1
|
Xu P, Zou W, Yin W, Chen G, Gao G, Zhong X. Ion channels research in hPSC-RPE cells: bridging benchwork to clinical applications. J Transl Med 2024; 22:1073. [PMID: 39604931 PMCID: PMC11600670 DOI: 10.1186/s12967-024-05769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels in retinal pigment epithelial (RPE) cells are crucial for retinal health and vision functions. Defects in such channels are intricately associated with the development of various retinopathies that cause blindness. Human pluripotent stem cells (hPSC)-derived RPE cells, including those from human-induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC), have been used as in vitro models for investigating pathogenic mechanisms and screening potential therapeutic strategies for retinopathies. Therefore, the cellular status of hPSC-RPE cells, including maturity and physiologic functions, have been widely explored. Particularly, research on ion channels in hPSC-RPE cells can lead to the development of more stable models upon which robust investigations and clinical safety assessments can be performed. Moreover, the use of patient-specific hiPSC-RPE cells has significantly accelerated the clinical translation of gene therapy for retinal channelopathies, such as bestrophinopathies. This review consolidates current research on ion channels in hPSC-RPE cells, specifically Kir7.1, Bestrophin-1, CLC-2, and CaV1.3, providing a foundation for future research.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weisheng Zou
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Wenjing Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guifu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
3
|
Jain R, Daigavane S. Advances and Challenges in Gene Therapy for Inherited Retinal Dystrophies: A Comprehensive Review. Cureus 2024; 16:e69895. [PMID: 39439625 PMCID: PMC11494405 DOI: 10.7759/cureus.69895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are a diverse group of genetic disorders leading to progressive vision loss due to the degeneration of retinal photoreceptors. Gene therapy has emerged as a promising approach to address the underlying genetic causes of IRDs, offering the potential for restoring vision and halting disease progression. This review provides a comprehensive overview of gene therapy innovations for IRDs, focusing on the mechanisms, recent advancements, and ongoing challenges. We discuss the fundamental principles of gene therapy, including the use of viral and non-viral vectors, and highlight key developments such as the approval of Luxturna for RPE65-mediated retinal dystrophy and the application of gene editing technologies like CRISPR/Cas9. Despite these advancements, significant challenges remain, including vector delivery, long-term safety, and variable patient responses. This review also explores the future directions of gene therapy, emphasizing the need for further research to address these challenges and enhance therapeutic efficacy. By examining the current state of gene therapy for IRDs, this review aims to provide valuable insights into the potential for these treatments to transform the management of retinal diseases and improve the quality of life for affected individuals.
Collapse
Affiliation(s)
- Raina Jain
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
4
|
Laich Y, Georgiou M, Fujinami K, Daich Varela M, Fujinami-Yokokawa Y, Hashem SA, Cabral de Guimaraes TA, Mahroo OA, Webster AR, Michaelides M. Best Vitelliform Macular Dystrophy Natural History Study Report 1: Clinical Features and Genetic Findings. Ophthalmology 2024; 131:845-854. [PMID: 38278445 DOI: 10.1016/j.ophtha.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
PURPOSE To analyze the genetic findings, clinical spectrum, and natural history of Best vitelliform macular dystrophy (BVMD) in a cohort of 222 children and adults. DESIGN Single-center retrospective, consecutive, observational study. PARTICIPANTS Patients with a clinical diagnosis of BVMD from pedigrees with a likely disease-causing monoallelic sequence variant in the BEST1 gene. METHODS Data were extracted from electronic and physical case notes. Electrophysiologic assessment and molecular genetic testing were analyzed. MAIN OUTCOME MEASURES Molecular genetic test findings and clinical findings including best-corrected visual acuity (BCVA), choroidal neovascularization (CNV) rates, and electrophysiologic parameters. RESULTS Two hundred twenty-two patients from 141 families were identified harboring 69 BEST1 variants. Mean age at presentation was 26.8 years (range, 1.3-84.8 years) and most patients (61.5%) demonstrated deterioration of central vision. Major funduscopic findings included 128 eyes (30.6%) with yellow vitelliform lesions, 78 eyes (18.7%) with atrophic changes, 49 eyes (11.7%) with fibrotic changes, 48 eyes (11.5%) with mild pigmentary changes, and 43 eyes (10.3%) showing a vitelliruptive appearance. Mean BCVA was 0.37 logarithm of the minimum angle of resolution (logMAR; Snellen equivalent, 20/47) for the right eye and 0.33 logMAR (Snellen equivalent, 20/43) for the left eye at presentation, with a mean annual loss rate of 0.013 logMAR and 0.009 logMAR, respectively, over a mean follow-up of 9.7 years. Thirty-seven patients (17.3%) received a diagnosis of CNV over a mean follow-up of 8.0 years. Eyes with CNV that received treatment with an anti-vascular endothelial growth factor (VEGF) agent showed better mean BCVA compared with eyes that were not treated with an anti-VEGF agent (0.28 logMAR [Snellen equivalent, 20/38] vs. 0.62 logMAR [Snellen equivalent, 20/83]). Most eyes exhibited a hyperopic refractive error (78.7%), and 13 patients (6.1%) received a diagnosis of amblyopia. Among the 3 most common variants, p.(Ala243Val) was associated with a later age of onset, better age-adjusted BCVA, and less advanced Gass stages compared with p.(Arg218Cys) and p.(Arg218His). CONCLUSIONS BVMD shows a wide spectrum of phenotypic variability. The disease is very slowly progressive, and the observed phenotype-genotype correlations allow for more accurate prognostication and counselling. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Yannik Laich
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Eye Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| | - Shaima Awadh Hashem
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
5
|
Lee IK, Xie R, Luz-Madrigal A, Min S, Zhu J, Jin J, Edwards KL, Phillips MJ, Ludwig AL, Gamm DM, Gong S, Ma Z. Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct. Bioact Mater 2023; 30:142-153. [PMID: 37575875 PMCID: PMC10415596 DOI: 10.1016/j.bioactmat.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Age-related macular degeneration (AMD) causes blindness due to loss of retinal pigment epithelium (RPE) and photoreceptors (PRs), which comprise the two outermost layers of the retina. Given the small size of the macula and the importance of direct contact between RPE and PRs, the use of scaffolds for targeted reconstruction of the outer retina in later stage AMD and other macular dystrophies is particularly attractive. We developed microfabricated, honeycomb-patterned, biodegradable poly(glycerol sebacate) (PGS) scaffolds to deliver organized, adjacent layers of RPE and PRs to the subretinal space. Furthermore, an optimized process was developed to photocure PGS, shortening scaffold production time from days to minutes. The resulting scaffolds robustly supported the seeding of human pluripotent stem cell-derived RPE and PRs, either separately or as a dual cell-layered construct. These advanced, economical, and versatile scaffolds can accelerate retinal cell transplantation efforts and benefit patients with AMD and other retinal degenerative diseases.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Agustin Luz-Madrigal
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiahe Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - M. Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Allison L. Ludwig
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David M. Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
