1
|
Alghauli MA, Alqutaibi AY, Aljohani R, Almuzaini S, Saeed MH. Influence of different print orientations on properties and behavior of additively manufactured resin dental devices: A systematic review and meta-analysis. J Prosthet Dent 2025:S0022-3913(24)00786-8. [PMID: 39755511 DOI: 10.1016/j.prosdent.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
STATEMENT OF PROBLEM Different factors affect 3-dimensionally (3D) printed resin products. However, evidence on the effect of the print orientation on resin dental devices is lacking. PURPOSE The purpose of this systematic review and meta-analysis was to assess the impact of print orientation on the properties and accuracy of 3D printed implant surgical guides, occlusal devices, clear orthodontic retainers, and aligners. MATERIAL AND METHODS The electronic databases PubMed (MEDLINE), Cochrane, and Scopus were comprehensively searched in July 2024. A modified Consolidated Standards of Reporting Trials (CONSORT) statement was used to judge the included studies, and the data were analyzed by the RevMan 5.4 software program of the Cochrane collaboration by applying an inverse variance analysis (α=.05). RESULTS Twenty-six records were included. Complete arch, solid surgical guides with horizontal printing orientation exhibited the highest accuracy (P≤.01). Short-span surgical guides printed vertically showed relatively high accuracy (P≤.05). Hollow or mesh devices might not be affected by orientations. Occlusal device accuracy favored horizontal orientation, but correlated with the technology and materials, while the accuracy of orthodontic aligners revealed controversial findings, assuming the limited impact of orientation on orthodontic aligners. The cytotoxicity of occlusal devices was a material-related biological characteristic and unaffected by orientation. Although flexural strength favors horizontal orientation, conflicting results were observed for physical and other mechanical properties due to several variables. CONCLUSIONS Horizontal orientation is recommended for printing complete arch surgical guides, while the accuracy of short surgical guides might favor vertical orientation. The physical mechanical properties depend on the printing orientation, technology, material, and printed parts, but horizontal orientation might produce parts with the best mechanical performance.
Collapse
Affiliation(s)
- Mohammed Ahmed Alghauli
- Assistant Professor of Prosthodontics, Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen.
| | - Ahmed Yaseen Alqutaibi
- Associate Professor of Prosthodontics, Substitutive Dental Science Department, College of Dentistry, Taibah University, Al-Madinah, Saudi Arabia; Prosthodontics Department, College of Dentistry, Ibb University, Ibb, Yemen
| | - Rola Aljohani
- Graduate student, College of Dentistry, Taibah University, Al-Madinah, Saudia Arabia
| | - Sarah Almuzaini
- Prosthodontics Resident, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Musab Hamed Saeed
- Associate Professor, Department of Clinical Science, College of Dentistry, Ajman University, Ajman City, United Arab Emirates
| |
Collapse
|
2
|
Neoh SP, Khantachawana A, Chintavalakorn R, Santiwong P, Srikhirin T. Comparison of physical, mechanical, and optical properties between thermoplastic materials and 3-dimensional printing resins for orthodontic clear retainers. Am J Orthod Dentofacial Orthop 2025; 167:95-109.e1. [PMID: 39709226 DOI: 10.1016/j.ajodo.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION This study investigated the physical, mechanical, and optical properties of 3-dimensional (3D) printing resins compared with thermoplastic materials to evaluate their suitability for the fabrication of orthodontic clear retainers. METHODS Samples were prepared from thermoplastic sheets (Duran [Scheu-Dental GmbH, Iserlohn, Germany] and Zendura [Bay Materials LLC, Fremont, Calif]) and biocompatible 3D-printing resins (Dental LT Clear V2 [Formlabs Inc, Somerville, Mass] and OrthoFlex [Nextdent BV, Soesterberg, The Netherlands]) according to the manufacturer's instructions. The materials were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and water sorption tests. Mechanical properties were assessed by tensile tests and hardness under 3 different conditions: dry, wet (24-hour water immersion), and aged (thermocyled for 10,000 cycles). Surface characteristics were qualitatively and quantitatively evaluated by scanning electron microscopy and 3D confocal imaging, respectively. Optical properties were assessed by ultraviolet-visible spectroscopy and color stability tests by immersion into various staining solutions. RESULTS The mechanical properties of the 3D-printing resins were more markedly altered in different testing conditions (dry, wet, and aged) than in thermoplastic materials. The surface roughness, transparency, and color stability of 3D-printing resins are significantly inferior, especially NextDent OrthoFlex. CONCLUSIONS The evaluated 3D-printing resins are more brittle and less ductile compared with the thermoplastic materials. The 3D-printing resins also do not meet the clinical thresholds of surface roughness and optical properties for the fabrication of orthodontic clear retainers. Further postprocessing of the 3D-printing resins may be required to improve these properties.
