1
|
Ziegler A, Koval-Burt C, Kay DM, Suchy SF, Begtrup A, Langley KG, Hernan R, Amendola LM, Boyd BM, Bradley J, Brandt T, Cohen LL, Coffey AJ, Devaney JM, Dygulska B, Friedman B, Fuleihan RL, Gyimah A, Hahn S, Hofherr S, Hruska KS, Hu Z, Jeanne M, Jin G, Johnson DA, Kavus H, Leibel RL, Lobritto SJ, McGee S, Milner JD, McWalter K, Monaghan KG, Orange JS, Pimentel Soler N, Quevedo Y, Ratner S, Retterer K, Shah A, Shapiro N, Sicko RJ, Silver ES, Strom S, Torene RI, Williams O, Ustach VD, Wynn J, Taft RJ, Kruszka P, Caggana M, Chung WK. Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions. JAMA 2025; 333:232-240. [PMID: 39446378 PMCID: PMC11503470 DOI: 10.1001/jama.2024.19662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 10/27/2024]
Abstract
Importance The feasibility of implementing genome sequencing as an adjunct to traditional newborn screening (NBS) in newborns of different racial and ethnic groups is not well understood. Objective To report interim results of acceptability, feasibility, and outcomes of an ongoing genomic NBS study in a diverse population in New York City within the context of the New York State Department of Health Newborn Screening Program. Design, Setting, and Participants The Genomic Uniform-screening Against Rare Disease in All Newborns (GUARDIAN) study was a multisite, single-group, prospective, observational investigation of supplemental newborn genome screening with a planned enrollment of 100 000 participants. Parent-reported race and ethnicity were recorded at the time of recruitment. Results of the first 4000 newborns enrolled in 6 New York City hospitals between September 2022 and July 2023 are reported here as part of a prespecified interim analysis. Exposure Sequencing of 156 early-onset genetic conditions with established interventions selected by the investigators were screened in all participants and 99 neurodevelopmental disorders associated with seizures were optional. Main Outcomes and Measures The primary outcome was screen-positive rate. Additional outcomes included enrollment rate and successful completion of sequencing. Results Over 11 months, 5555 families were approached and 4000 (72.0%) consented to participate. Enrolled participants reflected a diverse group by parent-reported race (American Indian or Alaska Native, 0.5%; Asian, 16.5%; Black, 25.1%; Native Hawaiian or Other Pacific Islander, 0.1%; White, 44.7%; 2 or more races, 13.0%) and ethnicity (Hispanic, 44.0%; not Hispanic, 56.0%). The majority of families consented to screening of both groups of conditions (both groups, 90.6%; disorders with established interventions only, 9.4%). Testing was successfully completed for 99.6% of cases. The screen-positive rate was 3.7%, including treatable conditions that are not currently included in NBS. Conclusions and Relevance These interim findings demonstrate the feasibility of targeted interpretation of a predefined set of genes from genome sequencing in a population of different racial and ethnic groups. DNA sequencing offers an additional method to improve screening for conditions already included in NBS and to add those that cannot be readily screened because there is no biomarker currently detectable in dried blood spots. Additional studies are required to understand if these findings are generalizable to populations of different racial and ethnic groups and whether introduction of sequencing leads to changes in management and improved health outcomes. Trial Registration ClinicalTrials.gov Identifier: NCT05990179.
Collapse
Affiliation(s)
- Alban Ziegler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Carrie Koval-Burt
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Denise M. Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany
| | | | | | | | - Rebecca Hernan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Brenna M. Boyd
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jennifer Bradley
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany
| | | | | | | | | | - Beata Dygulska
- NewYork-Presbyterian Brooklyn Methodist Hospital, New York
| | | | - Ramsay L. Fuleihan
- Division of Allergy, Immunology & Rheumatology, Columbia University Irving Medical Center, New York, New York
| | - Awura Gyimah
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Sihoun Hahn
- Department of Pediatrics, Biochemical Genetics, University of Washington, Seattle Children’s Hospital, Seattle
| | | | | | - Zhanzhi Hu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
| | - Médéric Jeanne
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Guanjun Jin
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Haluk Kavus
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Rudolph L. Leibel
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Steven J. Lobritto
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Joshua D. Milner
- Division of Allergy, Immunology & Rheumatology, Columbia University Irving Medical Center, New York, New York
| | | | | | - Jordan S. Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Nicole Pimentel Soler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Yeyson Quevedo
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Samantha Ratner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Ankur Shah
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medical College, New York, New York
| | | | - Robert J. Sicko
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany
| | - Eric S. Silver
- Division of Pediatric Cardiology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | | | - Olatundun Williams
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | | | - Michele Caggana
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Smith TB, Kopajtich R, Demain LAM, Rea A, Thomas HB, Schiff M, Beetz C, Joss S, Conway GS, Shukla A, Yeole M, Radhakrishnan P, Azzouz H, Ben Chehida A, Elmaleh-Bergès M, Glasgow RIC, Thompson K, Oláhová M, He L, Jenkinson EM, Jahic A, Belyantseva IA, Barzik M, Urquhart JE, O'Sullivan J, Williams SG, Bhaskar SS, Carrera S, Blakes AJM, Banka S, Yue WW, Ellingford JM, Houlden H, Munro KJ, Friedman TB, Taylor RW, Prokisch H, O'Keefe RT, Newman WG. Bi-allelic variants in DAP3 result in reduced assembly of the mitoribosomal small subunit with altered apoptosis and a Perrault-syndrome-spectrum phenotype. Am J Hum Genet 2025; 112:59-74. [PMID: 39701103 PMCID: PMC11739875 DOI: 10.1016/j.ajhg.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency. Here, we describe five unrelated individuals with bi-allelic variants in death-associated protein 3 (DAP3), a nuclear gene encoding mitoribosomal small subunit 29 (MRPS29), with variable clinical presentations ranging from Perrault syndrome (sensorineural hearing loss and ovarian insufficiency) to an early childhood neurometabolic phenotype. Assessment of respiratory-chain function and proteomic profiling of fibroblasts from affected individuals demonstrated reduced MRPS29 protein amounts and, consequently, decreased levels of additional protein components of the mitoribosomal small subunit, as well as an associated combined deficiency of complexes I and IV. Lentiviral transduction of fibroblasts from affected individuals with wild-type DAP3 cDNA increased DAP3 mRNA expression and partially rescued protein levels of MRPS7, MRPS9, and complex I and IV subunits, demonstrating the pathogenicity of the DAP3 variants. Protein modeling suggested that DAP3 disease-associated missense variants can impact ADP binding, and in vitro assays demonstrated that DAP3 variants can consequently reduce both intrinsic and extrinsic apoptotic sensitivity, DAP3 thermal stability, and DAP3 GTPase activity. Our study presents genetic and functional evidence that bi-allelic variants in DAP3 result in a multisystem disorder of combined oxidative phosphorylation deficiency with pleiotropic presentations, consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thomas B Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leigh A M Demain
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Alessandro Rea
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Manuel Schiff
- Université Paris Cité, Reference Center for Mitochondrial Disorders (CARAMMEL) and Reference Center Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants Malades Hospital, APHP, Filière G2M, Paris, France; INSERM UMR_S1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, UK
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hatem Azzouz
- Service de Pédiatrie et des Maladies Métaboliques Héréditaires, Centre Hospitalier Universitaire la Rabta, Jabberi 1007, Tunis, Tunisia
| | - Amel Ben Chehida
- Laboratoire de Recherche LR12SP02, Maladies Métaboliques Héréditaires Investigations et Prise en Charge, Service de Pédiatrie et des Maladies Métaboliques Héréditaires, Centre Hospitalier Universitaire la Rabta, Jabberi 1007, Tunis, Tunisia
| | - Monique Elmaleh-Bergès
- Service de Radiologie Pédiatrique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ruth I C Glasgow
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Kyle Thompson
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Monika Oláhová
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Langping He
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Emma M Jenkinson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Amir Jahic
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Jill E Urquhart
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - James O'Sullivan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Simon G Williams
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Sanjeev S Bhaskar
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Samantha Carrera
- Genome Editing Unit, University of Manchester, Manchester M13 9PT, UK
| | - Alexander J M Blakes
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Wyatt W Yue
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK; Genomics England, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness (ManCAD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Robert W Taylor
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Holger Prokisch
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK.
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
3
|
Rius R, Compton AG, Baker NL, Balasubramaniam S, Best S, Bhattacharya K, Boggs K, Boughtwood T, Braithwaite J, Bratkovic D, Bray A, Brion MJ, Burke J, Casauria S, Chong B, Coman D, Cowie S, Cowley M, de Silva MG, Delatycki MB, Edwards S, Ellaway C, Fahey MC, Finlay K, Fletcher J, Frajman LE, Frazier AE, Gayevskiy V, Ghaoui R, Goel H, Goranitis I, Haas M, Hock DH, Howting D, Jackson MR, Kava MP, Kemp M, King-Smith S, Lake NJ, Lamont PJ, Lee J, Long JC, MacShane M, Madelli EO, Martin EM, Marum JE, Mattiske T, McGill J, Metke A, Murray S, Panetta J, Phillips LK, Quinn MCJ, Ryan MT, Schenscher S, Simons C, Smith N, Stroud DA, Tchan MC, Tom M, Wallis M, Ware TL, Welch AE, Wools C, Wu Y, Christodoulou J, Thorburn DR. The Australian Genomics Mitochondrial Flagship: A national program delivering mitochondrial diagnoses. Genet Med 2025; 27:101271. [PMID: 39305161 DOI: 10.1016/j.gim.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024] Open
Abstract
PURPOSE Families living with mitochondrial diseases (MD) often endure prolonged diagnostic journeys and invasive testing, yet many remain without a molecular diagnosis. The Australian Genomics Mitochondrial Flagship, comprising clinicians, diagnostic, and research scientists, conducted a prospective national study to identify the diagnostic utility of singleton genomic sequencing using blood samples. METHODS A total of 140 children and adults living with suspected MD were recruited using modified Nijmegen criteria (MNC) and randomized to either exome + mitochondrial DNA (mtDNA) sequencing or genome sequencing. RESULTS Diagnostic yield was 55% (n = 77) with variants in nuclear (n = 37) and mtDNA (n = 18) MD genes, as well as phenocopy genes (n = 22). A nuclear gene etiology was identified in 77% of diagnoses, irrespective of disease onset. Diagnostic rates were higher in pediatric-onset (71%) than adult-onset (31%) cases and comparable in children with non-European (78%) vs European (67%) ancestry. For children, higher MNC scores correlated with increased diagnostic yield and fewer diagnoses in phenocopy genes. Additionally, 3 adult patients had a mtDNA deletion discovered in skeletal muscle that was not initially identified in blood. CONCLUSION Genomic sequencing from blood can simplify the diagnostic pathway for individuals living with suspected MD, especially those with childhood onset diseases and high MNC scores.
