1
|
Ang CH, Than H, Tuy TT, Goh YT. Fusion Genes in Myeloid Malignancies. Cancers (Basel) 2024; 16:4055. [PMID: 39682241 DOI: 10.3390/cancers16234055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Fusion genes arise from gross chromosomal rearrangements and have been closely linked to oncogenesis. In myeloid malignancies, fusion genes play an integral role in the establishment of diagnosis and prognostication. In the clinical management of patients with acute myeloid leukemia, fusion genes are deeply incorporated in risk stratification criteria to guide the choice of therapy. As a result of their intrinsic ability to define specific disease entities, oncogenic fusion genes also have immense potential to be developed as therapeutic targets and disease biomarkers. In the current era of genomic medicine, breakthroughs in innovation of sequencing techniques have led to a rise in the detection of novel fusion genes, and the concept of standard-of-care diagnostics continues to evolve in this field. In this review, we outline the molecular basis, mechanisms of action and clinical impact of fusion genes. We also discuss the pros and cons of available methodologies that can be used to detect fusion genes. To contextualize the challenges encountered in clinical practice pertaining to the diagnostic workup and management of myeloid malignancies with fusion genes, we share our experience and insights in the form of three clinical case studies.
Collapse
Affiliation(s)
- Chieh Hwee Ang
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Hein Than
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Tertius T Tuy
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Yeow Tee Goh
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
2
|
Singh H, Sahajpal NS, Gupta V, Farmaha J, Vashisht A, Mondal AK, Kolhe R. Optical genome mapping identifies hidden structural variation in acute myeloid leukemia: Two case reports. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S421-S426. [PMID: 39572303 DOI: 10.1016/j.htct.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 12/23/2024] Open
Affiliation(s)
| | | | - Vivek Gupta
- Medical College of Georgia, Augusta University, GA, USA; Department of Pathology, Government Institute of Medical Sciences, Noida, India
| | | | | | | | - Ravindra Kolhe
- Medical College of Georgia, Augusta University, GA, USA.
| |
Collapse
|
3
|
Mai J, Duan J, Chen X, Liu L, Liang D, Fu T, Lu G, Chan WY, Luo X, Wen F, Liao J, Li Z, Lu X. Optical genome mapping: Unraveling complex variations and enabling precise diagnosis in dystrophinopathy. Ann Clin Transl Neurol 2024. [DOI: 10.1002/acn3.52245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 01/06/2025] Open
Abstract
AbstractObjectiveApproximately 7% of individuals with dystrophinopathy remain undiagnosed at the genetic level using conventional genetic tests like multiplex ligation‐dependent probe amplification (MLPA) and next‐generation sequencing (NGS). We used the optical genome mapping (OGM) technology to detect and analyze uncommon mutations or structural variations (SVs) within the DMD gene, thus contributing to more precise clinical diagnoses.MethodsWe herein included eight patients with dystrophinopathy (six males and two females) in whom pathogenic variants of the DMD gene could not be accurately identified using MLPA and NGS. Clinical data were collected for all patients and genetic testing was performed using OGM.ResultsConventional methods (MLPA and NGS) failed to detect pathogenic mutations in six out of eight individuals (four males and two females). OGM testing uncovered rare mutations in the DMD gene in four patients, including a pericentric inversion in chromosome X (one male), a complex rearrangement (one male), and two X–autosome translocations (two females). No mutations were detected in the remaining two male patients. OGM also accurately mapped balanced X–autosome translocations in female patients, defining chromosomal breakpoints. In the other two male patients in whom MLPA suggested non‐contiguous exon duplications or deletions in the DMD gene, OGM characterized one case as a complex rearrangement and the other as a deletion within the DMD gene.InterpretationOGM is a valuable diagnostic tool for dystrophinopathy patients with negative results from conventional genetic tests. It can effectively elucidate complex SVs and pinpoint breakpoints in X–autosomal translocations in female patients, facilitating prompt and appropriate interventions.
Collapse
Affiliation(s)
- Jiahui Mai
- Department of Neurology Shenzhen Children's Hospital of China Medical University No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Jing Duan
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Xiaoyu Chen
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Liqin Liu
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Dachao Liang
- Shenzhen A‐Smart Medical Research Center, Room 516 Shenzhen Research Institute of the Chinese University of Hong Kong 10, 2nd Yuexing Road, Nanshan District Shenzhen 518000 Guangdong China
| | - Tao Fu
- Shenzhen A‐Smart Medical Research Center, Room 516 Shenzhen Research Institute of the Chinese University of Hong Kong 10, 2nd Yuexing Road, Nanshan District Shenzhen 518000 Guangdong China
| | - Gang Lu
- The Chinese University of Hong Kong‐Shandong University (CUHK‐SDU) Joint Laboratory on Reproductive Genetics School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong Hong Kong
| | - Wai Yee Chan
- The Chinese University of Hong Kong‐Shandong University (CUHK‐SDU) Joint Laboratory on Reproductive Genetics School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong Hong Kong
| | - Xufeng Luo
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Feiqiu Wen
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Jianxiang Liao
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Zhuo Li
- Shenzhen A‐Smart Medical Research Center, Room 516 Shenzhen Research Institute of the Chinese University of Hong Kong 10, 2nd Yuexing Road, Nanshan District Shenzhen 518000 Guangdong China
| | - Xinguo Lu
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| |
Collapse
|
4
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Zhang Y, Du Q, Gao H, Pan Y, Liu N, Qiu C, Liu X. Prenatal risk assessment of Xp21.1 duplication involving the DMD gene by optical genome mapping. Life Sci Alliance 2024; 7:e202402780. [PMID: 39117454 PMCID: PMC11310561 DOI: 10.26508/lsa.202402780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Structural variants (SVs) of unknown significance are great challenges for prenatal risk assessment, especially when involving dose-sensitive genes such as DMD The pathogenicities of 5'-terminal DMD duplications in the database remain controversial. Four prenatal cases with Xp21.1 duplications were identified by routine prenatal genomic testing, encompassing the 5'-UTR to exons 1-2 in family 1 and family 2, and to exons 1-9 in family 3. The duplication in family 4 was non-contiguous covering the 5'-UTR to exon 1 and exons 3-7. All were traced to unaffected males in the family pedigrees. A new genome-wide approach of optical genome mapping was performed in families 1, 2, and 3 to delineate the breakpoints and orientation of the duplicated fragments. The extra copies were tandemly inserted into the upstream of DMD, preserving the integrity of ORF from the second copy. The pathogenicities were thus reclassified as likely benign. Our data highlight the importance of structural delineation by optical genome mapping in prenatal risk assessment of incidentally identified SVs involving DMD and other similar large dose-sensitive genes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Du
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiming Gao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yujie Pan
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ningyang Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuang Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Health, Liaoning Research Institute of Reproductive Health and Development, Reproductive Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Lu S, Liu K, Wang D, Ye Y, Jiang Z, Gao Y. Genomic structural variants analysis in leukemia by a novel cytogenetic technique: Optical genome mapping. Cancer Sci 2024; 115:3543-3551. [PMID: 39180374 PMCID: PMC11531954 DOI: 10.1111/cas.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Genomic structural variants (SVs) play a pivotal role in driving the evolution of hematologic malignancies, particularly in leukemia, in which genetic abnormalities are crucial features. Detecting SVs is essential for achieving precise diagnosis and prognosis in these cases. Karyotyping, often complemented by fluorescence in situ hybridization and/or chromosomal microarray analysis, provides standard diagnostic outcomes for various types of SVs in front-line testing for leukemia. Recently, optical genome mapping (OGM) has emerged as a promising technique due to its ability to detect all SVs identified by other cytogenetic methods within one single assay. Furthermore, OGM has revealed additional clinically significant SVs in various clinical laboratories, underscoring its considerable potential for enhancing front-line testing in cases of leukemia. This review aims to elucidate the principles of conventional cytogenetic techniques and OGM, with a focus on the technical performance of OGM and its applications in diagnosing and prognosticating myelodysplastic syndromes, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| | - Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaHunanChina
| | - Di Wang
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| | - Yuan Ye
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Zhiping Jiang
- Department of Hematology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Hematology Oncology Clinical Medical Research CenterChangshaHunanChina
| | - Yunhua Gao
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| |
Collapse
|
7
|
Tang Z, Wang W, Toruner GA, Hu S, Fang H, Xu J, You MJ, Medeiros LJ, Khoury JD, Tang G. Optical Genome Mapping for Detection of BCR::ABL1-Another Tool in Our Toolbox. Genes (Basel) 2024; 15:1357. [PMID: 39596557 PMCID: PMC11593946 DOI: 10.3390/genes15111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Background:BCR::ABL1 fusion is mostly derived from a reciprocal translocation t(9;22)(q34.1;q11.2) and is rarely caused by insertion. Various methods have been used for the detection of t(9;22)/BCR::ABL1, such as G-banded chromosomal analysis, fluorescence in situ hybridization (FISH), quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and optical genome mapping (OGM). Understanding the strengths and limitations of each method is essential for the selection of appropriate method(s) of disease diagnosis and/or during the follow-up. Methods: We compared the results of OGM, chromosomal analysis, FISH, and/or RT-PCR in 12 cases with BCR::ABL1. Results:BCR:ABL1 was detected by FISH and RT-PCR in all 12 cases. One case with ins(22;9)/BCR::ABL1 was cryptic by chromosomal analysis and nearly missed by OGM. Atypical FISH signal patterns were observed in five cases, suggesting additional chromosomal aberrations involving chromosomes 9 and/or 22. RT-PCR identified the transcript isoforms p210 and p190 in seven and five cases, respectively. Chromosomal analysis revealed additional chromosomal aberrations in seven cases. OGM identified extra cytogenomic abnormalities in 10 cases, including chromoanagenesis and IKZF1 deletion, which were only detected by OGM. Conclusions: FISH offers rapid and definitive detection of BCR::ABL1 fusion, while OGM provides a comprehensive cytogenomic analysis. In scenarios where OGM is feasible, chromosomal analysis and RT-PCR may not offer additional diagnostic value.
