1
|
Brodzka S, Baszyński J, Rektor K, Hołderna-Bona K, Stanek E, Kurhaluk N, Tkaczenko H, Malukiewicz G, Woźniak A, Kamiński P. Immunogenetic and Environmental Factors in Age-Related Macular Disease. Int J Mol Sci 2024; 25:6567. [PMID: 38928273 PMCID: PMC11203563 DOI: 10.3390/ijms25126567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is a chronic disease, which often develops in older people, but this is not the rule. AMD pathogenesis changes include the anatomical and functional complex. As a result of damage, it occurs, in the retina and macula, among other areas. These changes may lead to partial or total loss of vision. This disease can occur in two clinical forms, i.e., dry (progression is slowly and gradually) and exudative (wet, progression is acute and severe), which usually started as dry form. A coexistence of both forms is possible. AMD etiology is not fully understood. Extensive genetic studies have shown that this disease is multifactorial and that genetic determinants, along with environmental and metabolic-functional factors, are important risk factors. This article reviews the impact of heavy metals, macro- and microelements, and genetic factors on the development of AMD. We present the current state of knowledge about the influence of environmental factors and genetic determinants on the progression of AMD in the confrontation with our own research conducted on the Polish population from Kuyavian-Pomeranian and Lubusz Regions. Our research is concentrated on showing how polluted environments of large agglomerations affects the development of AMD. In addition to confirming heavy metal accumulation, the growth of risk of acute phase factors and polymorphism in the genetic material in AMD development, it will also help in the detection of new markers of this disease. This will lead to a better understanding of the etiology of AMD and will help to establish prevention and early treatment.
Collapse
Affiliation(s)
- Sylwia Brodzka
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Jędrzej Baszyński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Katarzyna Rektor
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Karolina Hołderna-Bona
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Emilia Stanek
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Grażyna Malukiewicz
- Department of Eye Diseases, University Hospital No. 1, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland;
| | - Piotr Kamiński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| |
Collapse
|
2
|
Tolentino MJ, Tolentino AJ. Investigational drugs in clinical trials for macular degeneration. Expert Opin Investig Drugs 2022; 31:1067-1085. [PMID: 35962560 DOI: 10.1080/13543784.2022.2113375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Intravitreal anti-vascular endothelial growth factor (VEGF) injections for exudative age-related macular degeneration (eAMD) are effective and safe but require frequent injections and have nonresponding patients. Geographic atrophy/dry AMD (gaAMD) remains an unmet medical need . New therapies are needed to address this leading cause of blindness in the increasing aged population. AREAS COVERED This paper reviews the pathogenesis of macular degeneration, current and failed therapeutics, therapies undergoing clinical trials and a rationale for why certain AMD therapies may succeed or fail . EXPERT OPINION VEGF- inhibitors reduce both vascular leakage and neovascularization. Experimental therapies that only address neovascularization or leakage will unlikely supplant anti-VEGF therapies. The most promising future therapies for eAMD, are those that target, more potently inhibit and have a more sustained effect on the VEGF pathway such as KSI-301, RGX-314, CLS-AX, EYEP-1901, OTX-TKI. GaAMD is a phenotype of phagocytic retinal cell loss. Inhibiting phagocytic activity of retinal microglial/macrophages at the border of GA and reducing complement derived activators of microglial/macrophage is the most promising strategy. Complement inhibitors (Pegcetacoplan and Avacincaptad pegol) will likely obtain FDA approval but will serve to pave the way for combined complement and direct phagocytic inhibitors such as AVD-104.
Collapse
Affiliation(s)
- Michael J Tolentino
- University of Central Florida, FL, USA.,Blue Ocean Clinical Research, Lakeland, FL, USA.,Aviceda Therapeutics, Cambridge, MA, USA
| | | |
Collapse
|
3
|
Shughoury A, Sevgi DD, Ciulla TA. Molecular Genetic Mechanisms in Age-Related Macular Degeneration. Genes (Basel) 2022; 13:1233. [PMID: 35886016 PMCID: PMC9316037 DOI: 10.3390/genes13071233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is among the leading causes of irreversible blindness worldwide. In addition to environmental risk factors, such as tobacco use and diet, genetic background has long been established as a major risk factor for the development of AMD. However, our ability to predict disease risk and personalize treatment remains limited by our nascent understanding of the molecular mechanisms underlying AMD pathogenesis. Research into the molecular genetics of AMD over the past two decades has uncovered 52 independent gene variants and 34 independent loci that are implicated in the development of AMD, accounting for over half of the genetic risk. This research has helped delineate at least five major pathways that may be disrupted in the pathogenesis of AMD: the complement system, extracellular matrix remodeling, lipid metabolism, angiogenesis, and oxidative stress response. This review surveys our current understanding of each of these disease mechanisms, in turn, along with their associated pathogenic gene variants. Continued research into the molecular genetics of AMD holds great promise for the development of precision-targeted, personalized therapies that bring us closer to a cure for this debilitating disease.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Duriye Damla Sevgi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Thomas A. Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
- Clearside Biomedical, Inc., Alpharetta, GA 30005, USA
- Midwest Eye Institute, Indianapolis, IN 46290, USA
| |
Collapse
|
4
|
Peters F, Ebner LJA, Atac D, Maggi J, Berger W, den Hollander AI, Grimm C. Regulation of ABCA1 by AMD-Associated Genetic Variants and Hypoxia in iPSC-RPE. Int J Mol Sci 2022; 23:ijms23063194. [PMID: 35328615 PMCID: PMC8953808 DOI: 10.3390/ijms23063194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive disease of the macula characterized by atrophy of the retinal pigment epithelium (RPE) and photoreceptor degeneration, leading to severe vision loss at advanced stages in the elderly population. Impaired reverse cholesterol transport (RCT) as well as intracellular lipid accumulation in the RPE are implicated in AMD pathogenesis. Here, we focus on ATP-binding cassette transporter A1 (ABCA1), a major cholesterol transport protein in the RPE, and analyze conditions that lead to ABCA1 dysregulation in induced pluripotent stem cell (iPSC)-derived RPE cells (iRPEs). Our results indicate that the risk-conferring alleles rs1883025 (C) and rs2740488 (A) in ABCA1 are associated with increased ABCA1 mRNA and protein levels and reduced efficiency of cholesterol efflux from the RPE. Hypoxia, an environmental risk factor for AMD, reduced expression of ABCA1 and increased intracellular lipid accumulation. Treatment with a liver X receptor (LXR) agonist led to an increase in ABCA1 expression and reduced lipid accumulation. Our data strengthen the homeostatic role of cholesterol efflux in the RPE and suggest that increasing cellular cholesterol export by stimulating ABCA1 expression might lessen lipid load, improving RPE survival and reducing the risk of developing AMD.