Collapse
Affiliation(s)
- Rocio Rius
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia; The University of Melbourne, Melbourne, VIC, Australia
| | - Alison G Compton
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Naomi L Baker
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Shanti Balasubramaniam
- Sydney Children's Hospitals Network, Westmead, NSW, Australia; University of Sydney, Sydney, NSW, Australia
| | - Stephanie Best
- The University of Melbourne, Melbourne, VIC, Australia; Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia; Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Kirsten Boggs
- Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Tiffany Boughtwood
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jeffrey Braithwaite
- Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia
| | | | - Alessandra Bray
- Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Marie-Jo Brion
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jo Burke
- Tasmanian Clinical Genetics Service, Hobart, Australia; The University of Tasmania, Hobart, TAS, Australia
| | - Sarah Casauria
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - David Coman
- Queensland Children's Hospital, Brisbane, QLD, Australia; Wesley Hospital, Brisbane, QLD, Australia; University of Queensland, Brisbane, QLD, Australia
| | - Shannon Cowie
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Mark Cowley
- Children's Cancer Institute, University of New South Wales, NSW, Australia
| | - Michelle G de Silva
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Martin B Delatycki
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Samantha Edwards
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Carolyn Ellaway
- S1ydney Children's Hospitals Network, Westmead, NSW, Australia; University of Sydney, Sydney, NSW, Australia
| | | | - Keri Finlay
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Leah E Frajman
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ann E Frazier
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Roula Ghaoui
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Ilias Goranitis
- The University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Matilda Haas
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Daniella H Hock
- The University of Melbourne, Melbourne, VIC, Australia; Bio 21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia; Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - Denise Howting
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Matilda R Jackson
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | | | - Madonna Kemp
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Sarah King-Smith
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Nicole J Lake
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Yale School of Medicine, New Haven, CT
| | - Phillipa J Lamont
- Perth Children's Hospital, Perth, WA, Australia; Royal Perth Hospital, Perth, WA, Australia
| | - Joy Lee
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Royal Children's Hospital, Melbourne, VIC, Australia
| | - Janet C Long
- Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia
| | - Mandi MacShane
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Evanthia O Madelli
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Justine E Marum
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Tessa Mattiske
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jim McGill
- Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Alejandro Metke
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | | | | | | | - Michael C J Quinn
- Australian Genomics, Genetic Health Queensland, Brisbane, QLD, Australia
| | | | | | - Cas Simons
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
| | - Nicholas Smith
- Department of Neurology and Clinical Neurophysiology, Women's and Children's Hospital, Adelaide, SA, Australia; Discipline of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - David A Stroud
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Bio 21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Michel C Tchan
- Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Melanie Tom
- Genetic Health Queensland, Brisbane, QLD, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Hobart, TAS, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia; Royal Hobart Hospital, Hobart, TAS, Australia
| | | | | | | | - You Wu
- The University of Melbourne, Melbourne, VIC, Australia
| | - John Christodoulou
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia.
| | - David R Thorburn
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Ball M, Bouffler SE, Barnett CB, Freckmann ML, Hunter MF, Kamien B, Kassahn KS, Lunke S, Patel CV, Pinner J, Roscioli T, Sandaradura SA, Scott HS, Tan TY, Wallis M, Compton AG, Thorburn DR, Stark Z, Christodoulou J. Critically unwell infants and children with mitochondrial disorders diagnosed by ultrarapid genomic sequencing. Genet Med 2025; 27:101293. [PMID: 39417332 DOI: 10.1016/j.gim.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultrarapid genomic testing as part of a national program. METHODS Ultrarapid genomic sequencing was performed in 454 families (genome sequencing: n = 290, exome sequencing +/- mitochondrial DNA sequencing: n = 164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel. These individuals were reviewed retrospectively and scored according to modified Nijmegen Mitochondrial Disease Criteria. RESULTS A diagnosis was achieved in 47% (43/91) of individuals, 40% (17/43) of whom had an MD. Seven additional individuals in whom an MD was not suspected were diagnosed with an MD after broader analysis. Gene-agnostic analysis led to the discovery of 2 novel disease genes, with pathogenicity validated through targeted functional studies (CRLS1 and MRPL39). Functional studies enabled diagnosis in another 4 individuals. Of the 24 individuals ultimately diagnosed with an MD, 79% had a change in management, which included 53% whose care was redirected to palliation. CONCLUSION Ultrarapid genetic diagnosis of MD in acutely unwell infants and children is critical for guiding decisions about the need for additional investigations and clinical management.
Collapse
Affiliation(s)
- Megan Ball
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | - Christopher B Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | | | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Karin S Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia; Euroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Tiong Y Tan
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia.
| |
Collapse
|
5
|
Santos Gonzalez F, Hock DH, Thorburn DR, Mordaunt D, Williamson NA, Ang CS, Stroud DA, Christodoulou J, Goranitis I. A micro-costing study of mass-spectrometry based quantitative proteomics testing applied to the diagnostic pipeline of mitochondrial and other rare disorders. Orphanet J Rare Dis 2024; 19:443. [PMID: 39609890 PMCID: PMC11605922 DOI: 10.1186/s13023-024-03462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Mass spectrometry-based quantitative proteomics has a demonstrated utility in increasing the diagnostic yield of mitochondrial disorders (MDs) and other rare diseases. However, for this technology to be widely adopted in routine clinical practice, it is crucial to accurately estimate delivery costs. Resource use and unit costs required to undertake a proteomics test were measured and categorized into consumables, equipment, and labor. Unit costs were aggregated to obtain a total cost per patient, reported in 2023 Australian dollars (AUD). Probabilistic and deterministic sensitivity analysis were conducted to evaluate parameter uncertainty and identify key cost drivers. RESULTS The mean cost of a proteomics test was $897 (US$ 607) per patient (95% CI: $734-$1,111). Labor comprised 53% of the total costs. At $342 (US$ 228) per patient, liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was the most expensive non-salary component. An integrated analysis pipeline where all the standard analysis are performed automatically, as well as discounts or subsidized LC-MS/MS equipment or consumables can lower the cost per test. CONCLUSIONS Proteomics testing provide a lower-cost option and wider application compared to respiratory chain enzymology for mitochondrial disorders and potentially other functional assays in Australia. Our analysis suggests that streamlining and automating workflows can reduce labor costs. Using PBMC samples may be a cheaper and more efficient alternative to generating fibroblasts, although their use has not been extensively tested yet. Use of fibroblasts could potentially lower costs when fibroblasts are already available by avoiding the expense of isolating PBMCs. A joint evaluation of the health and economic implications of proteomics is now needed to support its introduction to routine clinical care.
Collapse
Affiliation(s)
- Francisco Santos Gonzalez
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Dylan Mordaunt
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Australian Genomics Health Alliance, Melbourne, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - Ilias Goranitis
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Australian Genomics Health Alliance, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
6
|
Correia SP, Moedas MF, Taylor LS, Naess K, Lim AZ, McFarland R, Kazior Z, Rumyantseva A, Wibom R, Engvall M, Bruhn H, Lesko N, Végvári Á, Käll L, Trost M, Alston CL, Freyer C, Taylor RW, Wedell A, Wredenberg A. Quantitative proteomics of patient fibroblasts reveal biomarkers and diagnostic signatures of mitochondrial disease. JCI Insight 2024; 9:e178645. [PMID: 39288270 PMCID: PMC11530135 DOI: 10.1172/jci.insight.178645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDMitochondrial diseases belong to the group of inborn errors of metabolism (IEM), with a prevalence of 1 in 2,000-5,000 individuals. They are the most common form of IEM, but, despite advances in next-generation sequencing technologies, almost half of the patients are left genetically undiagnosed.METHODSWe investigated a cohort of 61 patients with defined mitochondrial disease to improve diagnostics, identify biomarkers, and correlate metabolic pathways to specific disease groups. Clinical presentations were structured using human phenotype ontology terms, and mass spectrometry-based proteomics was performed on primary fibroblasts. Additionally, we integrated 6 patients carrying variants of uncertain significance (VUS) to test proteomics as a diagnostic expansion.RESULTSProteomic profiles from patient samples could be classified according to their biochemical and genetic characteristics, with the expression of 5 proteins (GPX4, MORF4L1, MOXD1, MSRA, and TMED9) correlating with the disease cohort, thus acting as putative biomarkers. Pathway analysis showed a deregulation of inflammatory and mitochondrial stress responses. This included the upregulation of glycosphingolipid metabolism and mitochondrial protein import, as well as the downregulation of arachidonic acid metabolism. Furthermore, we could assign pathogenicity to a VUS in MRPS23 by demonstrating the loss of associated mitochondrial ribosome subunits.CONCLUSIONWe established mass spectrometry-based proteomics on patient fibroblasts as a viable and versatile tool for diagnosing patients with mitochondrial disease.FUNDINGThe NovoNordisk Foundation, Knut and Alice Wallenberg Foundation, Wellcome Centre for Mitochondrial Research, UK Medical Research Council, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children.
