1
|
Forte G, Battagliola ET, Malvasi M, Ruberti N, Daniele P, Mantovani A, Bocca B, Pacella E. Trace Element Concentration in the Blood and Aqueous Humor of Subjects with Eye Cataract. Biol Trace Elem Res 2025; 203:684-693. [PMID: 38687421 DOI: 10.1007/s12011-024-04207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Cataract, characterized by the opacification of the lens, is the leading cause of reversible blindness and visual impairment globally. The study aims to investigate the role of trace elements such as Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn in the development and severity of cataract. Elements were quantified by inductively coupled plasma mass spectrometry in blood and aqueous humor of 32 cataract cases and 27 controls living in the Latium region, Italy. The association between element concentration in blood and aqueous humor and cataract severity, gender, and age of subjects were also assessed. Results showed Cr levels significantly elevated in both blood and aqueous humor of cataract cases, with concentrations that increased with cataract severity. In addition, blood Pb levels were significantly higher in older cases and positively correlated with the age of cataract cases, while blood Co and Cu levels negatively correlated with cataract severity, suggesting changes in the levels of these elements. In conclusion, this study provides evidence of the involvement of specific elements in cataract development and severity, and the findings highlighted important avenues for future research. Understanding the biological mechanism underlying element-induced cataract may contribute to preventing cataractogenesis and providing targeted interventions.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | | | - Mariaelena Malvasi
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Niccolò Ruberti
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Pierluigi Daniele
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | | | - Beatrice Bocca
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy.
| |
Collapse
|
2
|
Aschner M, Skalny AV, Paoliello MMB, Tinkova MN, Martins AC, Santamaria A, Lee E, Rocha JBT, Farsky SHP, Tinkov AA. Retinal toxicity of heavy metals and its involvement in retinal pathology. Food Chem Toxicol 2024; 188:114685. [PMID: 38663763 PMCID: PMC11818481 DOI: 10.1016/j.fct.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
The objective of the present review is to discuss epidemiological evidence demonstrating the association between toxic metal (Cd, Pb, Hg, As, Sn, Ti, Tl) exposure and retinal pathology, along with the potential underlying molecular mechanisms. Epidemiological studies demonstrate that Cd, and to a lesser extent Pb exposure, are associated with age-related macular degeneration (AMD), while the existing evidence on the levels of these metals in patients with diabetic retinopathy is scarce. Epidemiological data on the association between other toxic metals and metalloids including mercury (Hg) and arsenic (As), are limited. Clinical reports and laboratory in vivo studies have shown structural alterations in different layers of retina following metal exposure. Examination of retina samples demonstrate that toxic metals can accumulate in the retina, and the rate of accumulation appears to increase with age. Experimental studies in vivo and in vitro studies in APRE-19 and D407 cells demonstrate that toxic metal exposure may cause retinal damage through oxidative stress, apoptosis, DNA damage, mitochondrial dysfunction, endoplasmic reticulum stress, impaired retinogenesis, and retinal inflammation. However, further epidemiological as well as laboratory studies are required for understanding the underlying molecular mechanisms and identifying of the potential therapeutic targets and estimation of the dose-response effects.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Laboratorio de Nanotecnología y Nanomedicina, Departamento de Cuidado de La Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia.
