1
|
Wan Z, Wu Y, Shen T, Hu C, Lin R, Ren C, Yu D, Li T, Zhu M, Cai W, Yu J. Evaluation of inflammatory hyperreflective foci and plasma EPA as diagnostic and predictive markers for age-related macular degeneration. Front Neurosci 2024; 18:1401101. [PMID: 39450123 PMCID: PMC11499227 DOI: 10.3389/fnins.2024.1401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives To detect the plasma polyunsaturated fatty acids (PUFAs) concentrations in age-related macular degeneration (AMD) patients and healthy controls. Additionally, advanced studies were conducted to investigate the relationship between PUFAs concentrations and ophthalmological characteristics, including hyperreflective foci (HRF), visual acuity, and anti-vascular endothelial growth factor (anti-VEGF) response in patients with AMD. Methods This prospective, single-site study recruited a total of 315 participants, consisting of 105 individuals with dry AMD (early-stage AMD group), 105 individuals with neovascular AMD (late-stage AMD group), and 105 elderly individuals without any fundus diseases (healthy controls). The levels of omega-3 and omega-6 PUFAs in plasma were detected using gas chromatography. Retinal thickness, choroidal thickness, and macular volume were quantified using optical coherence tomography angiography (OCTA) scan with a 6 × 6 mm macular area, and the amounts of HRF were analyzed with OCTA scanning data. Results Compared to the control group, AMD patients exhibited significantly lower plasma concentrations of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and alpha linolenic acid. HRF were observed in various retinal layers of AMD patients, particularly those with late-stage AMD. The correlation coefficient matrix and multiple linear regression models demonstrated that HRF played a crucial role in best corrected visual acuity for both early (p < 0.001) and late-stage AMD patients (p = 0.006), while EPA had an inverse effect on the logarithm of the minimum angle of resolution (logMAR) value in patients with early-stage AMD (p < 0.001). As compared to patients with good responses to anti-VEGF therapy, those with poor responses had significantly lower baseline logMAR (p < 0.001), central retina thickness (p = 0.002), macular volume (p = 0.027), HRF (p = 0.024), and plasma EPA (p < 0.001). This study used a ROC curve analysis to identify the combination of HRF and EPA as a potential biomarker for predicting the response to anti-VEGF treatment in late-stage AMD patients, with an area under the curve (AUC) value of 0.775. Conclusions Reduced plasma EPA was detected in AMD cases and the lower EPA concentration was related to poorer visual acuity. Additionally, the quantity of HRF combined with concentration of plasma EPA may serve as the prognostic indicator for predicting the effect of anti-VEGF treatment in late-stage AMD patients.
Collapse
Affiliation(s)
- Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianyi Shen
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruoyi Lin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chengda Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China
| |
Collapse
|
2
|
Yamaguchi M, Nakao S, Arima M, Little K, Singh A, Wada I, Kaizu Y, Zandi S, Garweg JG, Matoba T, Shiraishi W, Yamasaki R, Shibata K, Go Y, Ishibashi T, Uemura A, Stitt AW, Sonoda KH. Heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation. Diabetologia 2024; 67:2329-2345. [PMID: 38977459 DOI: 10.1007/s00125-024-06215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is characterised by neuroinflammation that drives neuronal and vascular degenerative pathology, which in many individuals can lead to retinal ischaemia and neovascularisation. Infiltrating macrophages and activated retina-resident microglia have been implicated in the progression of diabetic retinopathy, although the distinct roles of these immune cells remain ill-defined. Our aim was to clarify the distinct roles of macrophages/microglia in the pathogenesis of proliferative ischaemic retinopathies. METHODS Murine oxygen-induced retinopathy is commonly used as a model of ischaemia-induced proliferative diabetic retinopathy (PDR). We evaluated the phenotype macrophages/microglia by immunostaining, quantitative real-time RT-PCR (qRT-PCR), flow cytometry and scRNA-seq analysis. In clinical imaging studies of diabetic retinopathy, we used optical coherence tomography (OCT) and OCT angiography. RESULTS Immunostaining, qRT-PCR and flow cytometry showed expression levels of M1-like macrophages/microglia markers (CD80, CD68 and nitric oxide synthase 2) and M2-like macrophages/microglia markers (CD206, CD163 and macrophage scavenger receptor 1) were upregulated in areas of retinal ischaemia and around neo-vessels, respectively. scRNA-seq analysis of the ischaemic retina revealed distinct ischaemia-related clusters of macrophages/microglia that express M1 markers as well as C-C chemokine receptor 2. Inhibition of Rho-kinase (ROCK) suppressed CCL2 expression and reduced CCR2-positive M1-like macrophages/microglia in areas of ischaemia. Furthermore, the area of retinal ischaemia was reduced by suppressing blood macrophage infiltration not only by ROCK inhibitor and monocyte chemoattractant protein-1 antibody but also by GdCl3. Clinical imaging studies of diabetic retinopathy using OCT indicated potential involvement of macrophages/microglia represented by hyperreflective foci in areas of reduced perfusion. CONCLUSIONS/INTERPRETATION These results collectively indicated that heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation in retinal vascular diseases including diabetic retinopathy. This adds important new information that could provide a basis for a more targeted, cell-specific therapeutic approach to prevent progression to sight-threatening PDR.
Collapse
Affiliation(s)
- Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Ophthalmology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
- Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Karis Little
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Aditi Singh
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Iori Wada
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Kaizu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souska Zandi
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Justus G Garweg
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Wataru Shiraishi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Shibata
- Department of Biology and Biochemistry, University of Yamaguchi, Ube, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Alan W Stitt
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Lindenberg S, Mahmoudi A, Oncel D, Corradetti G, Oncel D, Emamverdi M, Almidani L, Farahani A, Wakatsuki Y, He Y, Saju M S, Lee WK, Wykoff CC, Sarraf D, Freund KB, Sadda SR. Acquired Vitelliform Lesions in Intermediate Age-Related Macular Degeneration: A Cross Sectional Study. Ophthalmol Retina 2024; 8:854-862. [PMID: 38631656 DOI: 10.1016/j.oret.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE This study aims to define the characteristics of acquired vitelliform lesions (AVLs) in patients with intermediate age-related macular degeneration (iAMD). DESIGN Retrospective, observational, cross sectional study. SUBJECTS This study included 217 eyes with AVLs associated with iAMD, and an equivalent number of control patients. METHODS OCT scans were evaluated for qualitative and quantitative parameters at both the eye and lesion level. Eye-level parameters included the presence of: hyporeflective core drusen, intraretinal hyperreflective foci (IHRF), subretinal drusenoid deposits, macular pachyvessels, central retinal thickness, and central choroidal thickness. Lesion-level qualitative parameters included the presence of ellipsoid zone (EZ) and external limiting membrane disruption overlying the AVL, IHRF overlying the AVL, AVL overlying drusen, pachyvessels under the AVL, a solid core within AVL, and AVL location. Lesion-level quantitative characteristics included AVL height and width, AVL distance from the fovea, and sub-AVL choroidal thickness. MAIN OUTCOME MEASURES The primary outcomes assessed included the frequency of IHRF, the presence of macular pachyvessels, central choroidal thickness, and the dimensions (both height and width) of AVLs. RESULTS Comparing the AVL and control groups, the frequency of IHRF (AVL: 49.3% vs. control: 26.3%) and macular pachyvessels (37.3% vs. 6.9%) was significantly higher in the AVL case group, and the central choroidal thickness (256.8 ± 88 μm vs. 207.1± 45 μm) was thicker in the AVL group. Acquired vitelliform lesions located over drusen, with overlying IHRF, or situated subfoveally, and AVL lesions with EZ disruption were found to have a greater lesion height and width compared with AVL lesions lacking these characteristics (P value < 0.001 for all). Additionally, a significant negative correlation was observed between the distance from the fovea and AVL height (Spearman rho: -0.19, P = 0.002) and width (Spearman rho: -0.30, P = 0.001). CONCLUSIONS This study represents the largest reported cohort of AVL lesions associated with iAMD. Novel findings include the higher frequency of pachyvessels in addition to the presence of a thicker choroid in these eyes, as well as the greater height and width of AVL closer to the foveal center. These findings may offer insights into pathophysiologic mechanisms underlying the development of AVL. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sophiana Lindenberg
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California
| | - Alireza Mahmoudi
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Deniz Oncel
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Giulia Corradetti
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Damla Oncel
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Mehdi Emamverdi
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Louay Almidani
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alireza Farahani
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Yu Wakatsuki
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California
| | - Ye He
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Stanley Saju M
- Retina Consultants of Texas, Retina Consultants of America, Houston, Texas
| | - Won Ki Lee
- Nune Eye hospital, Seoul, Republic of South Korea
| | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Houston, Texas
| | - David Sarraf
- Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York; Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York
| | - Srinivas R Sadda
- Doheny Image Reading and Research Laboratory, Doheny Eye Institute, Pasadena, California; Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California.
| |
Collapse
|
4
|
Mahmoudi A, Lindenberg S, Corradetti G, Emamverdi M, Oncel D, Oncel D, Baek J, Farahani A, Almidani L, He Y, Abbasgholizadeh R, Saju SM, Lee WK, Wykoff CC, Sarraf D, Freund KB, Sadda SR. Predictive Factors Influencing the Evolution of Acquired Vitelliform Lesions in Intermediate Age-Related Macular Degeneration Eyes. Ophthalmol Retina 2024; 8:863-871. [PMID: 38599379 DOI: 10.1016/j.oret.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE In this study, we identify risk factors that predict the progression of acquired vitelliform lesions (AVLs) over time. DESIGN Retrospective cohort study. SUBJECTS One hundred sixty-three eyes of 132 patients with a diagnosis of intermediate age-related macular degeneration (iAMD) with AVL. METHODS This retrospective study evaluated consecutive eyes with AMD from a retina clinic population and included 1181 patients and 2362 eyes. After excluding cases with associated geographic atrophy, macular neovascularization (MNV), vitreomacular traction, and those with <2 years of follow-up data, the final analysis cohort consisted of 163 eyes (132 patients) with ≥1 AVL. The first available visit in which an AVL was evident was considered the baseline visit, and follow-up data were collected from a visit 2 years (± 3 months) later. Progression outcomes at the follow-up visit were classified into 6 categories: resorbed, collapsed, MNV, stable, increasing, and decreasing. Subsequently, we analyzed the baseline characteristics for each category and calculated odds ratios (ORs) to predict these various outcomes. MAIN OUTCOME MEASURES The study focused on identifying predictive factors influencing the evolution of AVL in iAMD eyes. RESULTS In total, 163 eyes with AVL had follow-up data at 2 years. The collapsed group demonstrated a significantly greater baseline AVL height and width compared with other groups (P < 0.001). With regard to qualitative parameters, subretinal drusenoid deposits (SDDs) and intraretinal hyperreflective foci (IHRF) at the eye level, AVL located over drusen, and IHRF and external limiting membrane disruption over AVL were significantly more prevalent in the collapsed group compared with other groups (P < 0.05 for all comparisons). Odds ratios for progressing to atrophy after 2 years of follow-up, compared with the resorbed group, were significant for SDD (OR, 2.82; P = 0.048) and AVL height (OR, 1.016; P = 0.006). CONCLUSIONS The presence of SDDs and greater AVL height significantly increases the risk of developing atrophy at the location of AVL after 2 years of follow-up. These findings may be of value in risk prognostication and defining patient populations for inclusion in future early intervention trials aimed at preventing progression to atrophy. FINANCIAL DISCLOSURES Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Alireza Mahmoudi
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Sophiana Lindenberg
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Giulia Corradetti
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mehdi Emamverdi
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Deniz Oncel
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Damla Oncel
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jiwon Baek
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Ophthalmology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Alireza Farahani
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Louay Almidani
- Doheny Eye Institute, Los Angeles, California; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ye He
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Rouzbeh Abbasgholizadeh
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Stanley M Saju
- Retina Consultants of Texas, Retina Consultants of America, Houston, Texas
| | - Won Ki Lee
- Department of Ophthalmology, Nune Eye Hospital, Seoul, Republic of South Korea
| | - Charles C Wykoff
- Department of Ophthalmology, Nune Eye Hospital, Seoul, Republic of South Korea
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York; Department of Opthalmology, NYU Grossman School of Medicine, New York, New York
| | - Srinivas R Sadda
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California.
| |
Collapse
|
5
|
Song MS, Kim YH, Oh J. Spatial Distribution of Hyperreflective Choroidal Foci in the Macula of Normal Eyes. Transl Vis Sci Technol 2024; 13:35. [PMID: 39172482 PMCID: PMC11346144 DOI: 10.1167/tvst.13.8.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose To investigate variations in the spatial distribution of hyperreflective foci in the choroid of the macula in normal eyes. Methods We included eyes with a normal fundus from patients who had undergone optical coherence tomography angiography, covering a 6-mm × 6-mm area centered on the fovea. The macular area was divided into nine sectors according to the modified Early Treatment of Diabetic Retinopathy Study grid. Hyperreflective choroidal foci (HCF) distribution, choriocapillaris vascular density, and choroidal stromal density were determined on en face images of the choroid in each sector. Results We included 35 eyes from 35 participants, with a mean age of 52.7 ± 16.8 years. The mean number and area fraction of HCF at the 5-mm macular area were 35.6 ± 7.8 foci/mm2 and 3.0% ± 0.7%, respectively. The number of HCF in the central circle (50.7 ± 20.9 foci/mm2) was greater than that in the inner (35.1 ± 13.0 foci/mm2) or outer rings (35.6 ± 6.5 foci/mm2) (P < 0.001, P < 0.001, respectively). The area fraction of HCF in the central circle (4.84% ± 3.36%) was greater than that in the inner (2.62% ± 1.17%; P < 0.001) or outer rings (3.12% ± 0.67%; P = 0.004). The HCF distribution did not significantly correlate with the choriocapillaris vascular density or choroidal stromal density in each sector. Conclusions HCF were more densely distributed in the macular center than in the pericentral or peripheral macular areas. Translational Relevance HCF measurement and spatial distribution could provide additional information for evaluating choroidal stromal characteristics.