Collapse
Affiliation(s)
- Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.W.); (G.A.T.); (S.H.); (H.F.); (J.X.); (M.J.Y.); (L.J.M.)
| |
Collapse
|
8
|
Trinh J, Schaake S, Gabbert C, Lüth T, Cowley SA, Fienemann A, Ullrich KK, Klein C, Seibler P. Optical genome mapping of structural variants in Parkinson's disease-related induced pluripotent stem cells. BMC Genomics 2024; 25:980. [PMID: 39425080 PMCID: PMC11490025 DOI: 10.1186/s12864-024-10902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Certain structural variants (SVs) including large-scale genetic copy number variants, as well as copy number-neutral inversions and translocations may not all be resolved by chromosome karyotype studies. The identification of genetic risk factors for Parkinson's disease (PD) has been primarily focused on the gene-disruptive single nucleotide variants. In contrast, larger SVs, which may significantly influence human phenotypes, have been largely underexplored. Optical genomic mapping (OGM) represents a novel approach that offers greater sensitivity and resolution for detecting SVs. In this study, we used induced pluripotent stem cell (iPSC) lines of patients with PD-linked SNCA and PRKN variants as a proof of concept to (i) show the detection of pathogenic SVs in PD with OGM and (ii) provide a comprehensive screening of genetic abnormalities in iPSCs. RESULTS OGM detected SNCA gene triplication and duplication in patient-derived iPSC lines, which were not identified by long-read sequencing. Additionally, various exon deletions were confirmed by OGM in the PRKN gene of iPSCs, of which exon 3-5 and exon 2 deletions were unable to phase with conventional multiplex-ligation-dependent probe amplification. In terms of chromosomal abnormalities in iPSCs, no gene fusions, no aneuploidy but two balanced inter-chromosomal translocations were detected in one line that were absent in the parental fibroblasts and not identified by routine single nucleotide variant karyotyping. CONCLUSIONS In summary, OGM can detect pathogenic SVs in PD-linked genes as well as reveal genomic abnormalities for iPSCs that were not identified by other techniques, which is supportive for OGM's future use in gene discovery and iPSC line screening.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - André Fienemann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Kristian K Ullrich
- Division Scientific IT Group, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
9
|
Yoon J, Jeon T, Kwon JA, Yoon SY. Characterization of MYC Rearrangements in Multiple Myeloma: an Optical Genome Mapping Approach. Blood Cancer J 2024; 14:165. [PMID: 39304649 PMCID: PMC11415510 DOI: 10.1038/s41408-024-01147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Jung Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Taesung Jeon
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jung-Ah Kwon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Xiao B, Luo X, Liu Y, Ye H, Liu H, Fan Y, Yu Y. Combining optical genome mapping and RNA-seq for structural variants detection and interpretation in unsolved neurodevelopmental disorders. Genome Med 2024; 16:113. [PMID: 39300495 DOI: 10.1186/s13073-024-01382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Structural variations (SVs) are key genetic contributors to neurodevelopmental disorders (NDDs). Exome sequencing (ES), the current first-line tool for genetic testing of NDDs, falls short in SVs detection. This diagnostic gap is being actively addressed by new methods such as optical genome mapping (OGM). METHODS This study evaluated the utility of combining OGM and RNA-seq in the detection and interpretation of SVs in ES-negative NDDs. OGM was performed in 43 patients with NDDs with inconclusive ES results. Candidate SVs were selected based on disease association and pathogenicity evaluation, and further validated or reconstructed by alternative methods, including long-read sequencing for a complex rearrangement event. RNA-Seq was performed on blood samples from patients with candidate SVs to facilitate interpretation of pathogenicity. RESULTS OGM detected four candidate SVs, and RNA-seq confirmed the pathogenicity of three SVs in the patient cohort. This combined approach solved three cases-two cases with de novo SVs in genes associated with autosomal dominant NDDs, including a deletion encompassing the promoter and 5'UTR of MBD5 and an intragenic duplication of PAFAH1B1, and a third case possessing an intragenic duplication in trans with a pathogenic single-nucleotide variant of PLA2G6, associated with autosomal recessive NDDs. The expression alteration of the affected genes and the tandem positioning of two intragenic duplications were confirmed by RNA-seq. In the fourth case, OGM detected a complex rearrangement involving chromosomes 2 and 6, much more complex than the de novo t(2:6)(q13;q15) indicated by conventional cytogenetic analysis. Reconstruction showed that 17 segments of 6q15 spanning 9.3 Mb were disarranged and joined 2q11.2, with four breakpoints detected in the 5' and 3' non-coding region of the NDD-associated gene SYNCRIP. RNA-seq revealed largely preserved SYNCRIP expression, leaving the pathogenicity of this complex rearrangement event uncertain. CONCLUSIONS SVs in ES-negative NDDs can be identified by OGM, which is particularly useful for SVs in non-coding regions not covered by ES. OGM helps to construct complex SVs and provides information on the location and orientation of duplications, which is crucial for pathogenicity interpretation. The integration of RNA-seq facilitates the interpretation of the functional consequences of SVs at the transcriptional level. These findings demonstrate the utility and feasibility of combining OGM and RNA-seq in ES-negative cases with NDDs.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Xiaomei Luo
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Yi Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Hui Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
11
|
Ma Y, Gui C, Shi M, Wei L, He J, Xie B, Zheng H, Lei X, Wei X, Cheng Z, Zhou X, Chen S, Luo J, Huang Y, Gui B. The cryptic complex rearrangements involving the DMD gene: etiologic clues about phenotypical differences revealed by optical genome mapping. Hum Genomics 2024; 18:103. [PMID: 39285482 PMCID: PMC11406873 DOI: 10.1186/s40246-024-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Deletion or duplication in the DMD gene is one of the most common causes of Duchenne and Becker muscular dystrophy (DMD/BMD). However, the pathogenicity of complex rearrangements involving DMD, especially segmental duplications with unknown breakpoints, is not well understood. This study aimed to evaluate the structure, pattern, and potential impact of rearrangements involving DMD duplication. METHODS Two families with DMD segmental duplications exhibiting phenotypical differences were recruited. Optical genome mapping (OGM) was used to explore the cryptic pattern of the rearrangements. Breakpoints were validated using long-range polymerase chain reaction combined with next-generation sequencing and Sanger sequencing. RESULTS A multi-copy duplication involving exons 64-79 of DMD was identified in Family A without obvious clinical symptoms. Family B exhibited typical DMD neuromuscular manifestations and presented a duplication involving exons 10-13 of DMD. The rearrangement in Family A involved complex in-cis tandem repeats shown by OGM but retained a complete copy (reading frame) of DMD inferred from breakpoint validation. A reversed insertion with a segmental repeat was identified in Family B by OGM, which was predicted to disrupt the normal structure and reading frame of DMD after confirming the breakpoints. CONCLUSIONS Validating breakpoint and rearrangement pattern is crucial for the functional annotation and pathogenic classification of genomic structural variations. OGM provides valuable insights into etiological analysis of DMD/BMD and enhances our understanding for cryptic effects of complex rearrangements.
Collapse
Affiliation(s)
- Yunting Ma
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Meizhen Shi
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Lilin Wei
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Junfang He
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Lingui District, Guilin, Guangxi Zhuang Autonomous Region, 541100, China
| | - Bobo Xie
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Haiyang Zheng
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Xiaoyun Lei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Xianda Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Zifeng Cheng
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Xu Zhou
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Shaoke Chen
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Jiefeng Luo
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
| | - Yan Huang
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
| | - Baoheng Gui
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
| |
Collapse
|
12
|
Ohori S, Numabe H, Mitsuhashi S, Tsuchida N, Uchiyama Y, Koshimizu E, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Fujita A, Matsumoto N. Complex chromosomal 6q rearrangements revealed by combined long-molecule genomics technologies. Genomics 2024; 116:110894. [PMID: 39019410 DOI: 10.1016/j.ygeno.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/19/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Technologies for detecting structural variation (SV) have advanced with the advent of long-read sequencing, which enables the validation of SV at a nucleotide level. Optical genome mapping (OGM), a technology based on physical mapping, can also provide comprehensive SVs analysis. We applied long-read whole genome sequencing (LRWGS) to accurately reconstruct breakpoint (BP) segments in a patient with complex chromosome 6q rearrangements that remained elusive by conventional karyotyping. Although all BPs were precisely identified by LRWGS, there were two possible ways to construct the BP segments in terms of their orders and orientations. Thus, we also used OGM analysis. Notably, OGM recognized entire inversions exceeding 500 kb in size, which LRWGS could not characterize. Consequently, here we successfully unveil the full genomic structure of this complex chromosomal 6q rearrangement and cryptic SVs through combined long-molecule genomic analyses, showcasing how LRWGS and OGM can complement each other in SV analysis.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Genetics, Kitasato University Hospital, Sagamihara 252-0375, Japan
| | - Hironao Numabe
- Department of Pediatrics, Tokyo Metropolitan Kita Medical Rehabilitation Center for the Handicapped, Kita-ku, Tokyo, 114-0033, Japan
| | - Satomi Mitsuhashi
- Department of Neurology, St.Marianna University School of Medicine Hospital, Kawasaki 216-8511, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo 103-0027, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Clinical Genetics, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama 236-0004, Japan; Department of Clinical Genetics, Yokohama City University Hospital, Yokohama 236-0004, Japan.
| |
Collapse
|
13
|
Lee ST. Application of Optical Genome Mapping to the Genetic Diagnosis of Facioscapulohumeral Muscular Dystrophy 1. Ann Lab Med 2024; 44:383-384. [PMID: 38845487 PMCID: PMC11169772 DOI: 10.3343/alm.2024.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Chebly A. Cancer cytogenetics in the era of artificial intelligence: shaping the future of chromosome analysis. Future Oncol 2024; 20:2303-2305. [PMID: 39129712 PMCID: PMC11520557 DOI: 10.1080/14796694.2024.2385296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Artificial intelligence (AI) has rapidly advanced in the past years, particularly in medicine for improved diagnostics. In clinical cytogenetics, AI is becoming crucial for analyzing chromosomal abnormalities and improving precision. However, existing software lack learning capabilities from experienced users. AI integration extends to genomic data analysis, personalized medicine and research, but ethical concerns arise. In this article, we discuss the challenges of the full automation in cytogenetic test interpretation and focus on its importance and benefits.