6
|
Kabra M, Shahi PK, Wang Y, Sinha D, Spillane A, Newby GA, Saxena S, Tong Y, Chang Y, Abdeen AA, Edwards KL, Theisen CO, Liu DR, Gamm DM, Gong S, Saha K, Pattnaik BR. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy. J Clin Invest 2023; 133:e171356. [PMID: 37561581 PMCID: PMC10541187 DOI: 10.1172/jci171356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Clinical genome editing is emerging for rare disease treatment, but one of the major limitations is the targeting of CRISPR editors' delivery. We delivered base editors to the retinal pigmented epithelium (RPE) in the mouse eye using silica nanocapsules (SNCs) as a treatment for retinal degeneration. Leber congenital amaurosis type 16 (LCA16) is a rare pediatric blindness caused by point mutations in the KCNJ13 gene, a loss of function inwardly rectifying potassium channel (Kir7.1) in the RPE. SNCs carrying adenine base editor 8e (ABE8e) mRNA and sgRNA precisely and efficiently corrected the KCNJ13W53X/W53X mutation. Editing in both patient fibroblasts (47%) and human induced pluripotent stem cell-derived RPE (LCA16-iPSC-RPE) (17%) showed minimal off-target editing. We detected functional Kir7.1 channels in the edited LCA16-iPSC-RPE. In the LCA16 mouse model (Kcnj13W53X/+ΔR), RPE cells targeted SNC delivery of ABE8e mRNA preserved normal vision, measured by full-field electroretinogram (ERG). Moreover, multifocal ERG confirmed the topographic measure of electrical activity primarily originating from the edited retinal area at the injection site. Preserved retina structure after treatment was established by optical coherence tomography (OCT). This preclinical validation of targeted ion channel functional rescue, a challenge for pharmacological and genomic interventions, reinforced the effectiveness of nonviral genome-editing therapy for rare inherited disorders.
Collapse
Affiliation(s)
- Meha Kabra
- Department of Pediatrics
- McPherson Eye Research Institute
| | - Pawan K. Shahi
- Department of Pediatrics
- McPherson Eye Research Institute
| | - Yuyuan Wang
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Divya Sinha
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Shivani Saxena
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Yao Tong
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | | | - Amr A. Abdeen
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Kimberly L. Edwards
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Cole O. Theisen
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - David M. Gamm
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Ophthalmology and Visual Sciences and
| | - Shaoqin Gong
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
- Department of Ophthalmology and Visual Sciences and
| | - Krishanu Saha
- Department of Pediatrics
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
- Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics
- McPherson Eye Research Institute
- Department of Ophthalmology and Visual Sciences and
| |
Collapse
|
7
|
Molugu K, Khajanchi N, Lazzarotto CR, Tsai SQ, Saha K. Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells. CRISPR J 2023; 6:473-485. [PMID: 37676985 PMCID: PMC10611976 DOI: 10.1089/crispr.2023.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Genome-edited human-induced pluripotent stem cells (iPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. Despite the development of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, the gene editing process is inefficient and can take several weeks to months to generate edited iPSC clones. We developed a strategy to improve the efficiency of the iPSC gene editing process via application of a small-molecule, trichostatin A (TSA), a Class I and II histone deacetylase inhibitor. We observed that TSA decreased global chromatin condensation and further resulted in increased gene-editing efficiency of iPSCs by twofold to fourfold while concurrently ensuring no increased off-target effects. The edited iPSCs could be clonally expanded while maintaining genomic integrity and pluripotency. The rapid generation of therapeutically relevant gene-edited iPSCs could be enabled by these findings.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Namita Khajanchi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Amato A, Wongchaisuwat N, Lamborn A, Schmidt R, Everett L, Yang P, Pennesi ME. Gene therapy in bestrophinopathies: Insights from preclinical studies in preparation for clinical trials. Saudi J Ophthalmol 2023; 37:287-295. [PMID: 38155675 PMCID: PMC10752275 DOI: 10.4103/sjopt.sjopt_175_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 12/30/2023] Open
Abstract
The BEST1 gene encodes bestrophin-1, a homopentameric ion channel expressed in the retinal pigment epithelium (RPE), where it localizes to the basolateral plasma membrane. Pathogenic variants in this gene can cause different autosomal dominant and recessive inherited retinal diseases (IRDs), collectively named "bestrophinopathies." These disorders share a number of clinical and molecular features that make them an appealing target for gene therapy. Clinically, bestrophinopathies are often slowly progressive with a wide window of opportunity, and the presence of subretinal material (vitelliform deposits and/or fluid) as a hallmark of these conditions provides an easily quantifiable endpoint in view of future clinical trials. From a molecular standpoint, most BEST1 pathogenic variants have been shown to cause either loss of function (LOF) of the protein or a dominant-negative (DN) effect, with a smaller subset causing a toxic gain of function (GOF). Both LOF and DN mutations may be amenable to gene augmentation alone. On the other hand, individuals harboring GOF variants would require a combination of gene silencing and gene augmentation, which has been shown to be effective in RPE cells derived from patients with Best disease. In this article, we review the current knowledge of BEST1-related IRDs and we discuss how their molecular and clinical features are being used to design novel and promising therapeutic strategies.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmic Genetics, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Nida Wongchaisuwat
- Department of Ophthalmic Genetics, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Andrew Lamborn
- Department of Ophthalmic Genetics, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ryan Schmidt
- Department of Ophthalmic Genetics, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Lesley Everett
- Department of Ophthalmic Genetics, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Paul Yang
- Department of Ophthalmic Genetics, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Mark E. Pennesi
- Department of Ophthalmic Genetics, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
9
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
10
|
Xu P, Chen Z, Ma J, Shan Y, Wang Y, Xie B, Zheng D, Guo F, Song X, Gao G, Ye K, Liu Y, Pan G, Jiang B, Peng F, Zhong X. Biallelic CLCN2 mutations cause retinal degeneration by impairing retinal pigment epithelium phagocytosis and chloride channel function. Hum Genet 2023; 142:577-593. [PMID: 36964785 DOI: 10.1007/s00439-023-02531-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
