1
|
Xu R, Zhang M, Yang X, Tian W, Li C. Decoding complexity: The role of long-read sequencing in unraveling genetic disease etiologies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108529. [PMID: 39788369 DOI: 10.1016/j.mrrev.2024.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
In recent years, next-generation high-throughput sequencing technology has been widely used in clinical practice for the identification and diagnosis of Mendelian diseases as an auxiliary detection method. Nevertheless, due to the limitations in read length and poor coverage of complex genomic regions, the etiology of many genetic diseases is unclear. Long-read sequencing (LRS) addresses these limitations of next-generation sequencing. LRS is an effective tool for the clinical study of the etiology of complex genetic diseases. In this review, we summarized the current research on the application of LRS in diseases across various systems. We also reported the improvements in the diagnostic rate and common variant types of LRS in different studies, providing a foundation for the discovery of new disease mechanisms, which is anticipated to play a crucial role in future research on genetic diseases.
Collapse
Affiliation(s)
- Ran Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mengmeng Zhang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Changyan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Basic Medical Sciences, An Hui Medical University, 230032, Hefei, China; School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding, Hebei 071000, China.
| |
Collapse
|
2
|
Livanos I, Votsi C, Michailidou K, Pellerin D, Brais B, Zuchner S, Pantzaris M, Kleopa KA, Zamba Papanicolaou E, Christodoulou K. The FGF14 GAA repeat expansion is a major cause of ataxia in the Cypriot population. Brain Commun 2025; 7:fcae479. [PMID: 39801711 PMCID: PMC11724429 DOI: 10.1093/braincomms/fcae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Dominantly inherited intronic GAA repeat expansions in the fibroblast growth factor 14 gene have recently been shown to cause spinocerebellar ataxia 27B. Currently, the pathogenic threshold of (GAA)≥300 repeat units is considered highly penetrant, while (GAA)250-299 is likely pathogenic with reduced penetrance. This study investigated the frequency of the GAA repeat expansion and the phenotypic profile in a Cypriot cohort with unresolved late-onset cerebellar ataxia. We analysed this trinucleotide repeat in 155 patients with late-onset cerebellar ataxia and 227 non-neurological disease controls. The repeat locus was examined by long-range PCR followed by fragment analysis using capillary electrophoresis, agarose gel electrophoresis and automated electrophoresis. A comprehensive comparison of all three electrophoresis techniques was conducted. Additionally, bidirectional repeat-primed PCRs and Sanger sequencing were carried out to confirm the absence of any interruptions or non-GAA motifs in the expanded alleles. The (GAA)≥250 repeat expansion was present in 12 (7.7%) patients. The average age at disease onset was 60 ± 13.5 years. The earliest age of onset was observed in a patient with a (GAA)287 repeat expansion, with ataxia symptoms appearing at 25 years of age. All patients with spinocerebellar ataxia 27B displayed symptoms of gait and appendicular ataxia. Nystagmus was observed in 41.7% of the patients, while 58.3% exhibited dysarthria. Our findings indicate that spinocerebellar ataxia 27B represents the predominant aetiology of autosomal dominant cerebellar ataxia in the Cypriot population, as this is the first dominant repeat expansion ataxia type detected in this population. Given our results and existing research, we propose including fibroblast growth factor 14 GAA repeat expansion testing as a first-tier genetic diagnostic approach for patients with late-onset cerebellar ataxia.
Collapse
Affiliation(s)
- Ioannis Livanos
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
| | - Christina Votsi
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
| | - Kyriaki Michailidou
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - David Pellerin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, CanadaH3A 2B4
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London WC1N 3BG, UK
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, CanadaH3A 2B4
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marios Pantzaris
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
- Neuroimmunology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Kleopas A Kleopa
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Centre for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Eleni Zamba Papanicolaou
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
- Centre for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- The Cyprus Institute of Neurology and Genetics is a member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Research Management Unit, Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen 72076, Germany
| |
Collapse
|
3
|
Delvallee C, Calmels N, Bogdan T, Tranchant C, Anheim M, Wirth T. No evidence for association between GAA-FGF14 expansion and early onset cerebellar ataxia: a study on 85 undiagnosed patients. J Neurol 2024; 272:32. [PMID: 39666057 DOI: 10.1007/s00415-024-12765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Clarisse Delvallee
- Neurology Department, Strasbourg University Hospital, 67098, Strasbourg, France
- Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, Strasbourg, France
| | - Nadège Calmels
- Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Thomas Bogdan
- Neurology Department, Strasbourg University Hospital, 67098, Strasbourg, France
| | - Christine Tranchant
- Neurology Department, Strasbourg University Hospital, 67098, Strasbourg, France
- Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, Strasbourg, France
| | - Mathieu Anheim
- Neurology Department, Strasbourg University Hospital, 67098, Strasbourg, France
- Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, Strasbourg, France
| | - Thomas Wirth
- Neurology Department, Strasbourg University Hospital, 67098, Strasbourg, France.
- Federation of Translational Medicine, Strasbourg University, Strasbourg, France.
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, Strasbourg, France.
| |
Collapse
|
4
|
Masnovo C, Paleiov Z, Dovrat D, Baxter LK, Movafaghi S, Aharoni A, Mirkin SM. Stabilization of expandable DNA repeats by the replication factor Mcm10 promotes cell viability. Nat Commun 2024; 15:10532. [PMID: 39627228 PMCID: PMC11615337 DOI: 10.1038/s41467-024-54977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Trinucleotide repeats, including Friedreich's ataxia (GAA)n repeats, become pathogenic upon expansions during DNA replication and repair. Here, we show that deficiency of the essential replisome component Mcm10 dramatically elevates (GAA)n repeat instability in a budding yeast model by loss of proper CMG helicase interaction. Supporting this conclusion, live-cell microscopy experiments reveal increased replication fork stalling at the repeat in mcm10-1 cells. Unexpectedly, the viability of strains containing a single (GAA)100 repeat at an essential chromosomal location strongly depends on Mcm10 function and cellular RPA levels. This coincides with Rad9 checkpoint activation, which promotes cell viability, but initiates repeat expansions via DNA synthesis by polymerase δ. When repair is inefficient, such as in the case of RPA depletion, breakage of under-replicated repetitive DNA can occur during G2/M, leading to loss of essential genes and cell death. We hypothesize that the CMG-Mcm10 interaction promotes replication through hard-to-replicate regions, assuring genome stability and cell survival.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Zohar Paleiov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Laurel K Baxter
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Sofia Movafaghi
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
5
|
Gerhart BJ, Pellerin D, Danzi MC, Zuchner S, Brais B, Matos-Rodrigues G, Nussenzweig A, Usdin K, Park CC, Napierala JS, Lynch DR, Napierala M. Assessment of the Clinical Interactions of GAA Repeat Expansions in FGF14 and FXN. Neurol Genet 2024; 10:e200210. [PMID: 39574782 PMCID: PMC11581763 DOI: 10.1212/nxg.0000000000200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/19/2024] [Indexed: 11/24/2024]
Abstract
Background and Objectives The number of GAA repeats in the FXN gene is a major but not sole determinant of the clinical presentation of Friedreich ataxia (FRDA). The objective of this study was to establish whether the length of the GAA repeat tract in the FGF14 gene, which is associated with another neurodegenerative disorder (SCA27B), affects the clinical presentation (age at onset, mFARS score) of patients with FRDA. Methods The number of GAA repeats in the FXN and FGF14 genes was determined using PCR in a cohort of 221 patients with FRDA. Next, we compared absolute lengths of the FGF14 GAAs with FXN GAAs, followed by correlative analyses to determine potential effects of FGF14 GAA length on age at onset and clinical presentation (mFARS) of FRDA. Results We found no significant correlation between the size of the GAA repeats in FXN and FGF14 loci in our FRDA cohort. Moreover, the number of GAAs in FGF14 did not affect the clinical presentation of FRDA even in a small number of cases where a long FGF14 allele was present. Discussion Despite both molecular and clinical similarities between FRDA and SCA27B, the length of the GAA repeats in the FGF14 gene, including potentially pathogenic alleles, did not influence the clinical presentation of FRDA.
Collapse
Affiliation(s)
- Brandon J Gerhart
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - David Pellerin
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Matt C Danzi
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Stephan Zuchner
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Bernard Brais
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Gabriel Matos-Rodrigues
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Andre Nussenzweig
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Karen Usdin
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Courtney C Park
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Jill S Napierala
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - David R Lynch
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| | - Marek Napierala
- From the Department of Neurology (B.J.G., J.S.N., M.N.), O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas; Department of Neurology and Neurosurgery (D.P., B.B.), Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada; Department of Neuromuscular Diseases (D.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, United Kingdom; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine, FL; Department of Human Genetics (B.B.), McGill University, Montreal, Quebec, Canada; Laboratory of Genome Integrity (G.M.-R., A.N.), National Cancer Institute, NIH; Laboratory of Cell and Molecular Biology (K.U.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; and Department of Pediatrics and Neurology (C.C.P., D.R.L.), The Children's Hospital of Philadelphia, PA
| |
Collapse
|
6
|
Kakumoto T, Orimo K, Matsukawa T, Mitsui J, Ishihara T, Onodera O, Suzuki Y, Morishita S, Toda T, Tsuji S. Frequency of FGF14 intronic GAA repeat expansion in patients with multiple system atrophy and undiagnosed ataxia in the Japanese population. Eur J Hum Genet 2024:10.1038/s41431-024-01743-3. [PMID: 39604554 DOI: 10.1038/s41431-024-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic nervous system dysfunction and cerebellar ataxia or parkinsonism. Recently, expanded GAA repeats (≥250 repeat units) in intron 1 of FGF14 have been shown to be responsible for spinocerebellar ataxia type 27B (SCA27B), a late-onset ataxia with an autosomal dominant inheritance. Patients with SCA27B may also exhibit autonomic nervous system dysfunction, potentially overlapping with the clinical presentations of MSA patients. In this study, to explore the possible involvement of expanded GAA repeats in MSA, we investigated the frequencies of expanded GAA repeats in FGF14 in 548 patients with MSA, 476 patients with undiagnosed ataxia, and 455 healthy individuals. To fully characterize the structures of the expanded GAA repeats, long-range PCR products suggesting the expansion of GAA repeats were further analyzed using a long-read sequencer. Of the 548 Japanese MSA patients, we identified one MSA patient (0.2%) carrying an expanded repeat with (GAA)≥250. Among the 476 individuals with undiagnosed ataxia, (GAA)≥250 was observed in six (1.3%); this frequency was higher than that in healthy individuals (0.2%). The clinical characteristics of the MSA patient with (GAA)≥250 were consistent with those of MSA, but not with SCA27B. Further research is warranted to explore the possibility of the potential association of expanded GAA repeats in FGF14 with MSA.
Collapse
Affiliation(s)
- Toshiyuki Kakumoto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenta Orimo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
- Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan.
| |
Collapse
|
7
|
De Coster W, Höijer I, Bruggeman I, D'Hert S, Melin M, Ameur A, Rademakers R. Visualization and analysis of medically relevant tandem repeats in nanopore sequencing of control cohorts with pathSTR. Genome Res 2024; 34:2074-2080. [PMID: 39147583 DOI: 10.1101/gr.279265.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The lack of population-scale databases hampers research and diagnostics for medically relevant tandem repeats and repeat expansions. We attempt to fill this gap using our pathSTR web tool, which leverages long-read sequencing of large cohorts to determine repeat length and sequence composition in a healthy population. The current version includes 1040 individuals of The 1000 Genomes Project cohort sequenced on the Oxford Nanopore Technologies PromethION. A comprehensive set of medically relevant tandem repeats has been genotyped using STRdust and LongTR to determine the tandem repeat length and sequence composition. PathSTR provides rich visualizations of this data set and the feature to upload one's data for comparison along the control cohort. We demonstrate the implementation of this application using data from targeted nanopore sequencing of a patient with myotonic dystrophy type 1. This resource will empower the genetics community to get a more complete overview of normal variation in tandem repeat length and sequence composition and, as such, enable a better assessment of rare tandem repeat alleles observed in patients.