| |
Collapse
|
3
|
Ebrahimi M, Ebrahimi M, Vergroesen JE, Aschner M, Sillanpää M. Environmental exposures to cadmium and lead as potential causes of eye diseases. J Trace Elem Med Biol 2024; 82:127358. [PMID: 38113800 DOI: 10.1016/j.jtemb.2023.127358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Humans are exposed to cadmium and lead in various regions of the world daily due to industrial development and climate change. Increasing numbers of preclinical and clinical studies indicate that heavy metals, such as cadmium and lead, play a role in the pathogenesis of eye diseases. Excessive exposure to heavy metals such as cadmium and lead can increase the risk of impaired vision. Therefore, it is essential to better characterize the role of these non-essential metals in disease etiology and progression. This article discusses the potential role of cadmium and lead in the development of age-related eye diseases, including age-related macular degeneration, cataracts, and glaucoma. Furthermore, we discuss how cadmium and lead affect ocular cells and provide an overview of putative pathological mechanisms associated with their propensity to damage the eye.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Ebrahimi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
4
|
Multiomic Mass Spectrometry Imaging to Advance Future Pathological Understanding of Ocular Disease. Metabolites 2022; 12:metabo12121239. [PMID: 36557277 PMCID: PMC9786289 DOI: 10.3390/metabo12121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Determining the locations of proteins within the eye thought to be involved in ocular pathogenesis is important to determine how best to target them for therapeutic benefits. However, immunohistochemistry is limited by the availability and specificity of antibodies. Additionally, the perceived role of both essential and non-essential metals within ocular tissue has been at the forefront of age-related macular degeneration (AMD) pathology for decades, yet even key metals such as copper and zinc have yet to have their roles deconvoluted. Here, mass spectrometry imaging (MSI) is employed to identify and spatially characterize both proteomic and metallomic species within ocular tissue to advance the application of a multiomic imaging methodology for the investigation of ocular diseases.
Collapse
|
5
|
Bazvand F, Mahdizad Z. Presumed retinal lead poisoning: a case report. Doc Ophthalmol 2022; 145:71-76. [PMID: 35691959 DOI: 10.1007/s10633-022-09878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To describe a case of presumed retinal lead poisoning. METHODS Clinical examination, optical coherence tomography, fundus autofluorescence, fluorescein angiography, and electroretinography were used to study a 42-year-old male with the complaint of bilateral reduced vision following systemic lead poisoning. RESULTS The fundus examination showed venous tortuosity, as well as macular atrophy, and pigmentary changes in his both eyes. Optical coherence tomography revealed retinal thinning, outer retinal and retinal pigment epithelium atrophy, as well as foveal schitic changes. Blue autofluorescence showed moderately hypoautofluorescence in peripapillary area of both eyes. Fluorescein angiogram showed a leopard-like pattern of hypo- and hyperfluorescence in the posterior pole. Electroretinogram showed a moderate reduction in photopic and scotopic responses. CONCLUSIONS The most probable diagnosis of this case is early onset retinal lead poisoning.
Collapse
Affiliation(s)
- Fatemeh Bazvand
- Retina and Vitreous Service, Farabi Comprehensive Center of Excellence in Ophthalmology, Tehran University of Medical Sciences, Qazvin square, Tehran, 1336616351, Iran
| | - Zahra Mahdizad
- Retina and Vitreous Service, Farabi Comprehensive Center of Excellence in Ophthalmology, Tehran University of Medical Sciences, Qazvin square, Tehran, 1336616351, Iran.
| |
Collapse
|
6
|
Bede-Ojimadu O, Orish CN, Bocca B, Ruggieri F, Frazzoli C, Orisakwe OE. Trace elements exposure and risk in age-related eye diseases: a systematic review of epidemiological evidence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:293-339. [PMID: 34114934 DOI: 10.1080/26896583.2021.1916331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This systematic review aimed to evaluate existing evidence on the associations between trace elements exposure and age-related eye diseases. PubMed and Google scholar databases were searched for epidemiological and postmortem studies on the relationship between exposure to trace elements and Age-related eye diseases such as age-related macular degeneration (AMD), cataract, glaucoma and diabetic retinopathy (DR), in population groups aged 40 years and above. Available evidence suggests that cadmium (Cd) exposure may be positively associated with the risks of AMD and cataract. There is also evidence that exposure to lead (Pb) may be positively associated with higher risk of cataract and glaucoma. There is limited number of relevant studies and lack of prospective studies for most of the investigated associations. Evidence for other trace elements is weak and inconsistent, and the number of available studies is small. Likewise, there are very few relevant studies on the role of trace elements in DR. Chemical elements that affect the distribution and absorption of other trace elements have never been investigated. The suggestive but limited evidence motivates large and quality prospective studies to fully characterize the impact of exposure to trace (toxic and essential) elements on age-related eye diseases.