Collapse
Affiliation(s)
- Myung-Sun Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Young Ho Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jaeryung Oh
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Ramtohul P, Freund KB. LONG-TERM PRESERVATION OF VISUAL ACUITY AFTER RESORPTION OF ACQUIRED VITELLIFORM LESIONS IN AGE-RELATED MACULAR DEGENERATION. Retin Cases Brief Rep 2024; 18:417-420. [PMID: 37071922 DOI: 10.1097/icb.0000000000001429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
PURPOSE To report the long-term (23 years) clinical and multimodal imaging features of acquired vitelliform lesions (AVLs) associated with nonneovascular age-related macular degeneration. METHODS Retrospective case report. Color and red-free fundus photographs, high-resolution optical coherence tomography, fluorescein and indocyanine green angiography, and optical coherence tomography-angiography were performed. RESULTS A 58-year-old man presented with bilateral AVLs in the setting of nonneovascular age-related macular degeneration. At baseline, his best-corrected visual acuity was 20/30 in his right eye and 20/20 in his left eye. Red-free fundus photographs showed AVLs with cuticular drusen in both eyes corresponding to a "stars-in-the-sky" pattern on fluorescein. Indocyanine green angiography showed no evidence of macular neovascularization. Throughout the 23-year follow-up, the patient reported consuming 20 mg/day of lutein supplement. At the end of follow-up, his best-corrected visual acuity was 20/20 in both eyes. Color fundus photographs showed resorption of the AVLs in both eyes and High-Res optical coherence tomography showed relative preservation of the outer retinal bands in the fovea. Optical coherence tomography-angiography confirmed the absence of macular neovascularization. CONCLUSION In nonneovascular age-related macular degeneration, spontaneous resorption of AVLs may be associated with long-term maintenance of visual acuity and relative preservation of the outer retinal morphology.
Collapse
Affiliation(s)
- Prithvi Ramtohul
- Vitreous Retina Macula Consultants of New York, New York, New York
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York
- Department of Ophthalmology, NYU Grossman School of New York, New York, New York
| |
Collapse
|
7
|
Liu X, Zhu X, Zhang Y, Wang M. Point based weakly semi-supervised biomarker detection with cross-scale and label assignment in retinal OCT images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108229. [PMID: 38761413 DOI: 10.1016/j.cmpb.2024.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Optical coherence tomography (OCT) is currently one of the most advanced retinal imaging methods. Retinal biomarkers in OCT images are of clinical significance and can assist ophthalmologists in diagnosing lesions. Compared with fundus images, OCT can provide higher resolution segmentation. However, image annotation at the bounding box level needs to be performed by ophthalmologists carefully and is difficult to obtain. In addition, the large variation in shape of different retinal markers and the inconspicuous appearance of biomarkers make it difficult for existing deep learning-based methods to effectively detect them. To overcome the above challenges, we propose a novel network for the detection of retinal biomarkers in OCT images. METHODS We first address the issue of labeling cost using a novel weakly semi-supervised object detection method with point annotations which can reduce bounding box-level annotation efforts. To extend the method to the detection of biomarkers in OCT images, we propose multiple consistent regularizations for point-to-box regression network to deal with the shortage of supervision, which aims to learn more accurate regression mappings. Furthermore, in the subsequent fully supervised detection, we propose a cross-scale feature enhancement module to alleviate the detection problems caused by the large-scale variation of biomarkers. We also propose a dynamic label assignment strategy to distinguish samples of different importance more flexibly, thereby reducing detection errors due to the indistinguishable appearance of the biomarkers. RESULTS When using our detection network, our regressor also achieves an AP value of 20.83 s when utilizing a 5 % fully labeled dataset partition, surpassing the performance of other comparative methods at 5 % and 10 %. Even coming close to the 20.87 % result achieved by Point DETR under 20 % full labeling conditions. When using Group R-CNN as the point-to-box regressor, our detector achieves 27.21 % AP in the 50 % fully labeled dataset experiment. 7.42 % AP improvement is achieved compared to our detection network baseline Faster R-CNN. CONCLUSIONS The experimental findings not only demonstrate the effectiveness of our approach with minimal bounding box annotations but also highlight the enhanced biomarker detection performance of the proposed module. We have included a detailed algorithmic flow in the supplementary material.
Collapse
Affiliation(s)
- Xiaoming Liu
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, PR China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, PR China.
| | - Xin Zhu
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, PR China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, PR China
| | - Ying Zhang
- Aier Eye Hospital of Wuhan University, Wuhan 430064, PR China
| | - Man Wang
- Aier Eye Hospital of Wuhan University, Wuhan 430064, PR China
| |
Collapse
|
8
|
Ikeda T, Jin D, Takai S, Nakamura K, Nemoto E, Kojima S, Oku H. Blastocyst-like Structures in the Peripheral Retina of Young Adult Beagles. Int J Mol Sci 2024; 25:6045. [PMID: 38892233 PMCID: PMC11172769 DOI: 10.3390/ijms25116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In this immunohistological study on the peripheral retina of 3-year-old beagle dogs, excised retina specimens were immunostained with antibodies against nestin, Oct4, Nanog, Sox2, CDX2, cytokeratin 18 (CK 18), RPE65, and YAP1, as well as hematoxylin and DAPI, two nuclear stains. Our findings revealed solitary cysts of various sizes in the inner retina. Intriguingly, a mass of small round cells with scant cytoplasms was observed in the cavity of small cysts, while many disorganized cells partially occupied the cavity of the large cysts. The small cysts were strongly positive for nestin, Oct4, Nanog, Sox2, CDX2, CK18, and YAP1. RPE65-positive cells were exclusively observed in the tissue surrounding the cysts. Since RPE65 is a specific marker of retinal pigment epithelial (RPE) cells, the surrounding cells of the peripheral cysts were presumably derived from RPE cells that migrated intraretinally. In the small cysts, intense positive staining for nestin, a marker of retinal stem cells, seemed to indicate that they were derived from retinal stem cells. The morphology and positive staining for markers of blastocyst and RPE cells indicated that the small cysts may have formed structures resembling the blastocyst, possibly caused by the interaction between retinal stem cells and migrated RPE cells.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Kaisei Hospital, Osaka 532-0003, Osaka, Japan
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (D.J.); (S.T.)
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (D.J.); (S.T.)
| | | | - Emika Nemoto
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Shota Kojima
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan; (E.N.); (S.K.); (H.O.)
| |
Collapse
|
9
|
Gómez-Benlloch A, Garrell-Salat X, Cobos E, López E, Esteve-Garcia A, Ruiz S, Vázquez M, Sararols L, Biarnés M. Optical Coherence Tomography in Inherited Macular Dystrophies: A Review. Diagnostics (Basel) 2024; 14:878. [PMID: 38732293 PMCID: PMC11083341 DOI: 10.3390/diagnostics14090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Macular dystrophies (MDs) constitute a collection of hereditary retina disorders leading to notable visual impairment, primarily due to progressive macular atrophy. These conditions are distinguished by bilateral and relatively symmetrical abnormalities in the macula that significantly impair central visual function. Recent strides in fundus imaging, especially optical coherence tomography (OCT), have enhanced our comprehension and diagnostic capabilities for MD. OCT enables the identification of neurosensory retinal disorganization patterns and the extent of damage to retinal pigment epithelium (RPE) and photoreceptor cells in the dystrophies before visible macular pathology appears on fundus examinations. It not only helps us in diagnostic retinal and choroidal pathologies but also guides us in monitoring the progression of, staging of, and response to treatment. In this review, we summarize the key findings on OCT in some of the most common MD.
Collapse
Affiliation(s)
- Alba Gómez-Benlloch
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Xavier Garrell-Salat
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Estefanía Cobos
- Hospital Universitari de Bellvitge, c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Elena López
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Anna Esteve-Garcia
- Clinical Genetics Unit, Laboratori Clinic Territorial Metropolitada Sud, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Sergi Ruiz
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Meritxell Vázquez
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Laura Sararols
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Marc Biarnés
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| |
Collapse
|
10
|
Szeto SK, Lai TY, Vujosevic S, Sun JK, Sadda SR, Tan G, Sivaprasad S, Wong TY, Cheung CY. Optical coherence tomography in the management of diabetic macular oedema. Prog Retin Eye Res 2024; 98:101220. [PMID: 37944588 DOI: 10.1016/j.preteyeres.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Diabetic macular oedema (DMO) is the major cause of visual impairment in people with diabetes. Optical coherence tomography (OCT) is now the most widely used modality to assess presence and severity of DMO. DMO is currently broadly classified based on the involvement to the central 1 mm of the macula into non-centre or centre involved DMO (CI-DMO) and DMO can occur with or without visual acuity (VA) loss. This classification forms the basis of management strategies of DMO. Despite years of research on quantitative and qualitative DMO related features assessed by OCT, these do not fully inform physicians of the prognosis and severity of DMO relative to visual function. Having said that, recent research on novel OCT biomarkers development and re-defined classification of DMO show better correlation with visual function and treatment response. This review summarises the current evidence of the association of OCT biomarkers in DMO management and its potential clinical importance in predicting VA and anatomical treatment response. The review also discusses some future directions in this field, such as the use of artificial intelligence to quantify and monitor OCT biomarkers and retinal fluid and identify phenotypes of DMO, and the need for standardisation and classification of OCT biomarkers to use in future clinical trials and clinical practice settings as prognostic markers and secondary treatment outcome measures in the management of DMO.
Collapse
Affiliation(s)
- Simon Kh Szeto
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Timothy Yy Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Jennifer K Sun
- Beetham Eye Institute, Harvard Medical School, Boston, USA
| | - SriniVas R Sadda
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, USA
| | - Gavin Tan
- Singapore Eye Research Institute, SingHealth Duke-National University of Singapore, Singapore
| | - Sobha Sivaprasad
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Tien Y Wong
- Tsinghua Medicine, Tsinghua University, Beijing, China; Singapore Eye Research Institute, Singapore
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
11
|
Bianco L, Arrigo A, Antropoli A, Berni A, Saladino A, Vilela MAP, Mansour AM, Bandello F, Battaglia Parodi M. Multimodal imaging in Best Vitelliform Macular Dystrophy: Literature review and novel insights. Eur J Ophthalmol 2024; 34:39-51. [PMID: 36972471 PMCID: PMC10757402 DOI: 10.1177/11206721231166434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Best Vitelliform Macular Dystrophy (BVMD) is a dominantly inherited retinal disease caused by dominant variants in the BEST1 gene. The original classification of BVMD is based on biomicroscopy and color fundus photography (CFP); however, advancements in retinal imaging provided unique structural, vascular, and functional data and novel insights on disease pathogenesis. Quantitative fundus autofluorescence studies informed us that lipofuscin accumulation, the hallmark of BVMD, is unlikely to be a primary effect of the genetic defect. It could be due to a lack of apposition between photoreceptors and retinal pigment epithelium in the macula with subsequent accumulation of shed outer segments over time. Optical Coherence Tomography (OCT) and adaptive optics imaging revealed that vitelliform lesions are characterized by progressive changes in the cone mosaic corresponding to a thinning of the outer nuclear layer and then disruption of the ellipsoid zone, which are associated with a decreased sensitivity and visual acuity. Therefore, an OCT staging system based on lesion composition, thus reflecting disease evolution, has been recently developed. Lastly, the emerging role of OCT Angiography proved a greater prevalence of macular neovascularization, the majority of which are non-exudative and develop in late disease stages. In conclusion, effective diagnosis, staging, and clinical management of BVMD will likely require a deep understanding of the multimodal imaging features of this disease.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Berni
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuel AP Vilela
- Clinical Surgery, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Ahmad M Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
- Department of Ophthalmology, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
12
|
Kalaw FGP, Scott NL, Borooah S. An unusual case of rapid resolution of bilateral vitelliform deposits after discontinuation of pentosan polysulfate sodium. Am J Ophthalmol Case Rep 2023; 32:101875. [PMID: 37645698 PMCID: PMC10461119 DOI: 10.1016/j.ajoc.2023.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose To report the structural and functional changes in a 67-year-old male with pentosan polysulfate sodium (PPS) maculopathy with a progressive resolution of bilateral vitelliform lesions after PPS cessation. Observations The patient was initially seen after taking daily PPS for over 26 years. Three months after discontinuing PPS, the bilateral vitelliform lesions identified on spectral-domain optical coherence tomography (SD-OCT) at initial consultation had completely resolved. Bilateral resolution of vitelliform lesions was associated with a decline in best-corrected visual acuity, and ellipsoid zone disruption on SD-OCT. Conclusions and importance Several PPS maculopathy phenotypes have been previously described including vitelliform lesions. Our case highlights that discontinuing PPS may lead to rapid resolution of vitelliform lesions in PPS maculopathy and may be associated with a rapid reduction in vision.