Collapse
Affiliation(s)
- Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium;
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, 751 85 Uppsala, Sweden
| | - Inge Bruggeman
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Svenn D'Hert
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Malin Melin
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, 751 85 Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, 751 85 Uppsala, Sweden
| | - Rosa Rademakers
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
8
|
Miyatake S, Doi H, Yaguchi H, Koshimizu E, Kihara N, Matsubara T, Mori Y, Kunieda K, Shimizu Y, Toyota T, Shirai S, Matsushima M, Okubo M, Wada T, Kunii M, Johkura K, Miyamoto R, Osaki Y, Miyama T, Satoh M, Fujita A, Uchiyama Y, Tsuchida N, Misawa K, Hamanaka K, Hamanoue H, Mizuguchi T, Morino H, Izumi Y, Shimohata T, Yoshida K, Adachi H, Tanaka F, Yabe I, Matsumoto N. Complete nanopore repeat sequencing of SCA27B (GAA- FGF14 ataxia) in Japanese. J Neurol Neurosurg Psychiatry 2024; 95:1187-1195. [PMID: 38816190 DOI: 10.1136/jnnp-2024-333541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Although pure GAA expansion is considered pathogenic in SCA27B, non-GAA repeat motif is mostly mixed into longer repeat sequences. This study aimed to unravel the complete sequencing of FGF14 repeat expansion to elucidate its repeat motifs and pathogenicity. METHODS We screened FGF14 repeat expansion in a Japanese cohort of 460 molecularly undiagnosed adult-onset cerebellar ataxia patients and 1022 controls, together with 92 non-Japanese controls, and performed nanopore sequencing of FGF14 repeat expansion. RESULTS In the Japanese population, the GCA motif was predominantly observed as the non-GAA motif, whereas the GGA motif was frequently detected in non-Japanese controls. The 5'-common flanking variant was observed in all Japanese GAA repeat alleles within normal length, demonstrating its meiotic stability against repeat expansion. In both patients and controls, pure GAA repeat was up to 400 units in length, whereas non-pathogenic GAA-GCA repeat was larger, up to 900 units, but they evolved from different haplotypes, as rs534066520, located just upstream of the repeat sequence, completely discriminated them. Both (GAA)≥250 and (GAA)≥200 were enriched in patients, whereas (GAA-GCA)≥200 was similarly observed in patients and controls, suggesting the pathogenic threshold of (GAA)≥200 for cerebellar ataxia. We identified 14 patients with SCA27B (3.0%), but their single-nucleotide polymorphism genotype indicated different founder alleles between Japanese and Caucasians. The low prevalence of SCA27B in Japanese may be due to the lower allele frequency of (GAA)≥250 in the Japanese population than in Caucasians (0.15% vs 0.32%-1.26%). CONCLUSIONS FGF14 repeat expansion has unique features of pathogenicity and allelic origin, as revealed by a single ethnic study.
Collapse
Affiliation(s)
- Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naoki Kihara
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoyasu Matsubara
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasuko Mori
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kenjiro Kunieda
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusaku Shimizu
- Department of Neurology, Ina Central Hospital, Ina, Japan
| | - Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaki Okubo
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Taishi Wada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken Johkura
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yusuke Osaki
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takabumi Miyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mai Satoh
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Haruka Hamanoue
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kunihiro Yoshida
- Department of Neurology, JA Nagano Koseiren, Kakeyu-Misayama Rehabilitation Center Kakeyu Hospital, Ueda, Japan
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| |
Collapse
|
9
|
Halman A, Lonsdale A, Oshlack A. Analysis of Tandem Repeats in Short-Read Sequencing Data: From Genotyping Known Pathogenic Repeats to Discovering Novel Expansions. Curr Protoc 2024; 4:e70010. [PMID: 39499075 PMCID: PMC11602959 DOI: 10.1002/cpz1.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Short tandem repeats (STRs) and variable-number tandem repeats (VNTRs) are repetitive genomic sequences seen widely throughout the genome. These repeat expansions are currently known to cause ∼60 diseases, with expansions in new loci linked to rare diseases continuing to be discovered. Genome sequencing is an important tool for detecting disease-causing variants and several computational tools have been developed to analyze tandem repeats from genomic data, enabling the genotyping and the identification of expanded alleles. However, guidelines for conducting the analysis of these repeats and, more importantly, for assessing the findings are lacking. Understanding the tools and their technical limitations is important for accurately interpreting the results. This article provides detailed, step-by-step instructions for three key use cases in STR analysis from short-read genome sequencing data, which are also applicable to smaller VNTRs. First, it demonstrates an approach for genotyping known pathogenic loci and the identification of clinically significant expansions. Second, we offer guidance on defining tandem repeat loci and conducting genome-wide genotyping studies, which is also applicable to diploid organisms other than humans. Third, instructions are provided on how to find novel expansions at loci not previously known to be associated with disease, aiding in the discovery of new pathogenic loci. Moreover, we introduce the use of newly-developed helper tools that enable a complete and streamlined tandem repeat analysis protocol by addressing the gaps in current methods. All three protocols are compatible with human hg19, hg38, and the latest telomere-to-telomere (hs1) reference genomes. Additionally, this protocol provides an overview and discussion on how to interpret genotyping results. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genotyping known pathogenic tandem repeat loci Alternate Protocol: Genotyping known pathogenic tandem repeat loci with STRipy Support Protocol 1: Installation of tools and ExpansionHunter catalog modification Basic Protocol 2: Performing genome-wide genotyping of tandem repeats Basic Protocol 3: Discovering de novo tandem repeat expansions Support Protocol 2: Compiling ExpansionHunter Denovo from source code and generating STR profiles.
Collapse
Affiliation(s)
- Andreas Halman
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneVictoriaAustralia
| | - Andrew Lonsdale
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneVictoriaAustralia
| | - Alicia Oshlack
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneVictoriaAustralia
- School of Mathematics and StatisticsThe University of MelbourneVictoriaAustralia
| |
Collapse
|
10
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
De T, Sharma P, Upilli B, Vivekanand A, Bari S, Sonakar AK, Srivastava AK, Faruq M. Spinocerebellar ataxia type 27B (SCA27B) in India: insights from a large cohort study suggest ancient origin. Neurogenetics 2024; 25:393-403. [PMID: 38976084 DOI: 10.1007/s10048-024-00770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND The ethnic diversity of India provides a unique opportunity to study the history of the origin of mutations of genetic disorders. Spinocerebellar ataxia type 27B (SCA27B), a recently identified dominantly inherited cerebellar disorder is caused by GAA-repeat expansions in intron 1 of Fibroblast Growth Factor 14 (FGF14). Predominantly reported in the European population, we aimed to screen this mutation and study the founder haplotype of SCA27B in Indian ataxia patients. METHODS We have undertaken screening of GAA repeats in a large Indian cohort of ~ 1400 uncharacterised ataxia patients and kindreds and long-read sequencing-based GAA repeat length assessment. High throughput genotyping-based haplotype analysis was also performed. We utilized ~ 1000 Indian genomes to study the GAA at-risk expansion alleles. FINDINGS We report a high frequency of 1.83% (n = 23) of SCA27B in the uncharacterized Indian ataxia cohort. We observed several biallelic GAA expansion mutations (n = 5) with younger disease onset. We observed a risk haplotype (AATCCGTGG) flanking the FGF14-GAA locus over a 74 kb region in linkage disequilibrium. We further studied the frequency of this risk haplotype across diverse geographical population groups. The highest prevalence of the risk haplotype was observed in the European population (29.9%) followed by Indians (21.5%). The observed risk haplotype has existed through ~ 1100 generations (~ 22,000 years), assuming a correlated genealogy. INTERPRETATION This study provides valuable insights into SCA27B and its Upper Paleolithic origin in the Indian subcontinent. The high occurrence of biallelic expansion is probably relevant to the endogamous nature of the Indian population.
Collapse
Affiliation(s)
- Tiyasha De
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
| | - Pooja Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Bharathram Upilli
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - A Vivekanand
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Shreya Bari
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
| | - Akhilesh Kumar Sonakar
- Neurology Department, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, 110029, India
| | - Achal Kumar Srivastava
- Neurology Department, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, 110029, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
12
|
Rudaks LI, Yeow D, Ng K, Deveson IW, Kennerson ML, Kumar KR. An Update on the Adult-Onset Hereditary Cerebellar Ataxias: Novel Genetic Causes and New Diagnostic Approaches. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2152-2168. [PMID: 38760634 PMCID: PMC11489183 DOI: 10.1007/s12311-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The hereditary cerebellar ataxias (HCAs) are rare, progressive neurologic disorders caused by variants in many different genes. Inheritance may follow autosomal dominant, autosomal recessive, X-linked or mitochondrial patterns. The list of genes associated with adult-onset cerebellar ataxia is continuously growing, with several new genes discovered in the last few years. This includes short-tandem repeat (STR) expansions in RFC1, causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), FGF14-GAA causing spinocerebellar ataxia type 27B (SCA27B), and THAP11. In addition, the genetic basis for SCA4, has recently been identified as a STR expansion in ZFHX3. Given the large and growing number of genes, and different gene variant types, the approach to diagnostic testing for adult-onset HCA can be complex. Testing methods include targeted evaluation of STR expansions (e.g. SCAs, Friedreich ataxia, fragile X-associated tremor/ataxia syndrome, dentatorubral-pallidoluysian atrophy), next generation sequencing for conventional variants, which may include targeted gene panels, whole exome, or whole genome sequencing, followed by various potential additional tests. This review proposes a diagnostic approach for clinical testing, highlights the challenges with current testing technologies, and discusses future advances which may overcome these limitations. Implementing long-read sequencing has the potential to transform the diagnostic approach in HCA, with the overall aim to improve the diagnostic yield.
Collapse
Affiliation(s)
- Laura Ivete Rudaks
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia.
- Clinical Genetics Unit, Royal North Shore Hospital, Sydney, Australia.
| | - Dennis Yeow
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Karl Ng
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Marina L Kennerson
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Sydney, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- Faculty of Medicine, St Vincent's Healthcare Campus, UNSW Sydney, Sydney, Australia
| |
Collapse
|
13
|
Chen Z, Morris HR, Polke J, Wood NW, Gandhi S, Ryten M, Houlden H, Tucci A. Repeat expansion disorders. Pract Neurol 2024:pn-2023-003938. [PMID: 39349043 DOI: 10.1136/pn-2023-003938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 10/02/2024]
Abstract
An increasing number of repeat expansion disorders have been found to cause both rare and common neurological disease. This is exemplified in recent discoveries of novel repeat expansions underlying a significant proportion of several late-onset neurodegenerative disorders, such as CANVAS (cerebellar ataxia, neuropathy and vestibular areflexia syndrome) and spinocerebellar ataxia type 27B. Most of the 60 described repeat expansion disorders to date are associated with neurological disease, providing substantial challenges for diagnosis, but also opportunities for management in a clinical neurology setting. Commonalities in clinical presentation, overarching diagnostic features and similarities in the approach to genetic testing justify considering these disorders collectively based on their unifying causative mechanism. In this review, we discuss the characteristics and diagnostic challenges of repeat expansion disorders for the neurologist and provide examples to highlight their clinical heterogeneity. With the ready availability of clinical-grade whole-genome sequencing for molecular diagnosis, we discuss the current approaches to testing for repeat expansion disorders and application in clinical practice.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - James Polke
- The Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Mina Ryten
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Arianna Tucci
- William Harvey Institute, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Mohren L, Erdlenbruch F, Leitão E, Kilpert F, Hönes GS, Kaya S, Schröder C, Thieme A, Sturm M, Park J, Schlüter A, Ruiz M, Morales de la Prida M, Casasnovas C, Becker K, Roggenbuck U, Pechlivanis S, Kaiser FJ, Synofzik M, Wirth T, Anheim M, Haack TB, Lockhart PJ, Jöckel KH, Pujol A, Klebe S, Timmann D, Depienne C. Identification and characterisation of pathogenic and non-pathogenic FGF14 repeat expansions. Nat Commun 2024; 15:7665. [PMID: 39227614 PMCID: PMC11372089 DOI: 10.1038/s41467-024-52148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Repeat expansions in FGF14 cause autosomal dominant late-onset cerebellar ataxia (SCA27B) with estimated pathogenic thresholds of 250 (incomplete penetrance) and 300 AAG repeats (full penetrance), but the sequence of pathogenic and non-pathogenic expansions remains unexplored. Here, we demonstrate that STRling and ExpansionHunter accurately detect FGF14 expansions from short-read genome data using outlier approaches. By combining long-range PCR and nanopore sequencing in 169 patients with cerebellar ataxia and 802 controls, we compare FGF14 expansion alleles, including interruptions and flanking regions. Uninterrupted AAG expansions are significantly enriched in patients with ataxia from a lower threshold (180-200 repeats) than previously reported based on expansion size alone. Conversely, AAGGAG hexameric expansions are equally frequent in patients and controls. Distinct 5' flanking regions, interruptions and pre-repeat sequences correlate with repeat size. Furthermore, pure AAG (pathogenic) and AAGGAG (non-pathogenic) repeats form different secondary structures. Regardless of expansion size, SCA27B is a recognizable clinical entity characterized by frequent episodic ataxia and downbeat nystagmus, similar to the presentation observed in a family with a previously unreported nonsense variant (SCA27A). Overall, this study suggests that SCA27B is a major overlooked cause of adult-onset ataxia, accounting for 23-31% of unsolved patients. We strongly recommend re-evaluating pathogenic thresholds and integrating expansion sequencing into the molecular diagnostic process.