Collapse
Affiliation(s)
- Onyinyechi Bede-Ojimadu
- Department of Chemical Pathology, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences University of Port Harcourt, Port Harcourt, Choba, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Rivers, Nigeria
| |
Collapse
|
7
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
8
|
Aberami S, Nikhalashree S, Bharathselvi M, Biswas J, Sulochana KN, Coral K. Elemental concentrations in Choroid-RPE and retina of human eyes with age-related macular degeneration. Exp Eye Res 2019; 186:107718. [DOI: 10.1016/j.exer.2019.107718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/06/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022]
|
9
|
Paulsen AJ, Schubert CR, Johnson LJ, Chen Y, Dalton DS, Klein BEK, Klein R, Pinto A, Cruickshanks KJ. Association of Cadmium and Lead Exposure With the Incidence of Contrast Sensitivity Impairment Among Middle-aged Adults. JAMA Ophthalmol 2018; 136:1342-1350. [PMID: 30242333 PMCID: PMC6292732 DOI: 10.1001/jamaophthalmol.2018.3931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Contrast sensitivity (CS) is an important indicator of visual function that affects daily life, including mobility, visually intensive tasks, safety, and autonomy. Understanding the risk factors for CS impairment could prevent decreases in visual function. Objective To determine the incidence of and factors associated with CS impairment in a large cohort. Design, Setting, and Participants The Beaver Dam Offspring Study is an ongoing longitudinal cohort study of aging involving adults in Beaver Dam, Wisconsin. Participants who were free of CS impairment in both eyes at baseline were included (N = 1983). Baseline data collection occurred from June 8, 2005, through August 4, 2008, when the participants ranged from 21 to 84 years of age. Two follow-up examinations occurred at 5-year intervals: one was conducted between July 12, 2010, and March 21, 2013, and the other between July 1, 2015, and November 13, 2017. Data analysis was performed from November 27, 2017, to February 27, 2018. Main Outcomes and Measures Contrast sensitivity testing was conducted with Pelli-Robson letter sensitivity charts, and incident impairment was defined as a log CS score less than 1.55 in either eye at any follow-up examination. Cadmium and lead levels were measured in whole blood with inductively coupled plasma mass spectrometry. Associations between baseline characteristics and CS impairment incidence were examined using Cox proportional hazard models and quantified as hazard ratios (HRs) with 95% CI. Results Of the 1983 participants included, 1028 (51.8%) were female and 955 (48.2%) were male, with a mean (SD) age of 48 (9.3) years. The 10-year cumulative incidence of CS impairment was 24.8% (95% CI, 22.9-26.8), similar in women (24.9%) and men (24.6%), and highest in the oldest age group (65-84 years) at 66.3%. In multivariable models, cadmium level in the highest quintile (HR, 1.35; 95% CI, 1.02-1.78), older age (HR, 1.36; 95% CI, 1.25-1.47), larger waist circumference (HR, 1.06; 95% CI, 1.01-1.11), and more plaque sites (1-3 sites: HR, 1.43; 95% CI, 1.07-1.92; 4-6 sites: HR, 2.75; 95% CI, 1.26-6.05) were among the factors associated with increased risk, while male sex (HR, 0.77; 95% CI, 0.60-0.98) and any alcohol consumption (HR, 0.61; 95% CI, 0.43-0.88) were associated with decreased risk. Results were similar when smoking status replaced cadmium exposure in the models. Lead level was not associated with increased risk. Conclusions and Relevance This study's findings suggest that incident CS impairment was common in the 10-year follow-up, with cadmium, but not lead, exposure associated with increased risk. The associations of diminished CS with other modifiable risk factors found appear to imply that changes in behavior may reduce future incidence of CS impairment.