Collapse
Affiliation(s)
- Florian Peters
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952 Zurich, Switzerland;
- Correspondence: (F.P.); (C.G.)
| | - Lynn J. A. Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952 Zurich, Switzerland;
| | - David Atac
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Zurich, Switzerland; (D.A.); (J.M.); (W.B.)
| | - Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Zurich, Switzerland; (D.A.); (J.M.); (W.B.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Zurich, Switzerland; (D.A.); (J.M.); (W.B.)
| | - Anneke I. den Hollander
- Department of Ophthalmology, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
- AbbVie, Genomic Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8952 Zurich, Switzerland;
- Correspondence: (F.P.); (C.G.)
| |
Collapse
|
5
|
Complement family member CFI polymorphisms and AMD susceptibility from a comprehensive analysis. Biosci Rep 2021; 40:222471. [PMID: 32215612 PMCID: PMC7146047 DOI: 10.1042/bsr20200406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
The complement factor I (CFI) gene polymorphisms have been reported to age-related macular degenerative (AMD) risk, nevertheless, above association is not consistent. We investigated a meta-analysis to evaluate the conclusions between CFI polymorphisms (rs10033900 and rs2285714) and AMD risk. An identification was covered with the PubMed and other databases through February 8, 2020. Odds ratios (OR) and 95% confidence intervals (CI) were used to assess the strength of associations. After a comprehensive search, 11 different articles (12 case–control studies for total AMD and 11 case–control studies about neovascular disease/geographic atrophy in AMD) were retrieved. Individuals carrying C-allele or CC genotype of rs10033900 polymorphism may have a decreased risk to be AMD disease. For example, there has a significantly decreased relationship between rs10033900 polymorphism and AMD both in the whole group, Caucasian population and population-based source of control. Moreover, a similar trend in subgroup of genotype method group by MALDI-TOF MS was detected. To classify the type of AMD in further, decreased association was also observed in both neovascular disease and geographic atrophy AMD. No association was found about rs2285714 polymorphism. Our present groundbreaking study suggests that the CFI rs10033900 polymorphism is potentially associated with the risk of AMD development.
Collapse
|
6
|
Fernández‐Vega B, García M, Olivares L, Álvarez L, González‐Fernández A, Artime E, Fernández‐Vega Cueto A, Cobo T, Coca‐Prados M, Vega JA, González‐Iglesias H. The association study of lipid metabolism gene polymorphisms with AMD identifies a protective role for APOE-E2 allele in the wet form in a Northern Spanish population. Acta Ophthalmol 2020; 98:e282-e291. [PMID: 31654486 DOI: 10.1111/aos.14280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE To elucidate the potential role of eleven single nucleotide polymorphisms (SNPs) in the most relevant lipid metabolism genes in Northern Spanish patients with age-related macular degeneration (AMD). METHODS A case-control study of 228 unrelated native Northern Spanish patients diagnosed with AMD (73 dry and 155 wet) and 95 healthy controls was performed. DNA was isolated from peripheral blood and genotyped for the SNPs APOE rs429358 and rs7412; CTEP rs3764261; LIPC rs10468017 and rs493258; LPL rs12678919; ABCA1 rs1883025; ABCA4 rs76157638, rs3112831 and rs1800555; and SCARB1 rs5888, using TaqMan probes. An additional association study of ε2, ε3 and ε4 major isoforms of APOE gene with AMD has been carried out. RESULTS The allele and genotype frequencies for each of the eleven sequence variants in the lipid metabolism genes did not show significant differences when comparing AMD cases and controls. Statistical analysis revealed that APOE-ε2 carrier genotypes were less frequently observed in patients with wet AMD compared to controls (5.8% versus 13.7%, respectively: p = 3.28 × 10-2 ; OR = 0.42, 95% CI: 0.19-0.95). The frequency of the allele T of rs10468017 (LIPC gene) was lower in dry AMD cases compared to controls (15.8 versus 27.9%, respectively: p = 8.4 × 10-3 OR = 0.57, 95% CI: 0.33-0.98). CONCLUSIONS Our results suggest a protective role for APOE-ε2 allele to wet AMD in the Northern Spanish population.
Collapse
Affiliation(s)
- Beatriz Fernández‐Vega
- Instituto Oftalmológico Fernández‐Vega Oviedo Spain
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
- Departamento de Morfología y Biología Celular Grupo SINPOS Universidad de Oviedo Oviedo Spain
| | - Montserrat García
- Instituto Oftalmológico Fernández‐Vega Oviedo Spain
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Lorena Olivares
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Adrián González‐Fernández
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Enol Artime
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Andrés Fernández‐Vega Cueto
- Instituto Oftalmológico Fernández‐Vega Oviedo Spain
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico‐Quirúrgicas Universidad de Oviedo Oviedo Spain
| | - Miguel Coca‐Prados
- Department of Ophthalmology and Visual Science Yale University School of Medicine New Haven CT USA
| | - José A. Vega
- Departamento de Morfología y Biología Celular Grupo SINPOS Universidad de Oviedo Oviedo Spain
- Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago de Chile Chile
| | - Héctor González‐Iglesias
- Instituto Oftalmológico Fernández‐Vega Oviedo Spain
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| |
Collapse
|
7
|
Predictive genetics for AMD: Hype and hopes for genetics-based strategies for treatment and prevention. Exp Eye Res 2019; 191:107894. [PMID: 31862397 DOI: 10.1016/j.exer.2019.107894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/14/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
Age-related macular degeneration (AMD) is a complex disease with multiple genetic and environmental risk factors. In the age of molecular genetics, many investigators have established a link between genes and development or progression of the disease. This later evolved to determine whether phenotypic features of AMD have distinct genetic profiles. Molecular genetics have subsequently been introduced as factors in risk assessment models, increasing the predictive value of these tools. Models seek to predict either development or progression of disease, and different AMD-related genes aid our understanding of these respective features. Several investigators have attempted to link molecular genetics with treatment response, but results and their clinical significance vary. Ocular and systemic biomarkers may interact with established genes, promising future routes of ongoing clinical assessment. Our understanding of AMD molecular genetics is not yet sufficient to recommend routine testing, despite its utility in the research setting. Clinicians must be wary of misusing population-based risk models from genetic and biomarker associations, as they are not necessarily relevant for individual counseling. This review addresses the known uses of predictive genetics, and suggests future directions.