Collapse
Affiliation(s)
- Lars Mohren
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Friedrich Erdlenbruch
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fabian Kilpert
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - G Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Kaya
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christopher Schröder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Moisés Morales de la Prida
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ulla Roggenbuck
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsklinikum Essen, Essen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology & Hertie Institute for Clinical Brain Research Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Thomas Wirth
- Service de Neurologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, Strasbourg, Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, Strasbourg, Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Stephan Klebe
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
15
|
Paucar M, Nilsson D, Engvall M, Laffita-Mesa J, Söderhäll C, Skorpil M, Halldin C, Fazio P, Lagerstedt-Robinson K, Solders G, Angeria M, Varrone A, Risling M, Jiao H, Nennesmo I, Wedell A, Svenningsson P. Spinocerebellar ataxia type 4 is caused by a GGC expansion in the ZFHX3 gene and is associated with prominent dysautonomia and motor neuron signs. J Intern Med 2024; 296:234-248. [PMID: 38973251 DOI: 10.1111/joim.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - José Laffita-Mesa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Skorpil
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Fazio
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Göran Solders
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Angeria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jiao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Zheng ZH, Cao CY, Cheng B, Yuan RY, Zeng YH, Guo ZB, Qiu YS, Lv WQ, Liang H, Li JL, Zhang WX, Fang MK, Sun YH, Lin W, Hong JM, Gan SR, Wang N, Chen WJ, Du GQ, Fang L. Characteristics of tandem repeat inheritance and sympathetic nerve involvement in GAA-FGF14 ataxia. J Hum Genet 2024; 69:433-440. [PMID: 38866925 DOI: 10.1038/s10038-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.
Collapse
Affiliation(s)
- Ze-Hong Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yan Cao
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bi Cheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Zhang-Bao Guo
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Qi Lv
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Hui Liang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Lan Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei-Xiong Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Min-Kun Fang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Hao Sun
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jing-Mei Hong
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Gan-Qin Du
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Ling Fang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
17
|
Uguen K, Michaud JL, Génin E. Short Tandem Repeats in the era of next-generation sequencing: from historical loci to population databases. Eur J Hum Genet 2024; 32:1037-1044. [PMID: 38982300 PMCID: PMC11369099 DOI: 10.1038/s41431-024-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
In this study, we explore the landscape of short tandem repeats (STRs) within the human genome through the lens of evolving technologies to detect genomic variations. STRs, which encompass approximately 3% of our genomic DNA, are crucial for understanding human genetic diversity, disease mechanisms, and evolutionary biology. The advent of high-throughput sequencing methods has revolutionized our ability to accurately map and analyze STRs, highlighting their significance in genetic disorders, forensic science, and population genetics. We review the current available methodologies for STR analysis, the challenges in interpreting STR variations across different populations, and the implications of STRs in medical genetics. Our findings underscore the urgent need for comprehensive STR databases that reflect the genetic diversity of global populations, facilitating the interpretation of STR data in clinical diagnostics, genetic research, and forensic applications. This work sets the stage for future studies aimed at harnessing STR variations to elucidate complex genetic traits and diseases, reinforcing the importance of integrating STRs into genetic research and clinical practice.
Collapse
Affiliation(s)
- Kevin Uguen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France.
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada.
| | - Jacques L Michaud
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
18
|
Wallis M, Bodek SD, Munro J, Rafehi H, Bennett MF, Ye Z, Schneider A, Gardiner F, Valente G, Murdoch E, Uebergang E, Hunter J, Stutterd C, Huq A, Salmon L, Scheffer I, Eratne D, Meyn S, Fong CY, John T, Mullen S, White SM, Brown NJ, McGillivray G, Chen J, Richmond C, Hughes A, Krzesinski E, Fennell A, Chambers B, Santoreneos R, Le Fevre A, Hildebrand MS, Bahlo M, Christodoulou J, Delatycki M, Berkovic SF. Experience of the first adult-focussed undiagnosed disease program in Australia (AHA-UDP): solving rare and puzzling genetic disorders is ageless. Orphanet J Rare Dis 2024; 19:288. [PMID: 39095811 PMCID: PMC11297648 DOI: 10.1186/s13023-024-03297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Significant recent efforts have facilitated increased access to clinical genetics assessment and genomic sequencing for children with rare diseases in many centres, but there remains a service gap for adults. The Austin Health Adult Undiagnosed Disease Program (AHA-UDP) was designed to complement existing UDP programs that focus on paediatric rare diseases and address an area of unmet diagnostic need for adults with undiagnosed rare conditions in Victoria, Australia. It was conducted at a large Victorian hospital to demonstrate the benefits of bringing genomic techniques currently used predominantly in a research setting into hospital clinical practice, and identify the benefits of enrolling adults with undiagnosed rare diseases into a UDP program. The main objectives were to identify the causal mutation for a variety of diseases of individuals and families enrolled, and to discover novel disease genes. METHODS Unsolved patients in whom standard genomic diagnostic techniques such as targeted gene panel, exome-wide next generation sequencing, and/or chromosomal microarray, had already been performed were recruited. Genome sequencing and enhanced genomic analysis from the research setting were applied to aid novel gene discovery. RESULTS In total, 16/50 (32%) families/cases were solved. One or more candidate variants of uncertain significance were detected in 18/50 (36%) families. No candidate variants were identified in 16/50 (32%) families. Two novel disease genes (TOP3B, PRKACB) and two novel genotype-phenotype correlations (NARS, and KMT2C genes) were identified. Three out of eight patients with suspected mosaic tuberous sclerosis complex had their diagnosis confirmed which provided reproductive options for two patients. The utility of confirming diagnoses for patients with mosaic conditions (using high read depth sequencing and ddPCR) was not specifically envisaged at the onset of the project, but the flexibility to offer recruitment and analyses on an as-needed basis proved to be a strength of the AHA-UDP. CONCLUSION AHA-UDP demonstrates the utility of a UDP approach applying genome sequencing approaches in diagnosing adults with rare diseases who have had uninformative conventional genetic analysis, informing clinical management, recurrence risk, and recommendations for relatives.
Collapse
Affiliation(s)
- Mathew Wallis
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Simon D Bodek
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia.
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia.
| | - Jacob Munro
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Haloom Rafehi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Mark F Bennett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Zimeng Ye
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Amy Schneider
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Fiona Gardiner
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Giulia Valente
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Emma Murdoch
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Eloise Uebergang
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
| | - Jacquie Hunter
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Chloe Stutterd
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Aamira Huq
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Genetic Medicine Service, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lucinda Salmon
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Genetics Service, Royal Prince Alfred Hospital, Melbourne, Australia
| | - Ingrid Scheffer
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Paediatrics, Austin Health, Melbourne, Australia
| | - Dhamidhu Eratne
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Australia
| | - Stephen Meyn
- Centre for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Chun Y Fong
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Tom John
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Saul Mullen
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Susan M White
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - George McGillivray
- Victorian Clinical Genetics Service, Melbourne, Australia
- Genetics Service, Mercy Hospital for Women, Melbourne, Australia
| | - Jesse Chen
- Neurology Service, Austin Health, Melbourne, Australia
| | - Chris Richmond
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew Hughes
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
| | | | - Andrew Fennell
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Monash Health Genetics Clinic, Melbourne, Australia
| | - Brian Chambers
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
| | - Renee Santoreneos
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
| | - Anna Le Fevre
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Martin Delatycki
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Samuel F Berkovic
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| |
Collapse
|
19
|
Satolli S, Rossi S, Vegezzi E, Pellerin D, Manca ML, Barghigiani M, Battisti C, Bilancieri G, Bruno G, Capacci E, Casali C, Ceravolo R, Cocozza S, Cotti Piccinelli S, Criscuolo C, Danzi MC, De Micco R, De Michele G, Dicaire MJ, Falcone GMI, Fancellu R, Ferchichi Y, Ferrari C, Filla A, Fini N, Govoni A, Lo Vecchio F, Malandrini A, Mignarri A, Musumeci O, Nesti C, Pappatà S, Pellecchia MT, Perna A, Petrucci A, Pomponi MG, Ravenni R, Ricca I, Rufa A, Tabolacci E, Tessa A, Tessitore A, Zuchner S, Silvestri G, Cortese A, Brais B, Santorelli FM. Spinocerebellar ataxia 27B: a frequent and slowly progressive autosomal-dominant cerebellar ataxia-experience from an Italian cohort. J Neurol 2024; 271:5478-5488. [PMID: 38886208 DOI: 10.1007/s00415-024-12506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Autosomal-dominant spinocerebellar ataxia (ADCA) due to intronic GAA repeat expansion in FGF14 (SCA27B) is a recent, relatively common form of late-onset ataxia. OBJECTIVE Here, we aimed to: (1) investigate the relative frequency of SCA27B in different clinically defined disease subgroups with late-onset ataxia collected among 16 tertiary Italian centers; (2) characterize phenotype and diagnostic findings of patients with SCA27B; (3) compare the Italian cohort with other cohorts reported in recent studies. METHODS We screened 396 clinically diagnosed late-onset cerebellar ataxias of unknown cause, subdivided in sporadic cerebellar ataxia, ADCA, and multisystem atrophy cerebellar type. We identified 72 new genetically defined subjects with SCA27B. Then, we analyzed the clinical, neurophysiological, and imaging features of 64 symptomatic cases. RESULTS In our cohort, the prevalence of SCA27B was 13.4% (53/396) with as high as 38.5% (22/57) in ADCA. The median age of onset of SCA27B patients was 62 years. All symptomatic individuals showed evidence of impaired balance and gait; cerebellar ocular motor signs were also frequent. Episodic manifestations at onset occurred in 31% of patients. Extrapyramidal features (17%) and cognitive impairment (25%) were also reported. Brain magnetic resonance imaging showed cerebellar atrophy in most cases (78%). Pseudo-longitudinal assessments indicated slow progression of ataxia and minimal functional impairment. CONCLUSION Patients with SCA27B in Italy present as an adult-onset, slowly progressive cerebellar ataxia with predominant axial involvement and frequent cerebellar ocular motor signs. The high consistency of clinical features in SCA27B cohorts in multiple populations paves the way toward large-scale, multicenter studies.