Collapse
Affiliation(s)
- Sandrina P. Correia
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marco F. Moedas
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lucie S. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Albert Z. Lim
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert McFarland
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Kazior
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasia Rumyantseva
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden
| | - Matthias Trost
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charlotte L. Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Christoph Freyer
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Yu L, Chen Z, Zhou X, Teng F, Bai QR, Li L, Li Y, Liu Y, Zeng Q, Wang Y, Wang M, Xu Y, Tang X, Wang X. KARS Mutations Impair Brain Myelination by Inducing Oligodendrocyte Deficiency: One Potential Mechanism and Improvement by Melatonin. J Pineal Res 2024; 76:e12998. [PMID: 39087379 DOI: 10.1111/jpi.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
It is very crucial to investigate key molecules that are involved in myelination to gain an understanding of brain development and injury. We have reported for the first time that pathogenic variants p.R477H and p.P505S in KARS, which encodes lysyl-tRNA synthetase (LysRS), cause leukoencephalopathy with progressive cognitive impairment in humans. The role and action mechanisms of KARS in brain myelination during development are unknown. Here, we first generated Kars knock-in mouse models through the CRISPR-Cas9 system. Kars knock-in mice displayed significant cognitive deficits. These mice also showed significantly reduced myelin density and content, as well as significantly decreased myelin thickness during development. In addition, Kars mutations significantly induced oligodendrocyte differentiation arrest and reduction in the brain white matter of mice. Mechanically, oligodendrocytes' significantly imbalanced expression of differentiation regulators and increased capase-3-mediated apoptosis were observed in the brain white matter of Kars knock-in mice. Furthermore, Kars mutations significantly reduced the aminoacylation and steady-state level of mitochondrial tRNALys and decreased the protein expression of subunits of oxidative phosphorylation complexes in the brain white matter. Kars knock-in mice showed decreased activity of complex IV and significantly reduced ATP production and increased reactive oxygen species in the brain white matter. Significantly increased percentages of abnormal mitochondria and mitochondrion area were observed in the oligodendrocytes of Kars knock-in mouse brain. Finally, melatonin (a mitochondrion protectant) significantly attenuated mitochondrion and oligodendrocyte deficiency in the brain white matter of KarsR504H/P532S mice. The mice treated with melatonin also showed significantly restored myelination and cognitive function. Our study first establishes Kars knock-in mammal models of leukoencephalopathy and cognitive impairment and indicates important roles of KARS in the regulation of mitochondria, oligodendrocyte differentiation and survival, and myelination during brain development and application prospects of melatonin in KARS (or even aaRS)-related diseases.
Collapse
Affiliation(s)
- Lijia Yu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhilin Chen
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunhong Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Liu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiyu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meihua Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaling Xu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Hilander T, Awadhpersad R, Monteuuis G, Broda KL, Pohjanpelto M, Pyman E, Singh SK, Nyman TA, Crevel I, Taylor RW, Saada A, Balboa D, Battersby BJ, Jackson CB, Carroll CJ. Supernumerary proteins of the human mitochondrial ribosomal small subunit are integral for assembly and translation. iScience 2024; 27:110185. [PMID: 39015150 PMCID: PMC11251090 DOI: 10.1016/j.isci.2024.110185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 07/18/2024] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) have undergone substantial evolutionary structural remodeling accompanied by loss of ribosomal RNA, while acquiring unique protein subunits located on the periphery. We generated CRISPR-mediated knockouts of all 14 unique (mitochondria-specific/supernumerary) human mitoribosomal proteins (snMRPs) in the small subunit to study the effect on mitoribosome assembly and protein synthesis, each leading to a unique mitoribosome assembly defect with variable impact on mitochondrial protein synthesis. Surprisingly, the stability of mS37 was reduced in all our snMRP knockouts of the small and large ribosomal subunits and patient-derived lines with mitoribosome assembly defects. A redox-regulated CX9C motif in mS37 was essential for protein stability, suggesting a potential mechanism to regulate mitochondrial protein synthesis. Together, our findings support a modular assembly of the human mitochondrial small ribosomal subunit mediated by essential supernumerary subunits and identify a redox regulatory role involving mS37 in mitochondrial protein synthesis in health and disease.
Collapse
Affiliation(s)
- Taru Hilander
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Ryan Awadhpersad
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Geoffray Monteuuis
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krystyna L. Broda
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Max Pohjanpelto
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Elizabeth Pyman
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Sachin Kumar Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Isabelle Crevel
- Core Facilities, St George’s, University of London, London, UK
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center & Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher J. Carroll
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| |
Collapse
|
9
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
10
|
Antolínez-Fernández Á, Esteban-Ramos P, Fernández-Moreno MÁ, Clemente P. Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis. Front Cell Dev Biol 2024; 12:1410245. [PMID: 38855161 PMCID: PMC11157125 DOI: 10.3389/fcell.2024.1410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.
Collapse
Affiliation(s)
- Álvaro Antolínez-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Esteban-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Clemente
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Abolhassani A, Fattahi Z, Beheshtian M, Fadaee M, Vazehan R, Ahangari F, Dehdahsi S, Faraji Zonooz M, Parsimehr E, Kalhor Z, Peymani F, Mozaffarpour Nouri M, Babanejad M, Noudehi K, Fatehi F, Zamanian Najafabadi S, Afroozan F, Yazdan H, Bozorgmehr B, Azarkeivan A, Sadat Mahdavi S, Nikuei P, Fatehi F, Jamali P, Ashrafi MR, Karimzadeh P, Habibi H, Kahrizi K, Nafissi S, Kariminejad A, Najmabadi H. Clinical application of next generation sequencing for Mendelian disease diagnosis in the Iranian population. NPJ Genom Med 2024; 9:12. [PMID: 38374194 PMCID: PMC10876633 DOI: 10.1038/s41525-024-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype-phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.
Collapse
Affiliation(s)
- Ayda Abolhassani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zohreh Fattahi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Mahsa Fadaee
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Ahangari
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Shima Dehdahsi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Elham Parsimehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zahra Kalhor
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Peymani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Noudehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Fatehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Fariba Afroozan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Hilda Yazdan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Bita Bozorgmehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Azita Azarkeivan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Nasle Salem Genetic Counseling Center, Bandar Abbas, Iran
| | - Farzad Fatehi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payman Jamali
- Genetic Counseling Center, Shahroud Welfare Organization, Semnan, Iran
| | | | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Habibi
- Hamedan University of Medical Science, Hamedan, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran.
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
12
|
McCormick EM, Keller K, Taylor JP, Coffey AJ, Shen L, Krotoski D, Harding B, Gai X, Falk MJ, Zolkipli-Cunningham Z, Rahman S. Expert Panel Curation of 113 Primary Mitochondrial Disease Genes for the Leigh Syndrome Spectrum. Ann Neurol 2023; 94:696-712. [PMID: 37255483 PMCID: PMC10763625 DOI: 10.1002/ana.26716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVE Primary mitochondrial diseases (PMDs) are heterogeneous disorders caused by inherited mitochondrial dysfunction. Classically defined neuropathologically as subacute necrotizing encephalomyelopathy, Leigh syndrome spectrum (LSS) is the most frequent manifestation of PMD in children, but may also present in adults. A major challenge for accurate diagnosis of LSS in the genomic medicine era is establishing gene-disease relationships (GDRs) for this syndrome with >100 monogenic causes across both nuclear and mitochondrial genomes. METHODS The Clinical Genome Resource (ClinGen) Mitochondrial Disease Gene Curation Expert Panel (GCEP), comprising 40 international PMD experts, met monthly for 4 years to review GDRs for LSS. The GCEP standardized gene curation for LSS by refining the phenotypic definition, modifying the ClinGen Gene-Disease Clinical Validity Curation Framework to improve interpretation for LSS, and establishing a scoring rubric for LSS. RESULTS The GDR with LSS across the nuclear and mitochondrial genomes was classified as definitive for 31 of 114 GDRs curated (27%), moderate for 38 (33%), limited for 43 (38%), and disputed for 2 (2%). Ninety genes were associated with autosomal recessive inheritance, 16 were maternally inherited, 5 were autosomal dominant, and 3 were X-linked. INTERPRETATION GDRs for LSS were established for genes across both nuclear and mitochondrial genomes. Establishing these GDRs will allow accurate variant interpretation, expedite genetic diagnosis of LSS, and facilitate precision medicine, multisystem organ surveillance, recurrence risk counseling, reproductive choice, natural history studies, and determination of eligibility for interventional clinical trials. ANN NEUROL 2023;94:696-712.
Collapse
Affiliation(s)
- Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Kierstin Keller
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology, CHOP, Philadelphia, PA, USA
| | - Julie P. Taylor
- Illumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Alison J. Coffey
- Illumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Lishuang Shen
- Center for Personalized Medicine, Department of Pathology & Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Danuta Krotoski
- IDDB/NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Brian Harding
- Departments of Pathology and Lab Medicine (Neuropathology), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology & Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
13
|
Smirnov D, Konstantinovskiy N, Prokisch H. Integrative omics approaches to advance rare disease diagnostics. J Inherit Metab Dis 2023; 46:824-838. [PMID: 37553850 DOI: 10.1002/jimd.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Over the past decade high-throughput DNA sequencing approaches, namely whole exome and whole genome sequencing became a standard procedure in Mendelian disease diagnostics. Implementation of these technologies greatly facilitated diagnostics and shifted the analysis paradigm from variant identification to prioritisation and evaluation. The diagnostic rates vary widely depending on the cohort size, heterogeneity and disease and range from around 30% to 50% leaving the majority of patients undiagnosed. Advances in omics technologies and computational analysis provide an opportunity to increase these unfavourable rates by providing evidence for disease-causing variant validation and prioritisation. This review aims to provide an overview of the current application of several omics technologies including RNA-sequencing, proteomics, metabolomics and DNA-methylation profiling for diagnostics of rare genetic diseases in general and inborn errors of metabolism in particular.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Nikita Konstantinovskiy
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
14
|
Amarasekera SSC, Hock DH, Lake NJ, Calvo SE, Grønborg SW, Krzesinski EI, Amor DJ, Fahey MC, Simons C, Wibrand F, Mootha VK, Lek M, Lunke S, Stark Z, Østergaard E, Christodoulou J, Thorburn DR, Stroud DA, Compton AG. Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. Hum Mol Genet 2023; 32:2441-2454. [PMID: 37133451 PMCID: PMC10360397 DOI: 10.1093/hmg/ddad069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.