Collapse
Affiliation(s)
- Adam J. Paulsen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison
| | - Carla R. Schubert
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison
| | - Lauren J. Johnson
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin – Madison
| | - Yanjun Chen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison
| | - Dayna S. Dalton
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison
| | - Alex Pinto
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison
| | - Karen J. Cruickshanks
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin – Madison
| |
Collapse
|
10
|
Wang W, Moroi S, Bakulski K, Mukherjee B, Weisskopf MG, Schaumberg D, Sparrow D, Vokonas PS, Hu H, Park SK. Bone Lead Levels and Risk of Incident Primary Open-Angle Glaucoma: The VA Normative Aging Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:087002. [PMID: 30102601 PMCID: PMC6108844 DOI: 10.1289/ehp3442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/06/2018] [Accepted: 07/15/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Oxidative stress may play an important role in the etiology of primary open-angle glaucoma (POAG). The association between risk of POAG and lead exposure, which is an environmental source of oxidative stress, has not been fully investigated yet. OBJECTIVE Our objective was to determine the association between bone lead—a biomarker of cumulative lead dose (tibia lead) or an endogenous source of stored lead (patella lead)—and incident POAG. METHODS We examined a prospective cohort of 634 POAG-free men [mean baseline age=66.8 y of age (SD=6.7)] from the Normative Aging Study (NAS) who had tibia and patella K X-ray fluorescence lead measurements between 1 January 1991 and 31 December 1999. They also had standard ocular evaluations by NAS optometrists until 31 December 2014. POAG cases were identified by consistent reports of enlarged or asymmetric cup-to-disc ratio together with visual field defect or existence of disc hemorrhage. We used Cox proportional hazards regressions to estimate hazard ratios (HRs) of incident POAG and adjusted survival curves to examine changes in the risk of POAG during follow-up according to bone lead quartiles. RESULTS We identified 44 incident cases of POAG by the end of follow-up (incidence rate=74 per 10,000 person-years; median follow-up=10.6 y). In fully adjusted models, 10-fold increases in patella lead and tibia lead were associated with HRs of 5.06 (95% CI: 1.61, 15.88, p=0.005) and 3.07 (95% CI: 0.94, 10.0, p=0.06), respectively. The HRs comparing participants in the third and fourth quartiles with the lowest quartile were 3.41 (95% CI: 1.34, 8.66) and 3.24 (95% CI: 1.22, 8.62) for patella lead (p-for-trend=0.01), and 3.84 (95% CI: 1.54, 9.55) and 2.61 (95% CI: 0.95, 7.21) for tibia lead (p-for-trend=0.02). CONCLUSIONS Our study provides longitudinal evidence that bone lead may be an important risk factor for POAG in the U.S. population. https://doi.org/10.1289/EHP3442.
Collapse
Affiliation(s)
- Weiye Wang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Sayoko Moroi
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, USA
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Debra Schaumberg
- Real World Evidence, Evidera, Pharmaceutical Product Development, LLC (PPD), Boston, Massachusetts, USA
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center at University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David Sparrow
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Pantel S Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Howard Hu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Fuller-Thomson E. Generational Differences in Lifetime Exposure to Lead and the Decreasing Incidence of Age-Related Macular Degeneration. JAMA Ophthalmol 2018; 136:958. [DOI: 10.1001/jamaophthalmol.2018.2163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Esme Fuller-Thomson
- Institute for Life Course & Aging, Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Ontario, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Damar Güngör E, Yülek F, Serkant U, Toklu Y, Hocaoğlu A, Şimsek Ş. Blood lead and cadmium in age related macular degeneration in a Turkish urban population. J Trace Elem Med Biol 2018; 48:16-19. [PMID: 29773175 DOI: 10.1016/j.jtemb.2018.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the blood lead (Pb) and cadmium (Cd) levels in age related macular degeneration (AMD) in a turkish urban population. METHODS Blood Pb and Cd levels of 31 AMD patients and 24 age and gender matched controls with no sign of AMD were measured using dual atomic absorption spectrophotometer system (AAS). History of hypertension, diabetes mellitus, cigarette smoking, myocardial infarction and stroke were obtained from all subjects. Degree of AMD was grade 4 according to the Age-Related Eye Disease Study grading system. Median blood Pb and Cd levels were compared by using Students' t-test. RESULTS Demographic properties like smoking status, presence of diabetes mellitus or hypertension, cerebrovascular occlusion history, serum cholesterol and lipid levels were not significantly different between groups except history of ischemic heart disease (3.22% vs 25% in AMD and control groups respectively, p = .022). Overall in AMD group blood Pb level was 2.83 ± 0.15 μg/l and it was 2.63 ± 0.23 μg/l in control group (p = .36). The Cd level was 3.25 ± 0.20 μg/l in AMD group and 3.11 ± 0.25 μg/l in control group (p = .67). The mean Pb (2.38 ± 0.88 μg/l vs 2.91 ± 1.37 μg/l for AMD vs control, p = .61) and Cd levels (3.06 ± 1.34 μg/l vs 3.35 ± 1.26 μg/l for AMD vs control, p = .56) in current and previous smokers with AMD were not significantly different from those of the current and previous smokers in control group. CONCLUSION Blood Pb and Cd levels which reflect short term exposure were not significantly different in AMD patients and the control group. The difference was not significant either after involvement of previous or current smoker subjects.