CLCN2 encodes a two-pore homodimeric chloride channel protein (CLC-2) that is widely expressed in human tissues. The association between Clcn2 and the retina is well-established in mice, as loss-of-function of CLC-2 can cause retinopathy in mice; however, the ocular phenotypes caused by CLCN2 mutations in humans and the underlying mechanisms remain unclear. The present study aimed to define the ocular features and reveal the pathogenic mechanisms of CLCN2 variants associated with retinal degeneration in humans using an in vitro overexpression system, as well as patient-induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cells and retinal organoids (ROs). A patient carrying the homozygous c.2257C > T (p.R753X) nonsense CLCN2 mutation was followed up for > 6 years. Ocular features were comprehensively characterized with multimodality imaging and functional examination. The patient presented with severe bilateral retinal degeneration with loss of photoreceptor and RPE. In vitro, mutant CLC-2 maintained the correct subcellular localization, but with reduced channel function compared to wild-type CLC-2 in HEK293T cells. Additionally, patient iPSC-derived RPE cells carrying the CLCN2 mutation exhibited dysfunctional ClC-2 chloride channels and outer segment phagocytosis. Notably, these functions were rescued following the repair of the CLCN2 mutation using the CRISPR-Cas9 system. However, this variant did not cause significant photoreceptor degeneration in patient-derived ROs, indicating that dysfunctional RPE is likely the primary cause of biallelic CLCN2 variant-mediated retinopathy. This study is the first to establish the confirmatory ocular features of human CLCN2-related retinal degeneration, and reveal a pathogenic mechanism associated with biallelic CLCN2 variants, providing new insights into the cause of inherited retinal dystrophies.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuolin Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianchi Ma
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China, Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuan Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Dandan Zheng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Fuying Guo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaojing Song
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ke Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China, Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Saha K. Accounting for diversity in the design of CRISPR-based therapeutic genome editing. Nat Genet 2023; 55:6-7. [PMID: 36593304 PMCID: PMC10134893 DOI: 10.1038/s41588-022-01272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CRISPR cell/gene therapy has been designed largely based on a single reference human genome. A new study reveals how human genetic diversity could lead to off-target effects and presents a novel tool to identify these risks.
Collapse
Affiliation(s)
- Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical History & Bioethics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Cideciyan AV, Jacobson SG, Swider M, Sumaroka A, Sheplock R, Krishnan AK, Garafalo AV, Guziewicz KE, Aguirre GD, Beltran WA, Heon E. Photoreceptor Function and Structure in Autosomal Dominant Vitelliform Macular Dystrophy Caused by BEST1 Mutations. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36512348 DOI: 10.1167/iovs.63.13.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to evaluate rod and cone function and outer retinal structure within macular lesions, and surrounding extralesional areas of patients with autosomal dominant Best vitelliform macular dystrophy caused by BEST1 mutations. Methods Seventeen patients from seven families were examined with dark- and light-adapted chromatic perimetry and optical coherence tomography. Subsets of patients had long-term follow-up (14-22 years, n = 6) and dark-adaptation kinetics measured (n = 5). Results Within central lesions with large serous retinal detachments, rod sensitivity was severely reduced but visual acuity and cone sensitivity were relatively retained. In surrounding extralesional areas, there was a mild but detectable widening of the subretinal space in some patients and some retinal areas. Available evidence was consistent with subretinal widening causing slower dark-adaptation kinetics. Over long-term follow-up, some eyes showed formation of de novo satellite lesions at retinal locations that years previously demonstrated subretinal widening. A subclinical abnormality consisting of a retina-wide mild thickening of the outer nuclear layer was evident in many patients and thickening increased in the subset of patients with long-term follow-up. Conclusions Outcome measures for future clinical trials should include evaluations of rod sensitivity within central lesions and quantitative measures of outer retinal structure in normal-appearing regions surrounding the lesions.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arun K Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Karina E Guziewicz
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Mayerl SJ, Bajgai S, Ludwig AL, Jager LD, Williams BN, Bacig C, Stoddard C, Sinha D, Philpot BD, Gamm DM. Human retinal organoids harboring IMPG2 mutations exhibit a photoreceptor outer segment phenotype that models advanced retinitis pigmentosa. Stem Cell Reports 2022; 17:2409-2420. [PMID: 36206764 PMCID: PMC9669399 DOI: 10.1016/j.stemcr.2022.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Interphotoreceptor matrix proteoglycan 2 (IMPG2) mutations cause a severe form of early-onset retinitis pigmentosa (RP) with macular involvement. IMPG2 is expressed by photoreceptors and incorporated into the matrix that surrounds the inner and outer segments (OS) of rods and cones, but the mechanism of IMPG2-RP remains unclear. Loss of Impg2 function in mice produces a mild, late-onset photoreceptor phenotype without the characteristic OS loss that occurs in human patients. We generated retinal organoids (ROs) from patient-derived induced pluripotent stem (iPS) cells and gene-edited embryonic stem cells to model human IMPG2-RP in vitro. All ROs harboring IMPG2 mutations lacked an OS layer, in contrast to isogenic controls. Subsequent protein analyses revealed that this phenotype arises due to a loss of IMPG2 expression or its inability to undergo normal post-translational modifications. We hypothesized that loss of IMPG2 function destabilizes the interphotoreceptor matrix and renders the OS vulnerable to physical stressors, which is accentuated in the tissue culture environment. In support of this mechanism, transplantation of IMPG2 mutant ROs into the protected subretinal space of immunocompromised rodents restored OS production. Beyond providing a robust platform to study IMPG2-RP, this human RO model system may serve a broader role in honing strategies to treat advanced photoreceptor-based diseases.
Collapse
Affiliation(s)
- Steven J Mayerl
- Cellular and Molecular Pathology University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Simona Bajgai
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison L Ludwig
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsey D Jager
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany N Williams
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Cole Bacig
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Divya Sinha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin D Philpot
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - David M Gamm
- Cellular and Molecular Pathology University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Hall JC, Paull D, Pébay A, Lidgerwood GE. Human pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A review. Clin Exp Ophthalmol 2022; 50:667-677. [PMID: 35739648 PMCID: PMC9546239 DOI: 10.1111/ceo.14128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 12/05/2022]
Abstract
Human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, are powerful tools for studying human development, physiology and disease, including those affecting the retina. Cells from selected individuals, or specific genetic backgrounds, can be differentiated into distinct cell types allowing the modelling of diseases in a dish for therapeutic development. hPSC‐derived retinal cultures have already been used to successfully model retinal pigment epithelium (RPE) degeneration for various retinal diseases including monogenic conditions and complex disease such as age‐related macular degeneration. Here, we will review the current knowledge gained in understanding the molecular events involved in retinal disease using hPSC‐derived retinal models, in particular RPE models. We will provide examples of various conditions to illustrate the scope of applications associated with the use of hPSC‐derived RPE models.