Collapse
Affiliation(s)
- Sumudu S C Amarasekera
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole J Lake
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Sabine W Grønborg
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Center for Inherited Metabolic Disease, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Emma I Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael C Fahey
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - Cas Simons
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flemming Wibrand
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - Elsebet Østergaard
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David R Thorburn
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Alison G Compton
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
15
|
Bakhshalizadeh S, Hock DH, Siddall NA, Kline BL, Sreenivasan R, Bell KM, Casagranda F, Kamalanathan S, Sahoo J, Narayanan N, Naik D, Suryadevara V, Compton AG, Amarasekera SSC, Kapoor R, Jaillard S, Simpson A, Robevska G, van den Bergen J, Pachernegg S, Ayers KL, Thorburn DR, Stroud DA, Hime GR, Sinclair AH, Tucker EJ. Deficiency of the mitochondrial ribosomal subunit, MRPL50, causes autosomal recessive syndromic premature ovarian insufficiency. Hum Genet 2023:10.1007/s00439-023-02563-z. [PMID: 37148394 DOI: 10.1007/s00439-023-02563-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Premature ovarian insufficiency (POI) is a common cause of infertility in women, characterised by amenorrhea and elevated FSH under the age of 40 years. In some cases, POI is syndromic in association with other features such as sensorineural hearing loss in Perrault syndrome. POI is a heterogeneous disease with over 80 causative genes known so far; however, these explain only a minority of cases. Using whole-exome sequencing (WES), we identified a MRPL50 homozygous missense variant (c.335T > A; p.Val112Asp) shared by twin sisters presenting with POI, bilateral high-frequency sensorineural hearing loss, kidney and heart dysfunction. MRPL50 encodes a component of the large subunit of the mitochondrial ribosome. Using quantitative proteomics and western blot analysis on patient fibroblasts, we demonstrated a loss of MRPL50 protein and an associated destabilisation of the large subunit of the mitochondrial ribosome whilst the small subunit was preserved. The mitochondrial ribosome is responsible for the translation of subunits of the mitochondrial oxidative phosphorylation machinery, and we found patient fibroblasts have a mild but significant decrease in the abundance of mitochondrial complex I. These data support a biochemical phenotype associated with MRPL50 variants. We validated the association of MRPL50 with the clinical phenotype by knockdown/knockout of mRpL50 in Drosophila, which resulted abnormal ovarian development. In conclusion, we have shown that a MRPL50 missense variant destabilises the mitochondrial ribosome, leading to oxidative phosphorylation deficiency and syndromic POI, highlighting the importance of mitochondrial support in ovarian development and function.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | | | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katrina M Bell
- Department of Bioinformatics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Varun Suryadevara
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Sumudu S C Amarasekera
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033, Rennes, France
| | - Andrea Simpson
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
- College of Health and Human Services, Charles Darwin University, Darwin, NT, Australia
| | | | | | - Svenja Pachernegg
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia.
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
16
|
Jerome MS, Nanjappa DP, Chakraborty A, Chakrabarty S. Molecular etiology of defective nuclear and mitochondrial ribosome biogenesis: Clinical phenotypes and therapy. Biochimie 2023; 207:122-136. [PMID: 36336106 DOI: 10.1016/j.biochi.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Ribosomopathies are rare congenital disorders associated with defective ribosome biogenesis due to pathogenic variations in genes that encode proteins related to ribosome function and biogenesis. Defects in ribosome biogenesis result in a nucleolar stress response involving the TP53 tumor suppressor protein and impaired protein synthesis leading to a deregulated translational output. Despite the accepted notion that ribosomes are omnipresent and essential for all cells, most ribosomopathies show tissue-specific phenotypes affecting blood cells, hair, spleen, or skin. On the other hand, defects in mitochondrial ribosome biogenesis are associated with a range of clinical manifestations affecting more than one organ. Intriguingly, the deregulated ribosomal function is also a feature in several human malignancies with a selective upregulation or downregulation of specific ribosome components. Here, we highlight the clinical conditions associated with defective ribosome biogenesis in the nucleus and mitochondria with a description of the affected genes and the implicated pathways, along with a note on the treatment strategies currently available for these disorders.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India.
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
17
|
Thompson K, Stroud DA, Thorburn DR, Taylor RW. Investigation of oxidative phosphorylation activity and complex composition in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:127-139. [PMID: 36813309 DOI: 10.1016/b978-0-12-821751-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A multidisciplinary approach to the laboratory diagnosis of mitochondrial disease has long been applied, with crucial information provided by deep clinical phenotyping, blood investigations, and biomarker screening as well as histopathological and biochemical testing of biopsy material to support molecular genetic screening. In an era of second and third generation sequencing technologies, traditional diagnostic algorithms for mitochondrial disease have been replaced by gene agnostic, genomic strategies including whole-exome sequencing (WES) and whole-genome sequencing (WGS), increasingly supported by other 'omics technologies (Alston et al., 2021). Whether a primary testing strategy, or one used to validate and interpret candidate genetic variants, the availability of a range of tests aimed at determining mitochondrial function (i.e., the assessment of individual respiratory chain enzyme activities in a tissue biopsy or cellular respiration in a patient cell line) remains an important part of the diagnostic armory. In this chapter, we summarize several disciplines used in the laboratory investigation of suspected mitochondrial disease, including the histopathological and biochemical assessment of mitochondrial function, as well as protein-based techniques to assess the steady-state levels of oxidative phosphorylation (OXPHOS) subunits and assembly of OXPHOS complexes via traditional (immunoblotting) and cutting-edge (quantitative proteomic) approaches.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Mitochondrial Laboratory, Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
18
|
Genetics of mitochondrial diseases: Current approaches for the molecular diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:141-165. [PMID: 36813310 DOI: 10.1016/b978-0-12-821751-1.00011-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a genetically and phenotypically variable set of monogenic disorders. The main characteristic of mitochondrial diseases is a defective oxidative phosphorylation. Both nuclear and mitochondrial DNA encode the approximately 1500 mitochondrial proteins. Since identification of the first mitochondrial disease gene in 1988 a total of 425 genes have been associated with mitochondrial diseases. Mitochondrial dysfunctions can be caused both by pathogenic variants in the mitochondrial DNA or the nuclear DNA. Hence, besides maternal inheritance, mitochondrial diseases can follow all modes of Mendelian inheritance. The maternal inheritance and tissue specificity distinguish molecular diagnostics of mitochondrial disorders from other rare disorders. With the advances made in the next-generation sequencing technology, whole exome sequencing and even whole-genome sequencing are now the established methods of choice for molecular diagnostics of mitochondrial diseases. They reach a diagnostic rate of more than 50% in clinically suspected mitochondrial disease patients. Moreover, next-generation sequencing is delivering a constantly growing number of novel mitochondrial disease genes. This chapter reviews mitochondrial and nuclear causes of mitochondrial diseases, molecular diagnostic methodologies, and their current challenges and perspectives.
Collapse
|
19
|
Silencing of the mitochondrial ribosomal protein L-24 gene activates the oxidative stress response in Caenorhabditis elegans. Biochim Biophys Acta Gen Subj 2023; 1867:130255. [PMID: 36265765 DOI: 10.1016/j.bbagen.2022.130255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
The mitochondrial translation machinery allows the synthesis of the mitochondrial-encoded subunits of the electron transport chain. Defects in this process lead to mitochondrial physiology failure; in humans, they are associated with early-onset, extremely variable and often fatal disorder. The use of a simple model to study the mitoribosomal defects is mandatory to overcome the difficulty to analyze the impact of pathological mutations in humans. In this paper we study in nematode Caenorhabditis elegans the silencing effect of the mrpl-24 gene, coding for the mitochondrial ribosomal protein L-24 (MRPL-24). This is a structural protein of the large subunit 39S of the mitoribosome and its effective physiological function is not completely elucidated. We have evaluated the nematode's fitness fault and investigated the mitochondrial defects associated with MRPL-24 depletion. The oxidative stress response activation due to the mitochondrial alteration has been also investigated as a compensatory physiological mechanism. For the first time, we demonstrated that MRPL-24 reduction increases the expression of detoxifying enzymes such as SOD-3 and GST-4 through the involvement of transcription factor SKN-1. BACKGROUND In humans, mutations in genes encoding mitochondrial ribosomal proteins (MRPs) often cause early-onset, severe, fatal and extremely variable clinical defects. Mitochondrial ribosomal protein L-24 (MRPL24) is a structural protein of the large subunit 39S of the mitoribosome. It is highly conserved in different species and its effective physiological function is not completely elucidated. METHODS We characterized the MRPL24 functionality using the animal model Caenorhabditis elegans. We performed the RNA mediated interference (RNAi) by exposing the nematodes' embryos to double-stranded RNA (dsRNA) specific for the MRPL-24 coding sequence. We investigated for the first time in C. elegans, the involvement of the MRPL-24 on the nematode's fitness and its mitochondrial physiology. RESULTS Mrpl-24 silencing in C. elegans negatively affected the larval development, progeny production and body bending. The analysis of mitochondrial functionality revealed loss of mitochondrial network and impairment of mitochondrial functionality, as the decrease of oxygen consumption rate and the ROS production, as well as reduction of mitochondrial protein synthesis. Finally, the MRPL-24 depletion activated the oxidative stress response, increasing the expression levels of two detoxifying enzymes, SOD-3 and GST-4. CONCLUSIONS In C. elegans the MRPL-24 depletion activated the oxidative stress response. This appears as a compensatory mechanism to the alteration of the mitochondrial functionality and requires the involvement of transcription factor SKN-1. GENERAL SIGNIFICANCE C. elegans resulted in a good model for the study of mitochondrial disorders and its use as a simple and pluricellular organism could open interesting perspectives to better investigate the pathologic mechanisms underlying these devastating diseases.
