1
|
Li M, Lin J, Fei H, Liu J, Chen Y, Han X, Wang Y, Wang J, Hua R, Li S, Li N. Identification and functional analysis of a novel SMARCC2 splicing variant in a family with syndromic neurodevelopmental disorder. Orphanet J Rare Dis 2025; 20:48. [PMID: 39901255 PMCID: PMC11792323 DOI: 10.1186/s13023-024-03510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/13/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND To determine the pathogenicity of a novel splicing variant in the SMARCC2 gene identified from a pair of adult male monozygotic twins with neurodevelopmental disorder, and to investigate the genotype-phenotype characteristics associated with SMARCC2 variants. METHODS Whole-exome sequencing (WES) was conducted on the proband, and candidate variants were validated using Sanger sequencing within the family. The effect of the identified splicing variant on SMARCC2 mRNA processing was analyzed using reverse transcription PCR (RT-PCR) and TA-clone sequencing using samples derived from the proband. The clinical features of the twins were collected and compared with the previously reported patients. RESULTS The twin adult males displayed comparable phenotypes, characterized by moderate developmental delay, intellectual and language delays, dense hair, craniofacial anomalies, scoliosis, cryptorchidism, hypotonia, behavioral abnormalities, allergic purpura and eczema, and drug allergies. WES unveiled a previously unreported heterozygous splice variant of the SMARCC2 gene (NM_003075.3: c.1496 + 1G > T). Sanger sequencing confirmed that the variant was de novo in both patients. TA-clone sequencing of the RT-PCR fragments showed that the canonical splicing variant resulted in two distinct aberrant splicing events in SMARCC2 mRNA. Specifically, approximately 80% of the mutant clones resulted from the in-frame insertion of 126 bases in intron 16, while the remaining 20% showed an in-frame deletion of exon 16 (c.1383_1496del). Crystal structure analysis showed that both in-frame alterations hindered the proper formation of the alpha helix structure within the SMARCC2 protein. An analysis of genotype-phenotype correlations indicated that our patients displayed neurological phenotypes of greater severity than those observed in patients with truncating variants, instead aligning more closely with the characteristics of the missense/in-frame variant group. CONCLUSION We identified and reported a pair of twins suffering from syndromic neurodevelopmental disorders caused by a novel splicing variant of SMARCC2. Our findings further reinforce the notion that individuals harboring missense/in-frame variants in SMARCC2 are prone to experiencing more severe neurological phenotypes.
Collapse
Affiliation(s)
- Ming Li
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jingqi Lin
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hongjun Fei
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jinyu Liu
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yiyao Chen
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xu Han
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yanlin Wang
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jian Wang
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Renyi Hua
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Shuyuan Li
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Niu Li
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
- Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Apicella M, Battisti A, Pisaneschi E, Menghini D, Digilio MC, Vicari S. First report of Coffin-Siris Syndrome with SMARCB1 variant, normal intelligence and mild selective neuropsychological deficits: A case report and literature review. Clin Neuropsychol 2025; 39:471-493. [PMID: 38963150 DOI: 10.1080/13854046.2024.2372879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Background: The SMARCB1 gene encodes a subunit of the BRG1-Associated Factor (BAF) complex, and mutations in this gene have been linked to Coffin-Siris Syndrome (CSS) type 3. CSS is characterized by a range of developmental disabilities, facial dysmorphic features, and feeding difficulties. There's been noted genotype-phenotype correlation in CSS, with cases involving SMARCB1 mutations often exhibiting more severe language impairment and intellectual disability. Method: We conducted a review of reported CSS type 3 cases and presented the first instance of CSS associated with a SMARCB1 variant wherein the patient exhibited normal intelligence and only mild selective neuropsychological deficits. The patient underwent evaluation for feeding challenges, growth delay, and dysmorphic features during their second year of life. Subsequently, CSS diagnosis was confirmed due to a de novo heterozygous c.568C > T (p.Arg190Trp) variant in the SMARCB1 gene. Due to learning difficulties, the patient underwent a comprehensive neuropsychological assessment, which was related to the retrospective reconstruction of her medical and developmental history. Results: The patient demonstrated normal intelligence and adaptive functioning, with specific deficits in arithmetic and selective difficulties in verbal learning and long-term memory. Feeding difficulties and language delay observed in early childhood showed significant improvement over time. Discussion: We discuss this case in relation to previously reported CSS type 3 cases, emphasizing neuropsychological aspects. It's evident that neuropsychological features of CSS can vary among affected individuals, highlighting the importance of personalized support and interventions tailored to specific cognitive and emotional needs by healthcare professionals. Our case suggests avenues for future research to identify specific modifiers of phenotypic expression to explain variability in intellect among patients and pinpoint potential targets for gene therapy.
Collapse
Affiliation(s)
- Massimo Apicella
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | - Andrea Battisti
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Human Science, LUMSA University, Rome, Italy
| | - Elisa Pisaneschi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Deny Menghini
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefano Vicari
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Smail A, Al-Jawahiri R, Baker K. Polycomb-associated and Trithorax-associated developmental conditions-phenotypic convergence and heterogeneity. Eur J Hum Genet 2025:10.1038/s41431-025-01784-2. [PMID: 39843918 DOI: 10.1038/s41431-025-01784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) complexes represent two major components of the epigenetic machinery. This study aimed to delineate phenotypic similarities and differences across developmental conditions arising from rare variants in PcG and TrxG genes, using data-driven approaches. 462 patients with a PcG or TrxG-associated condition were identified in the DECIPHER dataset. We analysed Human Phenotype Ontology (HPO) data to identify phenotypes enriched in this group, in comparison to other monogenic conditions within DECIPHER. We then assessed phenotypic relationships between single gene diagnoses within the PcG and TrxG group, by applying semantic similarity analysis and hierarchical clustering. Finally, we analysed patient-level phenotypic heterogeneity in this group, irrespective of specific genetic diagnosis, by applying the same clustering approach. Collectively, PcG/TrxG diagnoses were associated with increased reporting of HPO terms relating to integument, growth, head and neck, limb and digestive abnormalities. Gene group analysis identified three multi-gene clusters differentiated by microcephaly, limb/digit dysmorphologies, growth abnormalities and atypical behavioural phenotypes. Patient-level analysis identified two large clusters differentiated by neurodevelopmental abnormalities and facial dysmorphologies respectively, as well as smaller clusters associated with more specific phenotypes including behavioural characteristics, eye abnormalities, growth abnormalities and skull dysmorphologies. Importantly, patient-level phenotypic clusters did not align with genetic diagnoses. Data-driven approaches can highlight pathway-level and gene-level phenotypic convergences, and individual-level phenotypic heterogeneities. Future studies are needed to understand the multi-level mechanisms contributing to both convergence and variability within this population, and to extend data collection and analyses to later-emerging health characteristics.
Collapse
Affiliation(s)
- Alice Smail
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Medical & Molecular Genetics, King's College London, London, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Reem Al-Jawahiri
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Medical Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Viola Lee KA, Aboobakar IF, Jain A, Tesdahl CD, Jin K, Oke I, Whitman MC. Genome Wide and Rare Variant Association Studies of Amblyopia in the All of Us Research Program. Ophthalmology 2025:S0161-6420(25)00067-3. [PMID: 39842729 DOI: 10.1016/j.ophtha.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE Amblyopia is characterized by decreased visual acuity due to abnormal visual experience during development. It affects approximately three percent of the population and is associated with abnormal development of the visual cortex. Despite treatment, many patients have residual visual acuity deficits. This study aimed to explore the genetic contributions to amblyopia. DESIGN Case-control. PARTICIPANTS The All of Us Research Program includes genotypic and phenotypic data from a diverse population of adults (age ≥ 18 years) across the United States. 764 subjects with amblyopia (based on ICD and SNOMED codes) and 122,305 controls with no record of amblyopia and whole genome sequencing were compared. Only participants of European genetic ancestry were included due to small numbers of affected participants in other ancestral groups. METHODS Genome wide association study (GWAS) of common variants (minor allele frequency >1%) and rare variant association study (RVAS) at the gene level for amblyopia of participants in the All of Us Research Program. MAIN OUTCOME MEASURES Individual single-nucleotide polymorphisms (SNPs) significantly associated with amblyopia and genes with significant burden of rare variants in amblyopia RESULTS: The GWAS revealed 4 loci that approached statistical significance defined as p = 5e-8: rs56105618, rs1349660, rs7958343, and rs138693522. Each of the variants is an expression quantitative trait locus (eQTL) for a gene expressed in the brain or related to neural development. RVAS revealed 15 genes with a statistically significant (p-value = 5e-05) different burden of variants: DCP1B, OR12D2, PCDHA4, ALKBH8, NMUR2, OR52P1P, NEU1, CACNB2, PSMA7, LRR1, ZNF831, FSIP2, ZNF654, CES5A, and MPV17, several of which have known roles in neurodevelopment. CONCLUSIONS The identification of genes linked to amblyopia with roles in neurodevelopment suggests that the neurodevelopmental changes in amblyopia are not only secondary to abnormal visual experience but may result from the interaction of primary neurodevelopmental deficits with abnormal experience. This potentially explains why some children develop amblyopia and others do not with the same ocular risk factors, may explain differences in treatment outcomes, and suggests new avenues for amblyopia treatment.