Collapse
Affiliation(s)
- Alain Chebly
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
- Higher Institute of Public Health, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| |
Collapse
|
15
|
Boughalem A, Ciorna-Monferrato V, Sloboda N, Guegan A, Page F, Zimmer S, Benazra M, Kleinfinger P, Lohmann L, Valduga M, Receveur A, Martin F, Trost D. Optical genome mapping identifies a homozygous deletion in the non-coding region of the SCN9A gene in individuals from the same family with congenital insensitivity to pain. Front Genet 2024; 15:1375770. [PMID: 39156962 PMCID: PMC11327051 DOI: 10.3389/fgene.2024.1375770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
We report an index patient with complete insensitivity to pain and a history of painless fractures, joint hypermobility, and behavioral problems. The index patient descends from a family with notable cases among his maternal relatives, including his aunt and his mother's first cousin, both of whom suffer from congenital insensitivity to pain. The patient had normal results for prior genetic testing: fragile-X syndrome testing, chromosomal microarray analysis, and exome sequencing. Optical genome mapping detected a homozygous deletion affecting the noncoding 5' untranslated region (UTR) and the first non-coding exon of the SCN9A gene in all affected family members, compatible with recessive disease transmission. Pathogenic homozygous loss-of-function variants in the SCN9A gene are associated with impaired pain sensation in humans. Optical genome mapping can thus detect pathogenic structural variants in patients without molecular etiology by standard diagnostic procedures and is a more accessible diagnostic tool than short-read or long-read whole-genome sequencing.
Collapse
Affiliation(s)
- Aïcha Boughalem
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Viorica Ciorna-Monferrato
- Génétique Médicale et Oncogénétique, Hôpital Femme Mère Enfant, CHR Metz-Thionville, site de Mercy, 1, Allée du Château, Metz Cedex, France
| | - Natacha Sloboda
- Génétique Médicale et Oncogénétique, Hôpital Femme Mère Enfant, CHR Metz-Thionville, site de Mercy, 1, Allée du Château, Metz Cedex, France
| | - Amélie Guegan
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - François Page
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Sophie Zimmer
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Marion Benazra
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Pascale Kleinfinger
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Laurence Lohmann
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Mylène Valduga
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Aline Receveur
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Fernando Martin
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Detlef Trost
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| |
Collapse
|
16
|
Singh H, Sahajpal NS, Mondal AK, Burke SL, Farmaha J, Alptekin A, Vashisht A, Jones K, Vashisht V, Kolhe R. Clinical Utility of Optical Genome Mapping for Improved Cytogenomic Analysis of Gliomas. Biomedicines 2024; 12:1659. [PMID: 39200124 PMCID: PMC11351424 DOI: 10.3390/biomedicines12081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
A glioma is a solid brain tumor which originates in the brain or brain stem area. The diagnosis of gliomas based on standard-of-care (SOC) techniques includes karyotyping, fluorescence in situ hybridization (FISH), and chromosomal microarray (CMA), for detecting the pathogenic variants and chromosomal abnormalities. But these techniques do not reveal the complete picture of genetic complexity, thus requiring an alternative technology for better characterization of these tumors. The present study aimed to evaluate the clinical performance and feasibility of using optical genome mapping (OGM) for chromosomal characterization of gliomas. Herein, we evaluated 10 cases of gliomas that were previously characterized by CMA. OGM analysis showed concordance with the results of CMA in identifying the characterized Structural Variants (SVs) in these cases. More notably, it also revealed additional clinically relevant aberrations, demonstrating a higher resolution and sensitivity. These clinically relevant SVs included cryptic translocation, and SVs which are beyond the detection capabilities of CMA. Our analysis highlights the unique capability of OGM to detect all classes of SVs within a single assay, thereby unveiling clinically significant data with a shorter turnaround time. Adopting this diagnostic tool as a standard of care for solid tumors like gliomas shows potential for improving therapeutic management, potentially leading to more personalized and timely interventions for patients.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | | | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Stephanie L. Burke
- Clinical and Scientific Affairs, Bionano Genomics, San Diego, CA 92121, USA
| | - Jaspreet Farmaha
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Ahmet Alptekin
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Kimya Jones
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Vishakha Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| |
Collapse
|
17
|
Shim Y, Koo YK, Shin S, Lee ST, Lee KA, Choi JR. Comparison of Optical Genome Mapping With Conventional Diagnostic Methods for Structural Variant Detection in Hematologic Malignancies. Ann Lab Med 2024; 44:324-334. [PMID: 38433573 PMCID: PMC10961627 DOI: 10.3343/alm.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Background Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.
Collapse
Affiliation(s)
- Yeeun Shim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- MDxK (Molecular Diagnostics Korea), Inc., Gwacheon, Korea
| | - Yu-Kyung Koo
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Dxome Co., Ltd., Seongnam, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Dxome Co., Ltd., Seongnam, Korea
| |
Collapse
|
18
|
Balciuniene J, Ning Y, Lazarus HM, Aikawa V, Sherpa S, Zhang Y, Morrissette JJD. Cancer cytogenetics in a genomics world: Wedding the old with the new. Blood Rev 2024; 66:101209. [PMID: 38852016 DOI: 10.1016/j.blre.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
Since the discovery of the Philadelphia chromosome in 1960, cytogenetic studies have been instrumental in detecting chromosomal abnormalities that can inform cancer diagnosis, treatment, and risk assessment efforts. The initial expansion of cancer cytogenetics was with fluorescence in situ hybridization (FISH) to assess submicroscopic alterations in dividing or non-dividing cells and has grown into the incorporation of chromosomal microarrays (CMA), and next generation sequencing (NGS). These molecular technologies add additional dimensions to the genomic assessment of cancers by uncovering cytogenetically invisible molecular markers. Rapid technological and bioinformatic advances in NGS are so promising that the idea of performing whole genome sequencing as part of routine patient care may soon become economically and logistically feasible. However, for now cytogenetic studies continue to play a major role in the diagnostic testing and subsequent assessments in leukemia with other genomic studies serving as complementary testing options for detection of actionable genomic abnormalities. In this review, we discuss the role of conventional cytogenetics (karyotyping, chromosome analysis) and FISH studies in hematological malignancies, highlighting the continued clinical utility of these techniques, the subtleties and complexities that are relevant to treating physicians and the unique strengths of cytogenetics that cannot yet be paralleled by the current high-throughput molecular technologies. Additionally, we describe how CMA, optical genome mapping (OGM), and NGS detect abnormalities that were beyond the capacity of cytogenetic studies and how an integrated approach (broad molecular testing) can contribute to the detection of actionable targets and variants in malignancies. Finally, we discuss advances in the field of genomic testing that are bridging the advantages of individual (single) cell based cytogenetic testing and broad genomic testing.
Collapse
Affiliation(s)
- Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Ning
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Vania Aikawa
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarina Sherpa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
van der Sanden B, Neveling K, Pang AWC, Shukor S, Gallagher MD, Burke SL, Kamsteeg EJ, Hastie A, Hoischen A. Optical Genome Mapping for Applications in Repeat Expansion Disorders. Curr Protoc 2024; 4:e1094. [PMID: 38966883 DOI: 10.1002/cpz1.1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Short tandem repeat (STR) expansions are associated with more than 60 genetic disorders. The size and stability of these expansions correlate with the severity and age of onset of the disease. Therefore, being able to accurately detect the absolute length of STRs is important. Current diagnostic assays include laborious lab experiments, including repeat-primed PCR and Southern blotting, that still cannot precisely determine the exact length of very long repeat expansions. Optical genome mapping (OGM) is a cost-effective and easy-to-use alternative to traditional cytogenetic techniques and allows the comprehensive detection of chromosomal aberrations and structural variants >500 bp in length, including insertions, deletions, duplications, inversions, translocations, and copy number variants. Here, we provide methodological guidance for preparing samples and performing OGM as well as running the analysis pipelines and using the specific repeat expansion workflows to determine the exact repeat length of repeat expansions expanded beyond 500 bp. Together these protocols provide all details needed to analyze the length and stability of any repeat expansion with an expected repeat size difference from the expected wild-type allele of >500 bp. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genomic ultra-high-molecular-weight DNA isolation, labeling, and staining Basic Protocol 2: Data generation and genome mapping using the Bionano Saphyr® System Basic Protocol 3: Manual De Novo Assembly workflow Basic Protocol 4: Local guided assembly workflow Basic Protocol 5: EnFocus Fragile X workflow Basic Protocol 6: Molecule distance script workflow.