Collapse
|
20
|
Rius R, Bennett NK, Bhattacharya K, Riley LG, Yüksel Z, Formosa LE, Compton AG, Dale RC, Cowley MJ, Gayevskiy V, Al Tala SM, Almehery AA, Ryan MT, Thorburn DR, Nakamura K, Christodoulou J. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Hum Mutat 2022; 43:1970-1978. [PMID: 36030551 PMCID: PMC9771894 DOI: 10.1002/humu.24453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 01/25/2023]
Abstract
Primary mitochondrial diseases are a group of genetically and clinically heterogeneous disorders resulting from oxidative phosphorylation (OXPHOS) defects. COX11 encodes a copper chaperone that participates in the assembly of complex IV and has not been previously linked to human disease. In a previous study, we identified that COX11 knockdown decreased cellular adenosine triphosphate (ATP) derived from respiration, and that ATP levels could be restored with coenzyme Q10 (CoQ10 ) supplementation. This finding is surprising since COX11 has no known role in CoQ10 biosynthesis. Here, we report a novel gene-disease association by identifying biallelic pathogenic variants in COX11 associated with infantile-onset mitochondrial encephalopathies in two unrelated families using trio genome and exome sequencing. Functional studies showed that mutant COX11 fibroblasts had decreased ATP levels which could be rescued by CoQ10 . These results not only suggest that COX11 variants cause defects in energy production but reveal a potential metabolic therapeutic strategy for patients with COX11 variants.
Collapse
Affiliation(s)
- Rocio Rius
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Neal K. Bennett
- Gladstone Institute of Neurological DiseaseGladstone InstitutesSan FranciscoCaliforniaUSA
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Genetic Medicine, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Lisa G. Riley
- Specialty of Child & Adolescent HealthUniversity of SydneySydneyAustralia
- Rare Diseases Functional GenomicsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Zafer Yüksel
- Department of Human GeneticsBioscientia Healthcare GmbHIngelheimGermany
| | - Luke E. Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Alison G. Compton
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Russell C. Dale
- Department of Paediatric Neurology and Clinical school, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Mark J. Cowley
- Children's Cancer Institute & School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical GenomicsGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Saeed M. Al Tala
- Pediatric DirectorateNeonatal NICU, Armed Forces Hospital SRKhamis MushaytSaudi Arabia
| | | | - Michael T. Ryan
- Department of Human GeneticsBioscientia Healthcare GmbHIngelheimGermany
| | - David R. Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
- Victorian Clinical Genetics ServicesRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Ken Nakamura
- Gladstone Institute of Neurological DiseaseGladstone InstitutesSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Graduate Programs in Biomedical Sciences and NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
- Discipline of Genetic Medicine, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
21
|
Muñoz‐Pujol G, Ortigoza‐Escobar JD, Paredes‐Fuentes AJ, Jou C, Ugarteburu O, Gort L, Yubero D, García‐Cazorla A, O'Callaghan M, Campistol J, Muchart J, Yépez VA, Gusic M, Gagneur J, Prokisch H, Artuch R, Ribes A, Urreizti R, Tort F. Leigh syndrome is the main clinical characteristic of
PTCD3
deficiency. Brain Pathol 2022; 33:e13134. [PMID: 36450274 PMCID: PMC10154364 DOI: 10.1111/bpa.13134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial translation defects are a continuously growing group of disorders showing a large variety of clinical symptoms including a wide range of neurological abnormalities. To date, mutations in PTCD3, encoding a component of the mitochondrial ribosome, have only been reported in a single individual with clinical evidence of Leigh syndrome. Here, we describe three additional PTCD3 individuals from two unrelated families, broadening the genetic and phenotypic spectrum of this disorder, and provide definitive evidence that PTCD3 deficiency is associated with Leigh syndrome. The patients presented in the first months of life with psychomotor delay, respiratory insufficiency and feeding difficulties. The neurologic phenotype included dystonia, optic atrophy, nystagmus and tonic-clonic seizures. Brain MRI showed optic nerve atrophy and thalamic changes, consistent with Leigh syndrome. WES and RNA-seq identified compound heterozygous variants in PTCD3 in both families: c.[1453-1G>C];[1918C>G] and c.[710del];[902C>T]. The functional consequences of the identified variants were determined by a comprehensive characterization of the mitochondrial function. PTCD3 protein levels were significantly reduced in patient fibroblasts and, consistent with a mitochondrial translation defect, a severe reduction in the steady state levels of complexes I and IV subunits was detected. Accordingly, the activity of these complexes was also low, and high-resolution respirometry showed a significant decrease in the mitochondrial respiratory capacity. Functional complementation studies demonstrated the pathogenic effect of the identified variants since the expression of wild-type PTCD3 in immortalized fibroblasts restored the steady-state levels of complexes I and IV subunits as well as the mitochondrial respiratory capacity. Additionally, minigene assays demonstrated that three of the identified variants were pathogenic by altering PTCD3 mRNA processing. The fourth variant was a frameshift leading to a truncated protein. In summary, we provide evidence of PTCD3 involvement in human disease confirming that PTCD3 deficiency is definitively associated with Leigh syndrome.
Collapse
Affiliation(s)
- Gerard Muñoz‐Pujol
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | | | - Abraham J. Paredes‐Fuentes
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Cristina Jou
- Pathology Department, Institut de Recerca Sant Joan de Déu Hospital Sant Joan de Déu, University of Barcelona, CIBERER Esplugues de Llobregat Barcelona Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Laura Gort
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Delia Yubero
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Angels García‐Cazorla
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Mar O'Callaghan
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Jaume Campistol
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Jordi Muchart
- Pediatric Radiology Department Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Vicente A. Yépez
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Department of Informatics Technical University of Munich Garching Germany
| | - Mirjana Gusic
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Institute of Neurogenomics, Helmholtz Zentrum München Neuherberg Germany
| | - Julien Gagneur
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Department of Informatics Technical University of Munich Garching Germany
| | - Holger Prokisch
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Institute of Neurogenomics, Helmholtz Zentrum München Neuherberg Germany
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Roser Urreizti
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| |
Collapse
|
22
|
Abstract
The human brain consumes five orders of magnitude more energy than the sun by unit of mass and time. This staggering bioenergetic cost serves mostly synaptic transmission and actin cytoskeleton dynamics. The peak of both brain bioenergetic demands and the age of onset for neurodevelopmental disorders is approximately 5 years of age. This correlation suggests that defects in the machinery that provides cellular energy would be causative and/or consequence of neurodevelopmental disorders. We explore this hypothesis from the perspective of the machinery required for the synthesis of the electron transport chain, an ATP-producing and NADH-consuming enzymatic cascade. The electron transport chain is constituted by nuclear- and mitochondrial-genome-encoded subunits. These subunits are synthesized by the 80S and the 55S ribosomes, which are segregated to the cytoplasm and the mitochondrial matrix, correspondingly. Mitochondrial protein synthesis by the 55S ribosome is the rate-limiting step in the synthesis of electron transport chain components, suggesting that mitochondrial protein synthesis is a bottleneck for tissues with high bionergetic demands. We discuss genetic defects in the human nuclear and mitochondrial genomes that affect these protein synthesis machineries and cause a phenotypic spectrum spanning autism spectrum disorders to neurodegeneration during neurodevelopment. We propose that dysregulated mitochondrial protein synthesis is a chief, yet understudied, causative mechanism of neurodevelopmental and behavioral disorders.
Collapse
|
23
|
A Global Multiregional Proteomic Map of the Human Cerebral Cortex. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:614-632. [PMID: 34763096 PMCID: PMC9880820 DOI: 10.1016/j.gpb.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 06/25/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023]
Abstract
The Brodmann area (BA)-based map is one of the most widely used cortical maps for studies of human brain functions and in clinical practice; however, the molecular architecture of BAs remains unknown. The present study provided a global multiregional proteomic map of the human cerebral cortex by analyzing 29 BAs. These 29 BAs were grouped into 6 clusters based on similarities in proteomic patterns: the motor and sensory cluster, vision cluster, auditory and Broca's area cluster, Wernicke's area cluster, cingulate cortex cluster, and heterogeneous function cluster. We identified 474 cluster-specific and 134 BA-specific signature proteins whose functions are closely associated with specialized functions and disease vulnerability of the corresponding cluster or BA. The findings of the present study could provide explanations for the functional connections between the anterior cingulate cortex and sensorimotor cortex and for anxiety-related function in the sensorimotor cortex. The brain transcriptome and proteome comparison indicates that they both could reflect the function of cerebral cortex, but show different characteristics. These proteomic data are publicly available at the Human Brain Proteome Atlas (www.brain-omics.com). Our results may enhance our understanding of the molecular basis of brain functions and provide an important resource to support human brain research.