Collapse
Affiliation(s)
- Fritz Gerald P. Kalaw
- Jacobs Retina Center, University of California San Diego, La Jolla, CA, 92093, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathan L. Scott
- Jacobs Retina Center, University of California San Diego, La Jolla, CA, 92093, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shyamanga Borooah
- Jacobs Retina Center, University of California San Diego, La Jolla, CA, 92093, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
Wu M, Chen L, Lin L, Fan Y, Li H, Lian H, Zheng B. Changes of optical coherence tomographic hyperreflective foci in rhegmatogenous retinal detachment patients after successful surgery. Photodiagnosis Photodyn Ther 2023; 44:103763. [PMID: 37643664 DOI: 10.1016/j.pdpdt.2023.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To assess the changes of hyperreflective foci (HRF) in rhegmatogenous retinal detachment (RRD) patients after successful reattachment surgery. METHODS Twenty-nine macula-off RRD eyes with successful reattachment surgery were retrospectively analyzed. Optical coherence tomography (OCT) was used to image macular regions and measure HRF in outer retina and inner retina at 0.5, 1, 3, 6, 12 months after surgery. The relationships between HRF and photoreceptor layer status, visual outcomes were evaluated. RESULTS After retinal reattachment, HRF mainly distributed at the location where external limiting membrane (ELM) or inner and outer segment (IS/OS) line was disrupted. The HRF numbers in outer and inner retina were greater in eyes with discontinuous IS/OS line than eyes with continuous IS/OS line (all p<0.05). In the outer retina, HRF increased in the initial three months after retinal reattachment, and then decreased gradually after 3 months (p<0.05). The HRF number in the outer retina at postoperative 0.5 months was associated with favorable visual outcomes at 6 and 12 months (r=-0.487, p =0.025; r=-0.626, p=0.005, respectively), nevertheless, the HRF number at 3 months was correlated with poor visual results at 6 and 12 months (r=0.441, p =0.017; r=0.477, p=0.019, respectively). CONCLUSION HRF mainly occurred near the site where ELM or IS/OS line was injured after retinal reattachment. In the outer retina, the number of HRF gradually increased in the first 3 months and then gradually decreased. The early appearance of HRF in the outer retina was associated with a good visual prognosis, while the late appearance may suggest a less favorable visual outcome.
Collapse
Affiliation(s)
- Mengai Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Li Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanyuan Fan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haidong Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hengli Lian
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bin Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
14
|
Anderson DM, Kotnala A, Migas LG, Patterson NH, Tideman L, Cao D, Adhikari B, Messinger JD, Ach T, Tortorella S, Van de Plas R, Curcio CA, Schey KL. Lysolipids are prominent in subretinal drusenoid deposits, a high-risk phenotype in age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1258734. [PMID: 38186747 PMCID: PMC10769005 DOI: 10.3389/fopht.2023.1258734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction Age related macular degeneration (AMD) causes legal blindness worldwide, with few therapeutic targets in early disease and no treatments for 80% of cases. Extracellular deposits, including drusen and subretinal drusenoid deposits (SDD; also called reticular pseudodrusen), disrupt cone and rod photoreceptor functions and strongly confer risk for advanced disease. Due to the differential cholesterol composition of drusen and SDD, lipid transfer and cycling between photoreceptors and support cells are candidate dysregulated pathways leading to deposit formation. The current study explores this hypothesis through a comprehensive lipid compositional analysis of SDD. Methods Histology and transmission electron microscopy were used to characterize the morphology of SDD. Highly sensitive tools of imaging mass spectrometry (IMS) and nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) in positive and negative ion modes were used to spatially map and identify SDD lipids, respectively. An interpretable supervised machine learning approach was utilized to compare the lipid composition of SDD to regions of uninvolved retina across 1873 IMS features and to automatically discern candidate markers for SDD. Immunohistochemistry (IHC) was used to localize secretory phospholipase A2 group 5 (PLA2G5). Results Among the 1873 detected features in IMS data, three lipid classes, including lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE) and lysophosphatidic acid (LysoPA) were observed nearly exclusively in SDD while presumed precursors, including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) lipids were detected in SDD and adjacent photoreceptor outer segments. Molecular signals specific to SDD were found in central retina and elsewhere. IHC results indicated abundant PLA2G5 in photoreceptors and retinal pigment epithelium (RPE). Discussion The abundance of lysolipids in SDD implicates lipid remodeling or degradation in deposit formation, consistent with ultrastructural evidence of electron dense lipid-containing structures distinct from photoreceptor outer segment disks and immunolocalization of secretory PLA2G5 in photoreceptors and RPE. Further studies are required to understand the role of lipid signals observed in and around SDD.
Collapse
Affiliation(s)
| | - Ankita Kotnala
- Department of Biochemistry, Vanderbilt University, Nashville TN
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Lukasz G. Migas
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | | | - Léonore Tideman
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Bibek Adhikari
- Vision Science Graduate Program, University of Alabama at Birmingham, Birmingham AL
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Sara Tortorella
- Molecular Horizon Srl, Via Montelino 30, 06084 Bettona, Perugia, Italy
| | - Raf Van de Plas
- Department of Biochemistry, Vanderbilt University, Nashville TN
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University, Nashville TN
| |
Collapse
|
15
|
Yasvoina M, Yang Q, Woods SM, Heeren T, Comer GM, A Egan C, Fruttiger M. Intraretinal pigmented cells in retinal degenerative disease. Br J Ophthalmol 2023; 107:1736-1743. [PMID: 35301216 DOI: 10.1136/bjophthalmol-2021-320392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Invasion of pigmented cells into the retina occurs in retinal degenerative diseases, such as macular telangiectasia type 2 (MacTel) and retinitis pigmentosa (RP). These intraretinal pigmented cells may be derived from the retinal pigment epithelium (RPE), but differences and similarities between intraretinal pigmented cells and RPE have so far not been well characterised.Clinicopathologic case report. METHOD Here, we compared intraretinal pigment cells with RPE cells by immunohistochemistry. Immunohistological stains for classic RPE markers (RPE65, CRALBP and KRT18) and blood vessel markers (lectin and collagen 4) were done on sections from postmortem eye tissue from two MacTel donors, an RP donor and a control donor. MAIN OUTCOME MEASURES Presence of specific immunohistochemistry markers on intraretinal pigmented and RPE cells. RESULTS We found that intraretinal pigmented cells did not express RPE65 and CRALBP, with a small subset expressing them weakly. However, they all expressed KRT18, which was also present in normal RPE cells. Interestingly, we also found clusters of KRT18-positive cells in the retina that were not pigmented. CONCLUSIONS Our findings suggest that RPE cells invading the retina dedifferentiate (losing classic RPE markers) and can be pigmented or unpigmented. Therefore, the number of RPE cells invading the retina in retinal degenerative disease may be underappreciated by funduscopy.
Collapse
Affiliation(s)
- Marina Yasvoina
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Qian Yang
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Sasha M Woods
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Tjebo Heeren
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Grant M Comer
- W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
16
|
Damian I, Muntean GA, Galea-Holhoș LB, Nicoară SD. Advanced ImageJ Analysis in Degenerative Acquired Vitelliform Lesions Using Techniques Based on Optical Coherence Tomography. Biomedicines 2023; 11:biomedicines11051382. [PMID: 37239053 DOI: 10.3390/biomedicines11051382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Acquired vitelliform lesions (AVLs) are associated with a large spectrum of retinal diseases, among which is age-related macular degeneration (AMD). The purpose of this study was to characterize AVLs' evolution in AMD patients using optical coherence tomography (OCT) technology and ImageJ software. We measured AVLs' size and density and followed their impacts over surrounding retinal layers. Average retinal pigment epithelium (RPE) thickness in the central 1 mm quadrant (45.89 ± 27.84 µm vs. 15.57 ± 1.40 µm) was significantly increased, as opposed to the outer nuclear layer (ONL) thickness, which was decreased (77.94 ± 18.30 µm vs. 88.64 ± 7.65 µm) in the vitelliform group compared to the control group. We found a continuous external limiting membrane (ELM) in 55.5% of the eyes compared to a continuous ellipsoid zone (EZ) in 22.2% of the eyes in the vitelliform group. The difference between the mean AVLs' volume at baseline compared to the last visit for the nine eyes with ophthalmologic follow-up was not statistically significant (p = 0.725). The median follow-up duration was 11 months (range 5-56 months). Seven eyes (43.75%) were treated with intravitreal anti-vascular endothelium growth factor (anti-VEGF) agent injections, in which we noted a 6.43 ± 9 letter decrease in the best-corrected visual acuity (BCVA). The increased RPE thickness could suggest hyperplasia contrary to the decreased ONL, which could mirror the impact of the vitelliform lesion on photoreceptors (PR). Eyes that received anti-VEGF injections did not show signs of improvement regarding BCVA.
Collapse
Affiliation(s)
- Ioana Damian
- Department of Ophthalmology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - George-Adrian Muntean
- Department of Ophthalmology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - Larisa-Bianca Galea-Holhoș
- Department of Anatomy, Faculty of Medicine and Pharmacy, University of Oradea, 1 Decembrie Street, 410068 Oradea, Romania
| | - Simona-Delia Nicoară
- Department of Ophthalmology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Clinic of Ophthalmology, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Schmidt MF, Christensen JL, Dahl VA, Toosy A, Petzold A, Hanson JVM, Schippling S, Frederiksen JL, Larsen M. Automated detection of hyperreflective foci in the outer nuclear layer of the retina. Acta Ophthalmol 2023; 101:200-206. [PMID: 36073938 DOI: 10.1111/aos.15237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/12/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Hyperreflective foci are poorly understood transient elements seen on optical coherence tomography (OCT) of the retina in both healthy and diseased eyes. Systematic studies may benefit from the development of automated tools that can map and track such foci. The outer nuclear layer (ONL) of the retina is an attractive layer in which to study hyperreflective foci as it has no fixed hyperreflective elements in healthy eyes. In this study, we intended to evaluate whether automated image analysis can identify, quantify and visualize hyperreflective foci in the ONL of the retina. METHODS This longitudinal exploratory study investigated 14 eyes of seven patients including six patients with optic neuropathy and one with mild non-proliferative diabetic retinopathy. In total, 2596 OCT B-scan were obtained. An image analysis blob detector algorithm was used to detect candidate foci, and a convolutional neural network (CNN) trained on a manually labelled subset of data was then used to select those candidate foci in the ONL that fitted the characteristics of the reference foci best. RESULTS In the manually labelled data set, the blob detector found 2548 candidate foci, correctly detecting 350 (89%) out of 391 manually labelled reference foci. The accuracy of CNN classifier was assessed by manually splitting the 2548 candidate foci into a training and validation set. On the validation set, the classifier obtained an accuracy of 96.3%, a sensitivity of 88.4% and a specificity of 97.5% (AUC 0.989). CONCLUSION This study demonstrated that automated image analysis and machine learning methods can be used to successfully identify, quantify and visualize hyperreflective foci in the ONL of the retina on OCT scans.