Collapse
Affiliation(s)
- Siew Peng Neoh
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Anak Khantachawana
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | | | - Peerapong Santiwong
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Toemsak Srikhirin
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
3
|
Maneiro Lojo J, Alonso Pérez-Barquero J, García-Sala Bonmatí F, Agustín-Panadero R, Yilmaz B, Revilla-León M. Influence of print orientation on the accuracy (trueness and precision) of diagnostic casts manufactured with a daylight polymer printer. J Prosthet Dent 2024; 132:1314-1322. [PMID: 36906414 DOI: 10.1016/j.prosdent.2023.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/11/2023]
Abstract
STATEMENT OF PROBLEM Print orientation may affect the manufacturing accuracy of vat-polymerized diagnostic casts. However, its influence should be analyzed based on the manufacturing trinomial (technology, printer, and material) and printing protocol used to manufacture the casts. PURPOSE The purpose of this in vitro study was to measure the influence of different print orientations on the manufacturing accuracy of vat-polymerized polymer diagnostic casts. MATERIAL AND METHODS A standard tessellation language (STL) reference file containing a maxillary virtual cast was used to manufacture all specimens using a vat-polymerization daylight polymer printer (Photon mono SE. LCD 2K) and a model resin (Phrozen Aqua Gray 4K). All specimens were manufactured using the same printing parameters, except for print orientation. Five groups were created depending on the print orientation: 0, 22.5, 45, 67.5, and 90 degrees (n=10). Each specimen was digitized using a desktop scanner. The discrepancy between the reference file and each of the digitized printed casts was measured using the Euclidean measurements and root mean square (RMS) error (Geomagic Wrap v.2017). Independent (unpaired) sample t tests and multiple pairwise comparisons using the Bonferroni test were used to analyze the trueness of the Euclidean distances and RMS data. Precision was assessed using the Levene test (α=.05). RESULTS In terms of Euclidean measurements, significant differences in trueness and precision values were found among the groups tested (P<.001). The 22.5- and 45-degree groups resulted in the best trueness values, and the 67.5-degree group had the lowest trueness value. The 0- and 90-degree groups led to the best precision values, while the 22.5-, 45-, and 67.5-degree groups showed the lowest precision values. Analyzing the RMS error calculations, significant differences in trueness and precision values were found among the groups tested (P<.001). The 22.5-degree group had the best trueness value, and the 90-degree group resulted in the lowest trueness value among the groups. The 67.5-degree group led to the best precision value, and the 90-degree group to the lowest precision value among the groups. CONCLUSIONS Print orientation influenced the accuracy of diagnostic casts fabricated by using the selected printer and material. However, all specimens had clinically acceptable manufacturing accuracy ranging between 92 μm and 131 μm.
Collapse
Affiliation(s)
- Jesús Maneiro Lojo
- Post-Graduate Specialist in Advanced-Prosthodontics, Department of Dental Medicine, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jorge Alonso Pérez-Barquero
- Adjunct Professor, Department of Dental Medicine, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Fernando García-Sala Bonmatí
- Adjunct Professor, Department of Dental Medicine, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rubén Agustín-Panadero
- Associate Professor, Department of Dental Medicine, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Burak Yilmaz
- Associate Professor, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, Ohio
| | - Marta Revilla-León
- Affiliate Assistant Professor, Graduate Prosthodontics, Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Wash; Faculty and Director of Research and Digital Dentistry, Kois Center, Seattle, Wash; Adjunct Professor, Department of Prosthodontics, School of Dental Medicine, Tufts University, Boston, Mass.