Collapse
|
24
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
25
|
Huang L, Xu D, Qian Y, Zhang X, Guo H, Sha M, Hu R, Kong X, Xia Q, Zhang Y. A gene signature is critical for intrahepatic cholangiocarcinoma stem cell self-renewal and chemotherapeutic response. Stem Cell Res Ther 2022; 13:292. [PMID: 35841118 PMCID: PMC9284797 DOI: 10.1186/s13287-022-02988-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
Background Improved understanding of the stemness regulation mechanism in intrahepatic cholangiocarcinoma (ICC) could identify targets and guidance for adjuvant transarterial chemoembolization (TACE). Methods TCGA database was excavated to identify the ICC stemness-associated genes. The pro-stemness effect of target genes was further analyzed by sphere formation assay, qRT-PCR, western blot, flow cytometric analysis, IHC, CCK8 assay and metabolomic analysis. Based on multivariate analysis, a nomogram for ICC patients with adjuvant TACE was established and our result was further confirmed by a validation cohort. Finally, the effect of dietary methionine intervention on chemotherapy was estimated by in vivo experiment and clinical data. Results In this study, we identified four ICC stemness-associated genes (SDHAF2, MRPS34, MRPL11, and COX8A) that are significantly upregulated in ICC tissues and negatively associated with clinical outcome. Functional studies indicated that these 4-key-genes are associated with self-renewal ability of ICC and transgenic expression of these 4-key-genes could enhance chemoresistance of cholangiocarcinoma cells. Mechanistically, the 4-key-genes-mediated pro-stemness requires the activation of methionine cycle, and their promotion on ICC stemness characteristic is dependent on MAT2A. Importantly, we established a novel nomogram to evaluate the effectiveness of TACE for ICC patients. Further dietary methionine intervene studies indicated that patients with adjuvant TACE might benefit from dietary methionine restriction if they have a relatively high nomogram score (≥ 135). Conclusions Our results show that four ICC stemness-associated genes could serve as novel biomarkers in predicting ICC patient’s response to adjuvant TACE and their pro-stemness ability may be attributed to the activation of the methionine cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02988-9.
Collapse
Affiliation(s)
- Lifeng Huang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China
| | - Dongwei Xu
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yawei Qian
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaoqiang Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China
| | - Han Guo
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Meng Sha
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Rui Hu
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Qiang Xia
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yi Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China.
| |
Collapse
|
26
|
Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022; 23:606-623. [PMID: 35459860 DOI: 10.1038/s41576-022-00480-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
Collapse
|
27
|
Jackson TD, Crameri JJ, Muellner-Wong L, Frazier AE, Palmer CS, Formosa LE, Hock DH, Fujihara KM, Stait T, Sharpe AJ, Thorburn DR, Ryan MT, Stroud DA, Stojanovski D. Sideroflexin 4 is a complex I assembly factor that interacts with the MCIA complex and is required for the assembly of the ND2 module. Proc Natl Acad Sci U S A 2022; 119:e2115566119. [PMID: 35333655 PMCID: PMC9060475 DOI: 10.1073/pnas.2115566119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
SignificanceMitochondria are double-membraned eukaryotic organelles that house the proteins required for generation of ATP, the energy currency of cells. ATP generation within mitochondria is performed by five multisubunit complexes (complexes I to V), the assembly of which is an intricate process. Mutations in subunits of these complexes, or the suite of proteins that help them assemble, lead to a severe multisystem condition called mitochondrial disease. We show that SFXN4, a protein that causes mitochondrial disease when mutated, assists with the assembly of complex I. This finding explains why mutations in SFXN4 cause mitochondrial disease and is surprising because SFXN4 belongs to a family of amino acid transporter proteins, suggesting that it has undergone a dramatic shift in function through evolution.
Collapse
Affiliation(s)
- Thomas D. Jackson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Linden Muellner-Wong
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Ann E. Frazier
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Catherine S. Palmer
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke E. Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Daniella H. Hock
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji M. Fujihara
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tegan Stait
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Alice J. Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Michael T. Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - David A. Stroud
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
28
|
Liu C, Zhou W, Liu Q, Peng Z. Hypoglycemia with lactic acidosis caused by a new MRPS2 gene mutation in a Chinese girl: a case report. BMC Endocr Disord 2022; 22:15. [PMID: 34991560 PMCID: PMC8734237 DOI: 10.1186/s12902-021-00924-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mitochondrial ribosomal protein S2 (MRPS2) gene mutation, which is related to severe hypoglycemia and lactic acidosis, is rarely reported globally. CASE PRESENTATION We report a case of a new MRPS2 gene mutation in a Chinese girl who presented with hypoglycemia and lactic acidosis. A homozygous C.412C > G variant that could cause complex oxidative phosphorylation deficiency and had not been reported before was identified. The clinical manifestations included recurrent vomiting, hypoglycemia, lactic acidosis, sensorineural hearing loss, and gall bladder calculi. Hypoglycemia and lactic acidosis improved after the administration of sugary liquid and supportive treatments. CONCLUSIONS Recurrent hypoglycemia with lactic acidosis and sensorineural hearing loss should lead to suspicion of mitochondrial defects and the early refinement of genetic tests.
Collapse
Affiliation(s)
- ChangZhi Liu
- Xiangxi Tujia and Miao Autonomous Prefecture People's Hospital, Jishou, China
| | - WeiRan Zhou
- Jinan Children's Hospital (Qilu Children's Hospital of Shandong University), Jinan, China.
| | - QuanE Liu
- Xiangxi Tujia and Miao Autonomous Prefecture People's Hospital, Jishou, China
| | - ZaiXin Peng
- Xiangxi Tujia and Miao Autonomous Prefecture People's Hospital, Jishou, China
| |
Collapse
|
29
|
Lenzini L, Carecchio M, Iori E, Legati A, Lamantea E, Avogaro A, Vitturi N. A novel MRPS34 gene mutation with combined OXPHOS deficiency in an adult patient with Leigh syndrome. Mol Genet Metab Rep 2021; 30:100830. [PMID: 34938649 DOI: 10.1016/j.ymgmr.2021.100830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
We report a novel pathogenic variant (c.223G > C; p.Gly75Arg) in the gene encoding the small mitoribosomal subunit protein mS34 in a long-surviving patient with Leigh Syndrome who was genetically diagnosed at age 34 years. The patient presented with delayed motor milestones and a stepwise motor deterioration during life, along with brain MRI alterations involving the subcortical white matter, deep grey nuclei and in particular the internal globi pallidi, that appeared calcified on CT scan. The novel variant is associated with a reduction of mS34 protein levels and of the OXPHOS complex I and IV subunits in peripheral blood mononuclear cells of the case. This study expands the number of variants that, by affecting the stability of the mitoribosome, may cause an OXPHOS deficiency in Leigh Syndrome and reports, for the first time, an unusual long survival in a patient with a homozygous MRPS34 pathogenic variant.
Collapse
Affiliation(s)
- L Lenzini
- University of Padova, Department of Medicine-DIMED, University Hospital, Padova, Italy
| | - M Carecchio
- Movement Disorders Unit, Department of Neurosciences, University of Padova, Padova, Italy
| | - E Iori
- University of Padova, Department of Medicine-DIMED, Division of Metabolic Diseases, University Hospital, Padova, Italy
| | - A Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - E Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - A Avogaro
- University of Padova, Department of Medicine-DIMED, Division of Metabolic Diseases, University Hospital, Padova, Italy
| | - N Vitturi
- University of Padova, Department of Medicine-DIMED, Division of Metabolic Diseases, University Hospital, Padova, Italy
| |
Collapse
|
30
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tuuli Lappalainen
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.,New York Genome Center, New York, NY, USA
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia.,Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
31
|
Gokhale A, Lee CE, Zlatic SA, Freeman AAH, Shearing N, Hartwig C, Ogunbona O, Bassell JL, Wynne ME, Werner E, Xu C, Wen Z, Duong D, Seyfried NT, Bearden CE, Oláh VJ, Rowan MJM, Glausier JR, Lewis DA, Faundez V. Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci 2021; 41:6596-6616. [PMID: 34261699 PMCID: PMC8336702 DOI: 10.1523/jneurosci.2197-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhexing Wen
- Departments of Cell Biology
- Psychiatry and Behavioral Sciences
| | - Duc Duong
- and Biochemistry, Emory University, Atlanta, Georgia 30322
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior Department of Psychology, UCLA, Los Angeles, California 90095
| | | | | | - Jill R Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
32
|
Alsharhan H, Muraresku C, Ganetzky RD. COXPD9 in an individual from Puerto Rico and literature review. Am J Med Genet A 2021; 185:2519-2525. [PMID: 34008913 DOI: 10.1002/ajmg.a.62344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/07/2022]
Abstract
Defects of mitoribosome assembly with destabilization of mitochondrial ribosomal proteins and subsequent aberrant mitochondrial translation machinery are one of the emerging categories of human mitochondrial disease. Mitochondrial translation deficiency constitutes a growing cause of combined oxidative phosphorylation deficiency and overall causes a set of clinically heterogeneous multi-systemic diseases. We present here the sixth individual with combined oxidative phosphorylation deficiency-9 (COXPD9) secondary to a likely pathogenic homozygous MRPL3 variant c.571A > C; p.(Thr191Pro). MRPL3 encodes a large mitochondrial ribosome subunit protein, impairing the mitochondrial translation and resulting in multisystem disease. Similar to previously reported individuals, this reported female proband presented with psychomotor retardation, sensorineural hearing loss, hypertrophic cardiomyopathy, failure to thrive, and lactic acidosis. Further, she has additional, previously unreported, features including Leigh syndrome, cataracts, hypotonia, scoliosis, myopathy, exercise intolerance, childhood-onset cardiomyopathy, and microcephaly. This subject is the oldest reported individual with COXPD9. This report also summarizes the clinical and molecular data of the previously reported individuals with COXPD9 to describe the full phenotypic spectrum.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Section of Biochemical Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Colleen Muraresku
- Division of Human Genetics, Section of Biochemical Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca D Ganetzky
- Division of Human Genetics, Section of Biochemical Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Haumann S, Boix J, Knuever J, Bieling A, Vila Sanjurjo A, Elson JL, Blakely EL, Taylor RW, Riet N, Abken H, Kashkar H, Hornig-Do HT, Wiesner RJ. Mitochondrial DNA mutations induce mitochondrial biogenesis and increase the tumorigenic potential of Hodgkin and Reed-Sternberg cells. Carcinogenesis 2021; 41:1735-1745. [PMID: 32255484 DOI: 10.1093/carcin/bgaa032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 11/14/2022] Open
Abstract
Functioning mitochondria are crucial for cancer metabolism, but aerobic glycolysis is still considered to be an important pathway for energy production in many tumor cells. Here we show that two well established, classic Hodgkin lymphoma (cHL) cell lines harbor deleterious variants within mitochondrial DNA (mtDNA) and thus exhibit reduced steady-state levels of respiratory chain complexes. However, instead of resulting in the expected bioenergetic defect, these mtDNA variants evoke a retrograde signaling response that induces mitochondrial biogenesis and ultimately results in increased mitochondrial mass as well as function and enhances proliferation in vitro as well as tumor growth in mice in vivo. When complex I assembly was impaired by knockdown of one of its subunits, this led to further increased mitochondrial mass and function and, consequently, further accelerated tumor growth in vivo. In contrast, inhibition of mitochondrial respiration in vivo by the mitochondrial complex I inhibitor metformin efficiently slowed down growth. We conclude that, as a new mechanism, mildly deleterious mtDNA variants in cHL cancer cells cause an increase of mitochondrial mass and enhanced function as a compensatory effect using a retrograde signaling pathway, which provides an obvious advantage for tumor growth.