Collapse
Affiliation(s)
- Mathias Falck Schmidt
- Department of Neurology, Clinic of Optic Neuritis, The Danish Multiple Sclerosis Center (DMSC), Rigshospitalet, Glostrup, Denmark
| | - Jakob Lønborg Christensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Ahmed Toosy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square UCL Institute of Neurology, University College London, London, UK
| | - Axel Petzold
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Neuro-ophthalmology Expertise Centre, University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.,UCL Institute of Neurology, London, UK
| | - James V M Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sven Schippling
- Multimodal Imaging in Neuroimmunological Diseases (MINDS), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jette Lautrup Frederiksen
- Department of Neurology, Clinic of Optic Neuritis, The Danish Multiple Sclerosis Center (DMSC), Rigshospitalet and University of Copenhagen, Glostrup, Denmark
| | - Michael Larsen
- Department of Ophthalmology, Rigshospitalet and University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
18
|
Vujosevic S, Parra MM, Hartnett ME, O'Toole L, Nuzzi A, Limoli C, Villani E, Nucci P. Optical coherence tomography as retinal imaging biomarker of neuroinflammation/neurodegeneration in systemic disorders in adults and children. Eye (Lond) 2023; 37:203-219. [PMID: 35428871 PMCID: PMC9012155 DOI: 10.1038/s41433-022-02056-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 01/28/2023] Open
Abstract
The retina and the optic nerve are considered extensions of the central nervous system (CNS) and thus can serve as the window for evaluation of CNS disorders. Spectral domain optical coherence tomography (OCT) allows for detailed evaluation of the retina and the optic nerve. OCT can non-invasively document changes in single retina layer thickness and structure due to neuronal and retinal glial cells (RGC) modifications in systemic and local inflammatory and neurodegenerative diseases. These can include evaluation of retinal nerve fibre layer and ganglion cell complex, hyper-reflective retinal spots (HRS, sign of activated microglial cells in the retina), subfoveal neuroretinal detachment, disorganization of the inner retinal layers (DRIL), thickness and integrity of the outer retinal layers and choroidal thickness. This review paper will report the most recent data on the use of OCT as a non invasive imaging biomarker for evaluation of the most common systemic neuroinflammatory and neurodegenerative/neurocognitive disorders in the adults and in paediatric population. In the adult population the main focus will be on diabetes mellitus, multiple sclerosis, optic neuromyelitis, neuromyelitis optica spectrum disorders, longitudinal extensive transverse myelitis, Alzheimer and Parkinson diseases, Amyotrophic lateral sclerosis, Huntington's disease and schizophrenia. In the paediatric population, demyelinating diseases, lysosomal storage diseases, Nieman Pick type C disease, hypoxic ischaemic encephalopathy, human immunodeficiency virus, leukodystrophies spinocerebellar ataxia will be addressed.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - M Margarita Parra
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - M Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Louise O'Toole
- Department of Ophthalmology Mater Private Network, Dublin, Ireland
| | - Alessia Nuzzi
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Edoardo Villani
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Nucci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Iovino C, Ramtohul P, Au A, Romero-Morales V, Sadda S, Freund KB, Sarraf D. Vitelliform maculopathy: Diverse etiologies originating from one common pathway. Surv Ophthalmol 2023; 68:361-379. [PMID: 36720370 DOI: 10.1016/j.survophthal.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Vitelliform lesions (VLs) are associated with a wide array of macular disorders but are the result of one common pathway: retinal pigment epithelium (RPE) impairment and phagocytic dysfunction. VLs are defined by the accumulation of yellowish subretinal material. In the era of multimodal advanced retinal imaging, VLs can be further characterized by subretinal hyperreflectivity with optical coherence tomography and hyperautofluorescence with fundus autofluorescence. VLs can be the result of genetic or acquired retinal diseases. In younger patients, VLs usually occur in the setting of Best disease. Additional genetic causes of VL include pattern dystrophy or adult-onset vitelliform macular dystrophy. In older patients, acquired VLs can be associated with a broad spectrum of etiologies, including tractional, paraneoplastic, toxic, and degenerative disorders. The main cause of visual morbidity in eyes with VLs is the onset of macular atrophy and macular neovascularization. Histopathological studies have provided new insights into the location, nature, and lifecycle of the vitelliform material comprised of melanosomes, lipofuscin, melanolipofuscin, and outer segment debris located between the RPE and photoreceptor layer. Impaired phagocytosis by the RPE cells is the unifying pathway leading to VL development. We discuss and summarize the nature, pathogenesis, multimodal imaging characteristics, etiologies, and natural course of vitelliform maculopathies.
Collapse
Affiliation(s)
- Claudio Iovino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Prithvi Ramtohul
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Adrian Au
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Veronica Romero-Morales
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - SriniVas Sadda
- Doheny Image Reading Center, Doheny Eye Institute, University of California Los Angeles (UCLA) Affiliated, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of New York, New York, NY, USA
| | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA; Greater Los Angeles Veterans Affairs Healthcare Center, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Weber S, Simon R, Schwanengel LS, Curcio CA, Augsten R, Meller D, Hammer M. Fluorescence Lifetime and Spectral Characteristics of Subretinal Drusenoid Deposits and Their Predictive Value for Progression of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 36580310 PMCID: PMC9804024 DOI: 10.1167/iovs.63.13.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To measure fundus autofluorescence (FAF) lifetimes and peak emission wavelengths (PEW) of subretinal drusenoid deposits (SDD) in age-related macular degeneration (AMD) and their development over time. Methods Fluorescence lifetime imaging ophthalmoscopy (FLIO) was performed in 30 eyes with optical coherence tomography (OCT)-confirmed early or intermediate AMD and SDD. Contrasts of mean lifetimes in short- (SSC) and long-wavelength channels (LSC), PEW, and relative fluorescence intensity were determined as differences of the respective measures at individual SDD and their environment. Measurements were made at baseline and at follow-up intervals 1 (13-36 months) and 2 (37-72 months), respectively. Results Of 423 SDD found at baseline, 259, 47, and 117 were hypoautofluorescent, isoautofluorescent, and hyperautofluorescent, respectively. FAF lifetimes of SDD were significantly longer than those of their environment by 14.5 ps (SSC, 95% confidence interval [CI], 13.3-15.7 ps) and 3.9 ps (LSC, 3.1-4.7 ps). PEW was shorter by 1.53 nm (1.07-1.98 nm, all contrasts P < 0.001) with higher contrasts for hyperfluorescent SDD. Over follow-up, SDD tended to hyperautofluorescence (relative intensities increased by 3.4% [95% CI, 2.9%-4.1%; P < 0.001] in follow-up 2). Hyperautofluorescence was associated with disruption of the ellipsoid zone on OCT. Disease progression to late-stage AMD was associated with higher lifetime contrast in SSC (15.9ps [14.2-17.6 ps] vs. 11.7 ps [9.9-13.5 ps], P < 0.001) at baseline. Conclusions SDD show longer FAF lifetimes and shorter PEW than their environments. A high lifetime contrast of SDD in SSC might predict disease progression to late-stage AMD.
Collapse
Affiliation(s)
- Sebastian Weber
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rowena Simon
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Regine Augsten
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany,Center for Medical Optics and Photonics, Univ. of Jena, Jena, Germany
| |
Collapse
|
21
|
Yamaguchi M, Nakao S, Wada I, Matoba T, Arima M, Kaizu Y, Shirane M, Ishikawa K, Nakama T, Murakami Y, Mizuochi M, Shiraishi W, Yamasaki R, Hisatomi T, Ishibashi T, Shibuya M, Stitt AW, Sonoda KH. Identifying Hyperreflective Foci in Diabetic Retinopathy via VEGF-Induced Local Self-Renewal of CX3CR1+ Vitreous Resident Macrophages. Diabetes 2022; 71:2685-2701. [PMID: 36203331 DOI: 10.2337/db21-0247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
Intraretinal hyperreflective foci (HRF) are significant biomarkers for diabetic macular edema. However, HRF at the vitreoretinal interface (VRI) have not been examined in diabetic retinopathy (DR). A prospective observational clinical study with 162 consecutive eyes using OCT imaging showed significantly increased HRF at the VRI during DR progression (P < 0.01), which was reversed by anti-vascular endothelial growth factor (VEGF) therapy. F4/80+ macrophages increased significantly at the VRI in Kimba (vegfa+/+) or Akimba (Akita × Kimba) mice (both P < 0.01), but not in diabetic Akita (Ins2+/-) mice, indicating macrophage activation was modulated by elevated VEGF rather than the diabetic milieu. Macrophage depletion significantly reduced HRF at the VRI (P < 0.01). Furthermore, BrdU administration in Ccr2rfp/+Cx3cr1gfp/+vegfa+/- mice identified a significant contribution of M2-like tissue-resident macrophages (TRMs) at the VRI. Ki-67+ and CD11b+ cells were observed in preretinal tissues of DR patients, while exposure of vitreal macrophages to vitreous derived from PDR patients induced a significant proliferation response in vitro (P < 0.01). Taken together, the evidence suggests that VEGF drives a local proliferation of vitreous resident macrophages (VRMs) at the VRI during DR. This phenomenon helps to explain the derivation and disease-relevance of the HRF lesions observed through OCT imaging in patients.
Collapse
Affiliation(s)
- Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ophthalmology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
- Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Iori Wada
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Kaizu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Shirane
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Wataru Shiraishi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Gunma, Japan
| | - Alan W Stitt
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Microstructural changes of photoreceptor layers detected by ultrahigh-resolution SD-OCT in patients with autosomal recessive bestrophinopathy. Am J Ophthalmol Case Rep 2022; 28:101706. [PMID: 36187441 PMCID: PMC9523351 DOI: 10.1016/j.ajoc.2022.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the changes in the microstructures of the photoreceptors in patients with autosomal recessive bestrophinopathy (ARB) by ultrahigh-resolution spectral-domain optical coherence tomography (UHR-SD-OCT). Methods Five eyes of 4 patients with ARB were studied. Cross-sectional images of the fovea were recorded by the UHR-SD-OCT system with a depth resolution of <2.0 μm. Results The UHR-SD-OCT images revealed changes in the outer retinal structures that were dependent on the severity of the photoreceptor atrophy. There was an increase in the reflectivity and appearance of small hyperreflective dots (HRDs) in the outer segments, followed by an irregularity and decrease in the length of the outer segments, then a disruption of the ellipsoid zone (EZ) band, and appearance of large HRDs corresponding to the segmented ellipsoids. Finally, there was a disappearance of the large HRDs followed by a localized thinning of the outer nuclear layer and appearance of hyperreflective foci above the region of the disrupted EZ. Conclusions UHR-SD-OCT can record images that show detailed changes of the microstructures of the photoreceptors at different stages of ARB. These observations should help in determining the mechanisms involved in retinal pathology and should provide important information on the effectiveness of treatments.
Collapse
|
23
|
Simon R, Jentsch M, Karimimousivandi P, Cao D, Messinger JD, Meller D, Curcio CA, Hammer M. Prolonged Lifetimes of Histologic Autofluorescence in Ectopic Retinal Pigment Epithelium in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 36469025 PMCID: PMC9730734 DOI: 10.1167/iovs.63.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to investigate histologic autofluorescence lifetimes and spectra of retinal pigment epithelium (RPE) on the transition from normal aging to RPE activation and migration in age-related macular degeneration (AMD). Methods Autofluorescence lifetimes and spectra of 9 donor eyes were analyzed in cryosections by means of 2-photon excited fluorescence at 960 nm. Spectra were detected at 483 to 665 nm. Lifetimes were measured using time-correlated single photon counting in 2 spectral channels: 500 to 550 nm (short-wavelength spectral channel [SSC]) and 550 to 700 nm (long-wavelength spectral channel [LSC]). Fluorescence decays over time were approximated by a series of three exponential functions. The amplitude-weighted mean fluorescence lifetime was determined. Markers for retinoid activity (RPE65) and immune function (CD68) were immunolocalized in selected neighboring sections. Results We identified 9 RPE morphology phenotypes resulting in 399 regions of interest (ROIs) for spectral and 497 ROIs for lifetime measurements. RPE dysmorphia results in a shorter wavelength peak of spectral emission: normal aging versus RPE migrated into the retina (intraELM) = 601.7 (9.5) nm versus 581.6 (7.3) nm, P < 0.001, whereas autofluorescence lifetimes increase: normal aging versus intraELM: SSC 180 (44) picosecond (ps) versus 320 (86) ps, P < 0.001; and LSC 250 (55) ps versus 441 (76) ps, P < 0.001. Ectopic RPE within the neurosensory retina is strongly CD68 positive and RPE65 negative. Conclusions In the process of RPE degeneration, comprising different steps of dysmorphia and migration, lengthening of autofluorescence lifetimes and a hypsochromic shift of emission spectra can be observed. These autofluorescence changes might provide early biomarkers for AMD progression and contribute to our understanding of RPE-driven pathology.
Collapse
Affiliation(s)
- Rowena Simon
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Marius Jentsch
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| |
Collapse
|
24
|
Gelat B, Rathaur P, Malaviya P, Patel B, Trivedi K, Johar K, Gelat R. The intervention of epithelial-mesenchymal transition in homeostasis of human retinal pigment epithelial cells: a review. J Histotechnol 2022; 45:148-160. [DOI: 10.1080/01478885.2022.2137665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brijesh Gelat
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Pooja Rathaur
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Binita Patel
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, India
| | - Krupali Trivedi
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kaid Johar
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Rahul Gelat
- Institute of Teaching and Research in Ayurveda (ITRA), Gujarat Ayurved University, Jamnagar, India
| |
Collapse
|
25
|
The OCT angular sign of Henle fiber layer (HFL) hyperreflectivity (ASHH) and the pathoanatomy of the HFL in macular disease. Prog Retin Eye Res 2022:101135. [DOI: 10.1016/j.preteyeres.2022.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
|
26
|
Lee W, Su PY, Zernant J, Nagasaki T, Tsang SH, Allikmets R. Longitudinal Analysis of a Resolving Foveomacular Vitelliform Lesion in ABCA4 Disease. Ophthalmol Retina 2022; 6:847-860. [PMID: 35413457 PMCID: PMC9464664 DOI: 10.1016/j.oret.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe the longitudinal progression and phenotypic association of bilateral foveomacular vitelliform lesions in the setting of ABCA4 disease. DESIGN Case report and cross-sectional cohort study. PARTICIPANTS Nineteen patients with confirmed ABCA4 disease exhibiting an optical gap phenotype. METHODS Multimodal retinal imaging across multiple visits included autofluorescence imaging, spectral-domain OCT (SD-OCT), and OCT angiography. Electro-oculogram (EOG) and full-field electroretinogram testing results were analyzed. Exome sequencing was performed for diagnostic confirmation and the verification of other variations. MAIN OUTCOME MEASURES Light-peak-to-dark-trough ratio (Arden ratio) on EOG; thickness and en face maps of various retinal layers on SD-OCT; area measurements on 488- and 787-nm autofluorescence images; and the presence of variation in vitelliform-associated genes identified using exome sequencing. RESULTS A 25-year-old White man presented with bilateral central vision loss due to foveal lesions consisting of vitelliform fluid. The result of EOG testing was inconsistent with bestrophinopathy (Arden ratio = 1.62), and no generalized rod or cone dysfunction was detected on full-field electroretinogram. Exome sequencing identified the pathogenic variants c.5882G>A (p.(Gly1961Glu)) and c.4139C>T (p.(Pro1380Leu)) in ABCA4 and no other vitelliform-associated genes. Significant thinning and abnormal reflectivity of photoreceptor-attributable layers as well as near-infrared autofluorescence abnormalities were found in lesion-adjacent areas. Complete resorption of the vitelliform fluid occurred after 30 months, after which the optical gap lesions exhibited an enlarged and "cavitated" appearance. Phenotypic screening for additional cases from a large ABCA4 disease database (n = 602) identified 18 additional patients at various stages of optical gap lesion formation, most of whom harbored the c.5882G>A (p.(Gly1961Glu)) variant (P < 0.001), although none had apparent vitelliform fluid. At least 5 of the 18 (31.6%) patients exhibited optical gap lesions with the distinct "cavitated" appearance, whereas the lesions remained unperturbed in the other patients over the course of examination. CONCLUSIONS Foveomacular vitelliform deposition is a mechanistically congruent but rare manifestation of ABCA4 disease. Specifically, this disease phenotype may be clinically associated with the c.5882G>A (p.(Gly1961Glu)) allele and optical gap lesions.