| |
Collapse
|
4
|
ElShebiny T, de Menezes LM, Matthaios S, Tsolakis IA, Palomo JM. Effect of printing technology and orientation on the accuracy of three-dimensional printed retainers. Angle Orthod 2024; 94:657-663. [PMID: 39195012 PMCID: PMC11493428 DOI: 10.2319/120823-812.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/01/2023] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVES To evaluate the impact of printer technology and print orientation on the accuracy of directly printed retainers. MATERIALS AND METHODS Digital retainers were printed with two different printing technologies: digital light processing (DLP) and stereolithography (SLA), using two different orientations: 0° and 90°. After printing, the retainers (n = 40) were scanned using cone-beam computed tomography. The DICOM files were then converted into standard tessellation language (STL) files. Comparison of the printed retainers with a master file was done by superimposition using a three-dimensional (3D) best-fit tool in Geomagic software. A ±0.25 mm tolerance was set to detect differences between the superimposed files. Statistical analysis was conducted (Kruskal-Wallis and Wilcoxon-Mann-Whitney tests, with Bonferroni correction). RESULTS The lowest median average deviation was observed for the DLP horizontally printed models (median, [interquartile range (IQR)] = 0.01 mm, [-0.01, 0.02]) followed by the SLA horizontally printed retainers (median, [IQR] = 0.05 mm, [0.03, 0.07]). The highest median inside the tolerance levels ratio was observed for the horizontally SLA printed retainers (median, [IQR] = 78.9%, [74.4, 82.4%]) followed by the horizontally DLP printed retainers (median, [IQR] = 78.2%, [74.5, 80.7%]). CONCLUSIONS Both technologies (DLP and SLA) showed 3D printed results compatible with orthodontic clinical needs. Printing orientation was more important than printer type regarding its accuracy. Additional studies are needed to evaluate the accuracy of direct printed appliances clinically.
Collapse
Affiliation(s)
| | - Luciane Macedo de Menezes
- Corresponding author: Luciane Macedo de Menezes, Visiting Professor, Department of Orthodontics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 (e-mail: )
| | | | | | | |
Collapse
|
5
|
Niu C, Li D, Zhang Y, Wang Y, Ning S, Zhao G, Ye Z, Kong Y, Yang D. Prospects for 3D-printing of clear aligners—a narrative review. FRONTIERS IN MATERIALS 2024; 11. [DOI: 10.3389/fmats.2024.1438660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Clear aligner therapy is a rapidly developing orthodontic treatment. 3D-printing technology, which enables the creation of complex geometric structures with high precision, has been used in dentistry. This article aims to summarize the various aspects of 3D-printing clear aligners and give an outlook on their future development. The traditional thermoforming technology is introduced and the principle and application of 3D-printed clear aligners and materials are introduced, as well as the application prospects of 3D-printed clear aligners. According to PRISMA statement, the relevant literature of 3D-printing clear aligner was searched in PubMed, Web of Science, Embase and other databases. We searched the related words in the MESH database and then carried out advanced searches. We read systematic review and conference papers to find the articles related to the subject and manually added and excluded articles by reading the title and abstract. The production of clear aligners combines computer-aided 3D analysis, personalized design and digital molding technology. The thickness and edges of the 3D-printed clear aligner can be digitally controlled, which allows appliance more efficiently fitted. Presently, the array of clear resins suitable for 3D-printing include photo polymeric clear methacrylate-based resin (Dental LT) (Form Labs, Somerville, Mass), aliphatic vinyl ester-polyurethane polymer (Tera Harz TC-85) (Graphy, Seoul, South Korea). They all have good biocompatibility. But no such material is currently approved on the market. Developing biocompatible resins and further improving the material’s mechanical properties will be critical for the combination of 3D-printing and clear aligners. However, the literature on 3D-printed clear aligners is limited and lacks clinical application. Further in vivo and in vitro tests, as well as additional exploration in conjunction with corresponding cytological tests, are required for the research on available materials and machinery for 3D-printing clear aligners.