Collapse
Affiliation(s)
- Sara Satolli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128, Pisa, Italy
| | - Salvatore Rossi
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisa Vegezzi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Canada
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, Department of Mathematics, University of Pisa, Pisa, Italy
| | - Melissa Barghigiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128, Pisa, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Università Di Siena, Siena, Italy
| | - Giusi Bilancieri
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128, Pisa, Italy
| | - Giorgia Bruno
- Department of Neurosciences, Division of Pediatric Neurology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Elena Capacci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases-Parkinson's Disease and Movement Disorders, University of Pisa, Pisa, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, Brescia, Italy
| | - Chiara Criscuolo
- Department of Neurosciences Reproductive and Odontostomatological Sciences, CDCD Neurology, "Federico II" University Hospital, Naples, Italy
- CDCD Neurology, "Federico II" University Hospital, Naples, Italy
| | - Matt C Danzi
- Macdonald Foundation, Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences Reproductive and Odontostomatological Sciences, CDCD Neurology, "Federico II" University Hospital, Naples, Italy
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Canada
| | - Grazia Maria Igea Falcone
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberto Fancellu
- UO Neurologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yasmine Ferchichi
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128, Pisa, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Alessandro Filla
- Department of Neurosciences Reproductive and Odontostomatological Sciences, CDCD Neurology, "Federico II" University Hospital, Naples, Italy
| | - Nicola Fini
- Department of Neurosciences, Neurology Unit, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Alessandra Govoni
- Neuromuscular-Skeletal and Sensory Organs Department, AOU Careggi, Florence, Italy
| | - Filomena Lo Vecchio
- UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168, Rome, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Università Di Siena, Siena, Italy
| | - Andrea Mignarri
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Università Di Siena, Siena, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128, Pisa, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Salerno, Italy
| | - Alessia Perna
- Center for Neuromuscular and Neurological Rare Diseases, San Camillo Forlanini Hospital, Rome, Italy
| | - Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Diseases, San Camillo Forlanini Hospital, Rome, Italy
| | - Maria Grazia Pomponi
- UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168, Rome, Italy
| | - Roberta Ravenni
- Unità Operativa Complessa Di Neurologia E Neuroriabilitazione, Presidio Ospedaliero Di Abano Terme - Azienda ULSS, 6 Euganea, Padua, Italy
| | - Ivana Ricca
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128, Pisa, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Università Di Siena, Siena, Italy
| | - Elisabetta Tabolacci
- Dipartimento Universitario Scienze Della Vita E Sanità Pubblica, Sezione Di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168, Rome, Italy
| | - Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128, Pisa, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Stephan Zuchner
- Macdonald Foundation, Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gabriella Silvestri
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Neurologia Dipartimento Neuroscienze, Organi Di Senso E Torace, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Andrea Cortese
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Canada
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, via dei Giacinti 2, Calambrone, 56128, Pisa, Italy.
- Department of Clinical and Experimental Medicine, Department of Mathematics, University of Pisa, Pisa, Italy.
- CDCD Neurology, "Federico II" University Hospital, Naples, Italy.
| |
Collapse
|
20
|
Vegezzi E, Ishiura H, Bragg DC, Pellerin D, Magrinelli F, Currò R, Facchini S, Tucci A, Hardy J, Sharma N, Danzi MC, Zuchner S, Brais B, Reilly MM, Tsuji S, Houlden H, Cortese A. Neurological disorders caused by novel non-coding repeat expansions: clinical features and differential diagnosis. Lancet Neurol 2024; 23:725-739. [PMID: 38876750 DOI: 10.1016/s1474-4422(24)00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 06/16/2024]
Abstract
Nucleotide repeat expansions in the human genome are a well-known cause of neurological disease. In the past decade, advances in DNA sequencing technologies have led to a better understanding of the role of non-coding DNA, that is, the DNA that is not transcribed into proteins. These techniques have also enabled the identification of pathogenic non-coding repeat expansions that cause neurological disorders. Mounting evidence shows that adult patients with familial or sporadic presentations of epilepsy, cognitive dysfunction, myopathy, neuropathy, ataxia, or movement disorders can be carriers of non-coding repeat expansions. The description of the clinical, epidemiological, and molecular features of these recently identified non-coding repeat expansion disorders should guide clinicians in the diagnosis and management of these patients, and help in the genetic counselling for patients and their families.
Collapse
Affiliation(s)
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Pellerin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Riccardo Currò
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stefano Facchini
- IRCCS Mondino Foundation, Pavia, Italy; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Arianna Tucci
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK
| | - John Hardy
- Department of Neurogedengerative Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt C Danzi
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
21
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Costa RG, Conceição A, Matos CA, Nóbrega C. The polyglutamine protein ATXN2: from its molecular functions to its involvement in disease. Cell Death Dis 2024; 15:415. [PMID: 38877004 PMCID: PMC11178924 DOI: 10.1038/s41419-024-06812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
A CAG repeat sequence in the ATXN2 gene encodes a polyglutamine (polyQ) tract within the ataxin-2 (ATXN2) protein, showcasing a complex landscape of functions that have been progressively unveiled over recent decades. Despite significant progresses in the field, a comprehensive overview of the mechanisms governed by ATXN2 remains elusive. This multifaceted protein emerges as a key player in RNA metabolism, stress granules dynamics, endocytosis, calcium signaling, and the regulation of the circadian rhythm. The CAG overexpansion within the ATXN2 gene produces a protein with an extended poly(Q) tract, inducing consequential alterations in conformational dynamics which confer a toxic gain and/or partial loss of function. Although overexpanded ATXN2 is predominantly linked to spinocerebellar ataxia type 2 (SCA2), intermediate expansions are also implicated in amyotrophic lateral sclerosis (ALS) and parkinsonism. While the molecular intricacies await full elucidation, SCA2 presents ATXN2-associated pathological features, encompassing autophagy impairment, RNA-mediated toxicity, heightened oxidative stress, and disruption of calcium homeostasis. Presently, SCA2 remains incurable, with patients reliant on symptomatic and supportive treatments. In the pursuit of therapeutic solutions, various studies have explored avenues ranging from pharmacological drugs to advanced therapies, including cell or gene-based approaches. These endeavours aim to address the root causes or counteract distinct pathological features of SCA2. This review is intended to provide an updated compendium of ATXN2 functions, delineate the associated pathological mechanisms, and present current perspectives on the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Rafael G Costa
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- PhD program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
| | - André Conceição
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Carlos A Matos
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
| |
Collapse
|
23
|
Milovanović A, Dragaševic‐Mišković N, Thomsen M, Borsche M, Hinrichs F, Westenberger A, Klein C, Brüggemann N, Branković M, Marjanović A, Svetel M, Kostić VS, Lohmann K. RFC1 and FGF14 Repeat Expansions in Serbian Patients with Cerebellar Ataxia. Mov Disord Clin Pract 2024; 11:626-633. [PMID: 38487929 PMCID: PMC11145142 DOI: 10.1002/mdc3.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The newly discovered intronic repeat expansions in the genes encoding replication factor C subunit 1 (RFC1) and fibroblast growth factor 14 (FGF14) frequently cause late-onset cerebellar ataxia. OBJECTIVES To investigate the presence of RFC1 and FGF14 pathogenic repeat expansions in Serbian patients with adult-onset cerebellar ataxia. METHODS The study included 167 unrelated patients with sporadic or familial cerebellar ataxia. The RFC1 repeat expansion analysis was performed by duplex PCR and Sanger sequencing, while the FGF14 repeat expansion was tested for by long-range PCR, repeat-primed PCR, and Sanger sequencing. RESULTS We identified pathogenic repeat expansions in RFC1 in seven patients (7/167; 4.2%) with late-onset sporadic ataxia with neuropathy and chronic cough. Two patients also had bilateral vestibulopathy. Repeat expansions in FGF14 were found in nine unrelated patients (9/167; 5.4%) with ataxia, less than half of whom presented with neuropathy and two-thirds with global brain atrophy. Tremor and episodic features were the most frequent additional characteristics in carriers of uninterrupted FGF14 repeat expansions. Among the 122 sporadic cases, 12 (9.8%) carried an expansion in either RFC1 or FGF14, comparable to 4/45 (8.9%) among the patients with a positive family history. CONCLUSIONS Pathogenic repeat expansions in RFC1 and FGF14 are relatively frequent causes of adult-onset cerebellar ataxia, especially among sporadic patients, indicating that family history should not be considered when prioritizing ataxia patients for testing of RFC1 or FGF14 repeat expansions.
Collapse
Affiliation(s)
| | - Nataša Dragaševic‐Mišković
- Neurology ClinicUniversity Clinical Center of SerbiaBelgradeSerbia
- Medical FacultyUniversity BelgradeBelgradeSerbia
| | - Mirja Thomsen
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Max Borsche
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
- Department of NeurologyUniversity of Lübeck and University Hospital Schleswig‐Holstein, Campus LübeckLübeckGermany
| | | | | | | | - Norbert Brüggemann
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
- Department of NeurologyUniversity of Lübeck and University Hospital Schleswig‐Holstein, Campus LübeckLübeckGermany
| | - Marija Branković
- Neurology ClinicUniversity Clinical Center of SerbiaBelgradeSerbia
| | - Ana Marjanović
- Neurology ClinicUniversity Clinical Center of SerbiaBelgradeSerbia
| | - Marina Svetel
- Neurology ClinicUniversity Clinical Center of SerbiaBelgradeSerbia
- Medical FacultyUniversity BelgradeBelgradeSerbia
| | - Vladimir S. Kostić
- Neurology ClinicUniversity Clinical Center of SerbiaBelgradeSerbia
- Medical FacultyUniversity BelgradeBelgradeSerbia
| | - Katja Lohmann
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| |
Collapse
|
24
|
Matsushima M, Yaguchi H, Koshimizu E, Kudo A, Shirai S, Matsuoka T, Ura S, Kawashima A, Fukazawa T, Miyatake S, Matsumoto N, Yabe I. FGF14 GAA repeat expansion and ZFHX3 GGC repeat expansion in clinically diagnosed multiple system atrophy patients. J Neurol 2024; 271:3643-3647. [PMID: 38472396 DOI: 10.1007/s00415-024-12308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akihiko Kudo
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | | | - Shigehisa Ura
- Department of Neurology, Japanese Red Cross Asahikawa Hospital, Asahikawa, Japan
| | | | | | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
25
|
Chen S, Ashton C, Sakalla R, Clement G, Planel S, Bonnet C, Lamont P, Kulanthaivelu K, Nalini A, Houlden H, Duquette A, Dicaire MJ, Agudo PI, Martinez JR, de Lucas EM, Berjon RS, Ceberio JI, Indelicato E, Boesch S, Synofzik M, Bender B, Danzi MC, Zuchner S, Pellerin D, Brais B, Renaud M, La Piana R. Neuroradiological findings in GAA- FGF14 ataxia (SCA27B): more than cerebellar atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302945. [PMID: 38405699 PMCID: PMC10889027 DOI: 10.1101/2024.02.16.24302945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background GAA-FGF14 ataxia (SCA27B) is a recently reported late-onset ataxia caused by a GAA repeat expansion in intron 1 of the FGF14 gene. Initial studies revealed cerebellar atrophy in 74-97% of patients. A more detailed brain imaging characterization of GAA-FGF14 ataxia is now needed to provide supportive diagnostic features and earlier disease recognition. Methods We performed a retrospective review of the brain MRIs of 35 patients (median age at MRI 63 years; range 28-88 years) from Quebec (n=27), Nancy (n=3), Perth (n=3) and Bengaluru (n=2) to assess the presence of atrophy in vermis, cerebellar hemispheres, brainstem, cerebral hemispheres, and corpus callosum, as well as white matter involvement. Following the identification of the superior cerebellar peduncles (SCPs) involvement, we verified its presence in 54 GAA-FGF14 ataxia patients from four independent cohorts (Tübingen n=29; Donostia n=12; Innsbruck n=7; Cantabria n=6). To assess lobular atrophy, we performed quantitative cerebellar segmentation in 5 affected subjects with available 3D T1-weighted images and matched controls. Results Cerebellar atrophy was documented in 33 subjects (94.3%). We observed SCP involvement in 22 subjects (62.8%) and confirmed this finding in 30/54 (55.6%) subjects from the validation cohorts. Cerebellar segmentation showed reduced mean volumes of lobules X and IV in the 5 affected individuals. Conclusions Cerebellar atrophy is a key feature of GAA-FGF14 ataxia. The frequent SCP involvement observed in different cohorts may facilitate the diagnosis. The predominant involvement of lobule X correlates with the frequently observed downbeat nystagmus.