Collapse
Affiliation(s)
- Elif Damar Güngör
- Ophthalmology Department, Ataturk Training and Research Hospital, Yildirim Beyazit University, Ankara, Turkey.
| | - Fatma Yülek
- Ophthalmology Department, Ataturk Training and Research Hospital, Yildirim Beyazit University, Ankara, Turkey.
| | | | - Yasin Toklu
- Ophthalmology Department, Ataturk Training and Research Hospital, Yildirim Beyazit University, Ankara, Turkey.
| | - Asım Hocaoğlu
- Pharmaceutical and Medical Device Establishment, Ankara, Turkey.
| | - Şaban Şimsek
- Ophthalmology Department, Ataturk Training and Research Hospital, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
13
|
Ugarte M, Geraki K, Jeffery G. Iron accumulates in the primate choroid of the eye with aging as revealed with synchrotron X-ray fluorescence microscopy. Metallomics 2017; 8:1071-1080. [PMID: 27504972 DOI: 10.1039/c6mt00125d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Aging leads to an increase in iron-loaded cellular structures in the choroid of the eye. This study was carried out to determine the distribution and content of iron, zinc and copper in the macular retina, choroid and retrobulbar optic nerve of young (4-5 years, n = 3) and aged (15-16 years, n = 5) male non-human primates, Macaca fascicularis, whose ocular anatomy is similar to humans. Thirty μm-thick tissue sections were analysed with synchrotron X-ray fluorescence and stained histologically for iron deposition. Quantitative measurements showed high levels of iron, zinc and copper in the choroid and retinal pigment epithelium in the macular area and arachnoid layer in the retrobulbar optic nerve. In aged animals compared to young ones, there was an increase in iron in the choroid with larger deposits and iron-loaded cellular structures. Iron-accumulation within these cellular structures may contribute to choroidal function impairment in aging and age-related macular degeneration.
Collapse
Affiliation(s)
- Marta Ugarte
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK. and NIHR Biomedical Research Centre, Moorfields Eye hospital and UCL Institute of Ophthalmology, London, UK
| | - Kalotina Geraki
- I18, Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire OX11 0DE, UK
| | - Glen Jeffery
- UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| |
Collapse
|
14
|
Shen XF, Huang P, Fox DA, Lin Y, Zhao ZH, Wang W, Wang JY, Liu XQ, Chen JY, Luo WJ. Adult lead exposure increases blood-retinal permeability: A risk factor for retinal vascular disease. Neurotoxicology 2016; 57:145-152. [DOI: 10.1016/j.neuro.2016.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
|
15
|
Wang W, Schaumberg DA, Park SK. Cadmium and lead exposure and risk of cataract surgery in U.S. adults. Int J Hyg Environ Health 2016; 219:850-856. [PMID: 27460785 PMCID: PMC5086441 DOI: 10.1016/j.ijheh.2016.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022]
Abstract
Cataract is a major cause of visual dysfunction and the leading cause of blindness. Elevated levels of cadmium and lead have been found in the lenses of cataract patients, suggesting these metals may play a role in cataract risk. This study aimed to examine the associations of blood lead, blood cadmium and urinary cadmium with cataract risk. We identified 9763 individuals aged 50 years and older with blood lead and cadmium levels, and a randomly selected subgroup of 3175 individuals with available urinary cadmium levels, from the National Health and Nutrition Examination Surveys (NHANES) from 1999 to 2008 (mean age=63years). Participants were considered to have cataract if they self-reported prior cataract surgery in NHANES's vision examination. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed using survey logistic regression models. We identified 1737 cataract surgery cases (the weighted prevalence=14.1%). With adjustment for age, race/ethnicity, gender, education, diabetes mellitus, body mass index, cigarette smoking (serum cotinine and pack-years) and urine hydration, every 2-fold increase in urinary cadmium was associated with a 23% higher risk of cataract surgery (OR=1.23, 95% CI: 1.04, 1.46, p=0.021). We found no associations of cataract surgery with blood cadmium (OR=0.97, 95% CI: 0.89, 1.07) and blood lead (OR=0.97, 95% CI: 0.88, 1.06). Mediation analysis showed that for the smoking-cadmium-cataract pathway, the ratio of smoking's indirect effect to the total effect through cadmium was more than 50%. These results suggest that cumulative cadmium exposure may be an important under-recognized risk factor for cataract. However, these findings should be interpreted with a caution because of inconsistent results between urinary cadmium and blood cadmium.