Collapse
|
6
|
Bencharit S, Hunsaker CA, Brenes CB. In Vitro Analysis of Bonding and Wear Properties of 3D Printed Denture Tooth Materials. Cureus 2024; 16:e65388. [PMID: 39184673 PMCID: PMC11344610 DOI: 10.7759/cureus.65388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
PURPOSE While additive manufacturing (3D printing) has recently enhanced removable prosthodontics, the properties of new 3D printed materials are not well understood. This study aims to elucidate the physical properties of these materials, focusing on bonding to a 3D printed denture base material and wear resistance. METHODS For denture tooth-denture base bonding analyses, the same denture tooth material (Premium Teeth, Formlabs) was used with three denture base-bonding group assignments (n=6 each group) bonded using three protocols: Group A1 was bonded with Lucitone Digital Print-3D Denture Base using the Lucitone Fuse System (Dentsply), Group A2 with Formlabs Denture Base using the Formlabs Denture Base Bonding System, and Group A3 with Formlabs Denture Base using the Ivoclar Ivotion Bonding System (Ivoclar). Specimens were made according to the ISO-TS-19736-2027 standard. A 3D printed tooth mimicking a central incisor was bonded to the denture base and subjected to a palatal load at the incisal region at 90° from the long axis of the tooth until failure. The fracture surface was examined at 10× magnification. ANOVA with α=0.05 was used to determine statistically significant differences. For wear analysis, the same denture base material and bonding system (Lucitone Digital Print-3D Denture Base/Lucitone Fuse System, Dentsply) was used with four denture tooth material group assignments (n=8 each group): Group B1 used Formlabs Premium Teeth, Group B2 used SprintRay High Impact Denture Teeth, Group B3 used Lucitone Digital IPN Premium Tooth, and Group B4 used Ivotion Polymethyl Methacrylate (PMMA) Milled Teeth (Ivoclar). A premolar denture tooth bonded with the denture base was subjected to a chewing simulation cyclic loading of 1,200,000 cycles. Sample failures, vertical wear, and volume loss were documented. ANOVA with α=0.05 was used to determine statistically significant differences. RESULTS The fracture load to failure values for A1, A2, and A3 were 175±106 N, 167±46.3 N, and 183±48.9 N, respectively (p=0.95). Most failure characteristics were mixed, except one of A2 was cohesive and half of A3 was cohesive. For cyclic loading, B4 was the only group where all specimens failed within 1,200,000 cycles, while B1, B2, and B3 had four, three, and five sample failures, respectively. Vertical wear was 0.93±0.34 mm, 1.22±0.37 mm, 1.05±0.27 mm, and 0.37±0.02 mm for B1, B2, B3, and B4, respectively (p<0.01). Abrasion volumes were 9.5±3.7 mm³, 12.2±4.7 mm³, 10.6±3.5 mm³, and 2.2±1.3 mm³ for B1, B2, B3, and B4, respectively. Vertical height loss per chewing cycle (μm/cycle) was 0.0022±0.0019, 0.0030±0.0029, 0.0012±0.00005, and 0.0080±0.0050 for B1, B2, B3, and B4, respectively (p<0.01). Abrasion volume per chewing cycle (μm³/cycle) was 17650.8±9682.9, 27263.4±24746.8, 11836.5±4200.8, and 70436.8±73602.5 for B1, B2, B3, and B4, respectively (p=0.02). CONCLUSION The bonding strength and wear resistance of 3D printed denture materials vary by manufacturer. Formlabs Denture Base with Ivoclar Ivotion showed the highest fracture load, indicating superior bonding strength. In wear analysis, Ivoclar Ivotion PMMA Milled Teeth exhibited the least vertical wear and abrasion volume but had the highest failure rate under cyclic loading. While printed denture materials excel in bonding strength, their wear resistance may not be as good as milled denture teeth, highlighting the need to balance these properties in clinical applications.
Collapse
Affiliation(s)
- Sompop Bencharit
- Workman School of Dental Medicine, High Point University, High Point, USA
| | - Chance A Hunsaker
- Workman School of Dental Medicine, High Point University, High Point, USA
| | - Christian B Brenes
- Workman School of Dental Medicine, High Point University, High Point, USA
| |
Collapse
|
7
|
ElShebiny T, Simon Y, Demko CA, Palomo JM. The uses of 3-dimensional printing technology in orthodontic offices in North America. Am J Orthod Dentofacial Orthop 2024; 166:76-80. [PMID: 38678454 DOI: 10.1016/j.ajodo.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The purpose of this study was to examine the use of orthodontic 3-dimensional (3D) printing technology in North America and to understand why orthodontists are, or are not, incorporating 3D printing technology in their practices. METHODS A survey questionnaire was delivered on a secure online platform, RedCap (Case Western Reserve University Clinical and Translational Science Award; no. UL1TR002548). The survey consisted of 14-34 items with branching logic. The association between participant demographics and in-house 3D printing was assessed using a chi-square test of independence. RESULTS A total of 518 responses were recorded. The highest number of responses came from respondents in the 36-45-year age group. Most of the respondents were practice owners; 46.9% had 3D printers in their office. Chi-square tests of independence were performed on the data to see which associations existed. The strongest statistical associations with using an in-house 3D printer are seen with patient load, practice type, years since residency, and orthodontist's position. CONCLUSIONS Approximately 75% of orthodontists use 3D printing technology in some capacity in North America. Major factors that influenced orthodontists to incorporate 3D printing technology into their office were self-interest and research. Major factors that have prevented orthodontists from not incorporating 3D printing technology into their office were space for equipment/ventilation and digital workflow training deficit. Orthodontists use their 3D printers mostly to make plastic retainers from printed models. The strongest associations with using in-house 3D printers are seen in patient load, practice type, years since residency, and orthodontist position. Increasing patient load and being in private practice increases the likelihood of having a 3D printer.