Collapse
Affiliation(s)
- Shihan Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Catherine Ashton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia
| | - Rawan Sakalla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | | | - Phillipa Lamont
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia
| | - Karthik Kulanthaivelu
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Antoine Duquette
- Department of Neurosciences, Faculty of Medicine, Université de Montréal; Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pablo Iruzubieta Agudo
- Department of Neurology, University Hospital of Donostia, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Javier Ruiz Martinez
- Department of Neurology, University Hospital of Donostia, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | | | | | | | | | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Austria
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Germany
| | - Matt C. Danzi
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Zuchner
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University
| | | | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University
- Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Ransdell JL, Carrasquillo Y, Bosch MK, Mellor RL, Ornitz DM, Nerbonne JM. Loss of Intracellular Fibroblast Growth Factor 14 (iFGF14) Increases the Excitability of Mature Hippocampal and Cortical Pyramidal Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592532. [PMID: 38746081 PMCID: PMC11092765 DOI: 10.1101/2024.05.04.592532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia type 27 (SCA27), a multisystem disorder associated with progressive deficits in motor coordination and cognitive function. Mice ( Fgf14 -/- ) lacking iFGF14 display similar phenotypes, and we have previously shown that the deficits in motor coordination reflect reduced excitability of cerebellar Purkinje neurons, owing to the loss of iFGF14-mediated regulation of the voltage-dependence of inactivation of the fast transient component of the voltage-gated Na + (Nav) current, I NaT . Here, we present the results of experiments designed to test the hypothesis that loss of iFGF14 also attenuates the intrinsic excitability of mature hippocampal and cortical pyramidal neurons. Current-clamp recordings from adult mouse hippocampal CA1 pyramidal neurons in acute in vitro slices, however, revealed that repetitive firing rates were higher in Fgf14 -/- , than in wild type (WT), cells. In addition, the waveforms of individual action potentials were altered in Fgf14 -/- hippocampal CA1 pyramidal neurons, and the loss of iFGF14 reduced the time delay between the initiation of axonal and somal action potentials. Voltage-clamp recordings revealed that the loss of iFGF14 altered the voltage-dependence of activation, but not inactivation, of I NaT in CA1 pyramidal neurons. Similar effects of the loss of iFGF14 on firing properties were evident in current-clamp recordings from layer 5 visual cortical pyramidal neurons. Additional experiments demonstrated that the loss of iFGF14 does not alter the distribution of anti-Nav1.6 or anti-ankyrin G immunofluorescence labeling intensity along the axon initial segments (AIS) of mature hippocampal CA1 or layer 5 visual cortical pyramidal neurons in situ . Taken together, the results demonstrate that, in contrast with results reported for neonatal (rat) hippocampal pyramidal neurons in dissociated cell culture, the loss of iFGF14 does not disrupt AIS architecture or Nav1.6 localization/distribution along the AIS of mature hippocampal (or cortical) pyramidal neurons in situ .
Collapse
|
27
|
Clément G, Puisieux S, Pellerin D, Brais B, Bonnet C, Renaud M. Spinocerebellar ataxia 27B (SCA27B), a frequent late-onset cerebellar ataxia. Rev Neurol (Paris) 2024; 180:410-416. [PMID: 38609751 DOI: 10.1016/j.neurol.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Genetic cerebellar ataxias are still a diagnostic challenge, and yet not all of them have been identified. Very recently, in early 2023, a new cause of late-onset cerebellar ataxia (LOCA) was identified, spinocerebellar ataxia 27B (SCA27B). This is an autosomal dominant ataxia due to a GAA expansion in intron 1 of the FGF14 gene. Thanks to the many studies carried out since its discovery, it is now possible to define the clinical phenotype, its particularities, and the progression of SCA27B. It has also been established that it is one of the most frequent causes of LOCA. The core phenotype of the disease consists of slowly progressive late-onset ataxia with cerebellar syndrome, oculomotor disorders including downbeat nystagmus, and episodic symptoms such as diplopia. Therapeutic approaches have been proposed, including acetazolamide, and 4-aminopyridine, the latter with a better benefit/tolerance profile.
Collapse
Affiliation(s)
- G Clément
- Service de neurologie, centre hospitalier régional universitaire de Nancy, hôpital Central, Nancy, France; Inserm-U1256 NGERE, université de Lorraine, Nancy, France.
| | - S Puisieux
- Service de neurologie, centre hospitalier régional universitaire de Nancy, hôpital Central, Nancy, France; Inserm-U1256 NGERE, université de Lorraine, Nancy, France.
| | - D Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA.
| | - B Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.
| | - C Bonnet
- Inserm-U1256 NGERE, université de Lorraine, Nancy, France; Laboratoire de génétique, centre hospitalier régional universitaire de Nancy, hôpitaux de Brabois, Vandœuvre-lès-Nancy, France.
| | - M Renaud
- Service de neurologie, centre hospitalier régional universitaire de Nancy, hôpital Central, Nancy, France; Inserm-U1256 NGERE, université de Lorraine, Nancy, France; Service de génétique clinique, centre hospitalier régional universitaire de Nancy, hôpital d'Enfants, Vandœuvre-Lès-Nancy, France.
| |
Collapse
|
28
|
Leitão E, Schröder C, Depienne C. Identification and characterization of repeat expansions in neurological disorders: Methodologies, tools, and strategies. Rev Neurol (Paris) 2024; 180:383-392. [PMID: 38594146 DOI: 10.1016/j.neurol.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Tandem repeats are a common, highly polymorphic class of variation in human genomes. Their expansion beyond a pathogenic threshold is a process that contributes to a wide range of neurological and neuromuscular genetic disorders, of which over 60 have been identified to date. The last few years have seen a resurgence in repeat expansion discovery propelled by technological advancements, enabling the identification of over 20 novel repeat expansion disorders. These expansions can occur in coding or non-coding regions of genes, resulting in a range of pathogenic mechanisms. In this article, we review strategies, tools and methods that can be used for efficient detection and characterization of known repeat expansions and identification of new expansion disorders. Features that can be used to prioritize repeat expansions include anticipation, which is characterized by increased severity or earlier onset of symptoms across generations, and founder effects, which contribute to higher prevalence rates in certain populations. Classical technologies such as Southern blotting, repeat-primed polymerase chain reaction (PCR) and long-range PCR can still be used to detect known repeat expansions, although they usually have significant limitations linked to the absence of sequence context. Targeted sequencing of known expansions using either long-range PCR or CRISPR-Cas9 enrichment combined with long-read sequencing or adaptive nanopore sampling are usually better but more expensive alternatives. The development of new bioinformatics tools applied to short-read genome data can now be used to detect repeat expansions either in a targeted manner or at the genome-wide level. In addition, technological advances, particularly long-read technologies such as optical genome mapping (Bionano Genomics), Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) HiFi sequencing, offer promising avenues for the detection of repeat expansions. Despite challenges in specific DNA extraction requirements, computation resources needed and data interpretation, these technologies have an immense potential to advance our understanding of repeat expansion disorders and improve diagnostic accuracy.
Collapse
Affiliation(s)
- E Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - C Schröder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - C Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
29
|
Sureshkumar S, Bandaranayake C, Lv J, Dent CI, Bhagat PK, Mukherjee S, Sarwade R, Atri C, York HM, Tamizhselvan P, Shamaya N, Folini G, Bergey BG, Yadav AS, Kumar S, Grummisch OS, Saini P, Yadav RK, Arumugam S, Rosonina E, Sadanandom A, Liu H, Balasubramanian S. SUMO protease FUG1, histone reader AL3 and chromodomain protein LHP1 are integral to repeat expansion-induced gene silencing in Arabidopsis thaliana. NATURE PLANTS 2024; 10:749-759. [PMID: 38641663 DOI: 10.1038/s41477-024-01672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Epigenetic gene silencing induced by expanded repeats can cause diverse phenotypes ranging from severe growth defects in plants to genetic diseases such as Friedreich's ataxia in humans. The molecular mechanisms underlying repeat expansion-induced epigenetic silencing remain largely unknown. Using a plant model with a temperature-sensitive phenotype, we have previously shown that expanded repeats can induce small RNAs, which in turn can lead to epigenetic silencing through the RNA-dependent DNA methylation pathway. Here, using a genetic suppressor screen and yeast two-hybrid assays, we identified novel components required for epigenetic silencing caused by expanded repeats. We show that FOURTH ULP GENE CLASS 1 (FUG1)-an uncharacterized SUMO protease with no known role in gene silencing-is required for epigenetic silencing caused by expanded repeats. In addition, we demonstrate that FUG1 physically interacts with ALFIN-LIKE 3 (AL3)-a histone reader that is known to bind to active histone mark H3K4me2/3. Loss of function of AL3 abolishes epigenetic silencing caused by expanded repeats. AL3 physically interacts with the chromodomain protein LIKE HETEROCHROMATIN 1 (LHP1)-known to be associated with the spread of the repressive histone mark H3K27me3 to cause repeat expansion-induced epigenetic silencing. Loss of any of these components suppresses repeat expansion-associated phenotypes coupled with an increase in IIL1 expression with the reversal of gene silencing and associated change in epigenetic marks. Our findings suggest that the FUG1-AL3-LHP1 module is essential to confer repeat expansion-associated epigenetic silencing and highlight the importance of post-translational modifiers and histone readers in epigenetic silencing.
Collapse
Affiliation(s)
- Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia.
| | - Champa Bandaranayake
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Junqing Lv
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Craig I Dent
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Sourav Mukherjee
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Rucha Sarwade
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Chhaya Atri
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- European Molecular Biology Laboratory, Australia (EMBL Australia), Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Prashanth Tamizhselvan
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Nawar Shamaya
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Giulia Folini
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Avilash Singh Yadav
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Subhasree Kumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Oliver S Grummisch
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Prince Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Ram K Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- European Molecular Biology Laboratory, Australia (EMBL Australia), Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, UK
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
30
|
Shambetova C, Klein C. Genetic testing for non-parkinsonian movement disorders: Navigating the diagnostic maze. Parkinsonism Relat Disord 2024; 121:106033. [PMID: 38429185 DOI: 10.1016/j.parkreldis.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024]
Abstract
Genetic testing has become a valuable diagnostic tool for movement disorders due to substantial advancements in understanding their genetic basis. However, the heterogeneity of movement disorders poses a significant challenge, with many genes implicated in different subtypes. This paper aims to provide a neurologist's perspective on approaching patients with hereditary hyperkinetic disorders with a focus on select forms of dystonia, paroxysmal dyskinesia, chorea, and ataxia. Age at onset, initial symptoms, and their severity, as well as the presence of any concurrent neurological and non-neurological features, contribute to the individual clinical profiles of hereditary non-parkinsonian movement disorders, aiding in the selection of appropriate genetic testing strategies. There are also more specific diagnostic clues that may facilitate the decision-making process and may be highly specific for certain conditions, such as diurnal fluctuations and l-dopa response in dopa-responsive dystonia, and triggering factors, duration and frequency of attacks in paroxysmal dyskinesia. While the genetic and mutational spectrum across non-parkinsonian movement disorders is broad, certain groups of diseases tend to be associated with specific types of pathogenic variants, such as repeat expansions in many of the ataxias. Some of these pathogenic variants cannot be detected by standard methods, such as panel or exome sequencing, but require the investigation of intronic regions for repeat expansions, such as Friedreich's or FGF14-linked ataxia. With our advancing knowledge of the genetic underpinnings of movement disorders, the incorporation of precise and personalized diagnostic strategies can enhance patient care, prognosis, and the application and development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Cholpon Shambetova
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Center for Continuing and Distance Learning, I. K. Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
31
|
Felício D, Santos M. Spinocerebellar ataxia type 11 (SCA11): TTBK2 variants, functions and associated disease mechanisms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:678-687. [PMID: 36892783 PMCID: PMC10951003 DOI: 10.1007/s12311-023-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
Spinocerebellar ataxia type 11 (SCA11) is a rare type of autosomal dominant cerebellar ataxia, mainly characterized by progressive cerebellar ataxia, abnormal eye signs and dysarthria. SCA11 is caused by variants in TTBK2, which encodes tau tubulin kinase 2 (TTBK2) protein. Only a few families with SCA11 were described to date, all harbouring small deletions or insertions that result in frameshifts and truncated TTBK2 proteins. In addition, TTBK2 missense variants were also reported but they were either benign or still needed functional validation to ascertain their pathogenic potential in SCA11. The mechanisms behind cerebellar neurodegeneration mediated by TTBK2 pathogenic alleles are not clearly established. There is only one neuropathological report and a few functional studies in cell or animal models published to date. Moreover, it is still unclear whether the disease is caused by TTBK2 haploinsufficiency of by a dominant negative effect of TTBK2 truncated forms on the normal allele. Some studies point to a lack of kinase activity and mislocalization of mutated TTBK2, while others reported a disruption of normal TTBK2 function caused by SCA11 alleles, particularly during ciliogenesis. Although TTBK2 has a proven function in cilia formation, the phenotype caused by heterozygous TTBK2 truncating variants are not clearly typical of ciliopathies. Thus, other cellular mechanisms may explain the phenotype seen in SCA11. Neurotoxicity caused by impaired TTBK2 kinase activity against known neuronal targets, such as tau, TDP-43, neurotransmitter receptors or transporters, may contribute to neurodegeneration in SCA11.