Collapse
Affiliation(s)
- Winston Lee
- Department of Genetics & Development, Columbia University, New York, New York; Department of Ophthalmology, Columbia University, New York, New York
| | - Pei-Yin Su
- Department of Ophthalmology, Columbia University, New York, New York
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York
| | - Stephen H Tsang
- Department of Genetics & Development, Columbia University, New York, New York; Department of Pathology & Cell Biology, Columbia University, New York, New York
| | - Rando Allikmets
- Department of Genetics & Development, Columbia University, New York, New York; Department of Pathology & Cell Biology, Columbia University, New York, New York.
| |
Collapse
|
27
|
Brinkmann M, Bacci T, Kar D, Messinger JD, Sloan KR, Chen L, Hamann T, Wiest M, Freund KB, Zweifel S, Curcio CA. Histology and Clinical Lifecycle of Acquired Vitelliform Lesion, a Pathway to Advanced Age-Related Macular Degeneration. Am J Ophthalmol 2022; 240:99-114. [PMID: 35192790 PMCID: PMC9592119 DOI: 10.1016/j.ajo.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate hypotheses about the role of acquired vitelliform lesion (AVL) in age-related macular degeneration pathophysiology. DESIGN Laboratory histology study; retrospective, observational case series. METHODS Two donor eyes in a research archive with AVL and age-related macular degeneration were analyzed with light and electron microscopy for AVL content at locations matched to ex vivo B-scans. A retrospective, observational clinical cohort study of 42 eyes of 30 patients at 2 referral clinics determined the frequency of optical coherence tomography features stratified by AVL fate. RESULTS Histologic and clinical cases showed subretinal drusenoid deposit and drusen. Ultrastructural AVL components in 2 donor eyes included retinal pigment epithelium (RPE) organelles (3%-22% of volume), outer segments (2%-10%), lipid droplets (0.2%-12%), and a flocculent material (57%-59%). Of 48 AVLs (mean follow-up 46 ± 39 months), 50% collapsed to complete RPE and outer retinal atrophy, 38% were stable, 10% resorbed, and 2% developed neovascularization. The Early Treatment Diabetic Retinopathy Study grid central subfield contained 77% of AVLs. Hyperreflective foci, ellipsoid zone disruption, and hyperreflective thickening of the RPE-basal lamina-Bruch membrane band were common at maximum AVL expansion. Collapsing and noncollapsing AVLs had different growth rates (rapid vs slow, respectively). CONCLUSIONS AVL deposits contain unexpectedly low levels of RPE organelles and outer segments. Subfoveal predilection, reflectivity on optical coherence tomography, hyperautofluorescence, yellow color, and growth-regression phases suggest dysregulation of lipid transfer pathways specific to cone photoreceptors and supporting cells in formation of AVL deposit, analogous to drusen and subretinal drusenoid deposit. Prediction of AVL outcomes via growth rates should be confirmed in larger clinical studies.
Collapse
Affiliation(s)
- Max Brinkmann
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA; Department of Ophthalmology (M.B., T.H., M.W., S.Z.), University Hospital Zurich, Zurich, Switzerland
| | - Tommaso Bacci
- Vitreous Retina Macula Consultants of New York (T.B., K.B.F.), New York University School of Medicine, New York, New York, USA
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA; First Affiliated Hospital of Chongqing Medical University (L.C.), Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Timothy Hamann
- Department of Ophthalmology (M.B., T.H., M.W., S.Z.), University Hospital Zurich, Zurich, Switzerland
| | - Maximilian Wiest
- Department of Ophthalmology (M.B., T.H., M.W., S.Z.), University Hospital Zurich, Zurich, Switzerland
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York (T.B., K.B.F.), New York University School of Medicine, New York, New York, USA; LuEsther T. Mertz Retinal Research Center (K.B.F.), New York University School of Medicine, New York, New York, USA; Manhattan Eye, Ear and Throat Hospital, and the Department of Ophthalmology (K.B.F.), New York University School of Medicine, New York, New York, USA
| | - Sandrine Zweifel
- Department of Ophthalmology (M.B., T.H., M.W., S.Z.), University Hospital Zurich, Zurich, Switzerland; Department of Ophthalmology, University of Zurich (S.Z.), Zurich, Switzerland
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences (M.B., D.K., J.D.M., K.R.S., L.C., C.A.C.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA.
| |
Collapse
|
28
|
Tsunoda K, Hanazono G. Detailed analyses of microstructure of photoreceptor layer at different severities of occult macular dystrophy by ultrahigh-resolution SD-OCT. Am J Ophthalmol Case Rep 2022; 26:101490. [PMID: 35321252 PMCID: PMC8935511 DOI: 10.1016/j.ajoc.2022.101490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/01/2022] Open
Abstract
Purpose To analyze the microstructures of the photoreceptor layer in detail in eyes with occult macular dystrophy (OMD, Miyake's disease) by ultrahigh-resolution spectral-domain optical coherence tomography (UHR-SD-OCT). Observations Twenty-eight normal subjects and 5 patients with OMD of different severities were studied. Cross-sectional images through the fovea were recorded with a UHR-SD-OCT system with a depth resolution of <2.0 μm. In patients with OMD, the UHR-SD-OCT images revealed abnormal photoreceptor microstructures which were not detected in the conventional SD-OCT images. The UHR-SD-OCT images showed that the interdigitation zone (IZ) was not present and the outer segments were hyperreflective with hyperreflective dots (HRDs) aligned like string of pearls during the earlier stages. There was a disruption of the ellipsoid zone (EZ) which appeared as clusters of larger HRDs, and these HRDs became less apparent with increasing time. The outer segments became hyporeflective and rod IZ became apparent with longer duration of the disease process. Conclusions and Importance The UHR-SD-OCT images show detailed characteristics of the photoreceptor microstructures of different severities during the progression of OMD. These detailed observations will help in understanding the mechanisms involved in the retinal pathology and should provide important information for their treatments.
Collapse
Affiliation(s)
- Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
- Corresponding author.
| | - Gen Hanazono
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
- Higashimatsudo Hanazono Eye Clinic, 2-3-2 Higashimatsudo, Matsudo City, Chiba, 270-2225, Japan
| |
Collapse
|
29
|
El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, Pikuleva IA. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:902254. [PMID: 35721135 PMCID: PMC9198296 DOI: 10.3389/fphar.2022.902254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid β plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - David A. Buchner
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Brian Dailey
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Georgios Trichonas
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Irina A. Pikuleva
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States,*Correspondence: Irina A. Pikuleva,
| |
Collapse
|
30
|
Kim M, Lee J, Park YG, Park YH. Long-Term Analysis of Clinical Features and Treatment Outcomes of Inflammatory Choroidal Neovascularization. Am J Ophthalmol 2022; 233:18-29. [PMID: 34298010 DOI: 10.1016/j.ajo.2021.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the long-term clinical features and treatment outcomes of patients with inflammatory choroidal neovascularization (CNV) treated with intravitreal anti-vascular endothelial growth factor (anti-VEGF). DESIGN Retrospective, interventional, consecutive case series. METHODS Sixty-five eyes of 65 patients with inflammatory CNV treated with anti-VEGF injections and followed up at least 12 months were included. Retrospective chart review was conducted at a single tertiary referral center. RESULTS Study participants were followed up for 60.6 ± 42.8 (range, 16-160) months. Mean age was 33.4 ± 10.8 years, and mean refractive error was -3.94 ± 1.35 D in spherical equivalent. Final best-corrected visual acuity (BCVA) was 0.21 ± 0.20 logMAR after treatment. Patients were treated with bevacizumab (76.9%), ranibizumab (4.6%), aflibercept (3.1%), and drug combinations (15.4%). Systemic corticosteroid or immunosuppressant use was not correlated with visual outcome, required number of anti-VEGF injections, and recurrence. Commonly occurring optical coherence tomography (OCT) features included ellipsoid zone disruption, choroidal hypertransmission, retinal pigment epithelium atrophy or absence (RPEA), intraretinal hyperreflective foci (HRF), choroidal vessel engorgement, focal choroidal excavation, and irregular vascular loops (on OCT angiography). RPEA after treatment (β = 0.238, P = .036) and BCVA (β = 0.267, P = .029) showed significant correlation with final BCVA. A total of 28 patients (43.1%) experienced recurrence; intraretinal HRF after treatment was the single risk factor for recurrence (odds ratio = 2.712, P = .031). CONCLUSIONS Inflammatory CNV recurrence showed higher rates over time after anti-VEGF treatment than previously reported, even though the overall visual outcome was good. Baseline BCVA and RPEA after treatment are significant predictors for visual outcome. Intraretinal HRF after anti-VEGF treatment suggests the potential risk of recurrence.
Collapse
Affiliation(s)
- Mirinae Kim
- Department of Ophthalmology and Visual Science (M.K., J.L., Y-G.P., Y.-H.P.), College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital (M.K., Y.-G.P., Y.H.P.), Seoul, South Korea
| | - Junhyuck Lee
- Department of Ophthalmology and Visual Science (M.K., J.L., Y-G.P., Y.-H.P.), College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Gun Park
- Department of Ophthalmology and Visual Science (M.K., J.L., Y-G.P., Y.-H.P.), College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital (M.K., Y.-G.P., Y.H.P.), Seoul, South Korea
| | - Young-Hoon Park
- Department of Ophthalmology and Visual Science (M.K., J.L., Y-G.P., Y.-H.P.), College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital (M.K., Y.-G.P., Y.H.P.), Seoul, South Korea.
| |
Collapse
|
31
|
Chen L, Cao D, Messinger JD, Ach T, Ferrara D, Freund KB, Curcio CA. Histology and clinical imaging lifecycle of black pigment in fibrosis secondary to neovascular age-related macular degeneration. Exp Eye Res 2022; 214:108882. [PMID: 34890604 PMCID: PMC8809488 DOI: 10.1016/j.exer.2021.108882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Melanotic cells with large spherical melanosomes, thought to originate from retinal pigment epithelium (RPE), are found in eyes with neovascular age-related macular degeneration (nvAMD). To generate hypotheses about RPE participation in fibrosis, we correlate histology to clinical imaging in an eye with prominent black pigment in fibrotic scar secondary to nvAMD. METHODS Macular findings in a white woman with untreated inactive subretinal fibrosis due to nvAMD in her right eye were documented over 9 years with color fundus photography (CFP), fundus autofluorescence (FAF) imaging, and optical coherence tomography (OCT). After death (age 90 years), this index eye was prepared for light and electron microscopy to analyze 7 discrete zones of pigmentation in the fibrotic scar. In additional donor eyes with nvAMD, we determined the frequency of black pigment (n = 36 eyes) and immuno-labeled for retinoid, immunologic, and microglial markers (RPE65, CD68, Iba1, TMEM119; n = 3 eyes). RESULTS During follow-up of the index eye, black pigment appeared and expanded within a hypoautofluorescent fibrotic scar. The blackest areas correlated to melanotic cells (containing large spherical melanosomes), some in multiple layers. Pale areas had sparse pigmented cells. Gray areas correlated to cells with RPE organelles entombed in the scar and multinucleate cells containing sparse large spherical melanosomes. In 94% of nvAMD donor eyes, hyperpigmentation was visible. Certain melanotic cells expressed some RPE65 and mostly CD68. Iba1 and TMEM119 immunoreactivity, found both in retina and scar, did not co-localize with melanotic cells. CONCLUSION Hyperpigmentation in CFP results from both organelle content and optical superimposition effects. Black fundus pigment in nvAMD is common and corresponds to cells containing numerous large spherical melanosomes and superimposition of cells containing sparse large melanosomes, respectively. Melanotic cells are molecularly distinct from RPE, consistent with a process of transdifferentiation. The subcellular source of spherical melanosomes remains to be determined. Detailed histology of nvAMD eyes will inform future studies using technologies for spatially resolved molecular discovery to generate new therapies for fibrosis. The potential of black pigment as a biomarker for fibrosis can be investigated in clinical multimodal imaging datasets.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | | | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA,Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA,Corresponding author. Department of Ophthalmology and Visual Sciences; EyeSight Foundation of Alabama Vision Research Laboratories, 1670 University Boulevard Room 360; University of Alabama School of Medicine, Birmingham, AL, 35294-0099, USA. (C.A. Curcio)
| |
Collapse
|
32
|
Significance of Hyperreflective Foci as an Optical Coherence Tomography Biomarker in Retinal Diseases: Characterization and Clinical Implications. J Ophthalmol 2021; 2021:6096017. [PMID: 34956669 PMCID: PMC8709761 DOI: 10.1155/2021/6096017] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
Hyperreflective foci (HRF) is a term coined to depict hyperreflective dots or roundish lesions within retinal layers visualized through optical coherence tomography (OCT). Histopathological correlates of HRF are not univocal, spacing from migrating retinal pigment epithelium cells, lipid-laden macrophages, microglial cells, and extravasated proteinaceous or lipid material. Despite this, HRF can be considered OCT biomarkers for disease progression, treatment response, and prognosis in several retinal diseases, including diabetic macular edema, age-related macular degeneration (AMD), retinal vascular occlusions, and inherited retinal dystrophies. The structural features and topographic location of HRF guide the interpretation of their significance in different pathological conditions. The presence of HRF less than 30 μm with reflectivity comparable to the retinal nerve fiber layer in the absence of posterior shadowing in diabetic macular edema indicates an inflammatory phenotype with a better response to steroidal treatment. In AMD, HRF overlying drusen are associated with the development of macular neovascularization, while parafoveal drusen and HRF predispose to macular atrophy. Thus, HRF can be considered a key biomarker in several common retinal diseases. Their recognition and critical interpretation via multimodal imaging are vital to support clinical strategies and management.