Collapse
Affiliation(s)
- Jenna C Hall
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute New York New York USA
| | - Alice Pébay
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
- Department of Surgery, Royal Melbourne Hospital The University of Melbourne Parkville Victoria Australia
| | - Grace E. Lidgerwood
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
15
|
Impaired Bestrophin Channel Activity in an iPSC-RPE Model of Best Vitelliform Macular Dystrophy (BVMD) from an Early Onset Patient Carrying the P77S Dominant Mutation. Int J Mol Sci 2022; 23:ijms23137432. [PMID: 35806438 PMCID: PMC9266689 DOI: 10.3390/ijms23137432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Best Vitelliform Macular dystrophy (BVMD) is the most prevalent of the distinctive retinal dystrophies caused by mutations in the BEST1 gene. This gene, which encodes for a homopentameric calcium-activated ion channel, is crucial for the homeostasis and function of the retinal pigment epithelia (RPE), the cell type responsible for recycling the visual pigments generated by photoreceptor cells. In BVMD patients, mutations in this gene induce functional problems in the RPE cell layer with an accumulation of lipofucsin that evolves into cell death and loss of sight. In this work, we employ iPSC-RPE cells derived from a patient with the p.Pro77Ser dominant mutation to determine the correlation between this variant and the ocular phenotype. To this purpose, gene and protein expression and localization are evaluated in iPSC-RPE cells along with functional assays like phagocytosis and anion channel activity. Our cell model shows no differences in gene expression, protein expression/localization, or phagocytosis capacity, but presents an increased chloride entrance, indicating that the p.Pro77Ser variant might be a gain-of-function mutation. We hypothesize that this variant disturbs the neck region of the BEST1 channel, affecting channel function but maintaining cell homeostasis in the short term. This data shed new light on the different phenotypes of dominant mutations in BEST1, and emphasize the importance of understanding its molecular mechanisms. Furthermore, the data widen the knowledge of this pathology and open the door for a better diagnosis and prognosis of the disease.
Collapse
|
16
|
Fan Z, Jiang C, Wang Y, Wang K, Marsh J, Zhang D, Chen X, Nie L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. NANOSCALE HORIZONS 2022; 7:682-714. [PMID: 35662310 DOI: 10.1039/d2nh00070a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs), as natural carriers of bioactive cargo, have a unique micro/nanostructure, bioactive composition, and characteristic morphology, as well as fascinating physical, chemical and biochemical features, which have shown promising application in the treatment of a wide range of diseases. However, native EVs have limitations such as lack of or inefficient cell targeting, on-demand delivery, and therapeutic feedback. Recently, EVs have been engineered to contain an intelligent core, enabling them to (i) actively target sites of disease, (ii) respond to endogenous and/or exogenous signals, and (iii) provide treatment feedback for optimal function in the host. These advances pave the way for next-generation nanomedicine and offer promise for a revolution in drug delivery. Here, we summarise recent research on intelligent EVs and discuss the use of "intelligent core" based EV systems for the treatment of disease. We provide a critique about the construction and properties of intelligent EVs, and challenges in their commercialization. We compare the therapeutic potential of intelligent EVs to traditional nanomedicine and highlight key advantages for their clinical application. Collectively, this review aims to provide a new insight into the design of next-generation EV-based theranostic platforms for disease treatment.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), Taizhou 318000, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jade Marsh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Liming Nie
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
17
|
He M, Rong R, Ji D, Xia X. From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Front Cell Dev Biol 2022; 10:879957. [PMID: 35652098 PMCID: PMC9149310 DOI: 10.3389/fcell.2022.879957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Glaucoma is a group of optic neuropathies featured by degeneration of retinal ganglion cells and loss of their axons in the optic nerve. The only currently approved therapies focus on lowering intraocular pressure with medication and surgery. Over the previous few decades, technological advances and research progress regarding pathogenesis has brought glaucomatous gene therapy to the forefront. In this review, we discuss the three current genome editing methods and potential disease mechanisms of glaucoma. We further summarize different genome editing strategies that are being developed to target a number of glaucoma-related genes and pathways from four aspects including strategies to lower intraocular pressure, neuroprotection, RGC and optic nerve neuro-regeneration, and other strategies. In summary, genome therapy is a promising therapy for treating patients with glaucoma and has great potential to be widely applied in clinical practice.
Collapse
Affiliation(s)
- Meihui He
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Samimi K, Pattnaik BR, Capowski EE, Saha K, Gamm DM, Skala MC. In situ autofluorescence lifetime assay of a photoreceptor stimulus response in mouse retina and human retinal organoids. BIOMEDICAL OPTICS EXPRESS 2022; 13:3476-3492. [PMID: 35781966 PMCID: PMC9208582 DOI: 10.1364/boe.455783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Photoreceptors are the key functional cell types responsible for the initiation of vision in the retina. Phototransduction involves isomerization and conversion of vitamin A compounds, known as retinoids, and their recycling through the visual cycle. We demonstrate a functional readout of the visual cycle in photoreceptors within stem cell-derived retinal organoids and mouse retinal explants based on spectral and lifetime changes in autofluorescence of the visual cycle retinoids after exposure to light or chemical stimuli. We also apply a simultaneous two- and three-photon excitation method that provides specific signals and increases contrast between these retinoids, allowing for reliable detection of their presence and conversion within photoreceptors. This multiphoton imaging technique resolves the slow dynamics of visual cycle reactions and can enable high-throughput functional screening of retinal tissues and organoid cultures with single-cell resolution.