Collapse
Affiliation(s)
- Daniela Felício
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
32
|
Tamaš O, Mijajlović M, Švabić T, Kostić M, Marić G, Milovanović A, Jeremić M, Dragašević-Mišković N. Transcranial Sonography Characteristics of Cerebellar Neurodegenerative Ataxias. Brain Sci 2024; 14:340. [PMID: 38671992 PMCID: PMC11048096 DOI: 10.3390/brainsci14040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebellar neurodegenerative ataxias are a group of disorders affecting the cerebellum and its pathways with different neurological structures. Transcranial sonography (TCS) has been used for the evaluation of brain parenchymal structures in various diseases because of its fast and safe utilization, especially in neuropsychiatric and neurodegenerative diseases. The aim of our study was to investigate TCS characteristics of patients with neurodegenerative cerebellar ataxias. In our study, we included 74 patients with cerebellar degenerative ataxia; 36.5% had autosomal dominant onset, while 33.8% had sporadic onset. Standardized ultrasonographic planes were used for the identification of brain structures of interest. The SARA, INAS, neuropsychological and psychiatric scales were used for the further clinical evaluation of our study participants. The brainstem raphe was discontinued in 33.8% of the patients. The substantia nigra (SN) hyperechogenicity was identified in 79.7%. The third and fourth ventricle enlargement had 79.7% and 45.9% of patients, respectively. A positive and statistically significant correlation was found between SN hyperechogenicity with dystonia (p < 0.01), rigidity and dyskinesia (p < 0.05). The higher SARA total score is statistically significantly correlated with the larger diameter of the III (r = 0.373; p = 0.001) and IV ventricles (r = 0.324; p = 0.005). In such patients, the echogenicity of substantia nigra has been linked to extrapyramidal signs, and raphe discontinuity to depression. Furthermore, ataxia and its clinical subtypes have positively correlated with the IV ventricle diameter, indicating brain atrophy and brain mass reduction.
Collapse
Affiliation(s)
- Olivera Tamaš
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Milija Mijajlović
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Tamara Švabić
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Milutin Kostić
- Institute of Mental Health, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gorica Marić
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andona Milovanović
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Marta Jeremić
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Nataša Dragašević-Mišković
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| |
Collapse
|
33
|
Faust H, Duffek P, Hentschel J, Popp D. Evaluation of Automated Magnetic Bead-Based DNA Extraction for Detection of Short Tandem Repeat Expansions With Nanopore Sequencing. J Clin Lab Anal 2024; 38:e25029. [PMID: 38506401 PMCID: PMC10997813 DOI: 10.1002/jcla.25029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Long-read technologies such as nanopore sequencing provide new opportunities to detect short tandem repeat expansions. Therefore, a DNA extraction method is necessary that minimizes DNA fragmentation and hence allows the identification of large repeat expansions. In this study, an automated magnetic bead-based DNA extraction method and the required EDTA blood storage conditions as well as DNA and sequencing quality were evaluated for their suitability for repeat expansion detection with nanopore sequencing. METHODS DNA was extracted from EDTA blood, and subsequently, its concentration, purity, and integrity were assessed. DNA was then subjected to nanopore sequencing, and quality metrics of the obtained sequencing data were evaluated. RESULTS DNA extracted from fresh EDTA blood as well as from cooled or frozen EDTA blood revealed high DNA integrity whereas storage at room temperature over 7 days had detrimental effects. After nanopore sequencing, the read length N50 values of approximately 9 kb were obtained, and based on adaptive sampling of samples with a known repeat expansion, repeat expansions up to 10 kb could be detected. CONCLUSION The automated magnetic bead-based DNA extraction was sufficient to detect short tandem repeat expansions, omitting the need for high-molecular-weight DNA extraction methods. Therefore, DNA should be extracted either from fresh blood or from blood stored in cooled or frozen conditions. Consequently, this study may help other laboratories to evaluate their DNA extraction method regarding the suitability for detecting repeat expansions with nanopore sequencing.
Collapse
Affiliation(s)
- Helene Faust
- Institute of Human GeneticsUniversity of Leipzig Medical CenterLeipzigGermany
| | - Patricia Duffek
- Institute of Human GeneticsUniversity of Leipzig Medical CenterLeipzigGermany
| | - Julia Hentschel
- Institute of Human GeneticsUniversity of Leipzig Medical CenterLeipzigGermany
| | - Denny Popp
- Institute of Human GeneticsUniversity of Leipzig Medical CenterLeipzigGermany
| |
Collapse
|
34
|
Jiménez-Huete A, Patiño-García A, Guillén EF, Porta JM, Martin-Bastida A, Suárez-Vega V, Pérez N. Brain 18F-FDG PET findings and sequential vestibular testing in SCA27B: a case report. J Neurol 2024; 271:1015-1018. [PMID: 37831126 DOI: 10.1007/s00415-023-12032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Adolfo Jiménez-Huete
- Department of Neurology, Clínica Universidad de Navarra, C/ Marquesado de Sta. Marta, 1, 28027, Madrid, Spain.
| | - Ana Patiño-García
- Department of Pediatrics and Medical Genetics Unit, Clínica Universidad de Navarra, Pamplona, Madrid, Spain
| | | | | | - Antonio Martin-Bastida
- Department of Neurology, Clínica Universidad de Navarra, C/ Marquesado de Sta. Marta, 1, 28027, Madrid, Spain
| | - Víctor Suárez-Vega
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Madrid, Spain
| | - Nicolás Pérez
- Department of Otolaryngology, Clínica Universidad de Navarra, Pamplona, Madrid, Spain
| |
Collapse
|
35
|
van de Warrenburg BP, Kamsteeg EJ. The FGF14 gene is a milestone in ataxia genetics. EBioMedicine 2024; 100:104994. [PMID: 38301484 PMCID: PMC10844931 DOI: 10.1016/j.ebiom.2024.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
36
|
Foucard C, Belley M, Sangare A, Bonnet C, Renaud M, Roze E. Paroxysmal Ataxia: A Characteristic Feature of FGF14 Repeat Expansion (SCA27B). Neurol Genet 2024; 10:e200118. [PMID: 38170134 PMCID: PMC10759144 DOI: 10.1212/nxg.0000000000200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
Objectives Paroxysmal ataxia is typically characterized by early-onset attacks of cerebellar ataxia. Late-onset cerebellar ataxia (LOCA) comprises a group of neurodegenerative disorders mainly characterized by adult-onset progressive cerebellar ataxia. A deep intronic expansion of a GAA triplet in the FGF14 gene encoding fibroblast growth factor 14 has recently been identified as a frequent cause of LOCA. Methods We describe a patient with paroxysmal ataxia/dysarthria due to a FGF14 repeat expansion and 3 affected family members. Results The 4 patients had paroxysmal ataxia/dysarthria occurring between 45 and 50 years as the initial manifestation of a FGF14 repeat expansion. The index case was investigated in detail. We have provided a video showing one of her paroxysmal episodes that could be triggered by alcohol, coffee, exertion, emotion, or cigarette smoking. Brain MRI revealed mild cerebellar atrophy, and oculography showed a subclinical downbeat nystagmus. Treatment with acetazolamide resulted in remarkable improvement. Discussion Paroxysmal dysarthria/ataxia should prompt the clinician to test for FGF14 repeat expansion/SCA27B, especially when the paroxysmal attacks are associated with late-onset cerebellar ataxia and/or a family history consistent with a dominant disorder.
Collapse
Affiliation(s)
- Cendrine Foucard
- From the Assistance Publique-Hôpitaux de Paris (C.F., M.B., A.S., E.R.), DMU Neurosciences, Hôpital Pitié-Salpêtrière; Sorbonne Université (C.F., A.S., E.R.); Inserm U1127 (A.S., E.R.), CNRS UMR 7225, UM 75, Institut du Cerveau, Paris; Laboratoire de Génétique Médicale (C.B.), Hôpitaux de Brabois - CHRU de Nancy; INSERM-U1256 NGERE (C.B., M.R.), Université de Lorraine; Service de Neurologie (M.R.), CHRU de Nancy; and Service de Génétique Clinique (M.R.), CHRU Nancy, France
| | - Marie Belley
- From the Assistance Publique-Hôpitaux de Paris (C.F., M.B., A.S., E.R.), DMU Neurosciences, Hôpital Pitié-Salpêtrière; Sorbonne Université (C.F., A.S., E.R.); Inserm U1127 (A.S., E.R.), CNRS UMR 7225, UM 75, Institut du Cerveau, Paris; Laboratoire de Génétique Médicale (C.B.), Hôpitaux de Brabois - CHRU de Nancy; INSERM-U1256 NGERE (C.B., M.R.), Université de Lorraine; Service de Neurologie (M.R.), CHRU de Nancy; and Service de Génétique Clinique (M.R.), CHRU Nancy, France
| | - Aude Sangare
- From the Assistance Publique-Hôpitaux de Paris (C.F., M.B., A.S., E.R.), DMU Neurosciences, Hôpital Pitié-Salpêtrière; Sorbonne Université (C.F., A.S., E.R.); Inserm U1127 (A.S., E.R.), CNRS UMR 7225, UM 75, Institut du Cerveau, Paris; Laboratoire de Génétique Médicale (C.B.), Hôpitaux de Brabois - CHRU de Nancy; INSERM-U1256 NGERE (C.B., M.R.), Université de Lorraine; Service de Neurologie (M.R.), CHRU de Nancy; and Service de Génétique Clinique (M.R.), CHRU Nancy, France
| | - Céline Bonnet
- From the Assistance Publique-Hôpitaux de Paris (C.F., M.B., A.S., E.R.), DMU Neurosciences, Hôpital Pitié-Salpêtrière; Sorbonne Université (C.F., A.S., E.R.); Inserm U1127 (A.S., E.R.), CNRS UMR 7225, UM 75, Institut du Cerveau, Paris; Laboratoire de Génétique Médicale (C.B.), Hôpitaux de Brabois - CHRU de Nancy; INSERM-U1256 NGERE (C.B., M.R.), Université de Lorraine; Service de Neurologie (M.R.), CHRU de Nancy; and Service de Génétique Clinique (M.R.), CHRU Nancy, France
| | - Mathilde Renaud
- From the Assistance Publique-Hôpitaux de Paris (C.F., M.B., A.S., E.R.), DMU Neurosciences, Hôpital Pitié-Salpêtrière; Sorbonne Université (C.F., A.S., E.R.); Inserm U1127 (A.S., E.R.), CNRS UMR 7225, UM 75, Institut du Cerveau, Paris; Laboratoire de Génétique Médicale (C.B.), Hôpitaux de Brabois - CHRU de Nancy; INSERM-U1256 NGERE (C.B., M.R.), Université de Lorraine; Service de Neurologie (M.R.), CHRU de Nancy; and Service de Génétique Clinique (M.R.), CHRU Nancy, France
| | - Emmanuel Roze
- From the Assistance Publique-Hôpitaux de Paris (C.F., M.B., A.S., E.R.), DMU Neurosciences, Hôpital Pitié-Salpêtrière; Sorbonne Université (C.F., A.S., E.R.); Inserm U1127 (A.S., E.R.), CNRS UMR 7225, UM 75, Institut du Cerveau, Paris; Laboratoire de Génétique Médicale (C.B.), Hôpitaux de Brabois - CHRU de Nancy; INSERM-U1256 NGERE (C.B., M.R.), Université de Lorraine; Service de Neurologie (M.R.), CHRU de Nancy; and Service de Génétique Clinique (M.R.), CHRU Nancy, France
| |
Collapse
|
37
|
Zech M, Winkelmann J. Next-generation sequencing and bioinformatics in rare movement disorders. Nat Rev Neurol 2024; 20:114-126. [PMID: 38172289 DOI: 10.1038/s41582-023-00909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
The ability to sequence entire exomes and genomes has revolutionized molecular testing in rare movement disorders, and genomic sequencing is becoming an integral part of routine diagnostic workflows for these heterogeneous conditions. However, interpretation of the extensive genomic variant information that is being generated presents substantial challenges. In this Perspective, we outline multidimensional strategies for genetic diagnosis in patients with rare movement disorders. We examine bioinformatics tools and computational metrics that have been developed to facilitate accurate prioritization of disease-causing variants. Additionally, we highlight community-driven data-sharing and case-matchmaking platforms, which are designed to foster the discovery of new genotype-phenotype relationships. Finally, we consider how multiomic data integration might optimize diagnostic success by combining genomic, epigenetic, transcriptomic and/or proteomic profiling to enable a more holistic evaluation of variant effects. Together, the approaches that we discuss offer pathways to the improved understanding of the genetic basis of rare movement disorders.