Collapse
|
8
|
Storti F, Klee K, Todorova V, Steiner R, Othman A, van der Velde-Visser S, Samardzija M, Meneau I, Barben M, Karademir D, Pauzuolyte V, Boye SL, Blaser F, Ullmer C, Dunaief JL, Hornemann T, Rohrer L, den Hollander A, von Eckardstein A, Fingerle J, Maugeais C, Grimm C. Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration. eLife 2019; 8:45100. [PMID: 30864945 PMCID: PMC6435327 DOI: 10.7554/elife.45100] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/12/2019] [Indexed: 01/04/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive disease of the retinal pigment epithelium (RPE) and the retina leading to loss of central vision. Polymorphisms in genes involved in lipid metabolism, including the ATP-binding cassette transporter A1 (ABCA1), have been associated with AMD risk. However, the significance of retinal lipid handling for AMD pathogenesis remains elusive. Here, we study the contribution of lipid efflux in the RPE by generating a mouse model lacking ABCA1 and its partner ABCG1 specifically in this layer. Mutant mice show lipid accumulation in the RPE, reduced RPE and retinal function, retinal inflammation and RPE/photoreceptor degeneration. Data from human cell lines indicate that the ABCA1 AMD risk-conferring allele decreases ABCA1 expression, identifying the potential molecular cause that underlies the genetic risk for AMD. Our results highlight the essential homeostatic role for lipid efflux in the RPE and suggest a pathogenic contribution of reduced ABCA1 function to AMD.
Collapse
Affiliation(s)
- Federica Storti
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Katrin Klee
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Vyara Todorova
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
| | - Alaa Othman
- Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
| | | | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Isabelle Meneau
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Maya Barben
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Duygu Karademir
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Valda Pauzuolyte
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, United States
| | - Frank Blaser
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joshua L Dunaief
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, United States
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
| | - Anneke den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jürgen Fingerle
- Natural and Medical Sciences Institute, University of Tübingen, Tübingen, Germany
| | - Cyrille Maugeais
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Liutkeviciene R, Vilkeviciute A, Kriauciuniene L, Deltuva VP. SIRT1 rs12778366, FGFR2 rs2981582, STAT3 rs744166, LIPC rs10468017, rs493258 and LPL rs12678919 genotypes and haplotype evaluation in patients with age-related macular degeneration. Gene 2019; 686:8-15. [DOI: 10.1016/j.gene.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023]
|
10
|
Zhang J, Li S, Hu S, Yu J, Xiang Y. Association between genetic variation of complement C3 and the susceptibility to advanced age-related macular degeneration: a meta-analysis. BMC Ophthalmol 2018; 18:274. [PMID: 30352574 PMCID: PMC6199710 DOI: 10.1186/s12886-018-0945-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study is to discuss whether genetic variants (rs2230199, rs1047286, rs2230205, and rs2250656) in the C3 gene account for a significant risk of advanced AMD. METHODS We performed a meta-analysis using electronic databases to search relevant articles. A total of 40 case-control studies from 38 available articles (20,673 cases and 20,025 controls) were included in our study. RESULTS In our meta-analysis, the pooled results showed that the carriage of G allele for rs2230199 and the T allele for rs1047286 had a tendency to the risk of advanced AMD (OR = 1.49, 95% CI = 1.39-1.59, P < 0.001; OR = 1.45, 95% CI = 1.37-1.54, P < 0.001). Moreover, in the subgroup analysis based on ethnicity, rs2230199 and rs1047286 polymorphisms were more likely to be a predictor of response for Caucasian region (OR = 1.48, 95% CI = 1.38-1.59, P < 0.001; OR = 1.45, 95% CI = 1.37-1.54, P < 0.001). Besides, pooled results suggested that the G allele of rs2230199 could confer susceptibility to advanced AMD in Middle East (OR = 1.62, 95% CI = 1.33-1.97, P < 0.001). CONCLUSION In our meta-analysis, C3 genetic polymorphisms unveiled a positive effect on the risk of advanced AMD, especially in Caucasians. Furthermore, numerous well-designed studies with large sample-size are required to validate this conclusion.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, NO, 26 Shengli Street, Wuhan, 430014, Hubei Province, China
| | - Shuang Li
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, NO, 26 Shengli Street, Wuhan, 430014, Hubei Province, China
| | - Shuqiong Hu
- Department of Ophthalmology, the Jingzhou aier eye hospital, Jingzhou, Hubei Province, China
| | - Jiguo Yu
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, NO, 26 Shengli Street, Wuhan, 430014, Hubei Province, China
| | - Yi Xiang
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, NO, 26 Shengli Street, Wuhan, 430014, Hubei Province, China.
| |
Collapse
|
11
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
12
|
Seddon JM. Macular Degeneration Epidemiology: Nature-Nurture, Lifestyle Factors, Genetic Risk, and Gene-Environment Interactions - The Weisenfeld Award Lecture. Invest Ophthalmol Vis Sci 2018; 58:6513-6528. [PMID: 29288272 PMCID: PMC5749242 DOI: 10.1167/iovs.17-23544] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Johanna M Seddon
- Ophthalmic Epidemiology and Genetics Service, Tufts Medical Center, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States.,Sackler School of Graduate Biomedical Sciences and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
13
|
Wang Y, Wang M, Zhang X, Nie J, Zhang M, Liu X, Ma L. The Association between LIPC rs493258 Polymorphism and the Susceptibility to Age-Related Macular Degeneration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13101022. [PMID: 27763569 PMCID: PMC5086761 DOI: 10.3390/ijerph13101022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/25/2016] [Accepted: 10/08/2016] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to evaluate the association of the hepatic lipase (LIPC) rs493258 polymorphism and susceptibility to age-related macular degeneration (AMD). A systematic search in PubMed, EMBASE, and ISI web of science databases was performed to identify eligible published studies without language restrictions up to April 2016. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) in different stages of AMD were estimated under different genetic models using meta-analytic methods. Seven studies comprising 20,559 cases and 17,200 controls met the inclusion criteria and were included in the meta-analysis. The LIPC rs493258 polymorphism showed a significant association with a lower risk of AMD under the allelic model (OR = 0.87, 95% CI = 0.84–0.90). Significant relationships between the variant and AMD were also observed in other genetic models (OR ranging from 0.71 to 0.86, all p < 0.05). Stratified analysis based on ethnicity found that LIPC rs493258 polymorphism had a significant association with the decreased risk of the disease in the Caucasian population, but not in the Asian population. For late AMD, significant associations of the rs493258 polymorphism with a lower risk of this disease were also observed in the allelic genetic model (OR = 0.87, 95% CI = 0.83–0.90). This meta-analysis demonstrates that the T allele in the LIPC rs493258 polymorphism was significantly associated with the risk of any and late AMD. The associations of the locus with early and late AMD risk in various populations need further exploration.