Collapse
|
33
|
FOVEAL OUTER RETINAL HYPERREFLECTIVITY: A NOVEL OPTICAL COHERENCE TOMOGRAPHY FINDING IN IDIOPATHIC MULTIFOCAL CHOROIDITIS. Retin Cases Brief Rep 2021; 15:651-656. [PMID: 31274847 DOI: 10.1097/icb.0000000000000878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe three patients with idiopathic multifocal choroiditis (MFC) who showed foci of foveal outer retinal hyperreflectivity on optical coherence tomography. METHODS Retrospective review of electronic health records and multimodal imaging from three patients with MFC. RESULTS Three consecutive white patients with MFC (two male and one female) presented with unilateral foveal outer retinal hyperreflectivity in the eye with active MFC. In all cases, the lesions persisted for at least 1 month. Optical coherence tomography demonstrated finger-like projections of hyperreflectivity extending from the retinal pigment epithelium and through disrupted interdigitation and ellipsoid zones into the outer nuclear layer, with some aspects of the lesions reaching the inner limiting membrane. Visual recovery varied in the three affected eyes. CONCLUSION Foveal outer retinal hyperreflectivity is a novel optical coherence tomography finding in eyes with active MFC. Additional studies will be required to address the prevalence and prognostic importance of foveal outer retinal hyperreflectivity.
Collapse
|
34
|
Uslu Doğan C, Akbaş Özyürek EB, Keleş Yeşiltaş S, Türker İÇ, Düzgün E, Güven D. Optical coherence tomography findings and choroidal neovascular membrane detectability with optical coherence tomography angiography in different subtypes of pattern dystrophy. Clin Exp Optom 2021; 105:740-745. [PMID: 34538229 DOI: 10.1080/08164622.2021.1971046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
CLINICAL RELEVANCE Optical coherence tomography angiography (OCTA) is a useful method for determining choroidal neovascular membranes (CNVM) in different subtypes of pattern dystrophy. BACKGROUND We aimed to evaluate the optical coherence tomography (OCT) findings in different subtypes of pattern dystrophy and to detect CNVM not detectable by conventional method using OCTA. METHODS Of 55 eyes included in this retrospective, cross-sectional study, adult onset vitelliform macular dystrophy was present in 42 eyes (32 eyes vitelliform stage-10 eyes vitelliruptive stage), butterfly-shaped pattern dystrophy in 8 eyes, and multifocal pattern dystrophy simulating fundus flavimaculatus in 5 eyes. Fluorescein angiography (FA), fundus autofluorescence, OCT and OCTA imaging were performed in all cases. RESULTS The study included 55 eyes of 29 patients, of which 21 were female and 8 were male. On OCT, 25 eyes had hyperreflective dots, 14 eyes had a disruption in the ellipsoid zone (EZ), and 6 eyes had atrophy in the outer retinal layers, and these findings were detected in all subtypes. Findings consistent with CNVM were detected in 1 eye using FA, 3 eyes using OCT and 5 eyes in OCTA. CONCLUSION In this study, we demonstrated that in different subtypes of pattern dystrophies OCT findings such as hyperreflective dots, disruption in the EZ, atrophy in the outer retinal layers and CNVM can be seen, and that a quiescent CNVM lesion, which cannot be detected by conventional methods, can be detected by OCTA, a new imaging method.
Collapse
Affiliation(s)
- Ceylan Uslu Doğan
- Department of Ophthalmology, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Emine Betül Akbaş Özyürek
- Department of Ophthalmology, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Sümeyra Keleş Yeşiltaş
- Department of Ophthalmology, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - İbrahim Çağrı Türker
- Department of Ophthalmology, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Eyüp Düzgün
- Department of Ophthalmology, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Dilek Güven
- Department of Ophthalmology, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| |
Collapse
|
35
|
Hammer M, Jakob-Girbig J, Schwanengel L, Curcio CA, Hasan S, Meller D, Schultz R. Progressive Dysmorphia of Retinal Pigment Epithelium in Age-Related Macular Degeneration Investigated by Fluorescence Lifetime Imaging. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34491262 PMCID: PMC8431975 DOI: 10.1167/iovs.62.12.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose The purpose of this study was to observe changes of the retinal pigment epithelium (RPE) on the transition from dysmorphia to atrophy in age-related macular degeneration (AMD) by fluorescence lifetime imaging ophthalmoscopy (FLIO). Methods Multimodal imaging including color fundus photography (CFP), optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, and FLIO was performed in 40 eyes of 37 patients with intermediate AMD and no evidence for geographic atrophy or macular neovascularization (mean age = 74.2 ± 7.0 years). Twenty-three eyes were followed for 28.3 ± 18.3 months. Seven eyes had a second follow-up after 46.6 ± 9.0 months. Thickened RPE on OCT, hyperpigmentation on CFP, hyper-reflective foci (HRF) on OCT, attributed to single or clustered intraretinal RPE, were identified. Fluorescence lifetimes in two spectral channels (short-wavelength spectral channel [SSC] = 500–560 nm, long-wavelength spectral channel [LSC] = 560–720 nm) as well as emission spectrum intensity ratio (ESIR) of the lesions were measured by FLIO. Results As hyperpigmented areas form and RPE migrates into the retina, FAF lifetimes lengthen and ESRI of RPE cells increase. Thickened RPE showed lifetimes of 256 ± 49 ps (SSC) and 336 ± 35 ps (LSC) and an ESIR of 0.552 ± 0.079. For hyperpigmentation, these values were 317 ± 68 ps (p < 0.001), 377 ± 56 ps (P < 0.001), and 0.609 ± 0.081 (P = 0.001), respectively, and for HRF 337 ± 79 ps (P < 0.001), 414 ± 50 ps (P < 0.001), and 0.654 ± 0.075 (P < 0.001). Conclusions In the process of RPE degeneration, comprising different steps of dysmorphia, hyperpigmentation, and migration, lengthening of FAF lifetimes and a hypsochromic shift of emission spectra can be observed by FLIO. Thus, FLIO might provide early biomarkers for AMD progression and contribute to our understanding of RPE pathology.
Collapse
Affiliation(s)
- Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, Univ. of Jena, Jena, Germany
| | | | - Linda Schwanengel
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Somar Hasan
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| |
Collapse
|
36
|
Chandra S, Gurudas S, Narayan A, Sivaprasad S. Incidence and risk factors for macular atrophy in Acquired Vitelliform Lesions. Ophthalmol Retina 2021; 6:196-204. [PMID: 34390885 DOI: 10.1016/j.oret.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To study the time course to macular atrophy (MA) and associated risk factors in eyes with Acquired Vitelliform Lesions (AVL) as they vary between patients and between eyes of an individual. DESIGN Single centre, retrospective, observational cohort study. SUBJECTS Consecutive patients registered between Jan 2009 to Jan 2014 with first diagnosis of AVL confirmed by multimodal imaging were included. Eyes with baseline MA or choroidal neovascularization were excluded. METHODS Patient demographics were collected. Serial optical coherence tomography (OCT) scans and fundus autofluorescence (FAF) were graded and analysed. Turnbull's estimator was employed, and time censored at 5 years. Multivariable Weibull parametric proportional hazards models was used to assess association of risk factors with MA, following adjustment for age and gender. Hazard ratios are reported with 95% CI. MAIN OUTCOME MEASURE Time to the first OCT evidence of MA stratified by presenting visual acuity (VA) and AVL lesion subtypes. Secondary outcome included risk factors for incident MA. RESULTS A total of 237 eyes (132 patients) met the inclusion criteria. Incident MA was detected in 52/237 (21.9%) eyes by 5 years. Stratified by baseline VA, 40.3%eyes with VA≤ 70 letters developed atrophy within 5 years of first diagnosis in contrast to 10.3% eyes with VA>70 letters (p<0.001). Based on lesion type only 12.9% eyes with vitelliform lesion at baseline developed MA versus 39.8% and 44.2% eyes with pseudohypopyon or vitelliruptive lesion type respectively. In adjusted analysis, baseline factors associated with increased risk of MA included VA≤70 letters (HR 5.54; 95% CI 2.30-13.34), base width (HR 1.22; 95% CI 1.16-1.28), maximum height (HR 2.61; 95% CI 1.82-3.74), presence of SDD (HR 2.83; 95% CI 1.34 -5.96) and disrupted external limiting membrane (HR 2.81; 95% CI 1.34-5.86). CONCLUSION Baseline VA of 70 letters or less (Snellen ≤20/40) and pseudohypopyon or vitelliruptive lesion type attribute highest risk for MA. Other prognostic indicators for MA include baseline presence of SDD, disrupted ELM and larger lesion area.
Collapse
Affiliation(s)
- Shruti Chandra
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK; NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Sarega Gurudas
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK
| | | | - Sobha Sivaprasad
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK; NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK.
| |
Collapse
|
37
|
Cao D, Leong B, Messinger JD, Kar D, Ach T, Yannuzzi LA, Freund KB, Curcio CA. Hyperreflective Foci, Optical Coherence Tomography Progression Indicators in Age-Related Macular Degeneration, Include Transdifferentiated Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 34448806 PMCID: PMC8399556 DOI: 10.1167/iovs.62.10.34] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose By optical coherence tomography (OCT) imaging, hyperreflective foci (HRF) indicate progression risk for advanced age-related macular degeneration (AMD) and are in part attributable to ectopic retinal pigment epithelium (RPE). We hypothesized that ectopic RPE are molecularly distinct from in-layer cells and that their cross-retinal course follows Müller glia. Methods In clinical OCT (61 eyes, 44 patients with AMD, 79.4 ± 7.7 years; 29 female; follow-up = 4.7 ± 0.9 years), one HRF type, RPE plume (n = 129 in 4 morphologies), was reviewed. Twenty eyes of 20 donors characterized by ex vivo OCT were analyzed by histology (normal, 4; early/intermediate AMD, 7; geographic atrophy, 6; neovascular AMD, 3). Cryosections were stained with antibodies to retinoid (RPE65, CRALPB) and immune (CD68, CD163) markers. In published RPE cellular phenotypes, red immunoreactivity was assessed semiquantitatively by one observer (none, some cells, all cells). Results Plume morphology evolved over time and many resolved (40%). Trajectories of RPE plume and cellular debris paralleled Müller glia, including near atrophy borders. RPE corresponding to HRF lost immunoreactivity for retinoid markers and gained immunoreactivity for immune markers. Aberrant immunoreactivity appeared in individual in-layer RPE cells and extended to all abnormal phenotypes. Müller glia remained CRALBP positive. Plume cells approached and contacted retinal capillaries. Conclusions HRF are indicators not predictors of overall disease activity. Gain and loss of function starts with individual in-layer RPE cells and extends to all abnormal phenotypes. Evidence for RPE transdifferentiation, possibly due to ischemia, supports a proposed process of epithelial–mesenchyme transition. Data can propel new biomarkers and therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Belinda Leong
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Retina Associates, Sydney, New South Wales, Australia
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Lawrence A Yannuzzi
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, New York University, Grossman School of Medicine, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
38
|
Abstract
PURPOSE To assess hyperreflective foci (HF) number and distribution in choroideremia (CHM) using spectral domain optical coherence tomography. METHODS Observational, cross-sectional case series. Consecutive patients and matched controls (20 eyes each) underwent best-corrected visual acuity measurement, fundoscopy, blue-light autofluorescence (BL-FAF) and spectral domain optical coherence tomography. Hyperreflective foci were assessed on a horizontal spectral domain optical coherence tomography scan, in the 500-µm area centered on the umbo, and in the 500-μm-wide areas internal (preserved border) and external (pathologic border) to the chorioretinal atrophy of CHM patients, and in the parafovea of controls. Hyperreflective foci were subclassified as retinal or choroidal. The spared central islet was measured on BL-FAF. Primary outcome was HF quantification in CHM. Secondary outcomes included their relationships with atrophy extent. RESULTS Choroideremia eyes disclosed a significantly higher HF number across the pathologic border and in the fovea when compared with controls; in particular, these HF were primarily located in the choroid (59-87%). Moreover, choroidal HF in the pathologic border inversely correlated with the area of the preserved central islet. CONCLUSION Hyperreflective foci might turn out to be a potential biomarker of CHM activity or severity. In this regard, we hypothesize that HF may be related to macrophages activation or progressive retinal pigment epithelium degeneration.