Collapse
Affiliation(s)
- Kyoung A Viola Lee
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA; University of South Florida Morsani College of Medicine, Tampa, FL
| | | | - Ashish Jain
- Department of Bioinformatics, Boston Children's Hospital, Boston, MA
| | - Corey D Tesdahl
- University of South Florida Morsani College of Medicine, Tampa, FL
| | - Kimberly Jin
- University of Massachusetts Chan Medical School, Worcester, MA
| | - Isdin Oke
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA; Department of Ophthalmology, Harvard Medical School, Boston, MA; Department of Population Medicine, Harvard Medical School, Boston, MA
| | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA; Department of Ophthalmology, Harvard Medical School, Boston, MA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.
| |
Collapse
|
5
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: implications for brain development and autism. Transl Psychiatry 2024; 14:482. [PMID: 39632793 PMCID: PMC11618798 DOI: 10.1038/s41398-024-03179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 258 genes that have been reported to modulate fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. Notably, at least 40 genes that are known to regulate embryonic neurogenesis were dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or downregulated by VPA in the fetal brain and (b) associated with autism and/or known to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The genes meeting these criteria provide potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G Dorsey
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
- Institute for Genome Sciences University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malcolm V Lane
- Translational Toxicology/Department of Epidemiology and Public Health University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce K Krueger
- Departments of Physiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Hadisurya M, Tao WA, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA polymerase II productive elongation. Cell Rep 2024; 43:114877. [PMID: 39412992 PMCID: PMC11625021 DOI: 10.1016/j.celrep.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Signal-dependent RNA polymerase II (RNA Pol II) productive elongation is an integral component of gene transcription, including that of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating RNA Pol II overcomes nucleosomal barriers. Using RNAi, three degraders, and several small-molecule inhibitors, we show that the mammalian switch/sucrose non-fermentable (SWI/SNF) complex of neurons (neuronal BRG1/BRM-associated factor or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc. The nBAF complex facilitates promoter-proximal RNA Pol II pausing and signal-dependent RNA Pol II recruitment (loading) and, importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent RNA Pol II. Mechanistically, RNA Pol II elongation is mediated by activity-induced nBAF assembly (especially ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of RNA Pol II transcription and reveal mechanisms underlying activity-induced RNA Pol II elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
Affiliation(s)
- Karen G Cornejo
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Andie Venegas
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Madeline Door
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brenda Gutierrez-Ruiz
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Lucy B Karabedian
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Supratik G Nandi
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
7
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
8
|
Karayol R, Borroto MC, Haghshenas S, Namasivayam A, Reilly J, Levy MA, Relator R, Kerkhof J, McConkey H, Shvedunova M, Petersen AK, Magnussen K, Zweier C, Vasileiou G, Reis A, Savatt JM, Mulligan MR, Bicknell LS, Poke G, Abu-El-Haija A, Duis J, Hannig V, Srivastava S, Barkoudah E, Hauser NS, van den Born M, Hamiel U, Henig N, Baris Feldman H, McKee S, Krapels IPC, Lei Y, Todorova A, Yordanova R, Atemin S, Rogac M, McConnell V, Chassevent A, Barañano KW, Shashi V, Sullivan JA, Peron A, Iascone M, Canevini MP, Friedman J, Reyes IA, Kierstein J, Shen JJ, Ahmed FN, Mao X, Almoguera B, Blanco-Kelly F, Platzer K, Treu AB, Quilichini J, Bourgois A, Chatron N, Januel L, Rougeot C, Carere DA, Monaghan KG, Rousseau J, Myers KA, Sadikovic B, Akhtar A, Campeau PM. MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature. Am J Hum Genet 2024; 111:1330-1351. [PMID: 38815585 PMCID: PMC11267526 DOI: 10.1016/j.ajhg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.
Collapse
Affiliation(s)
- Remzi Karayol
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Carla Borroto
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Anoja Namasivayam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jack Reilly
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Maria Shvedunova
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andrea K Petersen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Kari Magnussen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juliann M Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington, New Zealand
| | - Aya Abu-El-Haija
- Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Duis
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Vickie Hannig
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Natalie S Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Myrthe van den Born
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Uri Hamiel
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Noa Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Hagit Baris Feldman
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ralitsa Yordanova
- Department of pediatrics "Prof. Ivan Andreev", Medical university - Plovdiv, Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Mihael Rogac
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vivienne McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angela Peron
- SOC Genetica Medica, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Maria Iascone
- Department of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Iris A Reyes
- Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Janell Kierstein
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Joseph J Shen
- Division of Genomic Medicine, Department of Pediatrics, MIND Institute, UC Davis, Sacramento, CA 95817, USA
| | - Faria N Ahmed
- Division of Genomic Medicine, Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China; Nanhua University, Chiayi County, Taiwan
| | - Berta Almoguera
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, German
| | | | - Juliette Quilichini
- Service de Médecine Génomique des maladies de système et d'organe, APHP, Centre Université Paris Cité, Paris, France
| | - Alexia Bourgois
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Nicolas Chatron
- Department of Genetics, Lyon University Hospital, Lyon, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Louis Januel
- Department of Genetics, Lyon University Hospital, Lyon, France
| | | | | | | | - Justine Rousseau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Kenneth A Myers
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada.
| | - Asifa Akhtar
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Philippe M Campeau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
9
|
Nussinov R, Yavuz BR, Demirel HC, Arici MK, Jang H, Tuncbag N. Review: Cancer and neurodevelopmental disorders: multi-scale reasoning and computational guide. Front Cell Dev Biol 2024; 12:1376639. [PMID: 39015651 PMCID: PMC11249571 DOI: 10.3389/fcell.2024.1376639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
The connection and causality between cancer and neurodevelopmental disorders have been puzzling. How can the same cellular pathways, proteins, and mutations lead to pathologies with vastly different clinical presentations? And why do individuals with neurodevelopmental disorders, such as autism and schizophrenia, face higher chances of cancer emerging throughout their lifetime? Our broad review emphasizes the multi-scale aspect of this type of reasoning. As these examples demonstrate, rather than focusing on a specific organ system or disease, we aim at the new understanding that can be gained. Within this framework, our review calls attention to computational strategies which can be powerful in discovering connections, causalities, predicting clinical outcomes, and are vital for drug discovery. Thus, rather than centering on the clinical features, we draw on the rapidly increasing data on the molecular level, including mutations, isoforms, three-dimensional structures, and expression levels of the respective disease-associated genes. Their integrated analysis, together with chromatin states, can delineate how, despite being connected, neurodevelopmental disorders and cancer differ, and how the same mutations can lead to different clinical symptoms. Here, we seek to uncover the emerging connection between cancer, including pediatric tumors, and neurodevelopmental disorders, and the tantalizing questions that this connection raises.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
| | | | - M. Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Türkiye
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
- School of Medicine, Koc University, Istanbul, Türkiye
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
10
|
Bartek V, Szabó I, Harmath Á, Rudas G, Steiner T, Fintha A, Ács N, Beke A. Prenatal and Postnatal Diagnosis and Genetic Background of Corpus Callosum Malformations and Neonatal Follow-Up. CHILDREN (BASEL, SWITZERLAND) 2024; 11:797. [PMID: 39062246 PMCID: PMC11274835 DOI: 10.3390/children11070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION The corpus callosum is one of the five main cerebral commissures. It is key to combining sensory and motor functions. Its structure can be pathological (dysgenesis) or completely absent (agenesis). The corpus callosum dys- or agenesis is a rare disease (1:4000 live births), but it can have serious mental effects. METHODS In our study, we processed the data of 64 pregnant women. They attended a prenatal diagnostic center and genetic counseling from 2005 to 2019 at the Department of Obstetrics and Gynecology at Semmelweis University. RESULTS The pregnancies had the following outcomes: 52 ended in delivery, 1 in spontaneous abortion, and 11 in termination of pregnancy (TOP) cases (n = 64). The average time of detection with imaging tests was 25.24 gestational weeks. In 16 cases, prenatal magnetic resonance imaging (MRI) was performed. If the abnormality was detected before the 20th week, a genetic test was performed on an amniotic fluid sample obtained from a genetic amniocentesis. Karyotyping and cytogenetic tests were performed in 15 of the investigated cases. Karyotyping gave normal results in three cases (46,XX or XY). In one of these cases, postnatally chromosomal microarray (CMA) was later performed, which confirmed Aicardi syndrome (3q21.3-21.1 microdeletion). In one case, postnatally, the test found Wiedemann-Rautenstrauch syndrome. In other cases, it found X ring, Di George syndrome, 46,XY,del(13q)(q13q22) and 46,XX,del(5p)(p13) (Cri-du-chat syndrome). Edwards syndrome was diagnosed in six cases, and Patau syndrome in one case. CONCLUSIONS We found that corpus callosum abnormalities are often linked to chromosomal problems. We recommend that a cytogenetic test be performed in all cases to rule out inherited diseases. Also, the long-term outcome does not just depend on the disease's severity and the associated other conditions, and hence proper follow-up and early development are also key. For this reason, close teamwork between neonatology, developmental neurology, and pediatric surgery is vital.
Collapse
Affiliation(s)
- Virág Bartek
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - István Szabó
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - Ágnes Harmath
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - Gábor Rudas
- Heim Pál National Pediatric Institute, 1089 Budapest, Hungary;
| | - Tidhar Steiner
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - Attila Fintha
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - Artúr Beke
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| |
Collapse
|
11
|
Kolokotronis K, Suter AA, Ivanovski I, Frey T, Bahr A, Rauch A, Steindl K. DPF2-related Coffin-Siris syndrome type 7 in two generations. Eur J Med Genet 2024; 69:104945. [PMID: 38697389 DOI: 10.1016/j.ejmg.2024.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
To date 11 patients with Coffin-Siris syndrome type 7 (OMIM 618027) have been described since the first literature report. All reported patients carried de novo variants with presumed dominant negative effect, which localized in the PHD1/PHD2 domains of DPF2. Here we report on the first familial case of Coffin-Siris syndrome type 7. The index patient presented during the 1st year of life with failure to thrive and ectodermal anomalies. The genetic analysis using whole exome sequencing showed a likely pathogenic missense variant in the PHD1 region. The family analysis showed that the mother as well as the older brother of the index patient also carried the detected DPF2 variant in heterozygous state. The mother had a history of school difficulties but no history of failure to thrive and was overall mildly affected. The brother showed developmental delay with autistic features, ectodermal anomalies and overlapping morphologic features but did not have a history of growth failure problems. To our knowledge this is the first report of an inherited likely pathogenic variant in DPF2, underlining the variability of the associated phenotype as well as the importance of considering inherited DPF2 variants during the variant filtering strategy of whole exome data.