Collapse
Affiliation(s)
- Yafeng Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Mingxu Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Xiaoqing Zhang
- Department of Public Health, Xi'an Medical University, Xi'an 710021, China.
| | - Jing Nie
- School of Humanities, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ming Zhang
- Department of Internal Medicine, Xi'an Honghui Hospital, Xi'an 710054, China.
| | - Xiaohong Liu
- The First Affiliated Hospital of Xi'an Jiaotong University, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
14
|
Pertl L, Kern S, Weger M, Hausberger S, Trieb M, Gasser-Steiner V, Haas A, Scharnagl H, Heinemann A, Marsche G. High-Density Lipoprotein Function in Exudative Age-Related Macular Degeneration. PLoS One 2016; 11:e0154397. [PMID: 27171197 PMCID: PMC4865135 DOI: 10.1371/journal.pone.0154397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
Purpose High-density lipoproteins (HDL) have long been implicated in the pathogenesis of age-related macular degeneration (AMD). However, conflicting results have been reported with regard to the associations of AMD with HDL-cholesterol levels. The present study is the first to assess HDL composition and metrics of HDL function in patients with exudative AMD and control patients. Methods Blood samples were collected from 29 patients with exudative AMD and 26 age-matched control patients. Major HDL associated apolipoproteins were determined in apoB-depleted serum by immunoturbidimetry or ELISA, HDL-associated lipids were quantified enzymatically. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function, including cholesterol efflux capacity, anti-oxidative and anti-inflammatory activities using apoB-depleted serum from study participants. Results In our study, we observed that the HDL associated acute phase protein serum amyloid A (SAA) was significantly increased in AMD patients (p<0.01), whereas all other assessed apolipoproteins including ApoA-I, apoA-II, apoC-II, apoC-III and apoE as well as major HDL associated lipids were not altered. HDL efflux capacity, anti-oxidative capacity and arylesterase activity were not different in AMD patients when compared with the control group. The ability of apoB-depleted serum to inhibit monocyte NF-κB expression was significantly improved in AMD patients (mean difference (MD) -5.6, p<0.01). Moreover, lipoprotein-associated phospholipase A2 activity, a marker of vascular inflammation, was decreased in AMD subjects (MD -24.1, p<0.01). Conclusions The investigated metrics of HDL composition and HDL function were not associated with exudative AMD in this study, despite an increased content of HDL associated SAA in AMD patients. Unexpectedly, anti-inflammatory activity of apoB-depleted serum was even increased in our study. Our data suggest that the investigated parameters of serum HDL function showed no significant association with exudative AMD. However, we cannot exclude that alterations in locally produced HDL may be part of the AMD pathogenesis.
Collapse
Affiliation(s)
- Laura Pertl
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Sabine Kern
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Martin Weger
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Silke Hausberger
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Markus Trieb
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | - Anton Haas
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
15
|
Wang Q, Zhao HS, Li L. Association between complement factor I gene polymorphisms and the risk of age-related macular degeneration: a Meta-analysis of literature. Int J Ophthalmol 2016; 9:298-305. [PMID: 26949655 DOI: 10.18240/ijo.2016.02.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/27/2015] [Indexed: 01/11/2023] Open
Abstract
AIM To systematically review the association between complement factors I (CFI) polymorphisms and age-related macular degeneration (AMD) and to explore whether CFI polymorphisms are associated with AMD. METHODS Meta-analysis of articles published from 1995 to January 2015 of articles involved with AMD and polymorphisms of the CFI gene. Eligible data were pooled in a Meta-analysis, analyzing using STATA software (version 12.0), Review Manager (version 5.2) and different models based on the heterogeneity of effect sizes. Egger's test, Begg's rank correlation methods were used to evaluate for publication bias. RESULTS Thirteen articles were eligible, describing two loci polymorphisms of the CFI gene (of which 12 articles focus on rs10033900T>C and 3 articles focus on rs2285714C>T). For rs10033900T>C, the results of our study revealed that having a mutant allele C, TC, CC and TC+CC was associated with a decreased risk of AMD in all population groups studied (C versus T models, OR=0.84, 95%CI: 0.72-0.99, P=0.04; TC versus TT models OR=0.89, 95%CI: 0.88-0.99, P=0.04; CC versus TT models, OR=0.76, 95%CI: 0.60-0.98, P=0.03; TC+CC versus TT models, OR=0.81, 95%CI:0.65-0.99, P=0.04). We found that C allele were related to lower AMD risk in the Caucasian population by subgroup analysis, but there was no association with AMD under the allele and genotypes comparison in Asian studies. For rs2285714 C>T, the TC, TT genotypes contributed to a higher risk of AMD, compared with the CC carriers and TC+CC (OR=1.34, 95%CI: 1.09-1.63, P=0.004; OR=1.50, 95%CI: 1.25-1.80, P<0.0001). CONCLUSION This Meta-analysis suggests that CFI rs10033900T>C and rs2285714C>T polymorphisms may contribute to AMD.