Collapse
Affiliation(s)
- Kayvan Samimi
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bikash R. Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Krishanu Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M. Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI 53715, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022; 184:114181. [PMID: 35278521 PMCID: PMC9035134 DOI: 10.1016/j.addr.2022.114181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Major progress in the understanding and treatment of cancer have tremendously improved our knowledge of this complex disease and improved the length and quality of patients' lives. Still, major challenges remain, in particular with respect to cancer metastasis which still escapes effective treatment and remains responsible for 90% of cancer related deaths. In recent years, the advances in cancer cell biology, oncology and tissue engineering converged into the engineered human tissue models of cancer that are increasingly recapitulating many aspects of cancer progression and response to drugs, in a patient-specific context. The complexity and biological fidelity of these models, as well as the specific questions they aim to investigate, vary in a very broad range. When selecting and designing these experimental models, the fundamental question is "how simple is complex enough" to accomplish a specific goal of cancer research. Here we review the state of the art in developing and using the human tissue models in cancer research and developmental drug screening. We describe the main classes of models providing different levels of biological fidelity and complexity, discuss their advantages and limitations, and propose a framework for designing an appropriate model for a given study. We close by outlining some of the current needs, opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Maria Samaritano
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Elisa Cimetta
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; College of Dental Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| |
Collapse
|
20
|
Daich Varela M, Cabral de Guimaraes TA, Georgiou M, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: current management and clinical trials. Br J Ophthalmol 2022; 106:445-451. [PMID: 33712480 PMCID: PMC8961750 DOI: 10.1136/bjophthalmol-2020-318483] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022]
Abstract
Leber congenital amaurosis (LCA) is a severe congenital/early-onset retinal dystrophy. Given its monogenic nature and the immunological and anatomical privileges of the eye, LCA has been particularly targeted by cutting-edge research. In this review, we describe the current management of LCA, and highlight the clinical trials that are on-going and planned. RPE65-related LCA pivotal trials, which culminated in the first Food and Drug Administration-approved and European Medicines Agency-approved ocular gene therapy, have paved the way for a new era of genetic treatments in ophthalmology. At present, multiple clinical trials are available worldwide applying different techniques, aiming to achieve better outcomes and include more genes and variants. Genetic therapy is not only implementing gene supplementation by the use of adeno-associated viral vectors, but also clustered regularly interspaced short palindromic repeats (CRISPR)-mediated gene editing and post-transcriptional regulation through antisense oligonucleotides. Pharmacological approaches intending to decrease photoreceptor degeneration by supplementing 11-cis-retinal and cell therapy's aim to replace the retinal pigment epithelium, providing a trophic and metabolic retinal structure, are also under investigation. Furthermore, optoelectric devices and optogenetics are also an option for patients with residual visual pathway. After more than 10 years since the first patient with LCA received gene therapy, we also discuss future challenges, such as the overlap between different techniques and the long-term durability of efficacy. The next 5 years are likely to be key to whether genetic therapies will achieve their full promise, and whether stem cell/cellular therapies will break through into clinical trial evaluation.
Collapse
Affiliation(s)
- Malena Daich Varela
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | | | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| |
Collapse
|
21
|
Lohia A, Sahel DK, Salman M, Singh V, Mariappan I, Mittal A, Chitkara D. Delivery Strategies for CRISPR/Cas Genome editing tool for Retinal Dystrophies: challenges and opportunities. Asian J Pharm Sci 2022; 17:153-176. [PMID: 36320315 PMCID: PMC9614410 DOI: 10.1016/j.ajps.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas, an adaptive immune system in bacteria, has been adopted as an efficient and precise tool for site-specific gene editing with potential therapeutic opportunities. It has been explored for a variety of applications, including gene modulation, epigenome editing, diagnosis, mRNA editing, etc. It has found applications in retinal dystrophic conditions including progressive cone and cone-rod dystrophies, congenital stationary night blindness, X-linked juvenile retinoschisis, retinitis pigmentosa, age-related macular degeneration, leber's congenital amaurosis, etc. Most of the therapies for retinal dystrophic conditions work by regressing symptoms instead of reversing the gene mutations. CRISPR/Cas9 through indel could impart beneficial effects in the reversal of gene mutations in dystrophic conditions. Recent research has also consolidated on the approaches of using CRISPR systems for retinal dystrophies but their delivery to the posterior part of the eye is a major concern due to high molecular weight, negative charge, and in vivo stability of CRISPR components. Recently, non-viral vectors have gained interest due to their potential in tissue-specific nucleic acid (miRNA/siRNA/CRISPR) delivery. This review highlights the opportunities of retinal dystrophies management using CRISPR/Cas nanomedicine.
Collapse
|
22
|
Korkka I, Skottman H, Nymark S. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:753-766. [PMID: 35639962 PMCID: PMC9299513 DOI: 10.1093/stcltm/szac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/09/2022] [Indexed: 11/15/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) is extensively used in RPE research, disease modeling, and transplantation therapies. For successful outcomes, a thorough evaluation of their physiological authenticity is a necessity. Essential determinants of this are the different ion channels of the RPE, yet studies evaluating this machinery in hPSC-RPE are scarce. We examined the functionality and localization of potassium (K+) channels in the human embryonic stem cell (hESC)-derived RPE. We observed a heterogeneous pattern of voltage-gated K+ (KV) and inwardly rectifying K+ (Kir) channels. Delayed rectifier currents were recorded from most of the cells, and immunostainings showed the presence of KV1.3 channel. Sustained M-currents were also present in the hESC-RPE, and based on immunostaining, these currents were carried by KCNQ1-KCNQ5 channel types. Some cells expressed transient A-type currents characteristic of native human fetal RPE (hfRPE) and cultured primary RPE and carried by KV1.4 and KV4.2 channels. Of the highly important Kir channels, we found that Kir7.1 is present both at the apical and basolateral membranes of the hESC- and fresh native mouse RPE. Kir currents, however, were recorded only from 14% of the hESC-RPE cells with relatively low amplitudes. Compared to previous studies, our data suggest that in the hESC-RPE, the characteristics of the delayed rectifier and M-currents resemble native adult RPE, while A-type and Kir currents resemble native hfRPE or cultured primary RPE. Overall, the channelome of the RPE is a sensitive indicator of maturity and functionality affecting its therapeutic utility.
Collapse
Affiliation(s)
- Iina Korkka
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heli Skottman
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Soile Nymark
- Corresponding author: Soile Nymark, PhD, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland. Tel: +358 40 849 0009; E-mail:
| |
Collapse
|
23
|
Gene Editing in Pluripotent Stem Cells and Their Derived Organoids. Stem Cells Int 2021; 2021:8130828. [PMID: 34887928 PMCID: PMC8651378 DOI: 10.1155/2021/8130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
With the rapid rise in gene-editing technology, pluripotent stem cells (PSCs) and their derived organoids have increasingly broader and practical applications in regenerative medicine. Gene-editing technologies, from large-scale nucleic acid endonucleases to CRISPR, have ignited a global research and development boom with significant implications in regenerative medicine. The development of regenerative medicine technologies, regardless of whether it is PSCs or gene editing, is consistently met with controversy. Are the tools for rewriting the code of life a boon to humanity or a Pandora's box? These technologies raise concerns regarding ethical issues, unexpected mutations, viral infection, etc. These concerns remain even as new treatments emerge. However, the potential negatives cannot obscure the virtues of PSC gene editing, which have, and will continue to, benefit mankind at an unprecedented rate. Here, we briefly introduce current gene-editing technology and its application in PSCs and their derived organoids, while addressing ethical concerns and safety risks and discussing the latest progress in PSC gene editing. Gene editing in PSCs creates visualized in vitro models, providing opportunities for examining mechanisms of known and unknown mutations and offering new possibilities for the treatment of cancer, genetic diseases, and other serious or refractory disorders. From model construction to treatment exploration, the important role of PSCs combined with gene editing in basic and clinical medicine studies is illustrated. The applications, characteristics, and existing challenges are summarized in combination with our lab experiences in this field in an effort to help gene-editing technology better serve humans in a regulated manner. Current preclinical and clinical trials have demonstrated initial safety and efficacy of PSC gene editing; however, for better application in clinical settings, additional investigation is warranted.
