRNA-associated disorders.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Otis Pinkard
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Jeffery M Coller
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
27
|
Tuorto F, Parlato R. rRNA and tRNA Bridges to Neuronal Homeostasis in Health and Disease. J Mol Biol 2019; 431:1763-1779. [PMID: 30876917 DOI: 10.1016/j.jmb.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Dysregulation of protein translation is emerging as a unifying mechanism in the pathogenesis of many neuronal disorders. Ribosomal RNA (rRNA) and transfer RNA (tRNA) are structural molecules that have complementary and coordinated functions in protein synthesis. Defects in both rRNAs and tRNAs have been described in mammalian brain development, neurological syndromes, and neurodegeneration. In this review, we present the molecular mechanisms that link aberrant rRNA and tRNA transcription, processing and modifications to translation deficits, and neuropathogenesis. We also discuss the interdependence of rRNA and tRNA biosynthesis and how their metabolism brings together proteotoxic stress and impaired neuronal homeostasis.
Collapse
Affiliation(s)
- Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany; Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Hirata A. Recent Insights Into the Structure, Function, and Evolution of the RNA-Splicing Endonucleases. Front Genet 2019; 10:103. [PMID: 30809252 PMCID: PMC6379350 DOI: 10.3389/fgene.2019.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
RNA-splicing endonuclease (EndA) cleaves out introns from archaeal and eukaryotic precursor (pre)-tRNA and is essential for tRNA maturation. In archaeal EndA, the molecular mechanisms underlying complex assembly, substrate recognition, and catalysis have been well understood. Recently, certain studies have reported novel findings including the identification of new subunit types in archaeal EndA structures, providing insights into the mechanism underlying broad substrate specificity. Further, metagenomics analyses have enabled the acquisition of numerous DNA sequences of EndAs and intron-containing pre-tRNAs from various species, providing information regarding the co-evolution of substrate specificity of archaeal EndAs and tRNA genetic diversity, and the evolutionary pathway of archaeal and eukaryotic EndAs. Although the complex structure of the heterothermic form of eukaryotic EndAs is unknown, previous reports regarding their functions indicated that mutations in human EndA cause neurological disorders including pontocerebellar hypoplasia and progressive microcephaly, and yeast EndA significantly cleaves mitochondria-localized mRNA encoding cytochrome b mRNA processing 1 (Cpb1) for mRNA maturation. This mini-review summarizes the aforementioned results, discusses their implications, and offers my personal opinion regarding future directions for the analysis of the structure and function of EndAs.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
29
|
Cerebellar Ataxia in Children: A Clinical and MRI Approach to the Differential Diagnosis. Top Magn Reson Imaging 2018; 27:275-302. [PMID: 30086112 DOI: 10.1097/rmr.0000000000000175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The cerebellum has long been recognized as a fundamental structure in motor coordination. Structural cerebellar abnormalities and diseases involving the cerebellum are relatively common in children. The not always specific clinical presentation of ataxia, incoordination, and balance impairment can often be a challenge to attain a precise diagnosis. Continuous advances in genetic research and moreover the constant development in neuroimaging modalities, particularly in the field of magnetic resonance imaging, have promoted a better understanding of cerebellar diseases and led to several modifications in their classification in recent years. Thorough clinical and neuroimaging investigation is recommended for proper diagnosis. This review outlines an update of causes of cerebellar disorders that present clinically with ataxia in the pediatric population. These conditions were classified in 2 major groups, namely genetic malformations and acquired or disruptive disorders recognizable by neuroimaging and subsequently according to their features during the prenatal and postnatal periods.
Collapse
|
30
|
Richards RI, Robertson SA, Kastner DL. Neurodegenerative diseases have genetic hallmarks of autoinflammatory disease. Hum Mol Genet 2018; 27:R108-R118. [PMID: 29684205 PMCID: PMC6061832 DOI: 10.1093/hmg/ddy139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/12/2018] [Accepted: 04/16/2018] [Indexed: 12/25/2022] Open
Abstract
The notion that one common pathogenic pathway could account for the various clinically distinguishable, typically late-onset neurodegenerative diseases might appear unlikely given the plethora of diverse primary causes of neurodegeneration. On the contrary, an autoinflammatory pathogenic mechanism allows diverse genetic and environmental factors to converge into a common chain of causality. Inflammation has long been known to correlate with neurodegeneration. Until recently this relationship was seen as one of consequence rather than cause-with inflammatory cells and events acting to 'clean up the mess' after neurological injury. This explanation is demonstrably inadequate and it is now clear that inflammation is at the very least, rate-limiting for neurodegeneration (and more likely, a principal underlying cause in most if not all neurodegenerative diseases), protective in its initial acute phase, but pernicious in its latter chronic phase.