Collapse
Affiliation(s)
- Sophie Haumann
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Julia Boix
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jana Knuever
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Dermatology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Angela Bieling
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anton Vila Sanjurjo
- Grupo GIBE, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade de A Coruña (UDC), A Coruña, Spain
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne UK
| | - Nicole Riet
- Department I for Internal Medicine, Medical Faculty and University of Cologne, 50931 Cologne, Germany
| | - Hinrich Abken
- Department I for Internal Medicine, Medical Faculty and University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne, 50931 Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,RCI, Regensburg Center for Interventional Immunology, Chair Gene-Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Hamid Kashkar
- Center for Molecular Medicine Cologne, 50931 Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Institute of Medical Microbiology, Immunology and Hygiene, Medical Faculty and University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hue-Tran Hornig-Do
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, 50931 Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Rius R, Compton AG, Baker NL, Welch AE, Coman D, Kava MP, Minoche AE, Cowley MJ, Thorburn DR, Christodoulou J. Application of Genome Sequencing from Blood to Diagnose Mitochondrial Diseases. Genes (Basel) 2021; 12:genes12040607. [PMID: 33924034 PMCID: PMC8072654 DOI: 10.3390/genes12040607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial diseases can be caused by pathogenic variants in nuclear or mitochondrial DNA-encoded genes that often lead to multisystemic symptoms and can have any mode of inheritance. Using a single test, Genome Sequencing (GS) can effectively identify variants in both genomes, but it has not yet been universally used as a first-line approach to diagnosing mitochondrial diseases due to related costs and challenges in data analysis. In this article, we report three patients with mitochondrial disease molecularly diagnosed through GS performed on DNA extracted from blood to demonstrate different diagnostic advantages of this technology, including the detection of a low-level heteroplasmic pathogenic variant, an intragenic nuclear DNA deletion, and a large mtDNA deletion. Current technical improvements and cost reductions are likely to lead to an expanded routine diagnostic usage of GS and of the complementary “Omic” technologies in mitochondrial diseases.
Collapse
Affiliation(s)
- Rocio Rius
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Alison G. Compton
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Naomi L. Baker
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
| | - AnneMarie E. Welch
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
| | - David Coman
- Department of Metabolic Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia;
- School of Clinical Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia
| | - Maina P. Kava
- Department of Neurology, Perth Children’s Hospital, Perth, WA 6009, Australia;
- Department of Metabolic Medicine and Rheumatology, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Andre E. Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute, University of New South Wales, Randwick, NSW 2010, Australia;
| | - Mark J. Cowley
- Precision Medicine Theme, Children’s Cancer Institute, Kensington, NSW 2750, Australia;
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
- Correspondence: ; Tel.: +61-39936-6353
| |
Collapse
|
35
|
Human Mitoribosome Biogenesis and Its Emerging Links to Disease. Int J Mol Sci 2021; 22:ijms22083827. [PMID: 33917098 PMCID: PMC8067846 DOI: 10.3390/ijms22083827] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize a small subset of proteins, which are essential components of the oxidative phosphorylation machinery. Therefore, their function is of fundamental importance to cellular metabolism. The assembly of mitoribosomes is a complex process that progresses through numerous maturation and protein-binding events coordinated by the actions of several assembly factors. Dysregulation of mitoribosome production is increasingly recognized as a contributor to metabolic and neurodegenerative diseases. In recent years, mutations in multiple components of the mitoribosome assembly machinery have been associated with a range of human pathologies, highlighting their importance to cell function and health. Here, we provide a review of our current understanding of mitoribosome biogenesis, highlighting the key factors involved in this process and the growing number of mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors that lead to human disease.
Collapse
|
36
|
Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW. The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines. J Pathol 2021; 254:430-442. [PMID: 33586140 PMCID: PMC8600955 DOI: 10.1002/path.5641] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria play essential roles in numerous metabolic pathways including the synthesis of adenosine triphosphate through oxidative phosphorylation. Clinically, mitochondrial diseases occur when there is mitochondrial dysfunction – manifesting at any age and affecting any organ system; tissues with high energy requirements, such as muscle and the brain, are often affected. The clinical heterogeneity is parallel to the degree of genetic heterogeneity associated with mitochondrial dysfunction. Around 10% of human genes are predicted to have a mitochondrial function, and defects in over 300 genes are reported to cause mitochondrial disease. Some involve the mitochondrial genome (mtDNA), but the vast majority occur within the nuclear genome. Except for a few specific genetic defects, there remains no cure for mitochondrial diseases, which means that a genetic diagnosis is imperative for genetic counselling and the provision of reproductive options for at‐risk families. Next‐generation sequencing strategies, particularly exome and whole‐genome sequencing, have revolutionised mitochondrial diagnostics such that the traditional muscle biopsy has largely been replaced with a minimally‐invasive blood sample for an unbiased approach to genetic diagnosis. Where these genomic approaches have not identified a causative defect, or where there is insufficient support for pathogenicity, additional functional investigations are required. The application of supplementary ‘omics’ technologies, including transcriptomics, proteomics, and metabolomics, has the potential to greatly improve diagnostic strategies. This review aims to demonstrate that whilst a molecular diagnosis can be achieved for many cases through next‐generation sequencing of blood DNA, the use of patient tissues and an integrated, multidisciplinary multi‐omics approach is pivotal for the diagnosis of more challenging cases. Moreover, the analysis of clinically relevant tissues from affected individuals remains crucial for understanding the molecular mechanisms underlying mitochondrial pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sarah L Stenton
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
38
|
Horga A, Manole A, Mitchell AL, Bugiardini E, Hargreaves IP, Mowafi W, Bettencourt C, Blakely EL, He L, Polke JM, Woodward CE, Dalla Rosa I, Shah S, Pittman AM, Quinlivan R, Reilly MM, Taylor RW, Holt IJ, Hanna MG, Pitceathly RDS, Spinazzola A, Houlden H. Uniparental isodisomy of chromosome 2 causing MRPL44-related multisystem mitochondrial disease. Mol Biol Rep 2021; 48:2093-2104. [PMID: 33742325 DOI: 10.1007/s11033-021-06188-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.
Collapse
Affiliation(s)
- Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Clínico San Carlos and Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Andreea Manole
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Alice L Mitchell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Enrico Bugiardini
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Walied Mowafi
- Neurosciences Department, Calderdale Royal Hospital, Halifax, HX3 0PW, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Emma L Blakely
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - James M Polke
- Neurogenetic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Catherine E Woodward
- Neurogenetic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Alan M Pittman
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Robert W Taylor
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
- Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Antonella Spinazzola
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
39
|
Linear Density Sucrose Gradients to Study Mitoribosomal Biogenesis in Tissue-Specific Knockout Mice. Methods Mol Biol 2021. [PMID: 33606205 DOI: 10.1007/978-1-0716-1008-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Like bacterial and cytoplasmic ribosomes, mitoribosomes are large ribonucleoprotein complexes with molecular weights in the range of several million Daltons. Traditionally, studying the assembly of such high molecular weight complexes is done using ultracentrifugation through linear density gradients, which remains the method of choice due to its versatility and superior resolving power in the high molecular weight range. Here, we present a protocol for the analysis of mitoribosomal assembly in heart mitochondrial extracts using linear density sucrose gradients that we have previously employed to characterize the essential role of different mitochondrial proteins in mitoribosomal biogenesis. This protocol details in a stepwise manner a typical mitoribosomal assembly analysis starting with isolation of mitochondria, preparation and ultracentrifugation of the gradients, fractionation and ending with SDS-PAGE, and immunoblotting of the gradient fractions. Even though we provide an example with heart mitochondria, this protocol can be directly applied to virtually all mouse tissues, as well as cultured cells, with little to no modifications.
Collapse
|
40
|
Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021; 22:307-325. [PMID: 33594280 DOI: 10.1038/s41580-021-00332-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
Collapse
|
41
|
Müller‐Nedebock AC, Westhuizen FH, Kõks S, Bardien S. Nuclear Genes Associated with Mitochondrial
DNA
Processes as Contributors to Parkinson's Disease Risk. Mov Disord 2021; 36:815-831. [DOI: 10.1002/mds.28475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amica C. Müller‐Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | | | - Sulev Kõks
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch Western Australia Australia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
42
|
Jackson TD, Hock DH, Fujihara KM, Palmer CS, Frazier AE, Low YC, Kang Y, Ang CS, Clemons NJ, Thorburn DR, Stroud DA, Stojanovski D. The TIM22 complex mediates the import of sideroflexins and is required for efficient mitochondrial one-carbon metabolism. Mol Biol Cell 2021; 32:475-491. [PMID: 33476211 PMCID: PMC8101445 DOI: 10.1091/mbc.e20-06-0390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis. We mapped the proteomic changes in Sengers patient fibroblasts and AGKKO cell lines to understand the effects of AGK dysfunction on mitochondria. This uncovered down-regulation of a number of proteins at the inner mitochondrial membrane, including many SLC25 carrier family proteins, which are predicted substrates of the complex. We also observed down-regulation of SFXN proteins, which contain five transmembrane domains, and show that they represent a novel class of TIM22 complex substrate. Perturbed biogenesis of SFXN proteins in cells lacking AGK reduces the proliferative capabilities of these cells in the absence of exogenous serine, suggesting that dysregulation of one-carbon metabolism is a molecular feature in the biology of Sengers syndrome.