Collapse
|
24
|
Miyagishima KJ, Sharma R, Nimmagadda M, Clore-Gronenborn K, Qureshy Z, Ortolan D, Bose D, Farnoodian M, Zhang C, Fausey A, Sergeev YV, Abu-Asab M, Jun B, Do KV, Kautzman Guerin MA, Calandria J, George A, Guan B, Wan Q, Sharp RC, Cukras C, Sieving PA, Hufnagel RB, Bazan NG, Boesze-Battaglia K, Miller S, Bharti K. AMPK modulation ameliorates dominant disease phenotypes of CTRP5 variant in retinal degeneration. Commun Biol 2021; 4:1360. [PMID: 34887495 PMCID: PMC8660775 DOI: 10.1038/s42003-021-02872-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Late-onset retinal degeneration (L-ORD) is an autosomal dominant disorder caused by a missense substitution in CTRP5. Distinctive clinical features include sub-retinal pigment epithelium (RPE) deposits, choroidal neovascularization, and RPE atrophy. In induced pluripotent stem cells-derived RPE from L-ORD patients (L-ORD-iRPE), we show that the dominant pathogenic CTRP5 variant leads to reduced CTRP5 secretion. In silico modeling suggests lower binding of mutant CTRP5 to adiponectin receptor 1 (ADIPOR1). Downstream of ADIPOR1 sustained activation of AMPK renders it insensitive to changes in AMP/ATP ratio resulting in defective lipid metabolism, reduced Neuroprotectin D1(NPD1) secretion, lower mitochondrial respiration, and reduced ATP production. These metabolic defects result in accumulation of sub-RPE deposits and leave L-ORD-iRPE susceptible to dedifferentiation. Gene augmentation of L-ORD-iRPE with WT CTRP5 or modulation of AMPK, by metformin, re-sensitize L-ORD-iRPE to changes in cellular energy status alleviating the disease cellular phenotypes. Our data suggests a mechanism for the dominant behavior of CTRP5 mutation and provides potential treatment strategies for L-ORD patients.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Ruchi Sharma
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Malika Nimmagadda
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Katharina Clore-Gronenborn
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Zoya Qureshy
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Davide Ortolan
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Devika Bose
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Mitra Farnoodian
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Congxiao Zhang
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Andrew Fausey
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Yuri V. Sergeev
- grid.280030.90000 0001 2150 6316Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Mones Abu-Asab
- grid.280030.90000 0001 2150 6316Section of Histopathology, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Bokkyoo Jun
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Khanh V. Do
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Marie-Audrey Kautzman Guerin
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Jorgelina Calandria
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Aman George
- grid.280030.90000 0001 2150 6316Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Bin Guan
- grid.280030.90000 0001 2150 6316Medical Genetics and Ophthalmic Genomics Unit, NEI, NIH, Bethesda, MD 20892 USA
| | - Qin Wan
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Rachel C. Sharp
- grid.25879.310000 0004 1936 8972Department of Biochemistry University of Pennsylvania, 240 South 40th Street, Levy Building, Room 515, Philadelphia, PA 19104 USA
| | - Catherine Cukras
- grid.280030.90000 0001 2150 6316Division of Epidemiology and Clinical Applications and Ophthalmic Genetics and Visual Function Branch, NEI, NIH, Bethesda, MD 20892 USA
| | - Paul A. Sieving
- grid.280030.90000 0001 2150 6316Section for Translation Research in Retinal and Macular Degeneration, NEI, NIH, Bethesda, MD 20892 USA
| | - Robert B. Hufnagel
- grid.280030.90000 0001 2150 6316Medical Genetics and Ophthalmic Genomics Unit, NEI, NIH, Bethesda, MD 20892 USA
| | - Nicolas G. Bazan
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Kathleen Boesze-Battaglia
- grid.25879.310000 0004 1936 8972Department of Biochemistry University of Pennsylvania, 240 South 40th Street, Levy Building, Room 515, Philadelphia, PA 19104 USA
| | - Sheldon Miller
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Mueller K, Saha K. Single Cell Technologies to Dissect Heterogenous Immune Cell Therapy Products. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100343. [PMID: 34957355 PMCID: PMC8693636 DOI: 10.1016/j.cobme.2021.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Single cell tools have dramatically transformed the life sciences; concurrently, autologous and allogeneic immune cell therapies have recently entered the clinic. Here we discuss methods, applications, and considerations for single cell technologies in the context of immune cell manufacturing. Molecular heterogeneity can be profiled at the level of the genome, epigenome, transcriptome, proteome, metabolome, and antigen receptor repertoire, in isolation or in tandem through multi-omic approaches. Such data inform heterogeneity within cell products and can be linked to potency readouts and clinical data, with the ultimate goal of identifying Critical Quality Attributes to predict patient outcomes. Non-destructive approaches hold promise for monitoring cell state and analyzing the impacts of gene edits within engineered products. Destructive omics approaches could be combined with non-destructive technologies to predict therapeutic potency. These technologies are poised to redefine cell manufacturing toward rapid, cost-effective, and high-throughput methods to detect and respond to dynamic cell states.