Collapse
Affiliation(s)
- Qin Wang
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Center of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hai-Sheng Zhao
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Li
- Center of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
16
|
Liao X, Lan CJ, Cheuk IWY, Tan QQ. Four complement factor H gene polymorphisms in association with AMD: A meta-analysis. Arch Gerontol Geriatr 2016; 64:123-9. [PMID: 26852301 DOI: 10.1016/j.archger.2016.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 11/17/2022]
Abstract
AIM To investigate the possible association between CFH gene polymorphisms -543G>A (rs1410996), A473A (rs2274700), -257C>T (rs3753394), IVS15 (rs1329428) and AMD risk. METHODS We searched the published literature in the Medline and Scopus from inception to May 2015. A meta-analysis was performed by the programs RevMan 5.1 and Stata 12.0, and the Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated in fixed or random effect model based on heterogeneity test among studies. RESULTS Nineteen studies with a total of 10,676 subjects were included in the present meta-analysis. A statistical significant association was observed between AMD risk and CFH -543G>A polymorphism with OR of 1.77 (95% CI, 1.47-2.12), 2.24 (95% CI, 1.71-2.94), 0.49 (95% CI, 0.38-0.62) and 0.25 (95% CI, 0.18-0.37) in additive, dominant, recessive and codominant models, respectively. Similar results were obtained in polymorphisms A473A, -257C>T, IVS15. Furthermore, stratified analysis for ethnicity showed a significantly strong association between -543G>A, A473A polymorphisms and AMD risk. CONCLUSION The present meta-analysis suggested that CFH -543G>A, A473A, -257C>T, and IVS15 polymorphisms might be moderately associated with AMD risk. This conclusion warrants confirmation by further studies.
Collapse
Affiliation(s)
- Xuan Liao
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637007, Sichuan Province, China; Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong 637007, Sichuan Province, China
| | - Chang-Jun Lan
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637007, Sichuan Province, China; Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong 637007, Sichuan Province, China.
| | - Isabella-Wai-Yin Cheuk
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China
| | - Qing-qing Tan
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637007, Sichuan Province, China; Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong 637007, Sichuan Province, China
| |
Collapse
|
17
|
Meng Q, Huang L, Sun Y, Bai Y, Wang B, Yu W, Zhao M, Li X. Effect of High-Density Lipoprotein Metabolic Pathway Gene Variations and Risk Factors on Neovascular Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in China. PLoS One 2015; 10:e0143924. [PMID: 26624898 PMCID: PMC4666634 DOI: 10.1371/journal.pone.0143924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023] Open
Abstract
Purpose To investigate the effect of genetic variants in the high-density lipoprotein (HDL) metabolic pathway and risk factors on neovascular age-related macular degeneration (nAMD) and polypoidal choroidal vasculopathy (PCV) in China. Methods A total of 742 Chinese subjects, including 221 controls, 230 cases with nAMD, and 291 cases with PCV, were included in the present study. Five single nucleotide polymorphisms (SNPs) from three genes in the HDL metabolic pathway (HDLMP) including cholesteryl ester transfer protein (CETP), hepatic lipase (LIPC) and lipoprotein lipase (LPL) were genotyped in all study subjects with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Risk factors including gender, hypertension, hyperlipidemia, diabetes mellitus, and coronary artery disease were identified. Chi-square tests or Fisher’s exact tests were applied to discover associations between SNPs and risk factors for PCV and nAMD. Gene-gene interactions and gene-environment interactions were evaluated by the multifactor-dimensionality reduction (MDR) method. Results CETP rs3764261 were significantly associated with an increased risk for PCV (odds ratio (OR) = 1.444, P = 0.0247). LIPC rs1532085 conferred an increased risk for PCV (OR = 1.393, P = 0.0094). We found no association between PCV and LPL rs12678919, LIPC rs10468017 or CETP rs173539. No association was found between five SNPs with nAMD. Regarding risk factors, females were found to have significantly decreased risks for both PCV and nAMD (P = 0.006 and 0.001, respectively). Coronary artery disease (CAD) was a risk factor in PCV patients but played a protective role in nAMD patients. Hyperlipidemia was associated with PCV but not with nAMD. Neither hypertension nor diabetes mellitus was associated with PCV or nAMD. The MDR analysis revealed that a three-locus model with rs12678919, rs1532085, and gender was the best model for nAMD, while a five-locus model consisting of rs10468017, rs3764261, rs1532085, gender, and hyperlipidemia was best for PCV. Conclusion Our large-sample study suggested that CETP rs3764261 conferred an increased risk for PCV. We also first found the association between rs1532085 and PCV. The result of present study also showed that gender and CAD are associated with PCV and nAMD. Significant association was found between hyperlipidemia and PCV but not nAMD.
Collapse
Affiliation(s)
- Qingyu Meng
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Lvzhen Huang
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Yaoyao Sun
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Yujing Bai
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Bin Wang
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Wenzhen Yu
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Mingwei Zhao
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- * E-mail: (MZ); (XL)
| | - Xiaoxin Li
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- * E-mail: (MZ); (XL)
| |
Collapse
|
18
|
ABCA1 rs1883025 polymorphism and risk of age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2015; 254:323-32. [PMID: 26608582 DOI: 10.1007/s00417-015-3211-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To evaluate the association of the ABCA1 rs1883025 polymorphism and susceptibility to age-related macular degeneration (AMD). METHODS A systematic search of the PubMed, EMBASE, and ISI web of science databases was performed to identify eligible published studies without language restrictions up to September 2015. Pooled odds ratios (ORs) with 95 % confidence intervals (CIs) were estimated under different genetic models using meta-analytic methods. Stratified analysis and sensitivity analysis were performed to explore potential sources of heterogeneity. RESULTS A total of 12 articles with 25,445 cases and 36,460 controls were eligible in this meta-analysis. The ABCA1 rs1883025 variant showed significant association with the lower risk of overall AMD under the allelic model (OR= 0.81, 95 % CI=0.74-0.89). Stratified analysis based on ethnicity demonstrated a strong association between rs1883025 polymorphism and AMD in the Caucasian population, but not in Asian population. For late AMD, the ABCA1 rs1883025 variant was observed to have a significant association with the lower risk of this disease (OR = 0.81, 95 % CI, 0.72-0.91). In early-stage AMD, significant associations of the rs1883025 polymorphism with lower risk of early AMD were observed in different genetic models (OR ranging from 0.45 to 0.65, all P < 0.05). CONCLUSIONS The present meta-analysis indicated that the T allelic in rs1883025 variant was significantly associated with the risk of developing AMD, particularly at the early stage. The associations of the ABCA1 locus with AMD risk in various populations need further exploration.