Collapse
Affiliation(s)
| | | | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zurich, Switzerland
| | - Tanja Frey
- Institute of Medical Genetics, University of Zurich, Switzerland
| | - Angela Bahr
- Institute of Medical Genetics, University of Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Switzerland; Pediatric Hospital, University of Zurich, Switzerland
| | | |
Collapse
|
12
|
Singh AK, Allington G, Viviano S, McGee S, Kiziltug E, Ma S, Zhao S, Mekbib KY, Shohfi JP, Duy PQ, DeSpenza T, Furey CG, Reeves BC, Smith H, Sousa AMM, Cherskov A, Allocco A, Nelson-Williams C, Haider S, Rizvi SRA, Alper SL, Sestan N, Shimelis H, Walsh LK, Lifton RP, Moreno-De-Luca A, Jin SC, Kruszka P, Deniz E, Kahle KT. A novel SMARCC1 BAFopathy implicates neural progenitor epigenetic dysregulation in human hydrocephalus. Brain 2024; 147:1553-1570. [PMID: 38128548 PMCID: PMC10994532 DOI: 10.1093/brain/awad405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.
Collapse
Affiliation(s)
- Amrita K Singh
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Genetics, Yale University, New Haven, CT 06510, USA
| | - Stephen Viviano
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaojie Ma
- Department of Genetics, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Shujuan Zhao
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Departments of Genetics and Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John P Shohfi
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Adriana Cherskov
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - August Allocco
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | | | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
- UCL Centre for Advanced Research Computing, University College London, London, WC1H 9RN, UK
| | - Syed R A Rizvi
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
| | - Seth L Alper
- Division of Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nenad Sestan
- Department of Genetics, Yale University, New Haven, CT 06510, USA
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - Hermela Shimelis
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Lauren K Walsh
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, 17822, USA
| | - Sheng Chih Jin
- Departments of Genetics and Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | - Engin Deniz
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
13
|
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024; 143:607-624. [PMID: 36952035 PMCID: PMC10034257 DOI: 10.1007/s00439-023-02537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.
Collapse
Affiliation(s)
- Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. RESEARCH SQUARE 2024:rs.3.rs-3684653. [PMID: 38260618 PMCID: PMC10802704 DOI: 10.21203/rs.3.rs-3684653/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 255 genes that have been reported to play fundamental roles in fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The set of genes meeting these criteria provides potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G. Dorsey
- Department of Pain and Translational Symptom Sciences, University of Maryland School of Nursing, Baltimore, MD 21201
| | - Evelina Mocci
- Department of Pain and Translational Symptom Sciences, University of Maryland School of Nursing, Baltimore, MD 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Malcolm V. Lane
- Translational Toxicology/Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Bruce K. Krueger
- Departments of Physiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
15
|
Schmetz A, Lüdecke HJ, Surowy H, Sivalingam S, Bruel AL, Caumes R, Charles P, Chatron N, Chrzanowska K, Codina-Solà M, Colson C, Cuscó I, Denommé-Pichon AS, Edery P, Faivre L, Green A, Heide S, Hsieh TC, Hustinx A, Kleinendorst L, Knopp C, Kraft F, Krawitz PM, Lasa-Aranzasti A, Lesca G, López-González V, Maraval J, Mignot C, Neuhann T, Netzer C, Oehl-Jaschkowitz B, Petit F, Philippe C, Posmyk R, Putoux A, Reis A, Sánchez-Soler MJ, Suh J, Tkemaladze T, Tran Mau Them F, Travessa A, Trujillano L, Valenzuela I, van Haelst MM, Vasileiou G, Vincent-Delorme C, Walther M, Verde P, Bramswig NC, Wieczorek D. Delineation of the adult phenotype of Coffin-Siris syndrome in 35 individuals. Hum Genet 2024; 143:71-84. [PMID: 38117302 DOI: 10.1007/s00439-023-02622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.
Collapse
Affiliation(s)
- Ariane Schmetz
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Hermann-Josef Lüdecke
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sugirtahn Sivalingam
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Ange-Line Bruel
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | | | - Perrine Charles
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261-INSERM U1315, Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Marta Codina-Solà
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Cindy Colson
- CHU Lille, Clinique de Génétique, 59000, Lille, France
| | - Ivon Cuscó
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Anne-Sophie Denommé-Pichon
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Centre de Recherche en Neurosciences de Lyon, Equipe GENDEV, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurence Faivre
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD et Institut GIMI, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, and University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Solveig Heide
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alexander Hustinx
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lotte Kleinendorst
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Amaia Lasa-Aranzasti
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261-INSERM U1315, Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Vanesa López-González
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), IMIB-Arrixaca, El Palmar, Murcia, Spain
| | - Julien Maraval
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - Cyril Mignot
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Christian Netzer
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Christophe Philippe
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, 21000, Dijon, France
- Laboratory of Human Genetics, CHR Metz Thionville, Hôpital Mercy, Metz, France
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Centre de Recherche en Neurosciences de Lyon, Equipe GENDEV, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), 91054, Erlangen, Germany
| | - María José Sánchez-Soler
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), IMIB-Arrixaca, El Palmar, Murcia, Spain
| | - Julia Suh
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, 52074, Aachen, Germany
- Centre for Rare Diseases Aachen (ZSEA), 52076, Aachen, Germany
| | - Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Frédéric Tran Mau Them
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - André Travessa
- Medical Genetics Department, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Laura Trujillano
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Irene Valenzuela
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), 91054, Erlangen, Germany
| | | | - Mona Walther
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Pablo Verde
- Coordination Centre for Clinical Trials, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Nuria C Bramswig
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
- Center for Rare Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
16
|
Sullivan JA, Spillmann RC, Schoch K, Walley N, Alkelai A, Stong N, Shea PR, Petrovski S, Jobanputra V, McConkie-Rosell A, Shashi V. The best of both worlds: Blending cutting-edge research with clinical processes for a productive exome clinic. Clin Genet 2024; 105:62-71. [PMID: 37853563 DOI: 10.1111/cge.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Genomic medicine has been transformed by next-generation sequencing (NGS), inclusive of exome sequencing (ES) and genome sequencing (GS). Currently, ES is offered widely in clinical settings, with a less prevalent alternative model consisting of hybrid programs that incorporate research ES along with clinical patient workflows. We were among the earliest to implement a hybrid ES clinic, have provided diagnoses to 45% of probands, and have identified several novel candidate genes. Our program is enabled by a cost-effective investment by the health system and is unique in encompassing all the processes that have been variably included in other hybrid/clinical programs. These include careful patient selection, utilization of a phenotype-agnostic bioinformatics pipeline followed by manual curation of variants and phenotype integration by clinicians, close collaborations between the clinicians and the bioinformatician, pursuit of interesting variants, communication of results to patients in categories that are predicated upon the certainty of a diagnosis, and tracking changes in results over time and the underlying mechanisms for such changes. Due to its effectiveness, scalability to GS and its resource efficiency, specific elements of our paradigm can be incorporated into existing clinical settings, or the entire hybrid model can be implemented within health systems that have genomic medicine programs, to provide NGS in a scientifically rigorous, yet pragmatic setting.
Collapse
Affiliation(s)
- Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Kelly Schoch
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Nicole Walley
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Predictive Sciences, Bristol Myers Squibb, Summit, New Jersey, USA
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Genomics and Bioinformatics Analysis Resource, Columbia University, New York, New York, USA
| | - Slavè Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Allyn McConkie-Rosell
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
17
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA Polymerase II productive elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573688. [PMID: 38234780 PMCID: PMC10793463 DOI: 10.1101/2023.12.30.573688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Signal-dependent RNA Polymerase II (Pol2) productive elongation is an integral component of gene transcription, including those of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating Pol2 overcome nucleosomal barriers. Using RNAi, three degraders, and several small molecule inhibitors, we show that the mammalian SWI/SNF complex of neurons (neuronal BAF, or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc . The nBAF complex facilitates promoter-proximal Pol2 pausing, signal-dependent Pol2 recruitment (loading), and importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent Pol2. Mechanistically, Pol2 elongation is mediated by activity-induced nBAF assembly (especially, ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of Pol2 transcription and reveal mechanisms underlying activity-induced Pol2 elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
|
18
|
Bosch E, Popp B, Güse E, Skinner C, van der Sluijs PJ, Maystadt I, Pinto AM, Renieri A, Bruno LP, Granata S, Marcelis C, Baysal Ö, Hartwich D, Holthöfer L, Isidor B, Cogne B, Wieczorek D, Capra V, Scala M, De Marco P, Ognibene M, Jamra RA, Platzer K, Carter LB, Kuismin O, van Haeringen A, Maroofian R, Valenzuela I, Cuscó I, Martinez-Agosto JA, Rabani AM, Mefford HC, Pereira EM, Close C, Anyane-Yeboa K, Wagner M, Hannibal MC, Zacher P, Thiffault I, Beunders G, Umair M, Bhola PT, McGinnis E, Millichap J, van de Kamp JM, Prijoles EJ, Dobson A, Shillington A, Graham BH, Garcia EJ, Galindo MK, Ropers FG, Nibbeling EAR, Hubbard G, Karimov C, Goj G, Bend R, Rath J, Morrow MM, Millan F, Salpietro V, Torella A, Nigro V, Kurki M, Stevenson RE, Santen GWE, Zweier M, Campeau PM, Severino M, Reis A, Accogli A, Vasileiou G. Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals. Genet Med 2023; 25:100950. [PMID: 37551667 DOI: 10.1016/j.gim.2023.100950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
PURPOSE Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.