Collapse
Affiliation(s)
- Weiye Wang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA.
| | - Debra A Schaumberg
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Global Medical Affairs, Shire, Lexington, MA 02421, USA.
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
16
|
DiScipio RG, Liddington RC, Schraufstatter IU. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose. Protein Expr Purif 2016; 121:118-24. [PMID: 26826315 DOI: 10.1016/j.pep.2016.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma.
Collapse
Affiliation(s)
- Richard G DiScipio
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, United States.
| | - Robert C Liddington
- Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines RD La Jolla, CA 92037, United States
| | - Ingrid U Schraufstatter
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, United States
| |
Collapse
|
17
|
Hwang HS, Lee SB, Jee D. Association between Blood Lead Levels and Age-Related Macular Degeneration. PLoS One 2015; 10:e0134338. [PMID: 26252225 PMCID: PMC4529082 DOI: 10.1371/journal.pone.0134338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
Purpose To investigate the association between blood lead levels and prevalence of age-related macular degeneration (AMD). Methods A nationwide population-based cross-sectional study included 4,933 subjects aged over 40 years who participated in the 2008–2012 Korean National Health and Nutrition Examination Survey, and for whom fundus photographs were available. All participants underwent a standardized interview, evaluation of blood lead concentration, and a comprehensive ophthalmic examination. Digital fundus photographs (45°) were taken of both eyes under physiological mydriasis. All fundus photographs were graded using an international classification and grading system. Results Mean blood lead levels were 3.15 μg/dL in men and 2.27 μg/dL in women (P < 0.001). After adjusting for potential confounders including age, gender, smoking status, total cholesterol levels, triglyceride levels, heart problems and strokes, the adjusted odds ratio (OR) in women for any AMD was 1.86 (95% Confidence Interval [CI], 1.03–3.36) and for early AMD was 1.92 (95% CI, 1.06–3.48), for those in the highest quintile of lead level compared with the lowest quintile. In men, however, blood lead level was not significantly associated with AMD. Conclusions Blood lead levels were higher in men, but were only associated with AMD in women. Increased levels of blood lead may be involved in the pathogenesis of AMD development in women.
Collapse
Affiliation(s)
- Ho Sik Hwang
- Department of Ophthalmology, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Korea
| | | | - Donghyun Jee
- Department of Ophthalmology and Visual Science, St. Vincent’s Hospital, College of Medicine, Catholic University of Korea, Suwon, Korea
- * E-mail:
| |
Collapse
|
18
|
Biesemeier A, Yoeruek E, Eibl O, Schraermeyer U. Iron accumulation in Bruch's membrane and melanosomes of donor eyes with age-related macular degeneration. Exp Eye Res 2015; 137:39-49. [DOI: 10.1016/j.exer.2015.05.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
|
19
|
Fox DA. Retinal and visual system: occupational and environmental toxicology. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:325-40. [PMID: 26563796 DOI: 10.1016/b978-0-444-62627-1.00017-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Occupational chemical exposure often results in sensory systems alterations that occur without other clinical signs or symptoms. Approximately 3000 chemicals are toxic to the retina and central visual system. Their dysfunction can have immediate, long-term, and delayed effects on mental health, physical health, and performance and lead to increased occupational injuries. The aims of this chapter are fourfold. First, provide references on retinal/visual system structure, function, and assessment techniques. Second, discuss the retinal features that make it especially vulnerable to toxic chemicals. Third, review the clinical and corresponding experimental data regarding retinal/visual system deficits produced by occupational toxicants: organic solvents (carbon disulfide, trichloroethylene, tetrachloroethylene, styrene, toluene, and mixtures) and metals (inorganic lead, methyl mercury, and mercury vapor). Fourth, discuss occupational and environmental toxicants as risk factors for late-onset retinal diseases and degeneration. Overall, the toxicants altered color vision, rod- and/or cone-mediated electroretinograms, visual fields, spatial contrast sensitivity, and/or retinal thickness. The findings elucidate the importance of conducting multimodal noninvasive clinical, electrophysiologic, imaging and vision testing to monitor toxicant-exposed workers for possible retinal/visual system alterations. Finally, since the retina is a window into the brain, an increased awareness and understanding of retinal/visual system dysfunction should provide additional insight into acquired neurodegenerative disorders.