Collapse
Affiliation(s)
- Thomas D Jackson
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Kenji M Fujihara
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Ann E Frazier
- Murdoch Children's Research Institute and.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Yau C Low
- Murdoch Children's Research Institute and.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Yilin Kang
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas J Clemons
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute and.,Victorian Clinical Genetics Services Royal Children's Hospital, Melbourne, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| |
Collapse
|
43
|
Webb BD, Diaz GA, Prasun P. Mitochondrial translation defects and human disease. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 4:71-80. [PMID: 33426504 PMCID: PMC7791537 DOI: 10.20517/jtgg.2020.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In eukaryotic cells, mitochondria perform the essential function of producing cellular energy in the form of ATP via the oxidative phosphorylation system. This system is composed of 5 multimeric protein complexes of which 13 protein subunits are encoded by the mitochondrial genome: Complex I (7 subunits), Complex III (1 subunit),Complex IV (3 subunits), and Complex (2 subunits). Effective mitochondrial translation is necessary to produce the protein subunits encoded by the mitochondrial genome (mtDNA). Defects in mitochondrial translation are known to cause a wide variety of clinical disease in humans with high-energy consuming organs generally most prominently affected. Here, we review several classes of disease resulting from defective mitochondrial translation including disorders with mitochondrial tRNA mutations, mitochondrial aminoacyl-tRNA synthetase disorders, mitochondrial rRNA mutations, and mitochondrial ribosomal protein disorders.
Collapse
Affiliation(s)
- Bryn D Webb
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - George A Diaz
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pankaj Prasun
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
44
|
Role of GTPases in Driving Mitoribosome Assembly. Trends Cell Biol 2021; 31:284-297. [PMID: 33419649 DOI: 10.1016/j.tcb.2020.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023]
Abstract
Mitoribosomes catalyze essential protein synthesis within mitochondria. Mitoribosome biogenesis is assisted by an increasing number of assembly factors, among which guanosine triphosphate hydrolases (GTPases) are the most abundant class. Here, we review recent progress in our understanding of mitoribosome assembly GTPases. We describe their shared and specific features and mechanisms of action, compare them with their bacterial counterparts, and discuss their possible roles in the assembly of small or large mitoribosomal subunits and the formation of the monosome by establishing quality-control checkpoints during these processes. Furthermore, following the recent unification of the nomenclature for the mitoribosomal proteins, we also propose a unified nomenclature for mitoribosome assembly GTPases.
Collapse
|
45
|
Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2020; 595:1025-1061. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria control life and death in eukaryotic cells. Harboring a unique circular genome, a by-product of an ancient endosymbiotic event, mitochondria maintains a specialized and evolutionary divergent protein synthesis machinery, the mitoribosome. Mitoribosome biogenesis depends on elements encoded in both the mitochondrial genome (the RNA components) and the nuclear genome (all ribosomal proteins and assembly factors). Recent cryo-EM structures of mammalian mitoribosomes have illuminated their composition and provided hints regarding their assembly and elusive mitochondrial translation mechanisms. A growing body of literature involves the mitoribosome in inherited primary mitochondrial disorders. Mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors impede mitoribosome biogenesis, causing protein synthesis defects that lead to respiratory chain failure and mitochondrial disorders such as encephalo- and cardiomyopathy, deafness, neuropathy, and developmental delays. In this article, we review the current fundamental understanding of mitoribosome assembly and function, and the clinical landscape of mitochondrial disorders driven by mutations in mitoribosome components and assembly factors, to portray how basic and clinical studies combined help us better understand both mitochondrial biology and medicine.
Collapse
Affiliation(s)
- Alberto Ferrari
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| | - Samuel Del'Olio
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
46
|
Abnormal Expression of Mitochondrial Ribosomal Proteins and Their Encoding Genes with Cell Apoptosis and Diseases. Int J Mol Sci 2020; 21:ijms21228879. [PMID: 33238645 PMCID: PMC7700125 DOI: 10.3390/ijms21228879] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian mitochondrial ribosomes translate 13 proteins encoded by mitochondrial genes, all of which play roles in the mitochondrial respiratory chain. After a long period of reconstruction, mitochondrial ribosomes are the most protein-rich ribosomes. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes, synthesized in the cytoplasm and then, transported to the mitochondria to be assembled into mitochondrial ribosomes. MRPs not only play a role in mitochondrial oxidative phosphorylation (OXPHOS). Moreover, they participate in the regulation of cell state as apoptosis inducing factors. Abnormal expressions of MRPs will lead to mitochondrial metabolism disorder, cell dysfunction, etc. Many researches have demonstrated the abnormal expression of MRPs in various tumors. This paper reviews the basic structure of mitochondrial ribosome, focuses on the structure and function of MRPs, and their relationships with cell apoptosis and diseases. It provides a reference for the study of the function of MRPs and the disease diagnosis and treatment.
Collapse
|
47
|
Intellectual disability-associated factor Zbtb11 cooperates with NRF-2/GABP to control mitochondrial function. Nat Commun 2020; 11:5469. [PMID: 33122634 PMCID: PMC7596099 DOI: 10.1038/s41467-020-19205-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2020] [Indexed: 11/08/2022] Open
Abstract
Zbtb11 is a conserved transcription factor mutated in families with hereditary intellectual disability. Its precise molecular and cellular functions are currently unknown, precluding our understanding of the aetiology of this disease. Using a combination of functional genomics, genetic and biochemical approaches, here we show that Zbtb11 plays essential roles in maintaining the homeostasis of mitochondrial function. Mechanistically, we find Zbtb11 facilitates the recruitment of nuclear respiratory factor 2 (NRF-2) to its target promoters, activating a subset of nuclear genes with roles in the biogenesis of respiratory complex I and the mitoribosome. Genetic inactivation of Zbtb11 resulted in a severe complex I assembly defect, impaired mitochondrial respiration, mitochondrial depolarisation, and ultimately proliferation arrest and cell death. Experimental modelling of the pathogenic human mutations showed these have a destabilising effect on the protein, resulting in reduced Zbtb11 dosage, downregulation of its target genes, and impaired complex I biogenesis. Our study establishes Zbtb11 as an essential mitochondrial regulator, improves our understanding of the transcriptional mechanisms of nuclear control over mitochondria, and may help to understand the aetiology of Zbtb11-associated intellectual disability.
Collapse
|
48
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
49
|
Expression analysis of mammalian mitochondrial ribosomal protein genes. Gene Expr Patterns 2020; 38:119147. [PMID: 32987154 DOI: 10.1016/j.gep.2020.119147] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial ribosomal proteins (MRPs) are essential components for the structural and functional integrity of the mitoribosome complex. Throughout evolution, the mammalian mitoribosome has acquired new Mrp genes to compensate for loss of ribosomal RNA. More than 80 MRPs have been identified in mammals. Here we document expression pattern of 79 Mrp genes during mouse development and adult tissues and find that these genes are consistently expressed throughout early embryogenesis with little stage or tissue specificity. Further investigation of the amino acid sequence reveals that this group of proteins has little to no protein similarity. Recent work has shown that the majority of Mrp genes are essential resulting in early embryonic lethality, suggesting no functional redundancy among the group. Taken together, these results indicate that the Mrp genes are not a gene family descended from a single ancestral gene, and that each MRP has unique and essential role in the mitoribosome complex. The lack of functional redundancy is surprising given the importance of the mitoribosome for cellular and organismal viability. Further, these data suggest that genomic variants in Mrp genes may be causative for early pregnancy loss and should be evaluated as clinically.
Collapse
|
50
|
Alahmad A, Nasca A, Heidler J, Thompson K, Oláhová M, Legati A, Lamantea E, Meisterknecht J, Spagnolo M, He L, Alameer S, Hakami F, Almehdar A, Ardissone A, Alston CL, McFarland R, Wittig I, Ghezzi D, Taylor RW. Bi-allelic pathogenic variants in NDUFC2 cause early-onset Leigh syndrome and stalled biogenesis of complex I. EMBO Mol Med 2020; 12:e12619. [PMID: 32969598 PMCID: PMC7645371 DOI: 10.15252/emmm.202012619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Leigh syndrome is a progressive neurodegenerative disorder, most commonly observed in paediatric mitochondrial disease, and is often associated with pathogenic variants in complex I structural subunits or assembly factors resulting in isolated respiratory chain complex I deficiency. Clinical heterogeneity has been reported, but key diagnostic findings are developmental regression, elevated lactate and characteristic neuroimaging abnormalities. Here, we describe three affected children from two unrelated families who presented with Leigh syndrome due to homozygous variants (c.346_*7del and c.173A>T p.His58Leu) in NDUFC2, encoding a complex I subunit. Biochemical and functional investigation of subjects’ fibroblasts confirmed a severe defect in complex I activity, subunit expression and assembly. Lentiviral transduction of subjects’ fibroblasts with wild‐type NDUFC2 cDNA increased complex I assembly supporting the association of the identified NDUFC2 variants with mitochondrial pathology. Complexome profiling confirmed a loss of NDUFC2 and defective complex I assembly, revealing aberrant assembly intermediates suggestive of stalled biogenesis of the complex I holoenzyme and indicating a crucial role for NDUFC2 in the assembly of the membrane arm of complex I, particularly the ND2 module.
Collapse
Affiliation(s)
- Ahmad Alahmad
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Kuwait Medical Genetics Centre, Al-Sabah Medical Area, Kuwait
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Juliana Heidler
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jana Meisterknecht
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany
| | - Manuela Spagnolo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Seham Alameer
- Pediatric Department, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Fahad Hakami
- Section of Molecular Medicine, King Abdulaziz Medical City-WR, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Abeer Almehdar
- Department of Medical Imaging, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City-WR, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Anna Ardissone
- Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ilka Wittig
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|