Collapse
Affiliation(s)
- Elisabeth Bosch
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Berlin Institute of Health at Charitè, Universitätsklinikum Berlin, Centre of Functional Genomics, Berlin, Germany; Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Esther Güse
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Isabelle Maystadt
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Medical Genetics Unit, University of Siena, Siena, Italy
| | - Lucia Pia Bruno
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Stefania Granata
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Medical Genetics Unit, University of Siena, Siena, Italy
| | - Carlo Marcelis
- Human Genetics department, Radboud university medical center, Nijmegen, The Netherlands
| | - Özlem Baysal
- Human Genetics department, Radboud university medical center, Nijmegen, The Netherlands
| | - Dewi Hartwich
- Institute of Human Genetics - University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Laura Holthöfer
- Institute of Human Genetics - University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Bertrand Isidor
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia De Marco
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marzia Ognibene
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Lauren B Carter
- Department of Pediatrics, Division of Medical Genetics, Levine Children's Hospital, Atrium Health, Charlotte, NC
| | - Outi Kuismin
- Department of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Ivon Cuscó
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Julian A Martinez-Agosto
- Departments of Human Genetics, Pediatrics, and Psychiatry, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Ahna M Rabani
- Department of Pediatrics & Institute for Precision Health, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN
| | - Elaine M Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Charlotte Close
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Kwame Anyane-Yeboa
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Mallory Wagner
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Health System, University of Michigan, Ann Arbor, MI
| | - Mark C Hannibal
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Health System, University of Michigan, Ann Arbor, MI
| | - Pia Zacher
- Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Isabelle Thiffault
- Department of Pediatrics and Pathology, Genomic Medicine Center, Children's Mercy Kansas City and Children's Mercy Research Institute, Kansas City, MO
| | - Gea Beunders
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, MNGHA, Riyadh, Saudi Arabia; Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Priya T Bhola
- Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| | - Erin McGinnis
- Division of Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - John Millichap
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jiddeke M van de Kamp
- Department of Human Genetics, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
| | | | | | - Amelle Shillington
- Department of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Evan-Jacob Garcia
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | | | - Fabienne G Ropers
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, The Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gail Hubbard
- Department of Medical Genetics, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Catherine Karimov
- Department of Medical Genetics, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Guido Goj
- Vestische Kinder- und Jugendklinik, Datteln, Germany
| | - Renee Bend
- PreventionGenetics, Part of Exact Sciences, Marshfield, WI
| | - Julie Rath
- PreventionGenetics, Part of Exact Sciences, Marshfield, WI
| | | | | | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus Zweier
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, Switzerland
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | | | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre; Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany.
| |
Collapse
|
19
|
Gourisankar S, Wenderski W, Paulo JA, Kim SH, Roepke K, Ellis C, Gygi SP, Crabtree GR. Synaptic Activity Causes Minute-scale Changes in BAF Complex Composition and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562244. [PMID: 37873481 PMCID: PMC10592824 DOI: 10.1101/2023.10.13.562244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Genes encoding subunits of the SWI/SNF or BAF ATP-dependent chromatin remodeling complex are among the most enriched for deleterious de novo mutations in intellectual disabilities and autism spectrum disorder, but the causative molecular pathways are not fully known 1,2 . Synaptic activity in neurons is critical for learning and memory and proper neural development 3 . Neural activity prompts calcium influx and transcription within minutes, facilitated in the nucleus by various transcription factors (TFs) and chromatin modifiers 4 . While BAF is required for activity-dependent developmental processes such as dendritic outgrowth 5-7 , the immediate molecular consequences of neural activity on BAF complexes and their functions are unknown. Here we mapped minute-scale biochemical consequences of neural activity, modeled by membrane depolarization of embryonic mouse primary cortical neurons, on BAF complexes. We used acute chemical perturbations of BAF ATPase activity and kinase signaling to define the activity-dependent effects on BAF complexes and activity-dependent BAF functions. Our studies found that BAF complexes change in subunit composition and are selectively phosphorylated within 10 minutes of depolarization. Increased levels of the core PBAF subunit Baf200/ Arid2 , uniquely containing an RFX-like DNA-binding domain, are concurrent with ATPase-dependent opening of chromatin at RFX/X-box motifs. Changes in BAF composition and phosphorylation lead to the regulation of chromatin accessibility for critical neurogenesis TFs. These biochemical effects are a convergent phenomenon downstream of multiple growth factor signaling pathways in mouse neurons and fibroblasts suggesting that BAF integrates signaling information from the membrane. In support of such a membrane-to-nucleus signaling cascade, we also identified a BAF-interacting kinase, Dclk2, whose inhibition attenuates BAF phosphorylation selectively. Our findings support a direct role of BAF complexes in responding to synaptic activity to regulate TF binding and transcription.
Collapse
|
20
|
van der Laan L, Rooney K, Haghshenas S, Silva A, McConkey H, Relator R, Levy MA, Valenzuela I, Trujillano L, Lasa-Aranzasti A, Campos B, Castells N, Verberne EA, Maas S, Alders M, Mannens MMAM, van Haelst MM, Sadikovic B, Henneman P. Functional Insight into and Refinement of the Genomic Boundaries of the JARID2-Neurodevelopmental Disorder Episignature. Int J Mol Sci 2023; 24:14240. [PMID: 37762546 PMCID: PMC10531903 DOI: 10.3390/ijms241814240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
JARID2 (Jumonji, AT-rich interactive domain 2) haploinsufficiency is associated with a clinically distinct neurodevelopmental syndrome. It is characterized by intellectual disability, developmental delay, autistic features, behavior abnormalities, cognitive impairment, hypotonia, and dysmorphic features. JARID2 acts as a transcriptional repressor protein that is involved in the regulation of histone methyltransferase complexes. JARID2 plays a role in the epigenetic machinery, and the associated syndrome has an identified DNA methylation episignature derived from sequence variants and intragenic deletions involving JARID2. For this study, our aim was to determine whether patients with larger deletions spanning beyond JARID2 present a similar DNA methylation episignature and to define the critical region involved in aberrant DNA methylation in 6p22-p24 microdeletions. We examined the DNA methylation profiles of peripheral blood from 56 control subjects, 13 patients with (likely) pathogenic JARID2 variants or patients carrying copy number variants, and three patients with JARID2 VUS variants. The analysis showed a distinct and strong differentiation between patients with (likely) pathogenic variants, both sequence and copy number, and controls. Using the identified episignature, we developed a binary model to classify patients with the JARID2-neurodevelopmental syndrome. DNA methylation analysis indicated that JARID2 is the driver gene for aberrant DNA methylation observed in 6p22-p24 microdeletions. In addition, we performed analysis of functional correlation of the JARID2 genome-wide methylation profile with the DNA methylation profiles of 56 additional neurodevelopmental disorders. To conclude, we refined the critical region for the presence of the JARID2 episignature in 6p22-p24 microdeletions and provide insight into the functional changes in the epigenome observed when regulation by JARID2 is lost.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Ananília Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Michael A. Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Irene Valenzuela
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Laura Trujillano
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Berta Campos
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Neus Castells
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Eline A. Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Saskia Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mieke M. van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
MacPherson RA, Shankar V, Anholt RRH, Mackay TFC. Genetic and genomic analyses of Drosophila melanogaster models of chromatin modification disorders. Genetics 2023; 224:iyad061. [PMID: 37036413 PMCID: PMC10411607 DOI: 10.1093/genetics/iyad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/10/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Switch/sucrose nonfermentable (SWI/SNF)-related intellectual disability disorders (SSRIDDs) and Cornelia de Lange syndrome are rare syndromic neurodevelopmental disorders with overlapping clinical phenotypes. SSRIDDs are associated with the BAF (Brahma-Related Gene-1 associated factor) complex, whereas CdLS is a disorder of chromatin modification associated with the cohesin complex. Here, we used RNA interference in Drosophila melanogaster to reduce the expression of six genes (brm, osa, Snr1, SMC1, SMC3, vtd) orthologous to human genes associated with SSRIDDs and CdLS. These fly models exhibit changes in sleep, activity, startle behavior (a proxy for sensorimotor integration), and brain morphology. Whole genome RNA sequencing identified 9,657 differentially expressed genes (FDR < 0.05), 156 of which are differentially expressed in both sexes in SSRIDD- and CdLS-specific analyses, including Bap60, which is orthologous to SMARCD1, an SSRIDD-associated BAF component. k-means clustering reveals genes co-regulated within and across SSRIDD and CdLS fly models. RNAi-mediated reduction of expression of six genes co-regulated with focal genes brm, osa, and/or Snr1 recapitulated changes in the behavior of the focal genes. Based on the assumption that fundamental biological processes are evolutionarily conserved, Drosophila models can be used to understand underlying molecular effects of variants in chromatin-modification pathways and may aid in the discovery of drugs that ameliorate deleterious phenotypic effects.