Collapse
|
19
|
Wang YF, Han Y, Zhang R, Qin L, Wang MX, Ma L. CETP/LPL/LIPC gene polymorphisms and susceptibility to age-related macular degeneration. Sci Rep 2015; 5:15711. [PMID: 26503844 PMCID: PMC4621603 DOI: 10.1038/srep15711] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/18/2015] [Indexed: 12/17/2022] Open
Abstract
Three high-density lipoprotein (HDL)-related loci have been reported to be associated with age-related macular degeneration (AMD), but the results were inconsistent. In this study, the cholesteryl ester transfer protein (CETP) rs3764261 variant was significantly associated with an increased risk of AMD (odds ratio [OR] = 1.13, 95% confidence interval [CI]: 1.05–1.21, P < 0.001), and the hepatic lipase (LIPC) rs10468017 variant was associated with a significantly decreased risk of AMD (OR = 0.81, CI: 0.76–0.86, P < 0.001). Individuals carrying the lipoprotein lipase (LPL) rs12678919 polymorphism (A → G) had no significant change in the risk of developing AMD (OR = 1.01, CI: 0.92–1.10, P = 0.17). After adjusting for the complement factor H (CFH) gene, both CETP and LPL conferred a significantly increased AMD risk (ORCETP = 1.17, CI: 1.08–1.26, P < 0.001; ORLPL = 1.11, CI: 1.01–1.22, P = 0.02). Subgroup analysis based on ethnicity revealed a significant association between the CETP variant and AMD in both Americans (OR = 1.12, CI: 1.02–1.23, P = 0.01) and Europeans (OR = 1.10, CI: 1.01–1.19, P = 0.011). This meta-analysis revealed that both CETP rs3764261 and LIPC rs10468017 polymorphisms were significantly associated with AMD risk. After adjustment for the CFH gene, CETP/LPL conferred a significantly increased susceptibility to the disease, indicating potential interactions among genes in the complement system and the lipid metabolism pathway.
Collapse
Affiliation(s)
- Ya-Feng Wang
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| | - Yue Han
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| | - Rui Zhang
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| | - Li Qin
- The First Affiliated Hospital, Xi'an Jiao tong University College of Medicine, Xi'an, China
| | - Ming-Xu Wang
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| | - Le Ma
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| |
Collapse
|
20
|
Kawa MP, Machalinska A, Roginska D, Machalinski B. Complement system in pathogenesis of AMD: dual player in degeneration and protection of retinal tissue. J Immunol Res 2014; 2014:483960. [PMID: 25276841 PMCID: PMC4168147 DOI: 10.1155/2014/483960] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly, especially in Western countries. Although the prevalence, risk factors, and clinical course of the disease are well described, its pathogenesis is not entirely elucidated. AMD is associated with a variety of biochemical abnormalities, including complement components deposition in the retinal pigment epithelium-Bruch's membrane-choriocapillaris complex. Although the complement system (CS) is increasingly recognized as mediating important roles in retinal biology, its particular role in AMD pathogenesis has not been precisely defined. Unrestricted activation of the CS following injury may directly damage retinal tissue and recruit immune cells to the vicinity of active complement cascades, therefore detrimentally causing bystander damage to surrounding cells and tissues. On the other hand, recent evidence supports the notion that an active complement pathway is a necessity for the normal maintenance of the neurosensory retina. In this scenario, complement activation appears to have beneficial effect as it promotes cell survival and tissue remodeling by facilitating the rapid removal of dying cells and resulting cellular debris, thus demonstrating anti-inflammatory and neuroprotective activities. In this review, we discuss both the beneficial and detrimental roles of CS in degenerative retina, focusing on the diverse aspects of CS functions that may promote or inhibit macular disease.
Collapse
Affiliation(s)
- Milosz P. Kawa
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Machalinska
- Department of Ophthalmology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
- Department of Histology and Embryology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Dorota Roginska
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Boguslaw Machalinski
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
21
|
Yang F, Sun Y, Jin Z, Cheng Y, Li S, Bai Y, Huang L, Li X. Complement Factor I Polymorphism Is Not Associated with Neovascular Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in a Chinese Population. Ophthalmologica 2014; 232:37-45. [DOI: 10.1159/000358241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022]
|
22
|
Liu K, Chen LJ, Lai TYY, Tam POS, Ho M, Chiang SWY, Liu DTL, Young AL, Yang Z, Pang CP. Genes in the high-density lipoprotein metabolic pathway in age-related macular degeneration and polypoidal choroidal vasculopathy. Ophthalmology 2014; 121:911-6. [PMID: 24393350 DOI: 10.1016/j.ophtha.2013.10.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the associations of genetic variants in the high-density lipoprotein (HDL) metabolism pathway with neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV). DESIGN Cross-sectional, case-control association study. PARTICIPANTS A Chinese case-control group of 200 neovascular AMD patients, 233 PCV patients, and 275 control subjects. METHODS Eight single nucleotide polymorphisms (SNPs) from 6 genes of the HDL metabolism pathway and 2 known AMD-associated SNPs, rs800292 (from complement factor H [CFH]) and rs11200638 (from HtrA serine peptidase 1 [HTRA1]), were genotyped in all study subjects using the TaqMan genotyping technology (Applied Biosystems, Foster City, CA). MAIN OUTCOME MEASURES Allele and genotypic frequencies of selected SNPs. RESULTS The SNP rs3764261 in the cholesteryl ester transfer protein (CETP) gene was associated significantly with neovascular AMD (P = 1.82×10(-4); odds ratio [OR], 1.89) and PCV (P = 4.04×10(-4); OR, 1.80). The associations remained significant after adjusting for the CFH SNP rs800292 and the HTRA1 SNP rs11200638. A significant interaction between the CETP SNP rs3764261 and the CFH SNP rs800292 existed in both neovascular AMD and PCV, the rs800292 G allele conferring a significantly increased risk of the diseases only in individuals carrying the risk allele T of rs3764261. A borderline association was detected between the ATP-binding cassette, subfamily G, member 1 (ABCG1) gene SNP rs57137919 and PCV (P = 0.03). CONCLUSIONS Our results showed that CETP is a susceptibility gene for neovascular AMD and PCV and that ABCG1 a putative gene for PCV. CETP exerts a modifying effect on CFH in the genetic risk. Our data suggest a link of the HDL metabolism pathway with neovascular AMD and PCV.