Collapse
Affiliation(s)
- Robert I Richards
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
van Dijk T, Baas F, Barth PG, Poll-The BT. What's new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet J Rare Dis 2018; 13:92. [PMID: 29903031 PMCID: PMC6003036 DOI: 10.1186/s13023-018-0826-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Background Pontocerebellar hypoplasia (PCH) describes a rare, heterogeneous group of neurodegenerative disorders mainly with a prenatal onset. Patients have severe hypoplasia or atrophy of cerebellum and pons, with variable involvement of supratentorial structures, motor and cognitive impairments. Based on distinct clinical features and genetic causes, current classification comprises 11 types of PCH. Main text In this review we describe the clinical, neuroradiological and genetic characteristics of the different PCH subtypes, summarize the differential diagnosis and reflect on potential disease mechanisms in PCH. Seventeen PCH-related genes are now listed in the OMIM database, most of them have a function in RNA processing or translation. It is unknown why defects in these apparently ubiquitous processes result in a brain-specific phenotype. Conclusions Many new PCH related genes and phenotypes have been described due to the appliance of next generation sequencing techniques. By including such a broad range of phenotypes, including non-degenerative and postnatal onset disorders, the current classification gives rise to confusion. Despite the discovery of new pathways involved in PCH, treatment is still symptomatic. However, correct diagnosis of PCH is important to provide suitable care and counseling regarding prognosis, and offer appropriate (prenatal) genetic testing to families.
Collapse
Affiliation(s)
- Tessa van Dijk
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G Barth
- Department of Pediatric Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Clinical and genetic spectrum of AMPD2-related pontocerebellar hypoplasia type 9. Eur J Hum Genet 2018; 26:695-708. [PMID: 29463858 DOI: 10.1038/s41431-018-0098-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 11/08/2022] Open
Abstract
Pontocerebellar hypoplasia (PCH) represents a group of autosomal-recessive progressive neurodegenerative disorders of prenatal onset. Eleven PCH subtypes are classified according to clinical, neuroimaging and genetic findings. Individuals with PCH type 9 (PCH9) have a unique combination of postnatal microcephaly, hypoplastic cerebellum and pons, and hypoplastic or absent corpus callosum. PCH9 is caused by biallelic variants in AMPD2 encoding adenosine monophosphate deaminase 2; however, a homozygous AMPD2 frameshift variant has recently been reported in two family members with spastic paraplegia type 63 (SPG63). We identified homozygous or compound heterozygous AMPD2 variants in eight PCH-affected individuals from six families. The eight variants likely affect function and comprise one frameshift, one nonsense and six missense variants; seven of which were novel. The main clinical manifestations in the eight new patients and 17 previously reported individuals with biallelic AMPD2 variants were postnatal microcephaly, severe global developmental delay, spasticity, and central visual impairment. Brain imaging data identified hypomyelination, hypoplasia of the cerebellum and pons, atrophy of the cerebral cortex, complete or partial agenesis of the corpus callosum and the "figure 8" shape of the hypoplastic midbrain as consistent features. We broaden the AMPD2-related clinical spectrum by describing one individual without microcephaly and absence of the characteristic "figure 8" shape of the midbrain. The existence of various AMPD2 isoforms with different functions possibly explains the variability in phenotypes associated with AMPD2 variants: variants leaving some of the isoforms intact may cause SPG63, while those affecting all isoforms may result in the severe and early-onset PCH9.
Collapse
|
33
|
Fernández-Marmiesse A, Gouveia S, Couce ML. NGS Technologies as a Turning Point in Rare Disease Research , Diagnosis and Treatment. Curr Med Chem 2018; 25:404-432. [PMID: 28721829 PMCID: PMC5815091 DOI: 10.2174/0929867324666170718101946] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023]
Abstract
Approximately 25-50 million Americans, 30 million Europeans, and 8% of the Australian population have a rare disease. Rare diseases are thus a common problem for clinicians and account for enormous healthcare costs worldwide due to the difficulty of establishing a specific diagnosis. In this article, we review the milestones achieved in our understanding of rare diseases since the emergence of next-generation sequencing (NGS) technologies and analyze how these advances have influenced research and diagnosis. The first half of this review describes how NGS has changed diagnostic workflows and provided an unprecedented, simple way of discovering novel disease-associated genes. We focus particularly on metabolic and neurodevelopmental disorders. NGS has enabled cheap and rapid genetic diagnosis, highlighted the relevance of mosaic and de novo mutations, brought to light the wide phenotypic spectrum of most genes, detected digenic inheritance or the presence of more than one rare disease in the same patient, and paved the way for promising new therapies. In the second part of the review, we look at the limitations and challenges of NGS, including determination of variant causality, the loss of variants in coding and non-coding regions, and the detection of somatic mosaicism variants and epigenetic mutations, and discuss how these can be overcome in the near future.