Collapse
Affiliation(s)
- Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
22
|
Valencia AM, Sankar A, van der Sluijs PJ, Satterstrom FK, Fu J, Talkowski ME, Vergano SAS, Santen GWE, Kadoch C. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders. Nat Genet 2023; 55:1400-1412. [PMID: 37500730 PMCID: PMC10412456 DOI: 10.1038/s41588-023-01451-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
DNA sequencing-based studies of neurodevelopmental disorders (NDDs) have identified a wide range of genetic determinants. However, a comprehensive analysis of these data, in aggregate, has not to date been performed. Here, we find that genes encoding the mammalian SWI/SNF (mSWI/SNF or BAF) family of ATP-dependent chromatin remodeling protein complexes harbor the greatest number of de novo missense and protein-truncating variants among nuclear protein complexes. Non-truncating NDD-associated protein variants predominantly disrupt the cBAF subcomplex and cluster in four key structural regions associated with high disease severity, including mSWI/SNF-nucleosome interfaces, the ATPase-core ARID-armadillo repeat (ARM) module insertion site, the Arp module and DNA-binding domains. Although over 70% of the residues perturbed in NDDs overlap with those mutated in cancer, ~60% of amino acid changes are NDD-specific. These findings provide a foundation to functionally group variants and link complex aberrancies to phenotypic severity, serving as a resource for the chromatin, clinical genetics and neurodevelopment communities.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Chemical Biology Program, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Akshay Sankar
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - F Kyle Satterstrom
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Jack Fu
- Massachusetts General Hospital, Boston, MA, USA
| | - Michael E Talkowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Samantha A Schrier Vergano
- Children's Hospital of the King's Daughters, Norfolk, Virginia, USA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
23
|
Pande S, Mascarenhas S, Venkatraman A, Bhat V, Narayanan DL, Siddiqui S, Bielas S, Girisha KM, Shukla A. Further validation of craniosynostosis as a part of phenotypic spectrum of BCL11B-related BAFopathy. Am J Med Genet A 2023; 191:2175-2180. [PMID: 37337996 PMCID: PMC10448182 DOI: 10.1002/ajmg.a.63330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Heterozygous disease-causing variants in BCL11B are the basis of a rare neurodevelopmental syndrome with craniofacial and immunological involvement. Isolated craniosynostosis, without systemic or immunological findings, has been reported in one of the 17 individuals reported with this disorder till date. We report three additional individuals harboring de novo heterozygous frameshift variants, all lying in the exon 4 of BCL11B. All three individuals presented with the common findings of this disorder i.e. developmental delay, recurrent infections with immunologic abnormalities and facial dysmorphism. Notably, craniosynostosis of variable degree was seen in all three individuals. We, thus add to the evolving genotypes and phenotypes of BCL11B-related BAFopathy and also review the clinical, genomic spectrum along with the underlying disease mechanisms of this disorder.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Aishwarya Venkatraman
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Shahyan Siddiqui
- Department of Neuroimaging and Interventional Radiology, STAR Institute of Neurosciences, STAR hospitals, Hyderabad, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| |
Collapse
|
24
|
Ke NY, Zhao TY, Wang WR, Qian YT, Liu C. Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders. World J Stem Cells 2023; 15:235-247. [PMID: 37181007 PMCID: PMC10173807 DOI: 10.4252/wjsc.v15.i4.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Different fates of neural stem/progenitor cells (NSPCs) and their progeny are determined by the gene regulatory network, where a chromatin-remodeling complex affects synergy with other regulators. Here, we review recent research progress indicating that the BRG1/BRM-associated factor (BAF) complex plays an important role in NSPCs during neural development and neural developmental disorders. Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation, which can also lead to various diseases in humans. We discussed BAF complex subunits and their main characteristics in NSPCs. With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs, we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs. Considering recent progress in these research areas, we suggest that three approaches should be used in investigations in the near future. Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders. More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.
Collapse
Affiliation(s)
- Nai-Yu Ke
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Tian-Yi Zhao
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Wan-Rong Wang
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yu-Tong Qian
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Chao Liu
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China.
| |
Collapse
|
25
|
Wang L, Tang J. SWI/SNF complexes and cancers. Gene 2023; 870:147420. [PMID: 37031881 DOI: 10.1016/j.gene.2023.147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Epigenetics refers to the study of genetic changes that can affect gene expression without altering the underlying DNA sequence, including DNA methylation, histone modification, chromatin remodelling, X chromosome inactivation and non-coding RNA regulation. Of these, DNA methylation, histone modification and chromatin remodelling constitute the three classical modes of epigenetic regulation. These three mechanisms alter gene transcription by adjusting chromatin accessibility, thereby affecting cell and tissue phenotypes in the absence of DNA sequence changes. In the presence of ATP hydrolases, chromatin remodelling alters the structure of chromatin and thus changes the transcription level of DNA-guided RNA. To date, four types of ATP-dependent chromatin remodelling complexes have been identified in humans, namely SWI/SNF, ISWI, INO80 and NURD/MI2/CHD. SWI/SNF mutations are prevalent in a wide variety of cancerous tissues and cancer-derived cell lines as discovered by next-generation sequencing technologies.. SWI/SNF can bind to nucleosomes and use the energy of ATP to disrupt DNA and histone interactions, sliding or ejecting histones, altering nucleosome structure, and changing transcriptional and regulatory mechanisms. Furthermore, mutations in the SWI/SNF complex have been observed in approximately 20% of all cancers. Together, these findings suggest that mutations targeting the SWI/SNF complex may have a positive impact on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Liyuan Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Oncology and Hematology, Jinan 250000, Shandong Province, China
| | - Jinglong Tang
- Adicon Medical Laboratory Center, Molecular Genetic Diagnosis Center, Pathological Diagnosis Center, Jinan 250014, Shandong Province, China.
| |
Collapse
|
26
|
MacPherson RA, Shankar V, Anholt RRH, Mackay TFC. Genetic and Genomic Analyses of Drosophila melanogaster Models of Chromatin Modification Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534923. [PMID: 37034595 PMCID: PMC10081333 DOI: 10.1101/2023.03.30.534923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Switch/Sucrose Non-Fermentable (SWI/SNF)-related intellectual disability disorders (SSRIDDs) and Cornelia de Lange syndrome are rare syndromic neurodevelopmental disorders with overlapping clinical phenotypes. SSRIDDs are associated with the BAF (Brahma-Related Gene-1 Associated Factor) complex, whereas CdLS is a disorder of chromatin modification associated with the cohesin complex. Here, we used RNA interference in Drosophila melanogaster to reduce expression of six genes (brm, osa, Snr1, SMC1, SMC3, vtd) orthologous to human genes associated with SSRIDDs and CdLS. These fly models exhibit changes in sleep, activity, startle behavior (a proxy for sensorimotor integration) and brain morphology. Whole genome RNA sequencing identified 9,657 differentially expressed genes (FDR < 0.05), 156 of which are differentially expressed in both sexes in SSRIDD- and CdLS-specific analyses, including Bap60, which is orthologous to SMARCD1, a SSRIDD-associated BAF component, k-means clustering reveals genes co-regulated within and across SSRIDD and CdLS fly models. RNAi-mediated reduction of expression of six genes co-regulated with focal genes brm, osa, and/or Snr1 recapitulated changes in behavior of the focal genes. Based on the assumption that fundamental biological processes are evolutionarily conserved, Drosophila models can be used to understand underlying molecular effects of variants in chromatin-modification pathways and may aid in discovery of drugs that ameliorate deleterious phenotypic effects.
Collapse
Affiliation(s)
- Rebecca A. MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
27
|
Nussinov R, Yavuz BR, Arici MK, Demirel HC, Zhang M, Liu Y, Tsai CJ, Jang H, Tuncbag N. Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR, and PAK1-regulated MAPK. Biophys Rev 2023; 15:163-181. [PMID: 37124926 PMCID: PMC10133437 DOI: 10.1007/s12551-023-01054-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dysregulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Habibe Cansu Demirel
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
- School of Medicine, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
28
|
Singh AK, Viviano S, Allington G, McGee S, Kiziltug E, Mekbib KY, Shohfi JP, Duy PQ, DeSpenza T, Furey CG, Reeves BC, Smith H, Ma S, Sousa AMM, Cherskov A, Allocco A, Nelson-Williams C, Haider S, Rizvi SRA, Alper SL, Sestan N, Shimelis H, Walsh LK, Lifton RP, Moreno-De-Luca A, Jin SC, Kruszka P, Deniz E, Kahle KT. A novel SMARCC1 -mutant BAFopathy implicates epigenetic dysregulation of neural progenitors in hydrocephalus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.19.23287455. [PMID: 36993720 PMCID: PMC10055611 DOI: 10.1101/2023.03.19.23287455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Importance Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery. A few familial forms of congenital hydrocephalus (CH) have been identified, but the cause of most sporadic cases of CH remains elusive. Recent studies have implicated SMARCC1 , a component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, as a candidate CH gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, CH-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo . Objectives The aims of this study are to (i) assess the extent to which rare, damaging de novo mutations (DNMs) in SMARCC1 are associated with cerebral ventriculomegaly; (ii) describe the clinical and radiographic phenotypes of SMARCC1 -mutated patients; and (iii) assess the pathogenicity and mechanisms of CH-associated SMARCC1 mutations in vivo . Design setting and participants A genetic association study was conducted using whole-exome sequencing from a cohort consisting of 2,697 ventriculomegalic trios, including patients with neurosurgically-treated CH, totaling 8,091 exomes collected over 5 years (2016-2021). Data were analyzed in 2023. A comparison control cohort consisted of 1,798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents sourced from the Simons simplex consortium. Main outcomes and measures Gene variants were identified and filtered using stringent, validated criteria. Enrichment tests assessed gene-level variant burden. In silico biophysical modeling estimated the likelihood and extent of the variant impact on protein structure. The effect of a CH-associated SMARCC1 mutation on the human fetal brain transcriptome was assessed by analyzing RNA-sequencing data. Smarcc1 knockdowns and a patient-specific Smarcc1 variant were tested in Xenopus and studied using optical coherence tomography imaging, in situ hybridization, and immunofluorescence microscopy. Results SMARCC1 surpassed genome-wide significance thresholds in DNM enrichment tests. Six rare protein-altering DNMs, including four loss-of-function mutations and one recurrent canonical splice site mutation (c.1571+1G>A) were detected in unrelated patients. DNMs localized to the highly conserved DNA-interacting SWIRM, Myb-DNA binding, Glu-rich, and Chromo domains of SMARCC1 . Patients exhibited developmental delay (DD), aqueductal stenosis, and other structural brain and heart defects. G0 and G1 Smarcc1 Xenopus mutants exhibited aqueductal stenosis and cardiac defects and were rescued by human wild-type SMARCC1 but not a patient-specific SMARCC1 mutant. Hydrocephalic SMARCC1 -mutant human fetal brain and Smarcc1 -mutant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2 . Conclusions SMARCC1 is a bona fide CH risk gene. DNMs in SMARCC1 cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)", characterized by cerebral ventriculomegaly, aqueductal stenosis, DD, and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodeling complex for human brain morphogenesis and provide evidence for a "neural stem cell" paradigm of human CH pathogenesis. These results highlight the utility of trio-based WES for identifying risk genes for congenital structural brain disorders and suggest WES may be a valuable adjunct in the clinical management of CH patients. KEY POINTS Question: What is the role of SMARCC1 , a core component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, in brain morphogenesis and congenital hydrocephalus (CH)? Findings: SMARCC1 harbored an exome-wide significant burden of rare, protein-damaging de novo mutations (DNMs) (p = 5.83 × 10 -9 ) in the largest ascertained cohort to date of patients with cerebral ventriculomegaly, including treated CH (2,697 parent-proband trios). SMARCC1 contained four loss-of-function DNMs and two identical canonical splice site DNMs in a total of six unrelated patients. Patients exhibited developmental delay, aqueductal stenosis, and other structural brain and cardiac defects. Xenopus Smarcc1 mutants recapitulated core human phenotypes and were rescued by the expression of human wild-type but not patient-mutant SMARCC1 . Hydrocephalic SMARCC1 -mutant human brain and Smarcc1 -mutant Xenopus brain exhibited similar alterationsin the expression of key transcription factors that regulate neural progenitor cell proliferation. Meaning: SMARCC1 is essential for human brain morphogenesis and is a bona fide CH risk gene. SMARCC1 mutations cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)". These data implicate epigenetic dysregulation of fetal neural progenitors in the pathogenesis of hydrocephalus, with diagnostic and prognostic implications for patients and caregivers.