Collapse
Affiliation(s)
- Bart van der Sanden
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Syukri Shukor
- Bionano Genomics Clinical and Scientific Affairs, San Diego, California
| | | | - Stephanie L Burke
- Bionano Genomics Clinical and Scientific Affairs, San Diego, California
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alex Hastie
- Bionano Genomics Clinical and Scientific Affairs, San Diego, California
| | - Alexander Hoischen
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine, Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
21
|
Xie M, Zheng ZJ, Zhou Y, Zhang YX, Li Q, Tian LY, Cao J, Xu YT, Ren J, Yu Q, Wu SS, Fang S, Zhuang DY, Geng J, Chen CS, Li HB. Prospective Investigation of Optical Genome Mapping for Prenatal Genetic Diagnosis. Clin Chem 2024; 70:820-829. [PMID: 38517460 DOI: 10.1093/clinchem/hvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Optical genome mapping (OGM) is a novel assay for detecting structural variants (SVs) and has been retrospectively evaluated for its performance. However, its prospective evaluation in prenatal diagnosis remains unreported. This study aimed to prospectively assess the technical concordance of OGM with standard of care (SOC) testing in prenatal diagnosis. METHODS A prospective cohort of 204 pregnant women was enrolled in this study. Amniotic fluid samples from these women were subjected to OGM and SOC testing, which included chromosomal microarray analysis (CMA) and karyotyping (KT) in parallel. The diagnostic yield of OGM was evaluated, and the technical concordance between OGM and SOC testing was assessed. RESULTS OGM successfully analyzed 204 cultured amniocyte samples, even with a cell count as low as 0.24 million. In total, 60 reportable SVs were identified through combined OGM and SOC testing, with 22 SVs detected by all 3 techniques. The diagnostic yield for OGM, CMA, and KT was 25% (51/204), 22.06% (45/204), and 18.14% (37/204), respectively. The highest diagnostic yield (29.41%, 60/204) was achieved when OGM and KT were used together. OGM demonstrated a concordance of 95.56% with CMA and 75.68% with KT in this cohort study. CONCLUSIONS Our findings suggest that OGM can be effectively applied in prenatal diagnosis using cultured amniocytes and exhibits high concordance with SOC testing. The combined use of OGM and KT appears to yield the most promising diagnostic outcomes.
Collapse
Affiliation(s)
- Min Xie
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Zhao-Jing Zheng
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Ying Zhou
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Yu-Xin Zhang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Qiong Li
- Prenatal and Neonatal Screening Center, Ningbo Women and Children's Hospital, Ningbo, China
| | - Li-Yun Tian
- Fetal Medicine Centre, Ningbo Women and Children's Hospital, Ningbo, China
| | - Juan Cao
- Fetal Medicine Centre, Ningbo Women and Children's Hospital, Ningbo, China
| | - Yan-Ting Xu
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Jie Ren
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Qi Yu
- Prenatal and Neonatal Screening Center, Ningbo Women and Children's Hospital, Ningbo, China
| | - Shan-Shan Wu
- Paediatric Surgery Centre, Ningbo Women and Children's Hospital, Ningbo, China
| | - Shu Fang
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Dan-Yan Zhuang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Juan Geng
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Chang-Shui Chen
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Hai-Bo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| |
Collapse
|
22
|
Baelen J, Dewaele B, Debiec-Rychter M, Sciot R, Schöffski P, Hompes D, Sinnaeve F, Wafa H, Vanden Bempt I. Optical Genome Mapping for Comprehensive Cytogenetic Analysis of Soft-Tissue and Bone Tumors for Diagnostic Purposes. J Mol Diagn 2024; 26:374-386. [PMID: 38395407 DOI: 10.1016/j.jmoldx.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Soft-tissue and bone tumors represent a heterogeneous group of tumors encompassing more than 100 histologic subtypes today. Identifying genetic aberrations increasingly is important in these tumors for accurate diagnosis. Although gene mutations typically are detected by second-generation sequencing, the identification of structural variants (SVs) and copy number alterations (CNAs) remains challenging and requires various cytogenetic techniques including karyotyping, fluorescence in situ hybridization, and arrays, each with important limitations. Optical Genome Mapping (OGM), a non-sequencing-based technique for high-resolution detection of SVs and CNAs, was applied in a retrospective series of diagnostic soft-tissue and bone tumor samples. Sample preparation was successful in 38 of 53 cases, with the highest success rate in nonadipocytic soft-tissue tumors (24 of 27 cases; 89%). In 32 of 35 cases carrying a diagnostic SV or CNA, OGM identified the aberration (91%), including a POU2AF3::EWSR1 fusion in a round cell sarcoma and a translocation t(1;5)(p22;p15) in a myxoinflammatory fibroblastic sarcoma. Interestingly, OGM shed light on the genomic complexity underlying the various aberrations. In five samples, OGM showed that chains of rearrangements generated the diagnostic fusion, three of which involved chromoplexy. In addition, in nine samples, chromothripsis was causal to the formation of giant marker/ring/double-minute chromosomes. Finally, compared with standard-of-care cytogenetics, OGM revealed additional aberrations, requiring further investigation of their potential clinical relevance.
Collapse
Affiliation(s)
- Jef Baelen
- Department of Human Genetics, KU Leuven, University Hospitals Leuven, Leuven, Belgium.
| | - Barbara Dewaele
- Department of Human Genetics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Raphael Sciot
- Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Daphne Hompes
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Friedl Sinnaeve
- Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hazem Wafa
- Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Vanden Bempt
- Department of Human Genetics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Lühmann JL, Zimmermann M, Hofmann W, Bergmann AK, Möricke A, Cario G, Schrappe M, Schlegelberger B, Stanulla M, Steinemann D. Deciphering the molecular complexity of the IKZF1 plus genomic profile using Optical Genome Mapping. Haematologica 2024; 109:1582-1587. [PMID: 38031808 PMCID: PMC11063842 DOI: 10.3324/haematol.2023.284115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover
| | | | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, Hannover
| | - Anja Möricke
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel
| | - Gunnar Cario
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel
| | - Martin Schrappe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel
| | | | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover.
| |
Collapse
|
24
|
Tashkandi H, Younes IE. Advances in Molecular Understanding of Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis: Towards Precision Medicine. Cancers (Basel) 2024; 16:1679. [PMID: 38730632 PMCID: PMC11083661 DOI: 10.3390/cancers16091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs), including Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF), are characterized by the clonal proliferation of hematopoietic stem cells leading to an overproduction of hematopoietic cells. The last two decades have seen significant advances in our understanding of the molecular pathogenesis of these diseases, with the discovery of key mutations in the JAK2, CALR, and MPL genes being pivotal. This review provides a comprehensive update on the molecular landscape of PV, ET, and PMF, highlighting the diagnostic, prognostic, and therapeutic implications of these genetic findings. We delve into the challenges of diagnosing and treating patients with prognostic mutations, clonal evolution, and the impact of emerging technologies like next-generation sequencing and single-cell genomics on the field. The future of MPN management lies in leveraging these molecular insights to develop personalized treatment strategies, aiming for precision medicine that optimizes outcomes for patients. This article synthesizes current knowledge on molecular diagnostics in MPNs, underscoring the critical role of genetic profiling in enhancing patient care and pointing towards future research directions that promise to further refine our approach to these complex disorders.
Collapse
Affiliation(s)
- Hammad Tashkandi
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ismail Elbaz Younes
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
25
|
de Boer EN, Vroom V, Scheper AJ, Johansson LF, Bosscher L, Rietema N, Commandeur-Jan SZ, Knoers NVAM, Sikkema-Raddatz B, van den Berg E, van Diemen CC. Cas9-directed long-read sequencing to resolve optical genome mapping findings in leukemia diagnostics. Sci Rep 2024; 14:8508. [PMID: 38605095 PMCID: PMC11009395 DOI: 10.1038/s41598-024-59092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Leukemias are genetically heterogeneous and diagnostics therefore includes various standard-of-care (SOC) techniques, including karyotyping, SNP-array and FISH. Optical genome mapping (OGM) may replace these as it detects different types of structural aberrations simultaneously and additionally detects much smaller aberrations (500 bp vs 5-10 Mb with karyotyping). However, its resolution may still be too low to define clinical relevance of aberrations when they are located between two OGM labels or when labels are not distinct enough. Here, we test the potential of Cas9-directed long-read sequencing (LRS) as an additional technique to resolve such potentially relevant new findings. From an internal Bionano implementation study we selected ten OGM calls that could not be validated with SOC methods. Per variant we designed crRNAs for Cas9 enrichment, prepared libraries and sequenced them on a MinION/GridION device. We could confirm all aberrations and, importantly, the actual breakpoints of the OGM calls were located between 0.2 and 5.5 kb of the OGM-estimated breakpoints, confirming the high reliability of OGM. Furthermore, we show examples of redefinition of aberrations between labels that enable judgment of clinical relevance. Our results suggest that Cas9-directed LRS can be a relevant and flexible secondary technique in diagnostic workflows including OGM.
Collapse
Affiliation(s)
- Eddy N de Boer
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Vincent Vroom
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arjen J Scheper
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Lennart F Johansson
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Laura Bosscher
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Nettie Rietema
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Sabrina Z Commandeur-Jan
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Nine V A M Knoers
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Birgit Sikkema-Raddatz
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Eva van den Berg
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Cleo C van Diemen
- Department of Genetics, University of Groningen, University Medical Center Groningen, CB51, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
26
|
Levy B, Kanagal-Shamanna R, Sahajpal NS, Neveling K, Rack K, Dewaele B, Olde Weghuis D, Stevens-Kroef M, Puiggros A, Mallo M, Clifford B, Mantere T, Hoischen A, Espinet B, Kolhe R, Solé F, Raca G, Smith AC. A framework for the clinical implementation of optical genome mapping in hematologic malignancies. Am J Hematol 2024; 99:642-661. [PMID: 38164980 DOI: 10.1002/ajh.27175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.