Collapse
Affiliation(s)
- Ana Fernández-Marmiesse
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María L. Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
34
|
Harms FL, Nampoothiri S, Anazi S, Yesodharan D, Alawi M, Kutsche K, Alkuraya FS. Elsahy-Waters syndrome is caused by biallelic mutations in CDH11. Am J Med Genet A 2017; 176:477-482. [PMID: 29271567 DOI: 10.1002/ajmg.a.38568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/11/2022]
Abstract
Elsahy-Waters syndrome (EWS), also known as branchial-skeletal-genital syndrome, is a distinct dysmorphology syndrome characterized by facial asymmetry, broad forehead, marked hypertelorism with proptosis, short and broad nose, midface hypoplasia, intellectual disability, and hypospadias. We have recently published a homozygous potential loss of function variant in CDH11 in a boy with a striking resemblance to EWS. More recently, another homozygous truncating variant in CDH11 was reported in two siblings with suspected EWS. Here, we describe in detail the clinical phenotype of the original CDH11-related patient with EWS as well as a previously unreported EWS-affected girl who was also found to have a novel homozygous truncating variant in CDH11, which confirms that EWS is caused by biallelic CDH11 loss of function mutations. Clinical features in the four CDH11 mutation-positive individuals confirm the established core phenotype of EWS. Additionally, we identify upper eyelid coloboma as a new, though infrequent clinical feature. The pathomechanism underlying EWS remains unclear, although the limited phenotypic data on the Cdh11-/- mouse suggest that this is a potentially helpful model to explore the craniofacial and brain development in EWS-affected individuals.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, Kerala, India
| | - Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, Kerala, India
| | - Malik Alawi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
36
|
Lin YJ, Liao WL, Wang CH, Tsai LP, Tang CH, Chen CH, Wu JY, Liang WM, Hsieh AR, Cheng CF, Chen JH, Chien WK, Lin TH, Wu CM, Liao CC, Huang SM, Tsai FJ. Association of human height-related genetic variants with familial short stature in Han Chinese in Taiwan. Sci Rep 2017; 7:6372. [PMID: 28744006 PMCID: PMC5527114 DOI: 10.1038/s41598-017-06766-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Human height can be described as a classical and inherited trait model. Genome-wide association studies (GWAS) have revealed susceptible loci and provided insights into the polygenic nature of human height. Familial short stature (FSS) represents a suitable trait for investigating short stature genetics because disease associations with short stature have been ruled out in this case. In addition, FSS is caused only by genetically inherited factors. In this study, we explored the correlations of FSS risk with the genetic loci associated with human height in previous GWAS, alone and cumulatively. We systematically evaluated 34 known human height single nucleotide polymorphisms (SNPs) in relation to FSS in the additive model (p < 0.00005). A cumulative effect was observed: the odds ratios gradually increased with increasing genetic risk score quartiles (p < 0.001; Cochran-Armitage trend test). Six affected genes-ZBTB38, ZNF638, LCORL, CABLES1, CDK10, and TSEN15-are located in the nucleus and have been implicated in embryonic, organismal, and tissue development. In conclusion, our study suggests that 13 human height GWAS-identified SNPs are associated with FSS risk both alone and cumulatively.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Hsing Wang
- Children's Hospital of China Medical University, Taichung, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Taipei Branch, Taipei, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ai-Ru Hsieh
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuei Chien
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Wu
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, Taiwan. .,Children's Hospital of China Medical University, Taichung, Taiwan. .,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| |
Collapse
|
37
|
Blewett NH, Iben JR, Gaidamakov S, Maraia RJ. La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with Neuron Death and Reactive Astrocytosis. Mol Cell Biol 2017; 37:e00588-16. [PMID: 28223366 PMCID: PMC5477551 DOI: 10.1128/mcb.00588-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/01/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Human La antigen (Sjögren's syndrome antigen B [SSB]) is an abundant multifunctional RNA-binding protein. In the nucleoplasm, La binds to and protects from 3' exonucleases, the ends of precursor tRNAs, and other transcripts synthesized by RNA polymerase III and facilitates their maturation, while a nucleolar isoform has been implicated in rRNA biogenesis by multiple independent lines of evidence. We showed previously that conditional La knockout (La cKO) from mouse cortex neurons results in defective tRNA processing, although the pathway(s) involved in neuronal loss thereafter was unknown. Here, we demonstrate that La is stably associated with a spliced pre-tRNA intermediate. Microscopic evidence of aberrant nuclear accumulation of 5.8S rRNA in La cKO is supported by a 10-fold increase in a pre-5.8S rRNA intermediate. To identify pathways involved in subsequent neurodegeneration and loss of brain mass in the cKO cortex, we employed mRNA sequencing (mRNA-Seq), immunohistochemistry, and other approaches. This revealed robust enrichment of immune and astrocyte reactivity in La cKO cortex. Immunohistochemistry, including temporal analyses, demonstrated neurodegeneration, followed by astrocyte invasion associated with immune response and decreasing cKO cortex size over time. Thus, deletion of La from postmitotic neurons results in defective pre-tRNA and pre-rRNA processing and progressive neurodegeneration with loss of cortical brain mass.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - Richard J Maraia
