5
|
Vergroesen JE, Thee EF, Ahmadizar F, van Duijn CM, Stricker BH, Kavousi M, Klaver CCW, Ramdas WD. Association of Diabetes Medication With Open-Angle Glaucoma, Age-Related Macular Degeneration, and Cataract in the Rotterdam Study. JAMA Ophthalmol 2022; 140:674-681. [PMID: 35587864 DOI: 10.1001/jamaophthalmol.2022.1435] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Recent studies suggest that the diabetes drug metformin has a protective effect on open-angle glaucoma (OAG) and age-related macular degeneration (AMD). However, studies have not addressed the critical issue of confounding by indication, and associations have not been evaluated in a large prospective cohort. Objective To determine the association between diabetes medication and the common eye diseases OAG, AMD, and cataract and to evaluate their cumulative lifetime risks in a large cohort study. Design, Setting, and Participants This cohort study included participants from 3 independent cohorts from the prospective, population-based Rotterdam Study between April 23, 1990, and June 25, 2014. Participants were monitored for incident eye diseases (OAG, AMD, cataract) and had baseline measurements of serum glucose. Data on diabetes medication use and data from ophthalmologic examinations were gathered. Exposures Type 2 diabetes (T2D) and the diabetes medications metformin, insulin, and sulfonylurea derivatives. Main Outcomes and Measures Diagnosis and cumulative lifetime risk of OAG, AMD, and cataract. Results This study included 11 260 participants (mean [SD] age, 65.1 [9.8]; 6610 women [58.7%]). T2D was diagnosed in 2406 participants (28.4%), OAG was diagnosed in 324 of 7394 participants (4.4%), AMD was diagnosed in 1935 of 10 993 participants (17.6%), and cataract was diagnosed in 4203 of 11 260 participants (37.3%). Untreated T2D was associated with a higher risk of OAG (odds ratio [OR], 1.50; 95% CI, 1.06-2.13; P = .02), AMD (OR, 1.35; 95% CI, 1.11-1.64; P = .003), and cataract (OR, 1.63; 95% CI, 1.39-1.92; P < .001). T2D treated with metformin was associated with a lower risk of OAG (OR, 0.18; 95% CI, 0.08-0.41; P < .001). Other diabetes medication (ie, insulin, sulfonylurea derivates) was associated with a lower risk of AMD (combined OR, 0.32; 95% CI, 0.18 to 0.55; P < .001). The cumulative lifetime risk of OAG was lower for individuals taking metformin (1.5%; 95% CI, 0.01%-3.1%) than for individuals without T2D (7.2%; 95% CI, 5.7%-8.7%); the lifetime risk of AMD was lower for individuals taking other diabetes medication (17.0%; 95% CI, 5.8%-26.8% vs 33.1%; 95% CI, 30.6%-35.6%). Conclusions and Relevance Results of this cohort study suggest that, although diabetes was clearly associated with cataract, diabetes medication was not. Treatment with metformin was associated with a lower risk of OAG, and other diabetes medication was associated with a lower risk of AMD. Proof of benefit would require interventional clinical trials.
Collapse
Affiliation(s)
- Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,EyeNED Reading Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,EyeNED Reading Center, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.,Institute of Molecular and Clinical Ophthalmology, University of Basel, Basel, Switzerland
| | - Wishal D Ramdas
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Gharahkhani P, Jorgenson E, Hysi P, Khawaja AP, Pendergrass S, Han X, Ong JS, Hewitt AW, Segrè AV, Rouhana JM, Hamel AR, Igo RP, Choquet H, Qassim A, Josyula NS, Cooke Bailey JN, Bonnemaijer PWM, Iglesias A, Siggs OM, Young TL, Vitart V, Thiadens AAHJ, Karjalainen J, Uebe S, Melles RB, Nair KS, Luben R, Simcoe M, Amersinghe N, Cree AJ, Hohn R, Poplawski A, Chen LJ, Rong SS, Aung T, Vithana EN, Tamiya G, Shiga Y, Yamamoto M, Nakazawa T, Currant H, Birney E, Wang X, Auton A, Lupton MK, Martin NG, Ashaye A, Olawoye O, Williams SE, Akafo S, Ramsay M, Hashimoto K, Kamatani Y, Akiyama M, Momozawa Y, Foster PJ, Khaw PT, Morgan JE, Strouthidis NG, Kraft P, Kang JH, Pang CP, Pasutto F, Mitchell P, Lotery AJ, Palotie A, van Duijn C, Haines JL, Hammond C, Pasquale LR, Klaver CCW, Hauser M, Khor CC, Mackey DA, Kubo M, Cheng CY, Craig JE, MacGregor S, Wiggs JL. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun 2021; 12:1258. [PMID: 33627673 PMCID: PMC7904932 DOI: 10.1038/s41467-020-20851-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Primary open-angle glaucoma (POAG), is a heritable common cause of blindness world-wide. To identify risk loci, we conduct a large multi-ethnic meta-analysis of genome-wide association studies on a total of 34,179 cases and 349,321 controls, identifying 44 previously unreported risk loci and confirming 83 loci that were previously known. The majority of loci have broadly consistent effects across European, Asian and African ancestries. Cross-ancestry data improve fine-mapping of causal variants for several loci. Integration of multiple lines of genetic evidence support the functional relevance of the identified POAG risk loci and highlight potential contributions of several genes to POAG pathogenesis, including SVEP1, RERE, VCAM1, ZNF638, CLIC5, SLC2A12, YAP1, MXRA5, and SMAD6. Several drug compounds targeting POAG risk genes may be potential glaucoma therapeutic candidates.
Collapse
Affiliation(s)
- Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Pirro Hysi
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sarah Pendergrass
- Geisinger Research, Biomedical and Translational Informatics Institute, Danville, PA, USA
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jue Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, VIC, Australia
| | - Ayellet V Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - John M Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrew R Hamel
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Helene Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Ayub Qassim
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Navya S Josyula
- Geisinger Research, Biomedical and Translational Informatics Institute, Rockville, MD, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pieter W M Bonnemaijer
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Adriana Iglesias
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Owen M Siggs
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alberta A H J Thiadens
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | | | - K Saidas Nair
- Department of Ophthalmology, School of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Robert Luben
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mark Simcoe
- Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, Kings College London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, UK
| | | | - Angela J Cree
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rene Hohn
- Department of Ophthalmology, Inselspital, University Hospital Bern, University of Bern, Bern, Germany
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Mainz, Germany
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Song Rong
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eranga Nishanthie Vithana
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Republic of Singapore
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Hannah Currant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xin Wang
- 23 and Me Inc., San Francisco, CA, USA
| | | | | | | | - Adeyinka Ashaye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Olusola Olawoye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Akafo
- Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Paul J Foster
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - James E Morgan
- Cardiff Centre for Vision Sciences, College of Biomedical and Life Sciences, Maindy Road, Cardiff University, Cardiff, UK
| | - Nicholas G Strouthidis
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jae H Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Francesca Pasutto
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Andrew J Lotery
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chris Hammond
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Caroline C W Klaver
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Michael Hauser
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University, Durham, NC, USA
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, VIC, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Nedlands, WA, Australia
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|