Collapse
Affiliation(s)
- Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Daniel Olde Weghuis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marian Stevens-Kroef
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mar Mallo
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Francesc Solé
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Adam C Smith
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Wang YF, Zhang ZH, Wang H, Xi LY, Dong F, Jing HM. [Detection of cytogenetic abnormalities in multiple myeloma by using optical genome mapping]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:303-307. [PMID: 38716605 PMCID: PMC11078662 DOI: 10.3760/cma.j.cn121090-20230915-00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 12/05/2024]
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm characterized by numerous chromosomal number and structural abnormalities, which are of great significance for risk stratification and response evaluation of MM patients. Optical genome mapping (OGM) is a novel technology that has the potential to resolve many of the issues and limitations associated with traditional cytogenetic methods. To date, the clinical utility of OGM has been validated in the fields of cancer, reproduction, and embryonic dysplasia, et al. In this study, we compared OGM to traditional techniques for the first time in five newly diagnosed MM patients, and evaluated the potential of OGM for detecting cytogenetic aberrations and its clinical application value in MM.
Collapse
Affiliation(s)
- Y F Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - Z H Zhang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - H Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - L Y Xi
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - F Dong
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - H M Jing
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
28
|
Barseghyan H, Eisenreich D, Lindt E, Wendlandt M, Scharf F, Benet-Pages A, Sendelbach K, Neuhann T, Abicht A, Holinski-Feder E, Koehler U. Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method. Genes (Basel) 2024; 15:342. [PMID: 38540401 PMCID: PMC10970541 DOI: 10.3390/genes15030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution. In this study, we investigated OGM's concordance using 87 SVs previously identified by CA, CMA, or Southern blot. Overall, OGM was 98% concordant with only three discordant cases: (1) uncalled translocation with one breakpoint in a centromere; (2) uncalled duplication with breakpoints in the pseudoautosomal region 1; and (3) uncalled mosaic triplication originating from a marker chromosome. OGM provided diagnosis for three previously unsolved cases: (1) disruption of the SON gene due to a balanced reciprocal translocation; (2) disruption of the NBEA gene due to an inverted insertion; (3) disruption of the TSC2 gene due to a mosaic deletion. We show that OGM is a valid method for the detection of many types of SVs in a single assay and is highly concordant with legacy cytogenomic methods; however, it has limited SV detection capabilities in centromeric and pseudoautosomal regions.
Collapse
Affiliation(s)
- Hayk Barseghyan
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
| | | | - Evgenia Lindt
- Medical Genetics Center (MGZ), 80335 Munich, Germany
| | - Martin Wendlandt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine of Greifswald, 17489 Greifswald, Germany
| | | | | | | | | | - Angela Abicht
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Elke Holinski-Feder
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Department of Medicine IV, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Udo Koehler
- Medical Genetics Center (MGZ), 80335 Munich, Germany
| |
Collapse
|
29
|
Behrens YL, Pietzsch S, Antić Ž, Zhang Y, Bergmann AK. The landscape of cytogenetic and molecular genetic methods in diagnostics for hematologic neoplasia. Best Pract Res Clin Haematol 2024; 37:101539. [PMID: 38490767 DOI: 10.1016/j.beha.2024.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/28/2024] [Indexed: 03/17/2024]
Abstract
Improvements made during the last decades in the management of patients with hematologic neoplasia have resulted in increase of overall survival. These advancements have become possible through progress in our understanding of genetic basis of different hematologic malignancies and their role in the current risk-adapted treatment protocols. In this review, we provide an overview of current cytogenetic and molecular genetic methods, commonly used in the genetic characterization of hematologic malignancies, describe the current developments in the cytogenetic and molecular diagnostics, and give an outlook into their future development. Furthermore, we give a brief overview of the most important public databases and guidelines for sequence variant interpretation.
Collapse
Affiliation(s)
- Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Pietzsch
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
30
|
Schobers G, Derks R, den Ouden A, Swinkels H, van Reeuwijk J, Bosgoed E, Lugtenberg D, Sun SM, Corominas Galbany J, Weiss M, Blok MJ, Olde Keizer RACM, Hofste T, Hellebrekers D, de Leeuw N, Stegmann A, Kamsteeg EJ, Paulussen ADC, Ligtenberg MJL, Bradley XZ, Peden J, Gutierrez A, Pullen A, Payne T, Gilissen C, van den Wijngaard A, Brunner HG, Nelen M, Yntema HG, Vissers LELM. Genome sequencing as a generic diagnostic strategy for rare disease. Genome Med 2024; 16:32. [PMID: 38355605 PMCID: PMC10868087 DOI: 10.1186/s13073-024-01301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.
Collapse
Affiliation(s)
- Gaby Schobers
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Amber den Ouden
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Hilde Swinkels
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Ermanno Bosgoed
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | | | - Su Ming Sun
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jordi Corominas Galbany
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Marjan Weiss
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Richelle A C M Olde Keizer
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Tom Hofste
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Debby Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Alexander Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | | | | | | | | | | | - Christian Gilissen
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | | | - Han G Brunner
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marcel Nelen
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands.
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands.
| |
Collapse
|
31
|
Jang MA. Genomic technologies for detecting structural variations in hematologic malignancies. Blood Res 2024; 59:1. [PMID: 38485792 PMCID: PMC10903520 DOI: 10.1007/s44313-024-00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 03/18/2024] Open
Abstract
Genomic structural variations in myeloid, lymphoid, and plasma cell neoplasms can provide key diagnostic, prognostic, and therapeutic information while elucidating the underlying disease biology. Several molecular diagnostic approaches play a central role in evaluating hematological malignancies. Traditional cytogenetic diagnostic assays, such as chromosome banding and fluorescence in situ hybridization, are essential components of the current diagnostic workup that guide clinical care for most hematologic malignancies. However, each assay has inherent limitations, including limited resolution for detecting small structural variations and low coverage, and can only detect alterations in the target regions. Recently, the rapid expansion and increasing availability of novel and comprehensive genomic technologies have led to their use in clinical laboratories for clinical management and translational research. This review aims to describe the clinical relevance of structural variations in hematologic malignancies and introduce genomic technologies that may facilitate personalized tumor characterization and treatment.
Collapse
Affiliation(s)
- Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
32
|
Mackinnon AC, Chandrashekar DS, Suster DI. Molecular pathology as basis for timely cancer diagnosis and therapy. Virchows Arch 2024; 484:155-168. [PMID: 38012424 DOI: 10.1007/s00428-023-03707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Precision and personalized therapeutics have witnessed significant advancements in technology, revolutionizing the capabilities of laboratories to generate vast amounts of genetic data. Coupled with computational resources for analysis and interpretation, and integrated with various other types of data, including genomic data, electronic medical health (EMH) data, and clinical knowledge, these advancements support optimized health decisions. Among these technologies, next-generation sequencing (NGS) stands out as a transformative tool in the field of cancer treatment, playing a crucial role in precision oncology. NGS-based workflows are employed across a range of applications, including gene panels, exome sequencing, and whole-genome sequencing, supporting comprehensive analysis of the entire cancer genome, including mutations, copy number variations, gene expression profiles, and epigenetic modifications. By utilizing the power of NGS, these workflows contribute to enhancing our understanding of disease mechanisms, diagnosis confirmation, identifying therapeutic targets, and guiding personalized treatment decisions. This manuscript explores the diverse applications of NGS in cancer treatment, highlighting its significance in guiding diagnosis and treatment decisions, identifying therapeutic targets, monitoring disease progression, and improving patient outcomes.
Collapse
Affiliation(s)
- A Craig Mackinnon
- Department of Pathology, University of Alabama at Birmingham, 619 19Th Street South, Birmingham, AL, 35249, USA.
| | | | - David I Suster
- Department of Pathology, Rutgers University New Jersey Medical School, 150 Bergen Street, Newark, NJ, 07103, USA.
| |
Collapse
|
33
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Finlay D, Murad R, Hong K, Lee J, Pang AWC, Lai CY, Clifford B, Burian C, Mason J, Hastie AR, Yin J, Vuori K. Detection of Genomic Structural Variations Associated with Drug Sensitivity and Resistance in Acute Leukemia. Cancers (Basel) 2024; 16:418. [PMID: 38254907 PMCID: PMC10814465 DOI: 10.3390/cancers16020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Acute leukemia is a particularly problematic collection of hematological cancers, and, while somewhat rare, the survival rate of patients is typically abysmal without bone marrow transplantation. Furthermore, traditional chemotherapies used as standard-of-care for patients cause significant side effects. Understanding the evolution of leukemia to identify novel targets and, therefore, drug treatment regimens is a significant medical need. Genomic rearrangements and other structural variations (SVs) have long been known to be causative and pathogenic in multiple types of cancer, including leukemia. These SVs may be involved in cancer initiation, progression, clonal evolution, and drug resistance, and a better understanding of SVs from individual patients may help guide therapeutic options. Here, we show the utilization of optical genome mapping (OGM) to detect known and novel SVs in the samples of patients with leukemia. Importantly, this technology provides an unprecedented level of granularity and quantitation unavailable to other current techniques and allows for the unbiased detection of novel SVs, which may be relevant to disease pathogenesis and/or drug resistance. Coupled with the chemosensitivities of these samples to FDA-approved oncology drugs, we show how an impartial integrative analysis of these diverse datasets can be used to associate the detected genomic rearrangements with multiple drug sensitivity profiles. Indeed, an insertion in the gene MUSK is shown to be associated with increased sensitivity to the clinically relevant agent Idarubicin, while partial tandem duplication events in the KMT2A gene are related to the efficacy of another frontline treatment, Cytarabine.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Rabi Murad
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Karl Hong
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | - Joyce Lee
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | | | - Chi-Yu Lai
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | | | | | - James Mason
- Scripps MD Anderson, La Jolla, CA 92037, USA
| | | | - Jun Yin
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| |
Collapse
|
35
|
Mathew MT, Babcock M, Hou YCC, Hunter JM, Leung ML, Mei H, Schieffer K, Akkari Y. Clinical Cytogenetics: Current Practices and Beyond. J Appl Lab Med 2024; 9:61-75. [PMID: 38167757 DOI: 10.1093/jalm/jfad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Throughout history, the field of cytogenetics has witnessed significant changes due to the constant evolution of technologies used to assess chromosome number and structure. Similar to the evolution of single nucleotide variant detection from Sanger sequencing to next-generation sequencing, the identification of chromosome alterations has progressed from banding to fluorescence in situ hybridization (FISH) to chromosomal microarrays. More recently, emerging technologies such as optical genome mapping and genome sequencing have made noteworthy contributions to clinical laboratory testing in the field of cytogenetics. CONTENT In this review, we journey through some of the most pivotal discoveries that have shaped the development of clinical cytogenetics testing. We also explore the current test offerings, their uses and limitations, and future directions in technology advancements. SUMMARY Cytogenetics methods, including banding and targeted assessments like FISH, continue to hold crucial roles in cytogenetic testing. These methods offer a rapid turnaround time, especially for conditions with a known etiology involving recognized cytogenetic aberrations. Additionally, laboratories have the flexibility to now employ higher-throughput methodologies to enhance resolution for cases with greater complexity.