Collapse
Affiliation(s)
- Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
- DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany.
| |
Collapse
|
38
|
Novis LE, Alavi S, Pellerin D, Della Coleta MV, Raskin S, Spitz M, Cortese A, Houlden H, Teive HA. Unraveling the genetic landscape of undiagnosed cerebellar ataxia in Brazilian patients. Parkinsonism Relat Disord 2024; 119:105961. [PMID: 38145611 DOI: 10.1016/j.parkreldis.2023.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Hereditary ataxias (HAs) encompass a diverse and genetically intricate group of rare neurodegenerative disorders, presenting diagnostic challenges. Whole-exome sequencing (WES) has significantly improved diagnostic success. This study aimed to elucidate genetic causes of cerebellar ataxia within a diverse Brazilian cohort. METHODS Biological samples were collected from individuals with sporadic or familial cerebellar ataxia, spanning various ages and phenotypes, excluding common SCAs and Friedreich ataxia. RFC1 biallelic AAGGG repeat expansion was screened in all patients. For AAGGG-negative cases, WES targeting 441 ataxia-related genes was performed, followed by ExpansionHunter analysis for repeat expansions, including the recently described GGC-ZFHX3. Variant classification adhered to ClinGen guidelines, yielding definitive or probable diagnoses. RESULTS The study involved 76 diverse Brazilian families. 16 % received definitive diagnoses, and another 16 % received probable ones. RFC1-related ataxia was predominant, with two definitive cases, followed by KIF1A (one definitive and one probable) and SYNE-1 (two probable). Early-onset cases exhibited higher diagnostic rates. ExpansionHunter improved diagnosis by 4 %.We did not detected GGC-ZFHX3 repeat expansion in this cohort. CONCLUSION This study highlights diagnostic complexities in cerebellar ataxia, even with advanced genetic methods. RFC1, KIF1A, and SYNE1 emerged as prevalent mutations. ZFHX3 repeat expansion seem to be rare in Brazilian population. Early-onset cases showed higher diagnostic success. WES coupled with ExpansionHunter holds promise as a primary diagnostic tool, emphasizing the need for broader NGS accessibility in Brazil.
Collapse
Affiliation(s)
- Luiz Eduardo Novis
- Pós-graduação em Medicina Interna e Ciências da Saúde, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, PR, Brazil; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK.
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - David Pellerin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Departments of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Canada
| | | | | | - Mariana Spitz
- Departamento de Especialidades Médicas, Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, RJ, Brazil
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Helio Afonso Teive
- Pós-graduação em Medicina Interna e Ciências da Saúde, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
39
|
Park J, Sturm M, Seibel-Kelemen O, Ossowski S, Haack TB. Lessons Learned from Translating Genome Sequencing to Clinical Routine: Understanding the Accuracy of a Diagnostic Pipeline. Genes (Basel) 2024; 15:136. [PMID: 38275617 PMCID: PMC10815474 DOI: 10.3390/genes15010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The potential of genome sequencing (GS), which allows detection of almost all types of genetic variation across nearly the entire genome of an individual, greatly expands the possibility for diagnosing genetic disorders. The opportunities provided with this single test are enticing to researchers and clinicians worldwide for human genetic research as well as clinical application. Multiple studies have highlighted the advantages of GS for genetic variant discovery, emphasizing its added value for routine clinical use. We have implemented GS as first-line genetic testing for patients with rare diseases. Here, we report on our experiences in establishing GS as a reliable diagnostic method for almost all types of genetic disorders, from validating diagnostic accuracy of sequencing pipelines to clinical implementation in routine practice.
Collapse
Affiliation(s)
- Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (J.P.); (O.S.-K.); (S.O.)
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (J.P.); (O.S.-K.); (S.O.)
| | - Olga Seibel-Kelemen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (J.P.); (O.S.-K.); (S.O.)
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (J.P.); (O.S.-K.); (S.O.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (J.P.); (O.S.-K.); (S.O.)
- Center for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
40
|
Yeow D, Rudaks LI, Siow SF, Davis RL, Kumar KR. Genetic Testing of Movements Disorders: A Review of Clinical Utility. Tremor Other Hyperkinet Mov (N Y) 2024; 14:2. [PMID: 38222898 PMCID: PMC10785957 DOI: 10.5334/tohm.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
Currently, pathogenic variants in more than 500 different genes are known to cause various movement disorders. The increasing accessibility and reducing cost of genetic testing has resulted in increasing clinical use of genetic testing for the diagnosis of movement disorders. However, the optimal use case(s) for genetic testing at a patient level remain ill-defined. Here, we review the utility of genetic testing in patients with movement disorders and also highlight current challenges and limitations that need to be considered when making decisions about genetic testing in clinical practice. Highlights The utility of genetic testing extends across multiple clinical and non-clinical domains. Here we review different aspects of the utility of genetic testing for movement disorders and the numerous associated challenges and limitations. These factors should be weighed on a case-by-case basis when requesting genetic tests in clinical practice.
Collapse
Affiliation(s)
- Dennis Yeow
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurology, Prince of Wales Hospital, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Laura I. Rudaks
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Sue-Faye Siow
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ryan L. Davis
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Neurogenetics Research Group, Kolling Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Kishore R. Kumar
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
41
|
Wallenius J, Kafantari E, Jhaveri E, Gorcenco S, Ameur A, Karremo C, Dobloug S, Karrman K, de Koning T, Ilinca A, Landqvist Waldö M, Arvidsson A, Persson S, Englund E, Ehrencrona H, Puschmann A. Exonic trinucleotide repeat expansions in ZFHX3 cause spinocerebellar ataxia type 4: A poly-glycine disease. Am J Hum Genet 2024; 111:82-95. [PMID: 38035881 PMCID: PMC10806739 DOI: 10.1016/j.ajhg.2023.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.
Collapse
Affiliation(s)
- Joel Wallenius
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Efthymia Kafantari
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Emma Jhaveri
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Sorina Gorcenco
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Christin Karremo
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Sigurd Dobloug
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden; Department of Neurology, Helsingborg General Hospital, 252 23 Helsingborg, Sweden
| | - Kristina Karrman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden
| | - Tom de Koning
- Pediatrics, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Andreea Ilinca
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Maria Landqvist Waldö
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Andreas Arvidsson
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Staffan Persson
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden; Pathology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden
| | - Andreas Puschmann
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden; SciLifeLab National Research Infrastructure, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
42
|
Mizushima K, Shibata Y, Shirai S, Matsushima M, Miyatake S, Iwata I, Yaguchi H, Matsumoto N, Yabe I. Prevalence of repeat expansions causing autosomal dominant spinocerebellar ataxias in Hokkaido, the northernmost island of Japan. J Hum Genet 2024; 69:27-31. [PMID: 37848721 DOI: 10.1038/s10038-023-01200-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
In Japan, approximately 30% of spinocerebellar degeneration (SCD) is hereditary, and more than 90% of hereditary SCD is autosomal dominant SCD (AD-SCD). We have previously reported the types of AD-SCD in Hokkaido, twice. In this study, we investigated the status of AD-SCD mainly due to repeat expansions, covering the period since the last report. We performed genetic analysis for 312 patients with a clinical diagnosis of SCD, except for multiple system atrophy at medical institutions in Hokkaido between January 2007 and December 2020. The median age at the time of analysis was 58 (1-86) years. Pathogenic variants causing AD-SCD due to repeat expansion were found in 61.5% (192 cases). Spinocerebellar ataxia (SCA) 6 was the most common type in 25.3% (79 cases), followed by Machado-Joseph disease (MJD)/SCA3 in 13.8% (43), SCA1 in 6.4% (20), SCA2 in 5.1% (16), SCA31 in 4.8% (15), dentatorubral-pallidoluysian atrophy in 4.8% (15), SCA7 in 0.6% (2), and SCA8 in 0.6% (2). SCA17, 27B, 36, and 37 were not found. Compared to previous reports, this study found a higher prevalence of SCA6 and a lower prevalence of MJD/SCA3. An increasing number of cases identified by genetic testing, including cases with no apparent family history, accurately revealed the distribution of disease types in Hokkaido.
Collapse
Affiliation(s)
- Keiichi Mizushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuka Shibata
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Ikuko Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
43
|
Ando M, Higuchi Y, Yuan J, Yoshimura A, Kojima F, Yamanishi Y, Aso Y, Izumi K, Imada M, Maki Y, Nakagawa H, Hobara T, Noguchi Y, Takei J, Hiramatsu Y, Nozuma S, Sakiyama Y, Hashiguchi A, Matsuura E, Okamoto Y, Takashima H. Clinical variability associated with intronic FGF14 GAA repeat expansion in Japan. Ann Clin Transl Neurol 2024; 11:96-104. [PMID: 37916889 PMCID: PMC10791012 DOI: 10.1002/acn3.51936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The GAA repeat expansion within the fibroblast growth factor 14 (FGF14) gene has been found to be associated with late-onset cerebellar ataxia. This study aimed to investigate the genetic causes of cerebellar ataxia in patients in Japan. METHODS We collected a case series of 940 index patients who presented with chronic cerebellar ataxia and remained genetically undiagnosed after our preliminary genetic screening. To investigate the FGF14 repeat locus, we employed an integrated diagnostic strategy that involved fluorescence amplicon length analysis polymerase chain reaction (PCR), repeat-primed PCR, and long-read sequencing. RESULTS Pathogenic FGF14 GAA repeat expansions were detected in 12 patients from 11 unrelated families. The median size of the pathogenic GAA repeat was 309 repeats (range: 270-316 repeats). In these patients, the mean age of onset was 66.9 ± 9.6 years, with episodic symptoms observed in 56% of patients and parkinsonism in 30% of patients. We also detected FGF14 repeat expansions in a patient with a phenotype of multiple system atrophy, including cerebellar ataxia, parkinsonism, autonomic ataxia, and bilateral vocal cord paralysis. Brain magnetic resonance imaging (MRI) showed normal to mild cerebellar atrophy, and a follow-up study conducted after a mean period of 6 years did not reveal any significant progression. DISCUSSION This study highlights the importance of FGF14 GAA repeat analysis in patients with late-onset cerebellar ataxia, particularly when they exhibit episodic symptoms, or their brain MRI shows no apparent cerebellar atrophy. Our findings contribute to a better understanding of the clinical variability of GAA-FGF14-related diseases.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yujiro Higuchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Junhui Yuan
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Akiko Yoshimura
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Fumikazu Kojima
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yuki Yamanishi
- Department of Neurology and Clinical PharmacologyEhime University HospitalToonEhimeJapan
| | - Yasuhiro Aso
- Department of NeurologyOita Prefecture HospitalOitaJapan
| | - Kotaro Izumi
- Department of NeurologyOhashi Go Neurosurgical Neurology ClinicFukuokaJapan
| | - Minako Imada
- Department of NeurologyNational Hospital Organization Minamikyushu HospitalKagoshimaJapan
| | - Yoshimitsu Maki
- Department of NeurologyKagoshima City HospitalKagoshimaJapan
| | - Hiroto Nakagawa
- Department of NeurologyKagoshima Medical Association HospitalKagoshimaJapan
| | - Takahiro Hobara
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yutaka Noguchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Jun Takei
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yu Hiramatsu
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Satoshi Nozuma
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yusuke Sakiyama
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Akihiro Hashiguchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Eiji Matsuura
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yuji Okamoto
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
- Department of Physical Therapy, Faculty of MedicineSchool of Health Sciences, Kagoshima UniversityKagoshimaJapan
| | - Hiroshi Takashima
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| |
Collapse
|
44
|
Méreaux JL, Davoine CS, Pellerin D, Coarelli G, Coutelier M, Ewenczyk C, Monin ML, Anheim M, Le Ber I, Thobois S, Gobert F, Guillot-Noël L, Forlani S, Jornea L, Heinzmann A, Sangare A, Gaymard B, Guyant-Maréchal L, Charles P, Marelli C, Honnorat J, Degos B, Tison F, Sangla S, Simonetta-Moreau M, Salachas F, Tchikviladzé M, Castelnovo G, Mochel F, Klebe S, Castrioto A, Fenu S, Méneret A, Bourdain F, Wandzel M, Roth V, Bonnet C, Riant F, Stevanin G, Noël S, Fauret-Amsellem AL, Bahlo M, Lockhart PJ, Brais B, Renaud M, Brice A, Durr A. Clinical and genetic keys to cerebellar ataxia due to FGF14 GAA expansions. EBioMedicine 2024; 99:104931. [PMID: 38150853 PMCID: PMC10784672 DOI: 10.1016/j.ebiom.2023.104931] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.