- Commissioned Corps, U.S. Public Health Service, Rockville, Maryland, USA
| |
Collapse
|
38
|
Lardelli RM, Schaffer AE, Eggens VRC, Zaki MS, Grainger S, Sathe S, Van Nostrand EL, Schlachetzki Z, Rosti B, Akizu N, Scott E, Silhavy JL, Heckman LD, Rosti RO, Dikoglu E, Gregor A, Guemez-Gamboa A, Musaev D, Mande R, Widjaja A, Shaw TL, Markmiller S, Marin-Valencia I, Davies JH, de Meirleir L, Kayserili H, Altunoglu U, Freckmann ML, Warwick L, Chitayat D, Blaser S, Çağlayan AO, Bilguvar K, Per H, Fagerberg C, Christesen HT, Kibaek M, Aldinger KA, Manchester D, Matsumoto N, Muramatsu K, Saitsu H, Shiina M, Ogata K, Foulds N, Dobyns WB, Chi NC, Traver D, Spaccini L, Bova SM, Gabriel SB, Gunel M, Valente EM, Nassogne MC, Bennett EJ, Yeo GW, Baas F, Lykke-Andersen J, Gleeson JG. Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet 2017; 49:457-464. [PMID: 28092684 PMCID: PMC5325768 DOI: 10.1038/ng.3762] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023]
Abstract
Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.
Collapse
Affiliation(s)
- Rea M Lardelli
- University of California San Diego, La Jolla, California, USA
| | - Ashleigh E Schaffer
- University of California San Diego, La Jolla, California, USA.,Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA.,Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Veerle R C Eggens
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Zinayida Schlachetzki
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Basak Rosti
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Naiara Akizu
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Eric Scott
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Jennifer L Silhavy
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Laura Dean Heckman
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Rasim Ozgur Rosti
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Esra Dikoglu
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Anne Gregor
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Alicia Guemez-Gamboa
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Damir Musaev
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Rohit Mande
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Ari Widjaja
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Tim L Shaw
- University of California San Diego, La Jolla, California, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Isaac Marin-Valencia
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Justin H Davies
- Department of Paediatric Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Linda de Meirleir
- Pediatric Neurology and Metabolic Diseases, Universitair Ziekenhuis Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hulya Kayserili
- Medical Genetics Department, Koc University School of Medicine, Istanbul, Turkey
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul Turkey
| | - Mary Louise Freckmann
- Department of Clinical Genetics, The Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Linda Warwick
- Australian Capital Territory Genetic Service, The Canberra Hospital, Canberra City, Australian Capital Territory, Australia
| | - David Chitayat
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Susan Blaser
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ahmet Okay Çağlayan
- Department of Medical Genetics, School of Medicine, Istanbul Bilim University, Istanbul, Turkey.,Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Huseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Erciyes University School of Medicine, Kayseri, Turkey
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Henrik T Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Maria Kibaek
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - David Manchester
- Department of Pediatrics, Clinical Genetics and Metabolism, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Muramatsu
- Department of Pediatrics, Gunma University School of Medicine, Showa-machi, Maebashi City, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nicola Foulds
- Southampton University Hospitals Trust, Southampton, UK
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Neil C Chi
- UCSD Cardiology, University of California San Diego, La Jolla, California, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Women, Mother and Neonates, "Vittore Buzzi" Children's Hospital, Istituti Clinici di Perfezionamento, Milan, Italy
| | - Stefania Maria Bova
- Child Neurology Unit, Department of Pediatrics, "Vittore Buzzi" Children Hospital, Istituti Clinici di Perfezionamento, Milan, Italy
| | - Stacey B Gabriel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Murat Gunel
- Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Enza Maria Valente
- Section of Neurosciences, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Marie-Cecile Nassogne
- Pediatric Neurology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Eric J Bennett
- University of California San Diego, La Jolla, California, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA.,Department of Physiology, National University of Singapore and Molecular Engineering Laboratory, A*STAR, Singapore
| | - Frank Baas
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Joseph G Gleeson
- University of California San Diego, La Jolla, California, USA.,Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| |
Collapse
|