Collapse
Affiliation(s)
- Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Melanie Babcock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Ying-Chen Claire Hou
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Jesse M Hunter
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Marco L Leung
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Hui Mei
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Kathleen Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
36
|
Ye JC, Tang G. Optical Genome Mapping: A Machine-Based Platform in Cytogenomics. Methods Mol Biol 2024; 2825:113-124. [PMID: 38913305 DOI: 10.1007/978-1-0716-3946-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Optical genome mapping (OGM) has generated excitement following decades of research and development. Now, commercially available technical platforms have been used to compare various other cytogenetic and cytogenomic technologies, including karyotype, microarrays, and DNA sequencing, with impressive results. In this chapter, using OGM as a case study, we advocate for a new trend in future cytogenomics, emphasizing the power of machine automation to deliver higher-quality cytogenomic data. By briefly discussing OGM, along with its major advantages and limitations, we underscore the importance of karyotype-based genomic research, from both a theoretical framework and a new technology perspective. We also call for the encouragement of further technological platform development for the future of cytogenetics and cytogenomics.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
LoTempio J, Delot E, Vilain E. Benchmarking long-read genome sequence alignment tools for human genomics applications. PeerJ 2023; 11:e16515. [PMID: 38130927 PMCID: PMC10734412 DOI: 10.7717/peerj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Background The utility of long-read genome sequencing platforms has been shown in many fields including whole genome assembly, metagenomics, and amplicon sequencing. Less clear is the applicability of long reads to reference-guided human genomics, which is the foundation of genomic medicine. Here, we benchmark available platform-agnostic alignment tools on datasets from nanopore and single-molecule real-time platforms to understand their suitability in producing a genome representation. Results For this study, we leveraged publicly-available data from sample NA12878 generated on Oxford Nanopore and sample NA24385 on Pacific Biosciences platforms. We employed state of the art sequence alignment tools including GraphMap2, long-read aligner (LRA), Minimap2, CoNvex Gap-cost alignMents for Long Reads (NGMLR), and Winnowmap2. Minimap2 and Winnowmap2 were computationally lightweight enough for use at scale, while GraphMap2 was not. NGMLR took a long time and required many resources, but produced alignments each time. LRA was fast, but only worked on Pacific Biosciences data. Each tool widely disagreed on which reads to leave unaligned, affecting the end genome coverage and the number of discoverable breakpoints. No alignment tool independently resolved all large structural variants (1,001-100,000 base pairs) present in the Database of Genome Variants (DGV) for sample NA12878 or the truthset for NA24385. Conclusions These results suggest a combined approach is needed for LRS alignments for human genomics. Specifically, leveraging alignments from three tools will be more effective in generating a complete picture of genomic variability. It should be best practice to use an analysis pipeline that generates alignments with both Minimap2 and Winnowmap2 as they are lightweight and yield different views of the genome. Depending on the question at hand, the data available, and the time constraints, NGMLR and LRA are good options for a third tool. If computational resources and time are not a factor for a given case or experiment, NGMLR will provide another view, and another chance to resolve a case. LRA, while fast, did not work on the nanopore data for our cluster, but PacBio results were promising in that those computations completed faster than Minimap2. Due to its significant burden on computational resources and slow run time, Graphmap2 is not an ideal tool for exploration of a whole human genome generated on a long-read sequencing platform.
Collapse
Affiliation(s)
- Jonathan LoTempio
- Institute for Clinical and Translational Science, University of California, Irvine, CA, United States of America
- International Research Laboratory (IRL2006) “Epigenetics, Data, Politics (EpiDaPo)”, Centre National de la Recherche Scientifique, Washington, DC, United States of America
| | - Emmanuele Delot
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States of America
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, United States of America
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, United States of America
- International Research Laboratory (IRL2006) “Epigenetics, Data, Politics (EpiDaPo)”, Centre National de la Recherche Scientifique, Washington, DC, United States of America
| |
Collapse
|
38
|
Pang AWC, Kosco K, Sahajpal NS, Sridhar A, Hauenstein J, Clifford B, Estabrook J, Chitsazan AD, Sahoo T, Iqbal A, Kolhe R, Raca G, Hastie AR, Chaubey A. Analytic Validation of Optical Genome Mapping in Hematological Malignancies. Biomedicines 2023; 11:3263. [PMID: 38137484 PMCID: PMC10741484 DOI: 10.3390/biomedicines11123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Structural variations (SVs) play a key role in the pathogenicity of hematological malignancies. Standard-of-care (SOC) methods such as karyotyping and fluorescence in situ hybridization (FISH), which have been employed globally for the past three decades, have significant limitations in terms of resolution and the number of recurrent aberrations that can be simultaneously assessed, respectively. Next-generation sequencing (NGS)-based technologies are now widely used to detect clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM requires neither cultured cells nor amplification of DNA, addressing the limitations of culture and amplification biases. This study reports the clinical validation of OGM as a laboratory-developed test (LDT) according to stringent regulatory (CAP/CLIA) guidelines for genome-wide SV detection in different hematological malignancies. In total, 60 cases with hematological malignancies (of various subtypes), 18 controls, and 2 cancer cell lines were used for this study. Ultra-high-molecular-weight DNA was extracted from the samples, fluorescently labeled, and run on the Bionano Saphyr system. A total of 215 datasets, Inc.luding replicates, were generated, and analyzed successfully. Sample data were then analyzed using either disease-specific or pan-cancer-specific BED files to prioritize calls that are known to be diagnostically or prognostically relevant. Sensitivity, specificity, and reproducibility were 100%, 100%, and 96%, respectively. Following the validation, 14 cases and 10 controls were run and analyzed using OGM at three outside laboratories showing reproducibility of 96.4%. OGM found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes of SVs at higher resolution. The results of this validation study demonstrate the superiority of OGM over traditional SOC methods for the detection of SVs for the accurate diagnosis of various hematological malignancies.
Collapse
Affiliation(s)
| | | | - Nikhil S. Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | - Anwar Iqbal
- DNA Microarray CGH Laboratory, Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
| | - Alex R. Hastie
- Bionano, San Diego, CA 92121, USA; (A.W.C.P.)
- Bionano Laboratories, San Diego, CA 92121, USA
| | - Alka Chaubey
- Bionano, San Diego, CA 92121, USA; (A.W.C.P.)
- Bionano Laboratories, San Diego, CA 92121, USA
| |
Collapse
|
39
|
Coccaro N, Zagaria A, Anelli L, Tarantini F, Tota G, Conserva MR, Cumbo C, Parciante E, Redavid I, Ingravallo G, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. Optical Genome Mapping as a Tool to Unveil New Molecular Findings in Hematological Patients with Complex Chromosomal Rearrangements. Genes (Basel) 2023; 14:2180. [PMID: 38137002 PMCID: PMC10742895 DOI: 10.3390/genes14122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Standard cytogenetic techniques (chromosomal banding analysis-CBA, and fluorescence in situ hybridization-FISH) show limits in characterizing complex chromosomal rearrangements and structural variants arising from two or more chromosomal breaks. In this study, we applied optical genome mapping (OGM) to fully characterize two cases of complex chromosomal rearrangements at high resolution. In case 1, an acute myeloid leukemia (AML) patient showing chromothripsis, OGM analysis was fully concordant with classic cytogenetic techniques and helped to better refine chromosomal breakpoints. The OGM results of case 2, a patient with non-Hodgkin lymphoma, were only partially in agreement with previous cytogenetic analyses and helped to better define clonal heterogeneity, overcoming the bias related to clonal selection due to cell culture of cytogenetic techniques. In both cases, OGM analysis led to the identification of molecular markers, helping to define the pathogenesis, classification, and prognosis of the analyzed patients. Despite extensive efforts to study hematologic diseases, standard cytogenetic methods display unsurmountable limits, while OGM is a tool that has the power to overcome these limitations and provide a cytogenetic analysis at higher resolution. As OGM also shows limits in defining regions of a repetitive nature, combining OGM with CBA to obtain a complete cytogenetic characterization would be desirable.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Angela Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| |
Collapse
|
40
|
Smith AC, Hoischen A, Raca G. Cytogenetics Is a Science, Not a Technique! Why Optical Genome Mapping Is So Important to Clinical Genetic Laboratories. Cancers (Basel) 2023; 15:5470. [PMID: 38001730 PMCID: PMC10670395 DOI: 10.3390/cancers15225470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Karyotyping is a technique that has been used in clinical cytogenetic laboratories for more than 40 years [...].