Collapse
|
29
|
Chang YT, Hong SY, Lin WD, Lin CH, Lin SS, Tsai FJ, Chou IC. Genetic Testing in Children with Developmental and Epileptic Encephalopathies: A Review of Advances in Epilepsy Genomics. CHILDREN 2023; 10:children10030556. [PMID: 36980114 PMCID: PMC10047509 DOI: 10.3390/children10030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Advances in disease-related gene discovery have led to tremendous innovations in the field of epilepsy genetics. Identification of genetic mutations that cause epileptic encephalopathies has opened new avenues for the development of targeted therapies. Clinical testing using extensive gene panels, exomes, and genomes is currently accessible and has resulted in higher rates of diagnosis and better comprehension of the disease mechanisms underlying the condition. Children with developmental disabilities have a higher risk of developing epilepsy. As our understanding of the mechanisms underlying encephalopathies and epilepsies improves, there may be greater potential to develop innovative therapies tailored to an individual’s genotype. This article provides an overview of the significant progress in epilepsy genomics in recent years, with a focus on developmental and epileptic encephalopathies in children. The aim of this review is to enhance comprehension of the clinical utilization of genetic testing in this particular patient population. The development of effective and precise therapeutic strategies for epileptic encephalopathies may be facilitated by a comprehensive understanding of their molecular pathogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
| | - Wei-De Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medial University, Taichung 40447, Taiwan
| | - Sheng-Shing Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Division of Genetics and Metabolism, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 40447, Taiwan
| | - I-Ching Chou
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-4-22052121
| |
Collapse
|
30
|
Păun O, Tan YX, Patel H, Strohbuecker S, Ghanate A, Cobolli-Gigli C, Llorian Sopena M, Gerontogianni L, Goldstone R, Ang SL, Guillemot F, Dias C. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes Dev 2023; 37:218-242. [PMID: 36931659 PMCID: PMC10111863 DOI: 10.1101/gad.350269.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.
Collapse
Affiliation(s)
- Oana Păun
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Yu Xuan Tan
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Avinash Ghanate
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Clementina Cobolli-Gigli
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Lina Gerontogianni
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Siew-Lan Ang
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Cristina Dias
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
- Medical and Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
31
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
32
|
Chohra I, Chung K, Giri S, Malgrange B. ATP-Dependent Chromatin Remodellers in Inner Ear Development. Cells 2023; 12:cells12040532. [PMID: 36831199 PMCID: PMC9954591 DOI: 10.3390/cells12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
During transcription, DNA replication and repair, chromatin structure is constantly modified to reveal specific genetic regions and allow access to DNA-interacting enzymes. ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to modify chromatin architecture by repositioning and rearranging nucleosomes. These complexes are defined by a conserved SNF2-like, catalytic ATPase subunit and are divided into four families: CHD, SWI/SNF, ISWI and INO80. ATP-dependent chromatin remodellers are crucial in regulating development and stem cell biology in numerous organs, including the inner ear. In addition, mutations in genes coding for proteins that are part of chromatin remodellers have been implicated in numerous cases of neurosensory deafness. In this review, we describe the composition, structure and functional activity of these complexes and discuss how they contribute to hearing and neurosensory deafness.
Collapse
|
33
|
Li C, Wang T, Gu J, Qi S, Li J, Chen L, Wu H, Shi L, Song C, Li H, Zhu L, Lu Y, Zhou Q. SMARCC2 mediates the regulation of DKK1 by the transcription factor EGR1 through chromatin remodeling to reduce the proliferative capacity of glioblastoma. Cell Death Dis 2022; 13:990. [PMID: 36418306 PMCID: PMC9684443 DOI: 10.1038/s41419-022-05439-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Switch/sucrose-nonfermenting (SWI/SNF) complexes play a key role in chromatin remodeling. Recent studies have found that SMARCC2, as the core subunit of the fundamental module of the complex, plays a key role in its early assembly. In this study, we found a unique function of SMARCC2 in inhibiting the progression of glioblastoma by targeting the DKK1 signaling axis. Low expression of SMARCC2 is found in malignant glioblastoma (GBM) compared with low-grade gliomas. SMARCC2 knockout promoted the proliferation of glioblastoma cells, while its overexpression showed the opposite effect. Mechanistically, SMARCC2 negatively regulates transcription by dynamically regulating the chromatin structure and closing the promoter region of the target gene DKK1, which can be bound by the transcription factor EGR1. DKK1 knockdown significantly reduced the proliferation of glioblastoma cell lines by inhibiting the PI3K-AKT pathway. We also studied the functions of the SWIRM and SANT domains of SMARCC2 and found that the SWIRM domain plays a more important role in the complete chromatin remodeling function of SMARCC2. In addition, in vivo studies confirmed that overexpression of SMARCC2 could significantly inhibit the size of intracranial gliomas in situ in nude mice. Overall, this study shows that SMARCC2, as a tumor suppressor, inhibits the proliferation of glioblastoma by targeting the transcription of the oncogene DKK1 through chromatin remodeling, indicating that SMARCC2 is a potentially attractive therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Chiyang Li
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Tong Wang
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Junwei Gu
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China ,grid.284723.80000 0000 8877 7471Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China ,Nanfang Glioma Center, Guangzhou, China
| | - Junjie Li
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Lei Chen
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Hang Wu
- grid.284723.80000 0000 8877 7471Department of Hematology, Nanfang Hospital, Southern Medical University, 510000 Guangzhou, Guangdong P.R. China
| | - Linyong Shi
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Chong Song
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Hong Li
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Liwen Zhu
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Yuntao Lu
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China ,grid.284723.80000 0000 8877 7471Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China ,Nanfang Glioma Center, Guangzhou, China
| | - Qiang Zhou
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China ,grid.284723.80000 0000 8877 7471Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China ,Nanfang Glioma Center, Guangzhou, China
| |
Collapse
|
34
|
Bilha SC, Teodoriu L, Velicescu C, Caba L. Pituitary hypoplasia and growth hormone deficiency in a patient with Coffin-Siris syndrome and severe short stature: case report and literature review. Arch Clin Cases 2022; 9:121-125. [PMID: 36176497 PMCID: PMC9512126 DOI: 10.22551/2022.36.0903.10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coffin-Siris syndrome (CSS) is a rare genetic disorder caused by the haploinsufficiency of one of the various genes that are part of the Brahma/BRG1-associated factor (BAF) complex. The BAF complex is one of the chromatin remodeling complexes, involved in embryonic and neural development, and various gene mutations are associated with cognitive impairment. CSS has a highly variable genotype and phenotype expression, thus lacking standardized criteria for diagnosis. It is generally accepted to associate 5th digit/nail hypoplasia, intellectual disability (ID)/developmental delay and specific coarse facial features. CSS patients usually display miscellaneous cardiac, genitourinary and central nervous system (CNS) anomalies. Many patients also associate intrauterine growth restriction, failure to thrive and short stature, with several cases demonstrating growth hormone deficiency (GHD). We report the case of a 4-year-old girl with severe short stature (-3.2 standard deviations) due to pituitary hypoplasia and GHD that associated hypoplastic distal phalanx of the 5th digit in the hands and feet, severe ID, coarse facial features (bushy eyebrows, bulbous nose, flat nasal bridge, dental anomalies, thick lips, dental anomalies, bilateral epicanthal fold) and CNS anomalies (agenesis of the corpus callosum and bilateral hippocampal atrophy), thus meeting clinical criteria for the diagnosis of CSS. Karyotype was 46,XX. The patient was started on GH replacement therapy, with favorable outcomes. Current practical knowledge regarding CSS diagnosis and management from the endocrinological point of view is also reviewed.