Collapse
|
39
|
Nassisi M, Smirnov VM, Solis Hernandez C, Mohand‐Saïd S, Condroyer C, Antonio A, Kühlewein L, Kempf M, Kohl S, Wissinger B, Nasser F, Ragi SD, Wang N, Sparrow JR, Greenstein VC, Michalakis S, Mahroo OA, Ba‐Abbad R, Michaelides M, Webster AR, Degli Esposti S, Saffren B, Capasso J, Levin A, Hauswirth WW, Dhaenens C, Defoort‐Dhellemmes S, Tsang SH, Zrenner E, Sahel J, Petersen‐Jones SM, Zeitz C, Audo I. CNGB1-related rod-cone dystrophy: A mutation review and update. Hum Mutat 2021; 42:641-666. [PMID: 33847019 PMCID: PMC8218941 DOI: 10.1002/humu.24205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Cyclic nucleotide-gated channel β1 (CNGB1) encodes the 240-kDa β subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Ophthalmological Unit, Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Vasily M. Smirnov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Exploration de la vision et Neuro‐Ophthalmologie, CHU de LilleLilleFrance
- Faculté de MédecineUniversité de LilleLilleFrance
| | - Cyntia Solis Hernandez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Saddek Mohand‐Saïd
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
| | - Christel Condroyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Aline Antonio
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Laura Kühlewein
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Melanie Kempf
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Fadi Nasser
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Sara D. Ragi
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | - Nan‐Kai Wang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Ophthalmology, Chang Gung Memorial HospitalLinkou Medical CenterTaoyuanTaiwan
| | - Janet R. Sparrow
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | | | | | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Rola Ba‐Abbad
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Michel Michaelides
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Simona Degli Esposti
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Brooke Saffren
- Philadelphia College of Osteopathic MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alex Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, Pediatric Genetics, Golisano Children's HospitalUniversity of RochesterRochesterNew YorkUSA
| | | | - Claire‐Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172‐LilNCog‐Lille Neuroscience & CognitionLilleFrance
| | | | - Stephen H. Tsang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma LaboratoryNew YorkNew YorkUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Eberhart Zrenner
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Jose‐Alain Sahel
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Department of OphthalmologyThe University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Fondation Ophtalmologique Adolphe de RothschildParisFrance
| | - Simon M. Petersen‐Jones
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Christina Zeitz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Isabelle Audo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- University College London Institute of OphthalmologyLondonUK
| |
Collapse
|
40
|
Ocular Hypotension and Epiretinal Membrane as Risk Factors for Visual Deterioration Following Glaucoma Filtering Surgery. J Glaucoma 2021; 30:515-525. [PMID: 34060509 DOI: 10.1097/ijg.0000000000001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/31/2021] [Indexed: 11/26/2022]
Abstract
PRECIS Postsurgical hypotension at 1 week and the presence of an epiretinal membrane (ERM) were significant risk factors for the deterioration of postsurgical visual acuity (VA) at 3 and 12 months, respectively. PURPOSE The purpose of this study was to assess the effects of an ERM and postsurgical hypotension <6 mm Hg at 1 week on postsurgical VA loss. PATIENTS AND METHODS A total of 69 patients (69 eyes) who underwent trabeculectomy with adjunctive mitomycin C between 2017 and 2019 (mean follow-up period: 22.8 mo) were enrolled, and 14 parameters that could be associated with the deterioration of VA at 3 and 12 months were studied. RESULTS There was a significant association between VA loss at 3 months and postsurgical intraocular pressure at 1 week (P=0.006 by multiple regression) and hypotony maculopathy (P=0.024 by Fisher exact test). However, this association was lost at 12 months. Instead of postsurgical hypotension, the presence of an ERM was significantly associated with VA loss at 12 months (P=0.035 by Fisher exact test, and P=0.023 by logistic regression). CONCLUSIONS Postsurgical hypotension at 1 week was significantly associated with mid-term, but not long-term, postsurgical VA loss. The presence of an ERM, which was not a risk factor for mid-term acuity loss, was a significant risk factor for VA loss at 12 months.
Collapse
|
41
|
Huang CH, Yang CH, Hsieh YT, Yang CM, Ho TC, Lai TT. Hyperreflective foci in predicting the treatment outcomes of diabetic macular oedema after anti-vascular endothelial growth factor therapy. Sci Rep 2021; 11:5103. [PMID: 33658601 PMCID: PMC7930178 DOI: 10.1038/s41598-021-84553-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
This retrospective study evaluated the association of hyperreflective foci (HRF) with treatment response in diabetic macular oedema (DME) after anti-vascular endothelial growth factor (VEGF) therapy. The medical records, including of ophthalmologic examinations and optical coherence tomography (OCT) images, of 106 patients with DME treated with either intravitreal ranibizumab or aflibercept were reviewed. The correlations between best-corrected visual acuity (BCVA) changes and HRF along with other OCT biomarkers were analysed. The mean logMAR BCVA improved from 0.696 to 0.461 after an average of 6.2 injections in 1 year under real-world conditions. Greater visual-acuity gain was noted in patients with a greater number of HRF in the outer retina at baseline (p = 0.037), along with other factors such as poor baseline vision (p < 0.001), absence of epiretinal membrane (p = 0.048), and presence of subretinal fluid at baseline (p = 0.001). The number of HRF after treatment was correlated with the presence of hard exudate (p < 0.001) and baseline haemoglobin A1C (p = 0.001). Patients with proliferative diabetic retinopathy had greater HRF reduction after treatment (p = 0.018). The number of HRF in the outer retina, in addition to other baseline OCT biomarkers, could be used to predict the treatment response in DME after anti-VEGF treatment.
Collapse
Affiliation(s)
- Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzyy-Chang Ho
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Tso-Ting Lai
- Department of Ophthalmology, National Taiwan University Hospital, No 7, Chung-Shan S. Rd., Taipei, 100, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.
| |
Collapse
|
42
|
ULTRAWIDEFIELD PSEUDOCOLOR RETINAL IMAGING VERSUS REAL-COLOR FUNDUS PHOTOGRAPHY FOR DETECTION OF INTRARETINAL PIGMENT MIGRATION IN AGE-RELATED MACULAR DEGENERATION. Retina 2021; 41:563-571. [PMID: 33600133 DOI: 10.1097/iae.0000000000002886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare pseudocolor Optos ultrawidefield (UWF) retinal images with conventional real-color fundus photography (CFP) for detecting macular hyperpigmentary changes in intermediate age-related macular degeneration. METHODS This retrospective study included 50 patients diagnosed with intermediate age-related macular degeneration. All patients underwent Optos imaging and CFP. The overall accuracy to visualize hyperpigmentation and its morphologic features was graded by two independent readers using a standardized grid. Structural and en face optical coherence tomography images were correlated with UWF and CFP images to determine spatial correspondence of pigment clumping on fundus images and hyperreflective foci on optical coherence tomography. RESULTS One hundred eyes of 50 patients had hyperpigmentary changes on funduscopic examination and were included. The intragraders and intergraders agreements were high for all measurements (P < 0.001). At least one hyperpigmentary changes within the standardized grid was detected in 93% using CFP and 100% using UWF camera (P = 0.02). The total area of hyperpigmentation measured on UWF images was significantly higher than on CFP images (P < 0.001). There was a significant correlation between the presence of hyperpigmentary changes on both CFP and UWF images and hyperreflective foci on structural optical coherence tomography (P < 0.001). CONCLUSION Ultrawidefield fundus images allow high detection and accurate quantification of macular hyperpigmentary changes in intermediate age-related macular degeneration compared with conventional CFP.
Collapse
|
43
|
Jaffe GJ, Chakravarthy U, Freund KB, Guymer RH, Holz FG, Liakopoulos S, Monés JM, Rosenfeld PJ, Sadda SR, Sarraf D, Schmitz-Valckenberg S, Spaide RF, Staurenghi G, Tufail A, Curcio CA. Imaging Features Associated with Progression to Geographic Atrophy in Age-Related Macular Degeneration: Classification of Atrophy Meeting Report 5. Ophthalmol Retina 2020; 5:855-867. [PMID: 33348085 DOI: 10.1016/j.oret.2020.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE To provide an image-based description of retinal features associated with risk for development of geographic atrophy (GA) in eyes with age-related macular degeneration (AMD), as visualized with multimodal imaging anchored by structural OCT. DESIGN Consensus meeting. PARTICIPANTS International group that included those with expertise in imaging and AMD basic science and histology, and those with Reading Center experience in AMD clinical trials. METHODS As part of the Classification of Atrophy Meeting program, an international group of experts analyzed and discussed retinal multimodal imaging features in eyes with AMD associated with GA, risk of progression to GA, or both. Attendees undertook premeeting grading exercises that were reviewed during the meeting sessions. Meeting presentations illustrated established and investigational multimodal imaging features and associated histologic features. Each of these different features were then discussed openly by the entire group to arrive at consensus definitions. These definitions were applied to 40 additional images that were graded independently by attendees to refine the consensus definitions and descriptions further. RESULTS Consensus was reached on images with descriptors for 12 features. These features included components of outer retinal atrophy (e.g., ellipsoid zone disruption), components of complete retinal pigment epithelium (RPE) and outer retinal atrophy (e.g., RPE perturbation with associated hypotransmission or hypertransmission), features frequently seen in eyes with atrophy (e.g., refractile drusen), and features conferring risk for atrophy development (e.g., hyperreflective foci, drusen, and subretinal drusenoid deposits). CONCLUSIONS An international consensus on terms and descriptions was reached on multimodal imaging features associated GA and with risk for GA progression in eyes with AMD. We believe this information will be useful to clinicians who manage patients with AMD, researchers who study AMD disease interventions and pathogenesis, and those who design clinical trials for therapies targeting earlier AMD stages than GA expansion.
Collapse
Affiliation(s)
- Glenn J Jaffe
- Department of Ophthalmology, Duke University, Durham, North Carolina.
| | - Usha Chakravarthy
- Center for Public Health, The Queen's University of Belfast, Belfast, United Kingdom
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Sandra Liakopoulos
- Department of Ophthalmology, Faculty of Medicine and University Hospital, Cologne, Germany
| | - Jordi M Monés
- Institut de la Màcula and Barcelona Macula Foundation, Barcelona, Spain
| | - Philip J Rosenfeld
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | | | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, New York
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco," Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Trust and Institute of Ophthalmology, University College London, London, United Kingdom
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
44
|
Imaging of a retinal pigment epithelium aperture using polarization-sensitive optical coherence tomography. Jpn J Ophthalmol 2020; 65:30-41. [PMID: 33170370 DOI: 10.1007/s10384-020-00787-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate cases with a retinal pigment epithelium (RPE) aperture using polarization-sensitive optical coherence tomography (PS-OCT). STUDY DESIGN Retrospective consecutive case series. METHODS A retrospective study that included three eyes (three patients) with RPE aperture and age-related macular degeneration (AMD) evaluated at the Macular Clinic in Tokyo University Hospital. A three-dimensional dataset of depolarization information was obtained with a clinical prototype of PS-OCT. RESULTS All patients were categorized as intermediate AMD. RPE apertures were identified with PS-OCT as discontinuities of depolarization in the RPE layer of the pigment epithelial detachment (PED). A nonuniform decrease of depolarization in the RPE layer was also observed around the aperture. Two findings were observed above the aperture, intraretinal focal areas with high reflectivity and increased depolarization and subretinal bands with moderate reflectivity and low depolarization. Retinal sensitivity according to fundus microperimetry measured at 25 points was significantly associated with the degree of depolarization at the corresponding area (r-square = 0.60, p = 0.0001). CONCLUSION The RPE aperture was characterized as a round discontinuity of depolarization. The findings with PS-OCT suggest atrophic changes in the overlying RPE of the PED. The degree of depolarization was associated with retinal sensitivity. The current results indicate that RPE apertures developed within the spectrum of atrophic AMD.
Collapse
|
45
|
Tvenning A, Krohn J, Forsaa V, Malmin A, Hedels C, Austeng D. Drusenoid pigment epithelial detachment volume is associated with a decrease in best-corrected visual acuity and central retinal thickness: the Norwegian Pigment Epithelial Detachment Study (NORPED) report no. 1. Acta Ophthalmol 2020; 98:701-708. [PMID: 32243712 DOI: 10.1111/aos.14423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/08/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the association of drusenoid pigment epithelial detachment (DPED) volume and change in best-corrected visual acuity (BCVA) and central retinal thickness (CRT) during the growth phase of large DPEDs. METHODS Patients from an ongoing prospective observational study, the Norwegian Pigment Epithelial Detachment Study (NORPED), with 1 year of follow-up and DPEDs ≥1000 µm in diameter, examined with the Heidelberg Spectralis HRA-OCT were included. Patients with DPEDs in the regression phase were excluded. Multicolour, near-infrared reflectance, optical coherence tomography (OCT) and OCT angiography images were obtained every 6 months. Fluorescein angiography and indocyanine green angiography were performed at baseline and yearly to exclude choroidal neovascularization (CNV). RESULTS Forty-four patients and 66 eyes were included. In the statistical model for BCVA, every 1.0 mm3 increase in DPED volume led to a decrease in BCVA of 4.0 ETDRS letters (95% CI, -7.0 to -1.0, p = 0.008). A decrease in BCVA was significantly associated with older patient age, the presence of acquired vitelliform lesions and subfoveal location of the DPEDs. In the model for CRT, every 1.0 mm3 increase in DPED volume led to a decrease in CRT of 26.7 µm (95% CI, -44.4 to -9.0, p = 0.003). Two eyes had progression of geographic atrophy and none developed CNV. CONCLUSION The increasing volume of DPEDs during the growth phase is associated with a decrease in BCVA and CRT. The subfoveal location of DPEDs and the presence of acquired vitelliform lesions appear to be associated with a further reduction in BCVA.