Collapse
Affiliation(s)
- Ke Liu
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Timothy Y Y Lai
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Pancy O S Tam
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Mary Ho
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Sylvia W Y Chiang
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - David T L Liu
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Meyers KJ, Mares JA, Igo RP, Truitt B, Liu Z, Millen AE, Klein M, Johnson EJ, Engelman CD, Karki CK, Blodi B, Gehrs K, Tinker L, Wallace R, Robinson J, LeBlanc ES, Sarto G, Bernstein PS, SanGiovanni JP, Iyengar SK. Genetic evidence for role of carotenoids in age-related macular degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Invest Ophthalmol Vis Sci 2014; 55:587-99. [PMID: 24346170 DOI: 10.1167/iovs.13-13216] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE We tested variants in genes related to lutein and zeaxanthin status for association with age-related macular degeneration (AMD) in the Carotenoids in Age-Related Eye Disease Study (CAREDS). METHODS Of 2005 CAREDS participants, 1663 were graded for AMD from fundus photography and genotyped for 424 single nucleotide polymorphisms (SNPs) from 24 candidate genes for carotenoid status. Of 337 AMD cases 91% had early or intermediate AMD. The SNPs were tested individually for association with AMD using logistic regression. A carotenoid-related genetic risk model was built using backward selection and compared to existing AMD risk factors using the area under the receiver operating characteristic curve (AUC). RESULTS A total of 24 variants from five genes (BCMO1, BCO2, NPCL1L1, ABCG8, and FADS2) not previously related to AMD and four genes related to AMD in previous studies (SCARB1, ABCA1, APOE, and ALDH3A2) were associated independently with AMD, after adjusting for age and ancestry. Variants in all genes (not always the identical SNPs) were associated with lutein and zeaxanthin in serum and/or macula, in this or other samples, except for BCO2 and FADS2. A genetic risk score including nine variants significantly (P = 0.002) discriminated between AMD cases and controls beyond age, smoking, CFH Y402H, and ARMS2 A69S. The odds ratio (95% confidence interval) for AMD among women in the highest versus lowest quintile for the risk score was 3.1 (2.0-4.9). CONCLUSIONS Variants in genes related to lutein and zeaxanthin status were associated with AMD in CAREDS, adding to the body of evidence supporting a protective role of lutein and zeaxanthin in risk of AMD.
Collapse
Affiliation(s)
- Kristin J Meyers
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ananth S, Gnana-Prakasam JP, Bhutia YD, Veeranan-Karmegam R, Martin PM, Smith SB, Ganapathy V. Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid. Biochim Biophys Acta Mol Basis Dis 2014; 1842:603-12. [PMID: 24462739 DOI: 10.1016/j.bbadis.2014.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/19/2023]
Abstract
Hypercholesterolemia and polymorphisms in the cholesterol exporter ABCA1 are linked to age-related macular degeneration (AMD). Excessive iron in retina also has a link to AMD pathogenesis. Whether these findings mean a biological/molecular connection between iron and cholesterol is not known. Here we examined the relationship between retinal iron and cholesterol using a mouse model (Hfe(-/-)) of hemochromatosis, a genetic disorder of iron overload. We compared the expression of the cholesterol efflux transporters ABCA1 and ABCG1 and cholesterol content in wild type and Hfe(-/-) mouse retinas. We also investigated the expression of Bdh2, the rate-limiting enzyme in the synthesis of the endogenous siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) in wild type and Hfe(-/-) mouse retinas, and the influence of this siderophore on ABCA1/ABCG1 expression in retinal pigment epithelium. We found that ABCA1 and ABCG1 were expressed in all retinal cell types, and that their expression was decreased in Hfe(-/-) retina. This was accompanied with an increase in retinal cholesterol content. Bdh2 was also expressed in all retinal cell types, and its expression was decreased in hemochromatosis. In ARPE-19 cells, 2,5-DHBA increased ABCA1/ABCG1 expression and decreased cholesterol content. This was not due to depletion of free iron because 2,5-DHBA (a siderophore) and deferiprone (an iron chelator) had opposite effects on transferrin receptor expression and ferritin levels. We conclude that iron is a regulator of cholesterol homeostasis in retina and that removal of cholesterol from retinal cells is impaired in hemochromatosis. Since excessive cholesterol is pro-inflammatory, hemochromatosis might promote retinal inflammation via cholesterol in AMD.
Collapse
Affiliation(s)
- Sudha Ananth
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Jaya P Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Yangzom D Bhutia
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
25
|
Merle BMJ, Maubaret C, Korobelnik JF, Delyfer MN, Rougier MB, Lambert JC, Amouyel P, Malet F, Le Goff M, Dartigues JF, Barberger-Gateau P, Delcourt C. Association of HDL-related loci with age-related macular degeneration and plasma lutein and zeaxanthin: the Alienor study. PLoS One 2013; 8:e79848. [PMID: 24223199 PMCID: PMC3819249 DOI: 10.1371/journal.pone.0079848] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/24/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Several genes implicated in high-density lipoprotein (HDL) metabolism have been reported to be associated with age-related macular degeneration (AMD). Furthermore, HDL transport the two carotenoids, lutein and zeaxanthin, which are highly suspected to play a key-role in the protection against AMD. The objective is to confirm the associations of HDL-related loci with AMD and to assess their associations with plasma lutein and zeaxanthin concentrations. METHODS Alienor study is a prospective population-based study on nutrition and age-related eye diseases performed in 963 elderly residents of Bordeaux, France. AMD was graded according to the international classification, from non-mydriatic colour retinal photographs. Plasma lutein and zeaxanthin were determined by normal-phase high-performance liquid chromatography. The following polymorphisms were studied: rs493258 and rs10468017 (LIPC), rs3764261 (CETP), rs12678919 (LPL) and rs1883025 (ABCA1). RESULTS After multivariate adjustment, the TT genotype of the LIPC rs493258 variant was significantly associated with a reduced risk for early and late AMD (OR=0.64, 95%CI: 0.41-0.99; p=0.049 and OR=0.26, 95%CI: 0.08-0.85; p=0.03, respectively), and with higher plasma zeaxanthin concentrations (p=0.03), while plasma lipids were not significantly different according to this SNP. Besides, the LPL variant was associated with early AMD (OR=0.67, 95%CI: 0.45-1.00; p=0.05) and both with plasma lipids and plasma lutein (p=0.047). Associations of LIPC rs10468017, CETP and ABCA1 polymorphisms with AMD did not reach statistical significance. CONCLUSION These findings suggest that LIPC and LPL genes could both modify the risk for AMD and the metabolism of lutein and zeaxanthin.