Collapse
Affiliation(s)
- Stefana Catalina Bilha
- Endocrinology Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania
| | - Laura Teodoriu
- Endocrinology Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania
| | - Cristian Velicescu
- Surgery Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania.,
Corresponding author: Cristian Velicescu, Surgery Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii str. Iasi 700115, Romania.
| | - Lavinia Caba
- Department of Medical Genetics, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania
| |
Collapse
|
35
|
Jin Y, Gao X, Lu M, Chen G, Yang X, Ren N, Song Y, Hou C, Li J, Liu Q, Gao J. Loss of BAF (mSWI/SNF) chromatin-remodeling ATPase Brg1 causes multiple malformations of cortical development in mice. Hum Mol Genet 2022; 31:3504-3520. [PMID: 35666215 DOI: 10.1093/hmg/ddac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in genes encoding subunits of the BAF (BRG1/BRM-associated factor) complex cause various neurodevelopmental diseases. However, the underlying pathophysiology remains largely unknown. Here, we analyzed the function of Brg1, a core ATPase of BAF complexes, in the developing cerebral cortex. Loss of Brg1 causes several morphological defects resembling human malformations of cortical development (MCDs), including microcephaly, cortical dysplasia, cobblestone lissencephaly, and periventricular heterotopia. We demonstrated that neural progenitor cell (NPC) renewal, neuronal differentiation, neuronal migration, apoptotic cell death, pial basement membrane, and apical junctional complexes, which are associated with MCD formation, were impaired after Brg1 deletion. Furthermore, transcriptome profiling indicated that a large number of genes were deregulated. The deregulated genes were closely related to MCD formation, and most of these genes were bound by Brg1. Cumulatively, our study indicates an essential role of Brg1 in cortical development and provides a new possible pathogenesis underlying Brg1-based BAF complex-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yecheng Jin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaotong Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Miaoqing Lu
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Ge Chen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Xiaofan Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Naixia Ren
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Yuning Song
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Congzhe Hou
- Department of Reproductive medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiangang Gao
- School of Laboratory Animal Science, Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
36
|
Nuclear RIPK1 promotes chromatin remodeling to mediate inflammatory response. Cell Res 2022; 32:621-637. [DOI: 10.1038/s41422-022-00673-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
|
37
|
Yi S, Li M, Yang Q, Qin Z, Yi S, Xu J, Chen J, Wei H, Jiang Y, Wei R, Zhang Q, Yang C, Chen B, Luo J. De Novo SMARCC2 Variant in a Chinese Woman with Coffin-Siris Syndrome 8: a Case Report with Mild Intellectual Disability and Endocrinopathy. J Mol Neurosci 2022; 72:1293-1299. [DOI: 10.1007/s12031-022-02010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
|
38
|
Liu M, Wan L, Wang C, Yuan H, Peng Y, Wan N, Tang Z, Yuan X, Chen D, Long Z, Shi Y, Qiu R, Tang B, Jiang H, Chen Z. Coffin-Siris syndrome in two chinese patients with novel pathogenic variants of ARID1A and SMARCA4. Genes Genomics 2022; 44:1061-1070. [PMID: 35353340 DOI: 10.1007/s13258-022-01231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Coffin-Siris syndrome (CSS) is a rare congenital syndrome characterized by developmental delay, intellectual disability, microcephaly, coarse face and hypoplastic nail of the fifth digits. Heterozygous variants of different BAF complex-related genes were reported to cause CSS, including ARID1A and SMARCA4. So far, no CSS patients with ARID1A and SMARCA4 variants have been reported in China. OBJECTIVE The aim of the current study was to identify the causes of two Chinese patients with congenital growth deficiency and intellectual disability. METHODS Genomic DNA was extracted from the peripheral venous blood of patients and their family members. Genetic analysis included whole-exome and Sanger sequencing. Pathogenicity assessments of variants were performed according to the guideline of the American College of Medical Genetics and Genomics. The phenotypic characteristics of all CSS subtypes were summarized through literature review. RESULTS We identified two Chinese CSS patients carrying novel variants of ARID1A and SMARCA4 respectively. The cases presented most core symptoms of CSS except for the digits involvement. Additionally, we performed a review of the phenotypic characteristics in CSS, highlighting phenotypic varieties and related potential causes. CONCLUSIONS We reported the first Chinese CSS2 and CSS4 patients with novel variants of ARID1A and SMARCA4. Our study expanded the genetic and phenotypic spectrum of CSS, providing a comprehensive overview of genotype-phenotype correlations of CSS.
Collapse
Affiliation(s)
- Mingjie Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyu Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Na Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhichao Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinrong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China
- Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China
- Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
| |
Collapse
|
39
|
Sun H, Zhang S, Wang J, Zhou X, Zhang H, Yang H, He Y. Expanding the phenotype associated with SMARCC2 variants: a fetus with tetralogy of Fallot. BMC Med Genomics 2022; 15:40. [PMID: 35241061 PMCID: PMC8895577 DOI: 10.1186/s12920-022-01185-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coffin-Siris syndrome-8 (CSS8) is a rare autosomal dominant disorder caused by variants in SMARCC2, a core subunit of the chromatin-remodeling complex BRG1-associated factor (BAF). The clinical characteristics of this disorder have not been entirely determined because of the rarity of clinical reports. The BAF complex plays a crucial role in embryogenesis and cardiac development, and pathogenic variants in genes encoding the components of the BAF complex have been associated with congenital heart disease (CHD). However, variants in SMARCC2 have not been reported in patients with CHD. CASE PRESENTATION A 28-year-old primigravida was referred at 24 weeks gestation for prenatal echocardiography. The echocardiographic findings were consistent with a prenatal ultrasound diagnosis of tetralogy of Fallot (TOF). After detailed counseling, the couple decided to terminate the pregnancy and undergo genetic testing. A trio (fetus and the parents) whole-exome sequencing (WES) and copy number variation sequencing (CNV-seq) were performed. CNV-seq identified no chromosomal abnormalities. WES analysis revealed a pathogenic, de novo heterozygous frameshift variant in SMARCC2 (NM_003075.5: c.3561del, p.Leu1188fs). The genetic diagnosis of CSS8 was considered given the identification of the SMARCC2 pathogenic variant. CONCLUSIONS We report the first prenatal case with the SMARCC2 variant. The presence of CHD further broadens the phenotypic spectrum of SMARCC2-related disease.
Collapse
Affiliation(s)
- Hairui Sun
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Siyao Zhang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jingyi Wang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiaoxue Zhou
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Huixia Yang
- Peking University First Hospital, Beijing, China
| | - Yihua He
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
40
|
Sokpor G, Brand-Saberi B, Nguyen HP, Tuoc T. Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Front Neurosci 2022; 16:824802. [PMID: 35281509 PMCID: PMC8904418 DOI: 10.3389/fnins.2022.824802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical development is dependent on key processes that can influence apical progenitor cell division and progeny. Pivotal among such critical cellular processes is the intricate mechanism of cell delamination. This indispensable cell detachment process mainly entails the loss of apical anchorage, and subsequent migration of the mitotic derivatives of the highly polarized apical cortical progenitors. Such apical progenitor derivatives are responsible for the majority of cortical neurogenesis. Many factors, including transcriptional and epigenetic/chromatin regulators, are known to tightly control cell attachment and delamination tendency in the cortical neurepithelium. Activity of these molecular regulators principally coordinate morphogenetic cues to engender remodeling or disassembly of tethering cellular components and external cell adhesion molecules leading to exit of differentiating cells in the ventricular zone. Improper cell delamination is known to frequently impair progenitor cell fate commitment and neuronal migration, which can cause aberrant cortical cell number and organization known to be detrimental to the structure and function of the cerebral cortex. Indeed, some neurodevelopmental abnormalities, including Heterotopia, Schizophrenia, Hydrocephalus, Microcephaly, and Chudley-McCullough syndrome have been associated with cell attachment dysregulation in the developing mammalian cortex. This review sheds light on the concept of cell delamination, mechanistic (transcriptional and epigenetic regulation) nuances involved, and its importance for corticogenesis. Various neurodevelopmental disorders with defective (too much or too little) cell delamination as a notable etiological underpinning are also discussed.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Godwin Sokpor,
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Tran Tuoc,
| |
Collapse
|
41
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
42
|
Chen CA, Lattier J, Zhu W, Rosenfeld J, Wang L, Scott TM, Du H, Patel V, Dang A, Magoulas P, Streff H, Sebastian J, Svihovec S, Curry K, Delgado MR, Hanchard N, Lalani S, Marom R, Madan-Khetarpal S, Saenz M, Dai H, Meng L, Xia F, Bi W, Liu P, Posey JE, Scott DA, Lupski JR, Eng CM, Xiao R, Yuan B. Retrospective analysis of a clinical exome sequencing cohort reveals the mutational spectrum and identifies candidate disease-associated loci for BAFopathies. Genet Med 2022; 24:364-373. [PMID: 34906496 PMCID: PMC8957292 DOI: 10.1016/j.gim.2021.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | | | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lei Wang
- Baylor Genetics Laboratory, Houston, TX
| | - Tiana M. Scott
- Texas Children’s Hospital, Houston, TX, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Anh Dang
- Baylor Genetics Laboratory, Houston, TX
| | - Pilar Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | | | - Shayna Svihovec
- University of Colorado Anschutz Medical Campus; Children’s Hospital Colorado, Aurora, CO
| | - Kathryn Curry
- Genetics and Metabolic Department, St. Luke’s Health System
| | - Mauricio R. Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA, Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neil Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | | | - Margarita Saenz
- University of Colorado Anschutz Medical Campus; Children’s Hospital Colorado, Aurora, CO
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Christine M. Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX, Current address: Department of Laboratories, Seattle Children’s Hospital, Seattle, WA
| |
Collapse
|
43
|
Li D, Downes H, Hou C, Hakonarson H, Zackai EH, Schrier Vergano SA, Bhoj EJ. Further supporting SMARCC2-related neurodevelopmental disorder through exome analysis and reanalysis in two patients. Am J Med Genet A 2021; 188:878-882. [PMID: 34881817 DOI: 10.1002/ajmg.a.62597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 11/20/2021] [Indexed: 11/12/2022]
Abstract
BAFopathies are a heterogenous group of neurodevelopmental disorders caused by mutations in genes encoding subunits of the BAF complex, and they exhibit a broad clinical phenotypic spectrum. Pathogenic heterozygous variants in SMARCC2 have been implicated in Coffin-Siris syndrome 8 (MIM 618362) with variable neurodevelopmental presentations. We report here two relatively severely affected patients with two different SMARCC2 variants: one has de novo pathogenic variant, c.1824_1826del, p.(Leu609del), in a suspected hotspot region through reanalysis of previously negative clinical exome data, and the other has a likely pathogenic loss-of-function variant, c.1094_1097delAGAA, p.(Lys365Thrfs*12) through exome analysis in an adopted subject. Regardless of variant type, both patients have severe developmental delays, severe speech delay, short stature, hypotonia, seizures, and craniofacial dysmorphisms, blurring previously speculated genotype-phenotype correlation on missense and loss-of-function variants. This report extends our understanding of the genotypic and phenotypic spectrums of the SMARCC2-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Helen Downes
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cuiping Hou
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elaine H Zackai
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia, USA.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Lu G, Peng Q, Wu L, Zhang J, Ma L. Identification of de novo mutations for ARID1B haploinsufficiency associated with Coffin-Siris syndrome 1 in three Chinese families via array-CGH and whole exome sequencing. BMC Med Genomics 2021; 14:270. [PMID: 34775996 PMCID: PMC8591803 DOI: 10.1186/s12920-021-01119-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background Coffin–Siris syndrome (CSS) is a multiple malformation syndrome characterized by intellectual disability associated with coarse facial features, hirsutism, sparse scalp hair, and hypoplastic or absent fifth fingernails or toenails. CSS represents a small group of intellectual disability, and could be caused by at least twelve genes. The genetic background is quite heterogenous, making it difficult for clinicians and genetic consultors to pinpoint the exact disease types. Methods Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied for three trios affected with intellectual disability and clinical features similar with those of Coffin–Siris syndrome. Sanger sequencing was used to verify the detected single-nucleotide variants (SNVs). Results All of the three cases were female with normal karyotypes of 46, XX, born of healthy, non-consanguineous parents. A 6q25 microdeletion (arr[hg19]6q25.3(155,966,487–158,803,979) × 1) (2.84 Mb) (case 1) and two loss-of-function (LoF) mutations of ARID1B [c.2332 + 1G > A in case 2 and c.4741C > T (p.Q1581X) in case 3] were identified. All of the three pathogenic abnormalities were de novo, not inherited from their parents. After comparison of publicly available microdeletions containing ARID1B, four types of microdeletions leading to insufficient production of ARID1B were identified, namely deletions covering the whole region of ARID1B, deletions covering the promoter region, deletions covering the termination region or deletions covering enhancer regions. Conclusion Here we identified de novo ARID1B mutations in three Chinese trios. Four types of microdeletions covering ARID1B were identified. This study broadens current knowledge of ARID1B mutations for clinicians and genetic consultors.