Collapse
Affiliation(s)
- Katherine Mueller
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
26
|
de Lima JGS, Lanza DCF. 2A and 2A-like Sequences: Distribution in Different Virus Species and Applications in Biotechnology. Viruses 2021; 13:v13112160. [PMID: 34834965 PMCID: PMC8623073 DOI: 10.3390/v13112160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
2A is an oligopeptide sequence that mediates a ribosome “skipping” effect and can mediate a co-translation cleavage of polyproteins. These sequences are widely distributed from insect to mammalian viruses and could act by accelerating adaptive capacity. These sequences have been used in many heterologous co-expression systems because they are versatile tools for cleaving proteins of biotechnological interest. In this work, we review and update the occurrence of 2A/2A-like sequences in different groups of viruses by screening the sequences available in the National Center for Biotechnology Information database. Interestingly, we reported the occurrence of 2A-like for the first time in 69 sequences. Among these, 62 corresponded to positive single-stranded RNA species, six to double stranded RNA viruses, and one to a negative-sense single-stranded RNA virus. The importance of these sequences for viral evolution and their potential in biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Juliana G. S. de Lima
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
| | - Daniel C. F. Lanza
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
- Correspondence: ; Tel.: +55-84-3215-3416; Fax: +55-84-3215-3415
| |
Collapse
|
27
|
Owji AP, Kittredge A, Zhang Y, Yang T. Structure and Function of the Bestrophin family of calcium-activated chloride channels. Channels (Austin) 2021; 15:604-623. [PMID: 34612806 PMCID: PMC8496536 DOI: 10.1080/19336950.2021.1981625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Bestrophins are a family of calcium-activated chloride channels (CaCCs) with relevance to human physiology and a myriad of eye diseases termed "bestrophinopathies". Since the identification of bestrophins as CaCCs nearly two decades ago, extensive studies from electrophysiological and structural biology perspectives have sought to define their key channel features including calcium sensing, gating, inactivation, and anion selectivity. The initial X-ray crystallography studies on the prokaryotic homolog of Best1, Klebsiella pneumoniae (KpBest), and the Best1 homolog from Gallus gallus (chicken Best1, cBest1), laid the foundational groundwork for establishing the architecture of Best1. Recent progress utilizing single-particle cryogenic electron microscopy has further elucidated the molecular mechanism of gating in cBest1 and, separately, the structure of Best2 from Bos taurus (bovine Best2, bBest2). Meanwhile, whole-cell patch clamp, planar lipid bilayer, and other electrophysiologic analyses using these models as well as the human Best1 (hBest1) have provided ample evidence describing the functional properties of the bestrophin channels. This review seeks to consolidate these structural and functional results to paint a broad picture of the underlying mechanisms comprising the bestrophin family's structure-function relationship.
Collapse
Affiliation(s)
- Aaron P Owji
- Department of Pharmacology, Columbia University, NY, USA
| | - Alec Kittredge
- Department of Pharmacology, Columbia University, NY, USA
| | - Yu Zhang
- Department of Ophthalmology, Columbia University, NY, USA
| | - Tingting Yang
- Department of Ophthalmology, Columbia University, NY, USA
| |
Collapse
|
28
|
BEST Disease and Gene Therapy. Int Ophthalmol Clin 2021; 61:167-172. [PMID: 34584054 DOI: 10.1097/iio.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Stone NE, Voigt AP, Mullins RF, Sulchek T, Tucker BA. Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Transl Med 2021; 10:1384-1393. [PMID: 34156760 PMCID: PMC8459636 DOI: 10.1002/sctm.21-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autologous photoreceptor cell replacement is one of the most promising approaches currently under development for the treatment of inherited retinal degenerative blindness. Unlike endogenous stem cell populations, induced pluripotent stem cells (iPSCs) can be differentiated into both rod and cone photoreceptors in high numbers, making them ideal for this application. That said, in addition to photoreceptor cells, state of the art retinal differentiation protocols give rise to all of the different cell types of the normal retina, the majority of which are not required and may in fact hinder successful photoreceptor cell replacement. As such, following differentiation photoreceptor cell enrichment will likely be required. In addition, to prevent the newly generated photoreceptor cells from suffering the same fate as the patient's original cells, correction of the patient's disease-causing genetic mutations will be necessary. In this review we discuss literature pertaining to the use of different cell sorting and transfection approaches with a focus on the development and use of novel next generation microfluidic devices. We will discuss how gold standard strategies have been used, the advantages and disadvantages of each, and how novel microfluidic platforms can be incorporated into the clinical manufacturing pipeline to reduce the complexity, cost, and regulatory burden associated with clinical grade production of photoreceptor cells for autologous cell replacement.
Collapse
Affiliation(s)
- Nicholas E. Stone
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Todd Sulchek
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
30
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Ludwig AL, Gamm DM. Outer Retinal Cell Replacement: Putting the Pieces Together. Transl Vis Sci Technol 2021; 10:15. [PMID: 34724034 PMCID: PMC8572485 DOI: 10.1167/tvst.10.10.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Retinal degenerative diseases (RDDs) affecting photoreceptors (PRs) are one of the most prevalent sources of incurable blindness worldwide. Due to a lack of endogenous repair mechanisms, functional cell replacement of PRs and/or retinal pigmented epithelium (RPE) cells are among the most anticipated approaches for restoring vision in advanced RDD. Human pluripotent stem cell (hPSC) technologies have accelerated development of outer retinal cell therapies as they provide a theoretically unlimited source of donor cells. Human PSC-RPE replacement therapies have progressed rapidly, with several completed and ongoing clinical trials. Although potentially more promising, hPSC-PR replacement therapies are still in their infancy. A first-in-human trial of hPSC-derived neuroretinal transplantation has recently begun, but a number of questions regarding survival, reproducibility, functional integration, and mechanism of action remain. The discovery of biomaterial transfer between donor and PR cells has highlighted the need for rigorous safety and efficacy studies of PR replacement. In this review, we briefly discuss the history of neuroretinal and PR cell transplantation to identify remaining challenges and outline a stepwise approach to address specific pieces of the outer retinal cell replacement puzzle.
Collapse
Affiliation(s)
- Allison L. Ludwig
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - David M. Gamm
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
32
|
Pfister TA, Zein WM, Cukras CA, Sen HN, Maldonado RS, Huryn LA, Hufnagel RB. Phenotypic and Genetic Spectrum of Autosomal Recessive Bestrophinopathy and Best Vitelliform Macular Dystrophy. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34015078 PMCID: PMC8142704 DOI: 10.1167/iovs.62.6.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Autosomal recessive bestrophinopathy (ARB) and vitelliform macular dystrophy (VMD) are distinct phenotypes, typically inherited through recessive and dominant patterns, respectively. Recessively inherited VMD (arVMD) has been reported, suggesting that dominant and recessive BEST1-related retinopathies represent a single disease spectrum. This study compares adVMD, arVMD, and ARB to determine whether a continuum exists and to define clinical and genetic features to aid diagnosis and management. Methods One arVMD patient and nine ARB patients underwent standard ophthalmic examination, imaging, electrophysiology, and genetic assessments. A meta-analysis of reported BEST1 variants was compiled, and clinical parameters were analyzed with regard to inheritance and phenotype. Results Among 10 patients with biallelic BEST1 variants, three novel ARB variants (p.Asp118Ala, p.Leu224Gln, p.Val273del) were discovered. A patient with homozygous p.Glu35Lys was clinically unique, presenting with VMD, including hyperautofluorescence extending beyond the macula, peripheral punctate lesions, and shortened axial-length. A tritan-axis color vision deficit was seen in three of six (50%) of ARB patients. Attempts to distinguish recessively-inherited ARB and dominantly-inherited VMD genotypically, by variant frequency and residue location, did not yield significant differences. Literature meta-analysis with principle component analysis of clinical features demonstrated a spectrum of disease with arVMD falling between adVMD and ARB. Conclusions This study suggests that arVMD is part of a continuum of autosomal recessive and dominant BEST1-related retinopathies. Detailed clinical and molecular assessments of this cohort and the literature are corroborated by unsupervised analysis, highlighting the overlapping heterogeneity among BEST1-associated clinical diagnoses. Tritan-axis color vision deficit is a previously unreported finding associated with ARB.