Collapse
Affiliation(s)
- Arnt‐Ole Tvenning
- Department of Ophthalmology St. Olavs Hospital Trondheim University Hospital Trondheim Norway
- Department of Neuromedicine and Movement Science Norwegian University of Science and Technology Trondheim Norway
| | - Jørgen Krohn
- Department of Clinical Medicine Section of Ophthalmology University of Bergen Bergen Norway
- Department of Ophthalmology Haukeland University Hospital Bergen Norway
| | - Vegard Forsaa
- Department of Ophthalmology Stavanger University Hospital Stavanger Norway
| | - Agni Malmin
- Department of Ophthalmology Stavanger University Hospital Stavanger Norway
| | | | - Dordi Austeng
- Department of Ophthalmology St. Olavs Hospital Trondheim University Hospital Trondheim Norway
- Department of Neuromedicine and Movement Science Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
46
|
Mizuno H, Fukumoto M, Sato T, Horie T, Kida T, Oku H, Nakamura K, Jin D, Takai S, Ikeda T. Involvement of the Retinal Pigment Epithelium in the Development of Retinal Lattice Degeneration. Int J Mol Sci 2020; 21:ijms21197347. [PMID: 33027920 PMCID: PMC7583762 DOI: 10.3390/ijms21197347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Lattice degeneration involves thinning of the retina that occurs over time. Here we performed an immunohistological study of tissue sections of human peripheral retinal lattice degeneration to investigate if retinal pigment epithelium (RPE) cells are involved in the pathogenesis of this condition. In two cases of retinal detachment with a large tear that underwent vitreous surgery, retinal lattice degeneration tissue specimens were collected during surgery. In the obtained specimens, both whole mounts and horizontal section slices were prepared, and immunostaining was then performed with hematoxylin and antibodies against glial fibrillary acidic protein (GFAP), RPE-specific protein 65 kDa (RPE65), pan-cytokeratin (pan-CK), and CK18. Hematoxylin staining showed no nuclei in the center of the degenerative lesion, thus suggesting the possibility of the occurrence of apoptosis. In the degenerative lesion specimens, GFAP staining was observed in the center, RPE65 staining was observed in the slightly peripheral region, and pan-CK staining was observed in all areas. However, no obvious CK18 staining was observed. In a monkey retina used as the control specimen of a normal healthy retina, no RPE65 or pan-CK staining was observed in the neural retina. Our findings suggest that migration, proliferation, and differentiation of RPE cells might be involved in the repair of retinal lattice degeneration.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Takaki Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | | | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
- Correspondence: ; Tel.: +81-72-684-6434; Fax: +81-72-682-0995
| |
Collapse
|
47
|
Structural Features Associated With the Development and Progression of RORA Secondary to Maternally Inherited Diabetes and Deafness. Am J Ophthalmol 2020; 218:136-147. [PMID: 32446735 DOI: 10.1016/j.ajo.2020.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE To investigate the development and progression of retinal pigment epithelial and outer retinal atrophy (RORA) secondary to maternally inherited diabetes and deafness (MIDD). DESIGN Retrospective observational case series. METHODS Thirty-six eyes of 18 patients (age range, 22.4-71.6 years) with genetically proven MIDD and serial optical coherence tomography (OCT) images were included. As proposed reference standard to diagnose and stage atrophy, OCT images were longitudinally evaluated and analyzed for presence and precursors of RORA. RORA was defined as an area of (1) hypertransmission, (2) disruption of the retinal pigment epithelium, (3) photoreceptor degeneration, and (4) absence of other signs of a retinal pigment epithelial tear. RESULTS The majority of patients revealed areas of RORA in a circular area around the fovea of between 5° and 15° eccentricity. Over the observation time (range, 0.5-8.5 years), evidence for a consistent sequence of OCT features from earlier disease stages to the end stage of RORA could be found, starting with loss of ellipsoid zone and subretinal deposits, followed by loss of external limiting membrane and loss of retinal pigment epithelium with hypertransmission of OCT signal into the choroid, and leading to loss of the outer nuclear layer bordered by hyporeflective wedges. Outer retinal tabulations seemed to develop in regions of coalescent areas of RORA. CONCLUSIONS The development and progression of RORA could be tracked in MIDD patients using OCT images, allowing potential definition of novel surrogate markers. Similarities to OCT features in age-related macular degeneration, where mitochondrial dysfunction has been implicated in the pathogenesis, support wide-ranging benefits from proof-of-concept studies in MIDD.
Collapse
|
48
|
Hilely A, Au A, Freund KB, Loewenstein A, Souied EH, Zur D, Sacconi R, Borrelli E, Peiretti E, Iovino C, Sugiura Y, Ellabban AA, Monés J, Waheed NK, Ozdek S, Yalinbas D, Thiele S, de Moura Mendonça LS, Lee MY, Lee WK, Turcotte P, Capuano V, Filali Ansary M, Chakravarthy U, Lommatzsch A, Gunnemann F, Pauleikhoff D, Ip MS, Querques G, Holz FG, Spaide RF, Sadda S, Sarraf D. Non-neovascular age-related macular degeneration with subretinal fluid. Br J Ophthalmol 2020; 105:1415-1420. [PMID: 32920528 DOI: 10.1136/bjophthalmol-2020-317326] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the various patterns of subretinal fluid (SRF) in eyes with age-related macular degeneration (AMD) in the absence of macular neovascularisation (MNV) and to assess the long-term outcomes in these eyes. METHODS This retrospective study included only eyes with non-neovascular AMD and associated SRF. Eyes with evidence of MNV were excluded. Spectral-domain optical coherence tomography (SD-OCT) was obtained at baseline and at follow-up, and qualitative and quantitative SD-OCT analysis of macular drusen including drusenoid pigment epithelial detachment (PED) and associated SRF was performed to determine anatomic outcomes. RESULTS Forty-five eyes (45 patients) were included in this analysis. Mean duration of follow-up was 49.7±36.7 months. SRF exhibited three different morphologies: crest of fluid over the apex of the drusenoid PED, pocket of fluid at the angle of a large druse or in the crypt of confluent drusen or drape of low-lying fluid over confluent drusen. Twenty-seven (60%) of the 45 eyes with fluid displayed collapse of the associated druse or drusenoid PED and 24 (53%) of the 45 eyes developed evidence of complete or incomplete retinal pigment epithelial and outer retinal atrophy. CONCLUSION Non-neovascular AMD with SRF is an important clinical entity to recognise to avoid unnecessary anti-vascular endothelial growth factor therapy. Clinicians should be aware that SRF can be associated with drusen or drusenoid PED in the absence of MNV and may be the result of retinal pigment epithelial (RPE) decompensation and RPE pump failure.
Collapse
Affiliation(s)
- Assaf Hilely
- Division of Ophthalmology, Tel Aviv Ichilov-Sourasky Medical Center, Tel Aviv, Israel
| | - Adrian Au
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, USA
| | - Anat Loewenstein
- Division of Ophthalmology, Tel Aviv Ichilov-Sourasky Medical Center, Tel Aviv, Israel
| | - Eric H Souied
- Ophthalmology, Centre Hospitalier Intercommunal De Creteil, Creteil, France
| | - Dinah Zur
- Division of Ophthalmology, Tel Aviv Ichilov-Sourasky Medical Center, Tel Aviv, Israel
| | | | | | - Enrico Peiretti
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Claudio Iovino
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Yoshimi Sugiura
- Department of Ophthalmology, University of Tsukuba Faculty of Medicine, Tsukuba, Japan
| | - Abdallah A Ellabban
- Hull University Teaching Hospitals NHS Trust, Hull, UK.,Suez Canal University Faculty of Medicine, Ismailia, Egypt
| | - Jordi Monés
- Barcelona Macula Foundation, Barcelona, Spain
| | - Nadia K Waheed
- New England Eye Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Sengul Ozdek
- Department of Ophthalmology, Gazi University, School of Medicine, Ankara, Turkey
| | - Duygu Yalinbas
- Department of Ophthalmology, Gazi University, School of Medicine, Ankara, Turkey
| | - Sarah Thiele
- Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Mee Yon Lee
- Catholic University of Korea College of Medicine, Seoul, South Korea
| | | | | | - Vittorio Capuano
- Ophthalmology, Centre Hospitalier Intercommunal De Creteil, Creteil, France
| | | | - Usha Chakravarthy
- Department of Ophthalmology, Queen's University of Belfast, Belfast, UK
| | - Albrecht Lommatzsch
- Department of Ophthalmology, Sankt Franziskus-Hospital Münster GmbH, Munster, Germany
| | - Frederic Gunnemann
- Department of Ophthalmology, Sankt Franziskus-Hospital Münster GmbH, Munster, Germany
| | - Daniel Pauleikhoff
- Department of Ophthalmology, Sankt Franziskus-Hospital Münster GmbH, Munster, Germany
| | - Michael S Ip
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California, USA
| | | | - Frank G Holz
- Ophthalmology, University of Bonn, Bonn, Germany
| | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, New York, USA
| | - SriniVas Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California, USA
| | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California, USA .,Greater Los Angeles Veterans Affairs Healthcare Center, Los Angeles, California, USA
| |
Collapse
|
49
|
Budzinskaya MV, Plyukhova AA, Tarasenkov AO. [Avascular retinal pigment epithelium detachments in age-related macular degeneration]. Vestn Oftalmol 2020; 136:284-288. [PMID: 32880152 DOI: 10.17116/oftalma2020136042284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinal pigment epithelium detachment (PED) is a pathological condition in which retinal pigment epithelium is separated from the underlying Bruch's membrane due to the formation of a fibrovascular membrane, drusenoid material, accumulation of fluid and/or blood. Six types of RPE detachments have been determined: pseudovitelliform, detachments associated with drainage drusen, serous, vascular and hemorrhagic, as well as PED associated with vascular retinal anomaly. The drusenoid PED is always avascular, the drusenoid material is contained between the RPE and Bruch's membrane. It was first described by Casswell in 1985. Ophthalmoscopy of the fundus shows a yellow-white cellular structure in the subretinal space, sometimes containing a patch of pigment, with an uneven surface, clear boundaries and a wavy edge. Serous PED is larger in area and prominence than drusenoid, characterized by the presence of a hyporeflective area under the detached RPE, over the area of more than 50% of the total area of detachment. Ophthalmoscopy shows a transparent yellow lesion in the subretinal space, sometimes brown-tinted, with clear boundaries and dome-shaped prominence. True serous PED is avascular (combination of choroidal neovascularization and serous PED will be discussed in the article about vascularized PED).
Collapse
|
50
|
Hung KC, Wang SW, Hsia Y, Chen MS, Tsai CY, Ho TC. Natural course of the intraretinal hyperreflective sign after macular haemorrhage absorption in eyes with pathologic myopia. Acta Ophthalmol 2020; 98:e631-e638. [PMID: 31808300 DOI: 10.1111/aos.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/18/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE We investigated the natural course of the intraretinal hyperreflective (IRH) sign after macular haemorrhage (MHE) absorption in eyes with pathologic myopia. METHODS This prospective observational cohort study evaluated 28 patients with pathologic myopia and MHE. The eyes were categorized into IRH and non-IRH sign groups according to IRH sign development. All eyes were evaluated; follow-up visits were scheduled at 1, 3, 6, 12 and 24 months after MHE absorption. RESULTS Of 28 patients (14 eyes each in the IRH and non-IRH groups), nine (32.1%) were men and 19 (67.9%) were women. The average age (mean ± SD) was 46.64 ± 11.92 versus 52.71 ± 12.19 years in the IRH and non-IRH groups. The IRH sign coincided with the MHE invasion site. The sign persisted for the entire follow-up period in all but two eyes, in which it disappeared at 12 and 24 months, respectively. Maximal MHE thickness was significantly greater in the IRH sign group (162.9 ± 67.84 versus 104.2 ± 32.34 μm, p = 0.013). The mean logarithm of the minimum angle of resolution visual acuity was significantly better in the non-IRH sign group at 12 (p = 0.029) and 24 (p = 0.033) months. The incidence of myopic traction maculopathies (MTM) was significantly higher in the IRH (57.1%) than in the non-IRH sign group (14.3%; p = 0.046). CONCLUSION The IRH sign can develop after MHE in pathologic myopia and can remain stable long after MHE absorption; furthermore, it is predictive of future MTM.
Collapse
Affiliation(s)
- Kuo-Chi Hung
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Ophthalmology, Sinying Hospital, Ministry of Health and Welfare, Taipei, Taiwan
| | - Shih-Wen Wang
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yun Hsia
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Muh-Shy Chen
- Department of Ophthalmology, Cardinal Tien Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Ying Tsai
- Department of Ophthalmology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Tzyy-Chang Ho
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|