Collapse
Affiliation(s)
- Adam C. Smith
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander Hoischen
- Department of Human Genetics and Department of Internal Medicine, Research Institute for Medical Innovation, Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| |
Collapse
|
41
|
De Bie J, Quessada J, Tueur G, Lefebvre C, Luquet I, Toujani S, Cuccuini W, Lafage-Pochitaloff M, Michaux L. Cytogenetics in the management of T-cell acute lymphoblastic leukemia (T-ALL): Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103431. [PMID: 38016418 DOI: 10.1016/j.retram.2023.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Molecular analysis is the hallmark of T-cell acute lymphoblastic leukemia (T-ALL) categorization. Several T-ALL sub-groups are well recognized based on the aberrant expression of specific transcription factors. This recently resulted in the implementation of eight provisional T-ALL entities into the novel 2022 International Consensus Classification, albeit not into the updated World Health Organization classification system. Despite this extensive molecular characterization, cytogenetic analysis remains the backbone of T-ALL diagnosis in many countries as chromosome banding analysis and fluorescence in situ hybridization are relatively inexpensive techniques to obtain results of diagnostic, prognostic and therapeutic interest. Here, we provide an overview of recurrent chromosomal abnormalities detectable in T-ALL patients and propose guidelines regarding their detection. By referring in parallel to the more general molecular classification approach, we hope to offer a diagnostic framework useful in a broad clinical genetic setting.
Collapse
Affiliation(s)
- Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Saloua Toujani
- Service de Cytogénétique et Biologie Cellulaire, CHU de Rennes, Rennes 35033, France
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium.
| |
Collapse
|
42
|
Bidet A, Quessada J, Cuccuini W, Decamp M, Lafage-Pochitaloff M, Luquet I, Lefebvre C, Tueur G. Cytogenetics in the management of acute myeloid leukemia and histiocytic/dendritic cell neoplasms: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103421. [PMID: 38016419 DOI: 10.1016/j.retram.2023.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
Genetic data are becoming increasingly essential in the management of hematological neoplasms as shown by two classifications published in 2022: the 5th edition of the World Health Organization Classification of Hematolymphoid Tumours and the International Consensus Classification of Myeloid Neoplasms and Acute Leukemias. Genetic data are particularly important for acute myeloid leukemias (AMLs) because their boundaries with myelodysplastic neoplasms seem to be gradually blurring. The first objective of this review is to present the latest updates on the most common cytogenetic abnormalities in AMLs while highlighting the pitfalls and difficulties that can be encountered in the event of cryptic or difficult-to-detect karyotype abnormalities. The second objective is to enhance the role of cytogenetics among all the new technologies available in 2023 for the diagnosis and management of AML.
Collapse
Affiliation(s)
- Audrey Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Avenue Magellan, Bordeaux, Pessac F-33600, France.
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Hôpital des enfants de la Timone, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille Université, Marseille 13005, France; CNRS, INSERM, CIML, Aix Marseille Université, Marseille 13009, France
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Hôpital des enfants de la Timone, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille Université, Marseille 13005, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse, Site IUCT-O, Toulouse, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France
| | - Giulia Tueur
- Laboratoire d'Hématologie, CHU Avicenne, APHP, Bobigny, France
| |
Collapse
|
43
|
Lenahan AL, Squire AE, Miller DE. Panels, Exomes, Genomes, and More-Finding the Best Path Through the Diagnostic Odyssey. Pediatr Clin North Am 2023; 70:905-916. [PMID: 37704349 DOI: 10.1016/j.pcl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Selecting the ideal test to evaluate an individual with a suspected genetic disorder can be challenging. While several clinical testing options are available, no single test yet captures all potentially causative genetic variants. Thus, clinicians may order testing in a stepwise fashion, and what to order after non-diagnostic testing can be challenging to determine. Here, we provide an overview of commonly used clinical genetic tests, guidance on when they are best used, and what they may miss. We conclude with a discussion of how new technologies might be used to identify challenging variants and simplify clinical testing in the future.
Collapse
Affiliation(s)
- Arthur L Lenahan
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Audrey E Squire
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Lefebvre C, Veronese L, Nadal N, Gaillard JB, Penther D, Daudignon A, Chauzeix J, Nguyen-Khac F, Chapiro E. Cytogenetics in the management of mature B-cell non-Hodgkin lymphomas: Guidelines from the Groupe Francophone de Cytogénétique Hematologique (GFCH). Curr Res Transl Med 2023; 71:103425. [PMID: 38016420 DOI: 10.1016/j.retram.2023.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023]
Abstract
Non-Hodgkin lymphomas (NHL) consist of a wide range of clinically, phenotypically and genetically distinct neoplasms. The accurate diagnosis of mature B-cell non-Hodgkin lymphoma relies on a multidisciplinary approach that integrates morphological, phenotypical and genetic characteristics together with clinical features. Cytogenetic analyses remain an essential part of the diagnostic workup for mature B-cell lymphomas. Karyotyping is particularly useful to identify hallmark translocations, typical cytogenetic signatures as well as complex karyotypes, all bringing valuable diagnostic and/or prognostic information. Besides the well-known recurrent chromosomal abnormalities such as, for example, t(14;18)(q32;q21)/IGH::BCL2 in follicular lymphoma, recent evidences support a prognostic significance of complex karyotype in mantle cell lymphoma and Waldenström macroglobulinemia. Fluorescence In Situ Hybridization is also a key analysis playing a central role in disease identification, especially in genetically-defined entities, but also in predicting transformation risk or prognostication. This can be exemplified by the pivotal role of MYC, BCL2 and/or BCL6 rearrangements in the diagnostic of aggressive or large B-cell lymphomas. This work relies on the World Health Organization and the International Consensus Classification of hematolymphoid tumors together with the recent cytogenetic advances. Here, we review the various chromosomal abnormalities that delineate well-established mature B-cell non-Hodgkin lymphoma entities as well as newly recognized genetic subtypes and provide cytogenetic guidelines for the diagnostic management of mature B-cell lymphomas.
Collapse
Affiliation(s)
- C Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France.
| | - L Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand; EA7453 CHELTER, Université Clermont Auvergne, France
| | - N Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, Dijon, France
| | - J-B Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France
| | - D Penther
- Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | - A Daudignon
- Laboratoire de Génétique Médicale - Hôpital Jeanne de Flandre - CHRU de Lille, France
| | - J Chauzeix
- Service d'Hématologie biologique CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - F Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - E Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| |
Collapse
|
45
|
Barseghyan H, Pang AWC, Clifford B, Serrano MA, Chaubey A, Hastie AR. Comparative Benchmarking of Optical Genome Mapping and Chromosomal Microarray Reveals High Technological Concordance in CNV Identification and Additional Structural Variant Refinement. Genes (Basel) 2023; 14:1868. [PMID: 37895217 PMCID: PMC10667989 DOI: 10.3390/genes14101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The recommended practice for individuals suspected of a genetic etiology for disorders including unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) involves a genetic testing workflow including chromosomal microarray (CMA), Fragile-X testing, karyotype analysis, and/or sequencing-based gene panels. Since genomic imbalances are often found to be causative, CMA is recommended as first tier testing for many indications. Optical genome mapping (OGM) is an emerging next generation cytogenomic technique that can detect not only copy number variants (CNVs), triploidy and absence of heterozygosity (AOH) like CMA, but can also define the location of duplications, and detect other structural variants (SVs), including balanced rearrangements and repeat expansions/contractions. This study compares OGM to CMA for clinically reported genomic variants, some of these samples also have structural characterization by fluorescence in situ hybridization (FISH). OGM was performed on IRB approved, de-identified specimens from 55 individuals with genomic abnormalities previously identified by CMA (61 clinically reported abnormalities). SVs identified by OGM were filtered by a control database to remove polymorphic variants and against an established gene list to prioritize clinically relevant findings before comparing with CMA and FISH results. OGM results showed 100% concordance with CMA findings for pathogenic variants and 98% concordant for all pathogenic/likely pathogenic/variants of uncertain significance (VUS), while also providing additional insight into the genomic structure of abnormalities that CMA was unable to provide. OGM demonstrates equivalent performance to CMA for CNV and AOH detection, enhanced by its ability to determine the structure of the genome. This work adds to an increasing body of evidence on the analytical validity and ability to detect clinically relevant abnormalities identified by CMA. Moreover, OGM identifies translocations, structures of duplications and complex CNVs intractable by CMA, yielding additional clinical utility.