Collapse
Affiliation(s)
- Guanting Lu
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China.
| | - Qiongling Peng
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, 56 Yulyu Road, Baoan District, Shenzhen, 518000, China
| | - Lianying Wu
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China
| | - Jian Zhang
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China
| | - Liya Ma
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, 56 Yulyu Road, Baoan District, Shenzhen, 518000, China.
| |
Collapse
|
45
|
Kumar S. SWI/SNF (BAF) complexes: From framework to a functional role in endothelial mechanotransduction. CURRENT TOPICS IN MEMBRANES 2021; 87:171-198. [PMID: 34696885 DOI: 10.1016/bs.ctm.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Endothelial cells (ECs) are constantly subjected to an array of mechanical cues, especially shear stress, due to their luminal placement in the blood vessels. Blood flow can regulate various aspects of endothelial biology and pathophysiology by regulating the endothelial processes at the transcriptomic, proteomic, miRNomic, metabolomics, and epigenomic levels. ECs sense, respond, and adapt to altered blood flow patterns and shear profiles by specialized mechanisms of mechanosensing and mechanotransduction, resulting in qualitative and quantitative differences in their gene expression. Chromatin-regulatory proteins can regulate transcriptional activation by modifying the organization of nucleosomes at promoters, enhancers, silencers, insulators, and locus control regions. Recent research efforts have illustrated that SWI/SNF (SWItch/Sucrose Non-Fermentable) or BRG1/BRM-associated factor (BAF) complex regulates DNA accessibility and chromatin structure. Since the discovery, the gene-regulatory mechanisms of the BAF complex associated with chromatin remodeling have been intensively studied to investigate its role in diverse disease phenotypes. Thus far, it is evident that (1) the SWI/SNF complex broadly regulates the activity of transcriptional enhancers to control lineage-specific differentiation and (2) mutations in the BAF complex proteins lead to developmental disorders and cancers. It is unclear if blood flow can modulate the activity of SWI/SNF complex to regulate EC differentiation and reprogramming. This review emphasizes the integrative role of SWI/SNF complex from a structural and functional standpoint with a special reference to cardiovascular diseases (CVDs). The review also highlights how regulation of this complex by blood flow can lead to the discovery of new therapeutic interventions for the treatment of endothelial dysfunction in vascular diseases.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
46
|
Deng R, McCalman MT, Bossuyt TP, Barakat TS. Case Report: Two New Cases of Chromosome 12q14 Deletions and Review of the Literature. Front Genet 2021; 12:716874. [PMID: 34539745 PMCID: PMC8441011 DOI: 10.3389/fgene.2021.716874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Interstitial deletions on the long arm of chromosome 12 (12q deletions) are rare, and are associated with intellectual disability, developmental delay, failure to thrive and congenital anomalies. The precise genotype-phenotype correlations of different deletions has not been completely resolved. Ascertaining individuals with overlapping deletions and complex phenotypes may help to identify causative genes and improve understanding of 12q deletion syndromes. We here describe two individuals with non-overlapping 12q14 deletions encountered at our clinical genetics outpatient clinic and perform a review of all previously published interstitial 12q deletions to further delineate genotype-phenotype correlations. Both individuals presented with a neurodevelopmental disorder with various degrees of intellectual disability, failure to thrive and dysmorphic features. Previously, larger deletions overlapping large parts of the deletions encountered in both individuals have been described. Whereas, individual 1 seems to fit into the previously described phenotypic spectrum of the 12q14 microdeletion syndrome, individual 2 displays more severe neurological symptoms, which are likely caused by haploinsufficiency of the BAF complex member SMARCC2, which is included in the deletion. We furthermore perform a review of all previously published interstitial 12q deletions which we found to cluster amongst 5 regions on chromosome 12, to further delineate genotype-phenotype correlations, and we discuss likely disease relevant genes for each of these deletion clusters. Together, this expands knowledge on deletions on chromosome 12q which might facilitate patient counseling. Also, it illustrates that re-analysis of previously described microdeletions syndromes in the next generation sequencing era can be useful to delineate genotype-phenotype correlations and identify disease relevant genes in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Melysia T McCalman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Thomas P Bossuyt
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
47
|
Yuan ZZ, Xie XH, Gu H, Zhang WZ, Hu YQ, Yang YF, Tan ZP. Case Report: BAF-Opathies/SSRIDDs Due to a de novo ACTL6A Variant, Previously Considered to Be Heart-Hand Syndrome. Front Cardiovasc Med 2021; 8:708033. [PMID: 34485408 PMCID: PMC8414571 DOI: 10.3389/fcvm.2021.708033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study aims to identify genetic lesions in patients with congenital heart disease (CHD) with or without other phenotypes. In this study, over 400 patients were recruited and several novel variants in known causative genes were identified. A Chinese patient clinically diagnosed with HHS (patent ductus arteriosus, persistent left superior vena cava, and congenital absence of left arm radius) was included in the study cohort. Methods: Targeted, whole exome, and Sanger sequencing were performed to identify genetic lesions. The effects of the variant on ACTL6A RNA and protein were assessed using bioinformatics analysis. Results: At the start of the study, no mutations in known and candidate causative genes associated with CHD were identified. Seven years later, we noticed craniofacial deformities and identified a de novo heterozygous deletion variant in ACTL6A (NM_004301, c.478_478delT; p.F160Lfs*9). Intellectual disability and short stature were identified by a follow-up visit 10 years later. This variant leads to frameshift sequences and a premature termination codon and may affect the features of proteins. According to the nonsense-mediated mRNA decay theory, this variant may induce the decay of ACTL6A mRNA in patients. Conclusion: Our study reported the first ACTL6A variant in a Chinese individual, providing further evidence that ACTL6A is involved in heart and upper limb skeletal and intellectual development, thereby expanding the spectrum of ACTL6A variants. Thus, mutation analysis of the ACTL6A gene should be considered in patients with BAF-opathies or heart-hand syndromes due to potential misdiagnosis. Craniofacial dysmorphisms and intellectual disability are key to distinguishing these two diseases clinically, and attention to developmental delay/intellectual disability and craniofacial deformities will contribute to the diagnosis of BAF-opathies.
Collapse
Affiliation(s)
- Zhuang-Zhuang Yuan
- Department of Cardiovascular Surgery, Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Xiao-Hui Xie
- Department of Cardiovascular Surgery, Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Heng Gu
- Department of Cardiovascular Surgery, Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei-Zhi Zhang
- Department of Cardiovascular Surgery, Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi-Qiao Hu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yi-Feng Yang
- Department of Cardiovascular Surgery, Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-Ping Tan
- Department of Cardiovascular Surgery, Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
48
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
49
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
50
|
Systematic analysis of exonic germline and postzygotic de novo mutations in bipolar disorder. Nat Commun 2021; 12:3750. [PMID: 34145229 PMCID: PMC8213845 DOI: 10.1038/s41467-021-23453-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Bipolar disorder is a severe mental illness characterized by recurrent manic and depressive episodes. To better understand its genetic architecture, we analyze ultra-rare de novo mutations in 354 trios with bipolar disorder. For germline de novo mutations, we find significant enrichment of loss-of-function mutations in constrained genes (corrected-P = 0.0410) and deleterious mutations in presynaptic active zone genes (FDR = 0.0415). An analysis integrating single-cell RNA-sequencing data identifies a subset of excitatory neurons preferentially expressing the genes hit by deleterious mutations, which are also characterized by high expression of developmental disorder genes. In the analysis of postzygotic mutations, we observe significant enrichment of deleterious ones in developmental disorder genes (P = 0.00135), including the SRCAP gene mutated in two unrelated probands. These data collectively indicate the contributions of both germline and postzygotic mutations to the risk of bipolar disorder, supporting the hypothesis that postzygotic mutations of developmental disorder genes may contribute to bipolar disorder. The significance of rare and de novo variants in bipolar disorder is not well understood. Here, the authors have analyzed whole exome/genome data from trios to identify deleterious de novo variants associated with bipolar disorder.
Collapse
|