Collapse
Affiliation(s)
- Donald A Fox
- Departments of Vision Sciences, Biology and Biochemistry, Pharmacology, and Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
20
|
Park SJ, Lee JH, Woo SJ, Kang SW, Park KH. Five heavy metallic elements and age-related macular degeneration: Korean National Health and Nutrition Examination Survey, 2008-2011. Ophthalmology 2014; 122:129-37. [PMID: 25225109 DOI: 10.1016/j.ophtha.2014.07.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To investigate the association between age-related macular degeneration (AMD) and 5 heavy metallic elements (lead, mercury, cadmium, manganese, and zinc). DESIGN A cross-sectional study using a complex, stratified, multistage, probability cluster survey. PARTICIPANTS Participants of the Korean National Health and Nutrition Examination Survey from 2008 to 2011. METHODS Using a standardized protocol, AMD was determined by fundus photograph grading. Blood concentrations of lead, mercury, cadmium, manganese, and zinc were measured. Associations between AMD and these 5 elements were estimated using logistic regression analyses (LRAs). The distributions of the 5 metallic elements in blood were analyzed, and the same set of LRAs estimating the association between AMD and logarithmic-transformed blood concentrations of the 5 elements were also conducted. MAIN OUTCOME MEASURES Association between AMD and 5 heavy metals. RESULTS Lead was positively associated with both early AMD and late AMD in all LRAs. Mercury and cadmium also had a positive association with late AMD in all LRAs, but not with early AMD. In contrast, manganese and zinc had an inverse association with late AMD in all LRAs. Manganese and zinc were not associated with early AMD. Using logarithmic-transformed blood concentrations for each metallic element, the LRAs showed similar results compared with those of the LRAs using nontransformed blood concentrations, despite the skewed distribution of these metallic elements in the blood. CONCLUSIONS This study suggests that the toxic heavy metals (lead, mercury, and cadmium) may negatively influence late AMD, whereas essential heavy metals (manganese and zinc) may favorably influence late AMD. Lead may widely affect the pathogenesis of both early and late AMD.
Collapse
Affiliation(s)
- Sang Jun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ju Hyun Lee
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Woong Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | | |
Collapse
|
21
|
Abstract
Dry eye is one of the most common eye disorders affecting millions of people. It causes ocular irritation or discomfort, and decreases functional vision, causing a dramatic deterioration in the quality of life. Although new treatments such as the P2Y2 agonist or cyclosporine eye drops have been developed and a certain level of patient satisfaction can now be obtained, no fundamental treatment has been developed. Currently, there is no therapy available to recover lacrimal function to its normal status. Recent progress in the understanding of aging has laid the foundations for a new way of thinking about intervention of the aging process. Because dry eye is accelerated by aging, a useful approach for the prevention or treatment of dry eye may be to interfere with the aging process. In the scientific community, there is a global consensus that calorie restriction can extend the life span of various kinds of animals, establishing an intervention to aging. Another important hypothesis believed to be involved in aging is the free radical theory. According to these theories, the aging process may be managed by controlling levels of calories or reactive oxygen species. In this review, these 2 important aging theories, calorie restriction and free radical aging, are examined, and we discuss how to apply these theories to the prevention and treatment of dry eye.
Collapse
|