Collapse
Affiliation(s)
- Hayk Barseghyan
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA
- Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | | | - Benjamin Clifford
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| | | | - Alka Chaubey
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| | - Alex R. Hastie
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| |
Collapse
|
46
|
Elangovan A, Bossart EA, Basudan A, Tasdemir N, Shah OS, Ding K, Meier C, Heim T, Neumann C, Attaran S, Brown L, Hooda J, Miller L, Liu T, Puhalla SL, Gurda G, Lucas PC, McAuliffe PF, Atkinson JM, Lee AV, Oesterreich S. WCRC-25: A novel luminal Invasive Lobular Carcinoma cell line model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558023. [PMID: 37745587 PMCID: PMC10516031 DOI: 10.1101/2023.09.15.558023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Breast cancer is categorized by the molecular and histologic presentation of the tumor, with the major histologic subtypes being No Special Type (NST) and Invasive Lobular Carcinoma (ILC). ILC are characterized by growth in a single file discohesive manner with stromal infiltration attributed to their hallmark pathognomonic loss of E-cadherin ( CDH1 ). Few ILC cell line models are available to researchers. Here we report the successful establishment and characterization of a novel ILC cell line, WCRC-25, from a metastatic pleural effusion from a postmenopausal Caucasian woman with metastatic ILC. WCRC-25 is an ER-negative luminal epithelial ILC cell line with both luminal and Her2-like features. It exhibits anchorage independent growth and haptotactic migration towards Collagen I. Sequencing revealed a CDH1 Q706* truncating mutation, together with mutations in FOXA1, CTCF, BRCA2 and TP53 , which were also seen in a series of metastatic lesions from the patient. Copy number analyses revealed amplification and deletion of genes frequently altered in ILC while optical genome mapping revealed novel structural rearrangements. RNA-seq analysis comparing the primary tumor, metastases and the cell line revealed signatures for cell cycle progression and receptor tyrosine kinase signaling. To assess targetability, we treated WCRC-25 with AZD5363 and Alpelisib confirming WCRC-25 as susceptible to PI3K/AKT signaling inhibition as predicted by our RNA sequencing analysis. In conclusion, we report WCRC-25 as a novel ILC cell line with promise as a valuable research tool to advance our understanding of ILC and its therapeutic vulnerabilities. Financial support The work was in part supported by a Susan G Komen Leadership Grant to SO (SAC160073) and NCI R01 CA252378 (SO/AVL). AVL and SO are Komen Scholars, Hillman Foundation Fellows and supported by BCRF. This project used the UPMC Hillman Cancer Center and Tissue and Research Pathology/Pitt Biospecimen Core shared resource which is supported in part by award P30CA047904. This research was also supported in part by the University of Pittsburgh Center for Research Computing, RRID:SCR_022735, through the resources provided. Specifically, this work used the HTC cluster, which is supported by NIH award number S10OD028483. Finally, partial support was provided by the Magee-Womens Research Institute and Foundation, The Shear Family Foundation, and The Metastatic Breast Cancer Network.
Collapse
|
47
|
Rao H, Zhang H, Zou Y, Ma P, Huang T, Yuan H, Zhou J, Lu W, Li Q, Huang S, Liu Y, Yang B. Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping. Front Genet 2023; 14:1248755. [PMID: 37732322 PMCID: PMC10507169 DOI: 10.3389/fgene.2023.1248755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background and aims: Certain chromosomal structural variations (SVs) in biological parents can lead to recurrent spontaneous abortions (RSAs). Unequal crossing over during meiosis can result in the unbalanced rearrangement of gamete chromosomes such as duplication or deletion. Unfortunately, routine techniques such as karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and copy number variation sequencing (CNV-seq) cannot detect all types of SVs. In this study, we show that optical genome mapping (OGM) quickly and accurately detects SVs for RSA patients with a high resolution and provides more information about the breakpoint regions at gene level. Methods: Seven couples who had suffered RSA with unbalanced chromosomal rearrangements of aborted embryos were recruited, and ultra-high molecular weight (UHMW) DNA was isolated from their peripheral blood. The consensus genome map was created by de novo assembly on the Bionano Solve data analysis software. SVs and breakpoints were identified via alignments of the reference genome GRCh38/hg38. The exact breakpoint sequences were verified using either Oxford Nanopore sequencing or Sanger sequencing. Results: Various SVs in the recruited couples were successfully detected by OGM. Also, additional complex chromosomal rearrangement (CCRs) and four cryptic balanced reciprocal translocations (BRTs) were revealed, further refining the underlying genetic causes of RSA. Two of the disrupted genes identified in this study, FOXK2 [46,XY,t(7; 17)(q31.3; q25)] and PLXDC2 [46,XX,t(10; 16)(p12.31; q23.1)], had been previously shown to be associated with male fertility and embryo transit. Conclusion: OGM accurately detects chromosomal SVs, especially cryptic BRTs and CCRs. It is a useful complement to routine human genetic diagnostics, such as karyotyping, and detects cryptic BRTs and CCRs more accurately than routine genetic diagnostics.
Collapse
Affiliation(s)
- Huihua Rao
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Haoyi Zhang
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yongyi Zou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Pengpeng Ma
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Tingting Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huizhen Yuan
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jihui Zhou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Wan Lu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qiao Li
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shuhui Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bicheng Yang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Dingemans AJM, Hinne M, Truijen KMG, Goltstein L, van Reeuwijk J, de Leeuw N, Schuurs-Hoeijmakers J, Pfundt R, Diets IJ, den Hoed J, de Boer E, Coenen-van der Spek J, Jansen S, van Bon BW, Jonis N, Ockeloen CW, Vulto-van Silfhout AT, Kleefstra T, Koolen DA, Campeau PM, Palmer EE, Van Esch H, Lyon GJ, Alkuraya FS, Rauch A, Marom R, Baralle D, van der Sluijs PJ, Santen GWE, Kooy RF, van Gerven MAJ, Vissers LELM, de Vries BBA. PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework. Nat Genet 2023; 55:1598-1607. [PMID: 37550531 PMCID: PMC11414844 DOI: 10.1038/s41588-023-01469-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.
Collapse
Affiliation(s)
- Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Max Hinne
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kim M G Truijen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lia Goltstein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke Schuurs-Hoeijmakers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Illja J Diets
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Elke de Boer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jet Coenen-van der Spek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandra Jansen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Noraly Jonis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke T Vulto-van Silfhout
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Elizabeth E Palmer
- Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Gholson J Lyon
- Department of Human Genetics and George A. Jervis Clinic, Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York City, NY, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Marcel A J van Gerven
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
49
|
Sahajpal NS, Mondal AK, Vashisht A, Singh H, Pang AWC, Saul D, Nivin O, Hilton B, DuPont BR, Kota V, Savage NM, Hastie AR, Chaubey A, Kolhe R. Optical Genome Mapping: Integrating Structural Variations for Precise Homologous Recombination Deficiency Score Calculation. Genes (Basel) 2023; 14:1683. [PMID: 37761823 PMCID: PMC10530691 DOI: 10.3390/genes14091683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Homologous recombination deficiency (HRD) is characterized by the inability of a cell to repair the double-stranded breaks using the homologous recombination repair (HRR) pathway. The deficiency of the HRR pathway results in defective DNA repair, leading to genomic instability and tumorigenesis. The presence of HRD has been found to make tumors sensitive to ICL-inducing platinum-based therapies and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi). However, there are no standardized methods to measure and report HRD phenotypes. Herein, we compare optical genome mapping (OGM), chromosomal microarray (CMA), and a 523-gene NGS panel for HRD score calculations. This retrospective study included the analysis of 196 samples, of which 10 were gliomas, 176 were hematological malignancy samples, and 10 were controls. The 10 gliomas were evaluated with both CMA and OGM, and 30 hematological malignancy samples were evaluated with both the NGS panel and OGM. To verify the scores in a larger cohort, 135 cases were evaluated with the NGS panel and 71 cases with OGM. The HRD scores were calculated using a combination of three HRD signatures that included loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale transitions (LST). In the ten glioma cases analyzed with OGM and CMA using the same DNA (to remove any tumor percentage bias), the HRD scores (mean ± SEM) were 13.2 (±4.2) with OGM compared to 3.7 (±1.4) with CMA. In the 30 hematological malignancy cases analyzed with OGM and the 523-gene NGS panel, the HRD scores were 7.6 (±2.2) with OGM compared to 2.6 (±0.8) with the 523-gene NGS panel. OGM detected 70.8% and 66.8% of additional variants that are considered HRD signatures in gliomas and hematological malignancies, respectively. The higher sensitivity of OGM to capture HRD signature variants might enable a more accurate and precise correlation with response to PARPi and platinum-based drugs. This study reveals HRD signatures that are cryptic to current standard of care (SOC) methods used for assessing the HRD phenotype and presents OGM as an attractive alternative with higher resolution and sensitivity to accurately assess the HRD phenotype.
Collapse
Affiliation(s)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Andy Wing Chun Pang
- Bionano Genomics, San Diego, CA 92121, USA; (A.W.C.P.); (D.S.); (A.R.H.); (A.C.)
| | - Daniel Saul
- Bionano Genomics, San Diego, CA 92121, USA; (A.W.C.P.); (D.S.); (A.R.H.); (A.C.)
| | - Omar Nivin
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Benjamin Hilton
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (N.S.S.); (B.H.); (B.R.D.)
| | - Barbara R. DuPont
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (N.S.S.); (B.H.); (B.R.D.)
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Alex R. Hastie
- Bionano Genomics, San Diego, CA 92121, USA; (A.W.C.P.); (D.S.); (A.R.H.); (A.C.)
| | - Alka Chaubey
- Bionano Genomics, San Diego, CA 92121, USA; (A.W.C.P.); (D.S.); (A.R.H.); (A.C.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| |
Collapse
|
50
|
Romagnoli S, Bartalucci N, Vannucchi AM. Resolving complex structural variants via nanopore sequencing. Front Genet 2023; 14:1213917. [PMID: 37674481 PMCID: PMC10479017 DOI: 10.3389/fgene.2023.1213917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
The recent development of high-throughput sequencing platforms provided impressive insights into the field of human genetics and contributed to considering structural variants (SVs) as the hallmark of genome instability, leading to the establishment of several pathologic conditions, including neoplasia and neurodegenerative and cognitive disorders. While SV detection is addressed by next-generation sequencing (NGS) technologies, the introduction of more recent long-read sequencing technologies have already been proven to be invaluable in overcoming the inaccuracy and limitations of NGS technologies when applied to resolve wide and structurally complex SVs due to the short length (100-500 bp) of the sequencing read utilized. Among the long-read sequencing technologies, Oxford Nanopore Technologies developed a sequencing platform based on a protein nanopore that allows the sequencing of "native" long DNA molecules of virtually unlimited length (typical range 1-100 Kb). In this review, we focus on the bioinformatics methods that improve the identification and genotyping of known and novel SVs to investigate human pathological conditions, discussing the possibility of introducing nanopore sequencing technology into routine diagnostics.
Collapse
Affiliation(s)
| | | | - Alessandro Maria Vannucchi
- CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, DENOTHE Excellence Center, Careggi University Hospital and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|