Collapse
Affiliation(s)
- Bénédicte M. J. Merle
- INSERM, (Institut National de la Santé et de la Recherche Médicale), ISPED (Institut de Santé Publique d’Épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Cécilia Maubaret
- INSERM, (Institut National de la Santé et de la Recherche Médicale), ISPED (Institut de Santé Publique d’Épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Jean-François Korobelnik
- INSERM, (Institut National de la Santé et de la Recherche Médicale), ISPED (Institut de Santé Publique d’Épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Service d’Ophtalmologie, Bordeaux, France
| | - Marie-Noëlle Delyfer
- INSERM, (Institut National de la Santé et de la Recherche Médicale), ISPED (Institut de Santé Publique d’Épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Service d’Ophtalmologie, Bordeaux, France
| | - Marie-Bénédicte Rougier
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Service d’Ophtalmologie, Bordeaux, France
| | - Jean-Charles Lambert
- INSERM, (Institut National de la Santé Et de la Recherche Médicale), U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
| | - Philippe Amouyel
- INSERM, (Institut National de la Santé Et de la Recherche Médicale), U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
| | - Florence Malet
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Service d’Ophtalmologie, Bordeaux, France
| | - Mélanie Le Goff
- INSERM, (Institut National de la Santé et de la Recherche Médicale), ISPED (Institut de Santé Publique d’Épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Jean-François Dartigues
- INSERM, (Institut National de la Santé et de la Recherche Médicale), ISPED (Institut de Santé Publique d’Épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Pascale Barberger-Gateau
- INSERM, (Institut National de la Santé et de la Recherche Médicale), ISPED (Institut de Santé Publique d’Épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Cécile Delcourt
- INSERM, (Institut National de la Santé et de la Recherche Médicale), ISPED (Institut de Santé Publique d’Épidémiologie et de Développement), Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
26
|
Leveziel N, Yu Y, Reynolds R, Tai A, Meng W, Caillaux V, Calvas P, Rosner B, Malecaze F, Souied EH, Seddon JM. Genetic factors for choroidal neovascularization associated with high myopia. Invest Ophthalmol Vis Sci 2012; 53:5004-9. [PMID: 22678500 PMCID: PMC3410690 DOI: 10.1167/iovs.12-9538] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/15/2012] [Accepted: 06/03/2012] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Nonsyndromic high myopia, defined by a refractive error greater than -6 diopters (D), is associated with an increased risk of macular choroidal neovascularization (CNV), a vision-threatening complication. The aim of this study was to investigate whether genetic factors associated with age-related macular degeneration (AMD) are related to myopic CNV. METHODS We conducted a case-control study, including 71 cases with myopic CNV and 196 myopic controls without CNV, from Creteil and Toulouse, France, and Boston, MA. Single nucleotide polymorphisms (SNPs) from 15 genes reported to be related to AMD were selected for association testing in this study. RESULTS In univariate analysis, the rs10033900 SNP located in CFI was associated with myopic CNV (P = 0.0011), and a SNP in APOE was also related (P = 0.041). After adjustment for age, sex, and degree of myopia, SNPs in three genes were significantly associated, including CFI (odds ratio [OR] 2.1, 95% confidence interval [CI] 1.3-3.37, P = 0.0023), COL8A1 (OR 1.88, 95% CI 1.18-2.98, P = 0.0076), and CFH (OR 1.65, 95% CI 1.02-2.66, P = 0.04). After correction for multiple testing, only CFI remained significantly related to high myopic CNV (P = 0.045). CONCLUSIONS We report the first genetic associations with choroidal neovascularization (CNV) in a high myopic Caucasian population. One SNP (rs10033900) in the CFI gene, which encodes a protein involved in the inflammatory pathway, was significantly associated with myopic CNV in multivariate analysis after correction for multiple testing. This SNP is a plausible biological marker associated with CNV outgrowth among high myopic patients. Results generate hypotheses about potential loci related to CNV in high myopia, and larger studies are needed to expand on these findings.
Collapse
Affiliation(s)
- Nicolas Leveziel
- From the Faculté de Médecine Henri Mondor, Department of Ophthalmology, APHP (Assistance Publique Hôpitaux Paris), Groupe Hospitalier Albert Chenevier-Henri Mondor, University Paris Est, Creteil, France
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Creteil, France
- Ophthalmic Epidemiology and Genetics Service, Department of Ophthalmology, and
| | - Yi Yu
- Ophthalmic Epidemiology and Genetics Service, Department of Ophthalmology, and
| | - Robyn Reynolds
- Ophthalmic Epidemiology and Genetics Service, Department of Ophthalmology, and
| | - Albert Tai
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts
| | - Weihua Meng
- INSERM U563, Purpan Hospital, Toulouse, France
| | - Violaine Caillaux
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Creteil, France
| | | | | | | | - Eric H. Souied
- From the Faculté de Médecine Henri Mondor, Department of Ophthalmology, APHP (Assistance Publique Hôpitaux Paris), Groupe Hospitalier Albert Chenevier-Henri Mondor, University Paris Est, Creteil, France
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Creteil, France
| | - Johanna M. Seddon
- Ophthalmic Epidemiology and Genetics Service, Department of Ophthalmology, and
- Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
27
|
Gorin MB. Genetic insights into age-related macular degeneration: controversies addressing risk, causality, and therapeutics. Mol Aspects Med 2012; 33:467-86. [PMID: 22561651 DOI: 10.1016/j.mam.2012.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 01/19/2023]
Abstract
Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews (Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011). Large meta analysis of AMD GWAS has added new loci and variants to this collection (Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011). This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years.
Collapse
Affiliation(s)
- Michael B Gorin
- Department of Ophthalmology, David Geffen School of Medicine, UC, Los Angeles, CA, USA.
| |
Collapse
|