Collapse
Affiliation(s)
| | - Wadih M Zein
- National Eye Institute, Bethesda, Maryland, United States
| | | | - Hatice N Sen
- National Eye Institute, Bethesda, Maryland, United States
| | - Ramiro S Maldonado
- Department of Ophthalmology, University of Kentucky, Lexington, Kentucky, United States
| | | | | |
Collapse
|
33
|
Dewell TE, Gjoni K, Liu AZ, Libby ARG, Moore AT, So PL, Conklin BR. Transcription factor overexpression drives reliable differentiation of retinal pigment epithelium from human induced pluripotent stem cells. Stem Cell Res 2021; 53:102368. [PMID: 34087997 DOI: 10.1016/j.scr.2021.102368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/10/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration and genetic forms of blindness such as Best Disease and Retinitis Pigmentosa can be caused by degeneration of the Retinal Pigment Epithelium (RPE). RPE generated from patient-derived induced pluripotent stem cells (iPSCs) is valuable for both the study of disease mechanisms and development of therapeutic strategies. However, protocols to produce iPSC-derived RPE in vitro are often inefficient, labor-intensive, low-throughput, and highly variable between cell lines and within batches. Here, we report a robust, scalable method to generate iPSC-RPE using doxycycline-inducible expression of eye field transcription factors OTX2, PAX6 and MITF paired with RPE-permissive culture media. Doxycycline addition induces exogenous expression of these transcription factors in Best Disease patient- and wildtype iPSCs to efficiently produce monolayers of RPE with characteristic morphology and gene expression. Further, these RPE monolayers display functionality features including light absorption via pigmentation, polarity-driven fluid transport, and phagocytosis. With this method, we achieve a highly efficient and easily scalable differentiation without the need for mechanical isolation or enrichment methods, generating RPE cultures applicable for in vitro studies.
Collapse
Affiliation(s)
- Tessa E Dewell
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Ketrin Gjoni
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Angela Z Liu
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Ashley R G Libby
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Program, University of California, 1675 Owens St, San Francisco, CA 94158, USA
| | - Anthony T Moore
- UCSF Department of Ophthalmology, 10 Koret Way, San Francisco, CA 94143-0730, USA
| | - Po-Lin So
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, CA 94720, USA; Gladstone Institutes Stem Cell Core, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Bruce R Conklin
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; UCSF Department of Ophthalmology, 10 Koret Way, San Francisco, CA 94143-0730, USA; Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, CA 94720, USA; UCSF Department of Medicine, 535 Mission Bay Blvd South, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
Singh Grewal S, Smith JJ, Carr AJF. Bestrophinopathies: perspectives on clinical disease, Bestrophin-1 function and developing therapies. Ther Adv Ophthalmol 2021; 13:2515841421997191. [PMID: 33738427 PMCID: PMC7934022 DOI: 10.1177/2515841421997191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 (BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.
Collapse
Affiliation(s)
| | - Joseph J Smith
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Amanda-Jayne F Carr
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
35
|
Ballios BG, Pierce EA, Huckfeldt RM. Gene editing technology: Towards precision medicine in inherited retinal diseases. Semin Ophthalmol 2021; 36:176-184. [PMID: 33621144 DOI: 10.1080/08820538.2021.1887903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: To review preclinical and clinical advances in gene therapy, with a focus on gene editing technologies, and application to inherited retinal disease.Methods: A narrative overview of the literature, summarizing the state-of-the-art in clinical gene therapy for inherited retinal disease, as well as the science and application of new gene editing technology.Results: The last three years has seen the first FDA approval of an in vivo gene replacement therapy for a hereditary blinding eye disease and, recently, the first clinical application of an in vivo gene editing technique. Limitations and challenges in this evolving field are highlighted, as well as new technologies developed to address the multitude of molecular mechanisms of disease.Conclusion: Genetic therapy for the treatment of inherited retinal disease is a rapidly expanding area of ophthalmology. New technologies have revolutionized the field of genome engineering and rekindled an interest in precision medicines for these conditions.
Collapse
Affiliation(s)
- Brian G Ballios
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel M Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Carlson-Stevermer J, Das A, Abdeen AA, Fiflis D, Grindel BI, Saxena S, Akcan T, Alam T, Kletzien H, Kohlenberg L, Goedland M, Dombroe MJ, Saha K. Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. Nat Commun 2020; 11:6277. [PMID: 33293555 PMCID: PMC7722885 DOI: 10.1038/s41467-020-20065-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Compound heterozygous recessive or polygenic diseases could be addressed through gene correction of multiple alleles. However, targeting of multiple alleles using genome editors could lead to mixed genotypes and adverse events that amplify during tissue morphogenesis. Here we demonstrate that Cas9-ribonucleoprotein-based genome editors can correct two distinct mutant alleles within a single human cell precisely. Gene-corrected cells in an induced pluripotent stem cell model of Pompe disease expressed the corrected transcript from both corrected alleles, leading to enzymatic cross-correction of diseased cells. Using a quantitative in silico model for the in vivo delivery of genome editors into the developing human infant liver, we identify progenitor targeting, delivery efficiencies, and suppression of imprecise editing outcomes at the on-target site as key design parameters that control the efficacy of various therapeutic strategies. This work establishes that precise gene editing to correct multiple distinct gene variants could be highly efficacious if designed appropriately.
Collapse
Affiliation(s)
- Jared Carlson-Stevermer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Amritava Das
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - David Fiflis
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin I Grindel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shivani Saxena
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tugce Akcan
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Tausif Alam
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi Kletzien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lucille Kohlenberg
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Madelyn Goedland
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Micah J Dombroe
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Retina Research Foundation Kathryn and Latimer Murfee Chair, Madison, WI, USA.
| |
Collapse
|
37
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|