Collapse
Affiliation(s)
- Jean-Loup Méreaux
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Claire-Sophie Davoine
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France; Unité de Génétique Clinique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie Coutelier
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Claire Ewenczyk
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France; Unité de Génétique Clinique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie-Lorraine Monin
- Centre de Reference Maladies Rares « Neurogénétique », Service de Génétique Médicale, Bordeaux University Hospital (CHU Bordeaux), 33000, Bordeaux, France
| | - Mathieu Anheim
- Department of Neurology, Strasbourg University Hospital, 67098, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964, CNRS-UMR7104, University of Strasbourg, 67400, Illkirch-Graffenstaden, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Stéphane Thobois
- Department of Neurology C, Expert Parkinson Centre NS-Park/F-CRIN, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, 69677, Bron, France; Marc Jeannerod Cognitive Neuroscience Institute, CNRS, UMR 5229, Bron, France; Faculté de Médecine Et de Maïeutique Lyon Sud Charles Mérieux, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Florent Gobert
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Lyon, France; University Lyon I, Villeurbanne, France
| | - Léna Guillot-Noël
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Ludmila Jornea
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Anna Heinzmann
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Aude Sangare
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France; Department of Neurophysiology, University Hospital Group APHP-Sorbonne University, Pitié-Salpêtrière Site, Paris, France
| | - Bertrand Gaymard
- Department of Neurophysiology, University Hospital Group APHP-Sorbonne University, Pitié-Salpêtrière Site, Paris, France
| | - Lucie Guyant-Maréchal
- Neurophysiology Department, Rouen University Hospital, Rouen, France; Medical Genetics Department, Rouen University Hospital, Rouen, France
| | - Perrine Charles
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France; Unité de Génétique Clinique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cecilia Marelli
- MMDN, University Montpellier, EPHE, INSERM and Expert Center for Neurogenetic Diseases, CHU, 34095, Montpellier, France
| | - Jérôme Honnorat
- Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS Institute UMR CNRS 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Degos
- Neurology Department, Avicenne Hospital, APHP, Hôpitaux Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, Réseau NS-PARK/FCRIN, Bobigny, France
| | - François Tison
- Institut des Maladies Neurodégénératives-Clinique (IMNc), University Hospital Bordeaux, Bordeaux, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux University, Bordeaux, France
| | - Sophie Sangla
- Neurology Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Marion Simonetta-Moreau
- Department of Neurology, University Hospital of Toulouse, 31300, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), Inserm, UPS, Université de Toulouse, 31024, Toulouse, France; Clinical Investigation Center (CIC 1436), Toulouse University Hospital, INSERM, 31059, Toulouse, France
| | - François Salachas
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France; Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Maya Tchikviladzé
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Giovanni Castelnovo
- Department of Neurology, Nîmes University Hospital, Hopital Caremeau, Nîmes, France
| | - Fanny Mochel
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Anna Castrioto
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Neurology Department, 38000, Grenoble, France
| | - Silvia Fenu
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Aurélie Méneret
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France; Département de Neurologie, Hôpital de la Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Frédéric Bourdain
- Service de Neurologie, Centre Hospitalier de la Côte Basque, Bayonne, France
| | - Marion Wandzel
- Laboratoire de Génétique Médicale, CHRU Nancy, Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Virginie Roth
- Laboratoire de Génétique Médicale, CHRU Nancy, Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Céline Bonnet
- Laboratoire de Génétique Médicale, CHRU Nancy, Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Florence Riant
- Service de Génétique Moléculaire Neurovasculaire, AP-HP, Saint Louis Hospital, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France; Bordeaux University (Université de Bordeaux), Equipe « Neurogénétique Translationnelle - NRGEN », INCIA CNRS UMR5287, EPHE, 33000, Bordeaux, France
| | - Sandrine Noël
- Unité de Neurogénétique Moléculaire et Cellulaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Mathilde Renaud
- Service de Génétique Clinique et de Neurologie, Hôpital Brabois, Nancy, France; INSERM Unité 1256 N-GERE (Nutrition-Genetics and Environmental Risk Exposure), Université de Lorraine, Nancy, France
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Paris, France; Unité de Génétique Clinique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
45
|
Tamaš O, Marić G, Kostić M, Milovanović A, Đurđević K, Salak Đokić B, Stefanova E, Pekmezović T, Dragašević-Mišković N. The Impact of Demographic and Clinical Factors on the Quality of Life in Patients with Neurodegenerative Cerebellar Ataxias. Brain Sci 2023; 14:1. [PMID: 38275506 PMCID: PMC10813613 DOI: 10.3390/brainsci14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
In neurodegenerative cerebellar ataxias, not only ataxia but also extra-cerebellar signs have a significant impact on patients' health related to quality of life (HRQoL). The aim of this study was to evaluate the various aspects of HRQoL and predictors of QoL in patients with neurodegenerative cerebellar ataxias. We included a total of 107 patients with cerebellar degenerative ataxia. Patients filled out the validated Serbian version of the SF-36 used for the assessment of HRQoL. All patients were clinically evaluated using SARA, INAS, and neuropsychological tests to assess their global cognitive status and different psychiatric scales. The most frequent types of neurodegenerative cerebellar ataxias were autosomal dominant ataxias (38.3%) and sporadic ataxias (32.7%). Mean age at diagnosis was 35.3 ± 16.23 years, and disease duration was on average 12.1 ± 9.91 years. Mean total SF-36 score was 50.63 ± 20.50. Hierarchical regression analysis showed that in the case of the PHC score, the most significant predictors are the patient's actual age, severity of ataxia, and ACE total score. For MHC, the Hamilton depression score was the most important predictor. Our study has shown that HRQoL measured by SF-36 in patients with neurodegenerative cerebellar disorders is strongly influenced by impaired mobility and depression.
Collapse
Affiliation(s)
- Olivera Tamaš
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (B.S.Đ.); (E.S.); (N.D.-M.)
| | - Gorica Marić
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (G.M.); (T.P.)
| | - Milutin Kostić
- Institute of Mental Health, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andona Milovanović
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (B.S.Đ.); (E.S.); (N.D.-M.)
| | - Katarina Đurđević
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (B.S.Đ.); (E.S.); (N.D.-M.)
| | - Biljana Salak Đokić
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (B.S.Đ.); (E.S.); (N.D.-M.)
| | - Elka Stefanova
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (B.S.Đ.); (E.S.); (N.D.-M.)
| | - Tatjana Pekmezović
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (G.M.); (T.P.)
| | - Nataša Dragašević-Mišković
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (B.S.Đ.); (E.S.); (N.D.-M.)
| |
Collapse
|
46
|
van Stiphout L, Szmulewicz DJ, Guinand N, Fornos AP, Van Rompaey V, van de Berg R. Bilateral vestibulopathy: a clinical update and proposed diagnostic algorithm. Front Neurol 2023; 14:1308485. [PMID: 38178884 PMCID: PMC10766383 DOI: 10.3389/fneur.2023.1308485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Bilateral vestibulopathy (BVP) is characterized by its heterogeneous and chronic nature with various clinical presentations and multiple etiologies. This current narrative review reflects on the main insights and developments regarding clinical presentation. In addition, it proposes a new diagnostic algorithm, and describes available and potential future therapeutic modalities.
Collapse
Affiliation(s)
- Lisa van Stiphout
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - David J. Szmulewicz
- Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC, Australia
- Bionics Institute, Melbourne, VIC, Australia
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
47
|
Krasilnikova MM, Humphries CL, Shinsky EM. Friedreich's ataxia: new insights. Emerg Top Life Sci 2023; 7:313-323. [PMID: 37698160 DOI: 10.1042/etls20230017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Friedreich ataxia (FRDA) is an inherited disease that is typically caused by GAA repeat expansion within the first intron of the FXN gene coding for frataxin. This results in the frataxin deficiency that affects mostly muscle, nervous, and cardiovascular systems with progressive worsening of the symptoms over the years. This review summarizes recent progress that was achieved in understanding of molecular mechanism of the disease over the last few years and latest treatment strategies focused on overcoming the frataxin deficiency.
Collapse
Affiliation(s)
- Maria M Krasilnikova
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| | - Casey L Humphries
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| | - Emily M Shinsky
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| |
Collapse
|
48
|
Rafehi H, Bennett MF, Bahlo M. Detection and discovery of repeat expansions in ataxia enabled by next-generation sequencing: present and future. Emerg Top Life Sci 2023; 7:349-359. [PMID: 37733280 PMCID: PMC10754322 DOI: 10.1042/etls20230018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Hereditary cerebellar ataxias are a heterogenous group of progressive neurological disorders that are disproportionately caused by repeat expansions (REs) of short tandem repeats (STRs). Genetic diagnosis for RE disorders such as ataxias are difficult as the current gold standard for diagnosis is repeat-primed PCR assays or Southern blots, neither of which are scalable nor readily available for all STR loci. In the last five years, significant advances have been made in our ability to detect STRs and REs in short-read sequencing data, especially whole-genome sequencing. Given the increasing reliance of genomics in diagnosis of rare diseases, the use of established RE detection pipelines for RE disorders is now a highly feasible and practical first-step alternative to molecular testing methods. In addition, many new pathogenic REs have been discovered in recent years by utilising WGS data. Collectively, genomes are an important resource/platform for further advancements in both the discovery and diagnosis of REs that cause ataxia and will lead to much needed improvement in diagnostic rates for patients with hereditary ataxia.
Collapse
Affiliation(s)
- Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mark F Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
49
|
Panoyan MA, Wendt FR. The role of tandem repeat expansions in brain disorders. Emerg Top Life Sci 2023; 7:249-263. [PMID: 37401564 DOI: 10.1042/etls20230022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
The human genome contains numerous genetic polymorphisms contributing to different health and disease outcomes. Tandem repeat (TR) loci are highly polymorphic yet under-investigated in large genomic studies, which has prompted research efforts to identify novel variations and gain a deeper understanding of their role in human biology and disease outcomes. We summarize the current understanding of TRs and their implications for human health and disease, including an overview of the challenges encountered when conducting TR analyses and potential solutions to overcome these challenges. By shedding light on these issues, this article aims to contribute to a better understanding of the impact of TRs on the development of new disease treatments.
Collapse
Affiliation(s)
- Mary Anne Panoyan
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
50
|
Chaisson MJP, Sulovari A, Valdmanis PN, Miller DE, Eichler EE. Advances in the discovery and analyses of human tandem repeats. Emerg Top Life Sci 2023; 7:361-381. [PMID: 37905568 PMCID: PMC10806765 DOI: 10.1042/etls20230074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Long-read sequencing platforms provide unparalleled access to the structure and composition of all classes of tandemly repeated DNA from STRs to satellite arrays. This review summarizes our current understanding of their organization within the human genome, their importance with respect to disease, as well as the advances and challenges in understanding their genetic diversity and functional effects. Novel computational methods are being developed to visualize and associate these complex patterns of human variation with disease, expression, and epigenetic differences. We predict accurate characterization of this repeat-rich form of human variation will become increasingly relevant to both basic and clinical human genetics.
Collapse
Affiliation(s)
- Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, U.S.A
- The Genomic and Epigenomic Regulation Program, USC Norris Cancer Center, University of Southern California, Los Angeles, CA 90089, U.S.A
| | - Arvis Sulovari
- Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, U.S.A
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, U.S.A
- Department of Pediatrics, University of Washington, Seattle, WA 98195, U.S.A
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|