Collapse
Affiliation(s)
- Tarek ElShebiny
- Department of Orthodontics, Case Western Reserve University, Cleveland, Ohio.
| | - Yahaziel Simon
- Department of Orthodontics, Case Western Reserve University, Cleveland, Ohio
| | - Catherine A Demko
- Department of Community Dentistry, Case Western Reserve University, Cleveland, OH
| | - Juan Martin Palomo
- Department of Orthodontics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
Lohfeld S, Belnap B, Retrouvey JM, Walker MP. Effect of Model Body Type and Print Angle on the Accuracy of 3D-Printed Orthodontic Models. Biomimetics (Basel) 2024; 9:217. [PMID: 38667228 PMCID: PMC11048263 DOI: 10.3390/biomimetics9040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The assortment of low-cost 3D printers for "in-practice" use, e.g., for clear aligner therapies, is ever increasing. To address concerns about the accuracy of orthodontic models produced on such printers when cost-efficient modes of 3D printing are employed, this study examined the effect of print model body type and print angulation on accuracy. Six printing-configuration groups were included: two model types (solid or hollow shell) combined with three print angles (0°, 70°, or 90°) with 10 models/group; all models were printed with 100 µm layer thickness using a digital light processing-based three-dimensional printer. Eleven selected structures and distances were measured on the printed models with a digital microscope and compared to the same measures on a digitized master model. The clinically acceptable range was set at ±0.25 mm difference from the master model for single tooth measurements (intra-tooth) and ±0.5 mm for cross-arch measurements (inter-tooth). For individual measurements across all models, 98% fell within clinical acceptability. For mean measurements within each model group, only canine height for the shell-0° model had a mean difference (-0.26 mm ± 0.03) outside the clinically acceptable range for intra-tooth measurements. Standard deviations for all intra-tooth measurements were within 0.07 mm. While none of the mean inter-tooth measurements exceeded the acceptability range, the standard deviations were larger (0.04 to 0.30 mm). The accuracy of the orthodontic models for clear aligner therapies was not impacted beyond the clinically acceptable range when altering model body type and print angulation to improve efficiency of 3D printing. These findings suggest greater flexibility of the practitioner to alter print settings to address time and cost efficiency in various clinical scenarios and still maintain clinically acceptable model accuracy.
Collapse
Affiliation(s)
- Stefan Lohfeld
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (B.B.); (M.P.W.)
| | - Bryndon Belnap
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (B.B.); (M.P.W.)
- Department of Orthodontics and Dentofacial Orthopedics, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Jean-Marc Retrouvey
- Department of Orthodontics and Dentofacial Orthopedics, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Mary P. Walker
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (B.B.); (M.P.W.)
| |
Collapse
|
9
|
Narongdej P, Hassanpour M, Alterman N, Rawlins-Buchanan F, Barjasteh E. Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers (Basel) 2024; 16:371. [PMID: 38337260 DOI: 10.3390/polym16030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Clear aligners have revolutionized orthodontic treatment by offering an esthetically driven treatment modality to patients of all ages. Over the past two decades, aligners have been used to treat malocclusions in millions of patients worldwide. The inception of aligner therapy goes back to the 1940s, yet the protocols to fabricate aligners have been continuously evolved. CAD/CAM driven protocol was the latest approach which drastically changed the scalability of aligner fabrication-i.e., aligner mass production manufacturing. 3D printing technology has been adopted in various sectors including dentistry mostly because of the ability to create complex geometric structures at high accuracy while reducing labor and material costs-for the most part. The integration of 3D printing in dentistry has been across, starting in orthodontics and oral surgery and expanding in periodontics, prosthodontics, and oral implantology. Continuous progress in material development has led to improved mechanical properties, biocompatibility, and overall quality of aligners. Consequently, aligners have become less invasive, more cost-effective, and deliver outcomes comparable to existing treatment options. The promise of 3D printed aligners lies in their ability to treat malocclusions effectively while providing esthetic benefits to patients by remaining virtually invisible throughout the treatment process. Herein, this review aims to provide a comprehensive summary of studies regarding direct-3D printing of clear aligners up to the present, outlining all essential properties required in 3D-printed clear aligners and the challenges that need to be addressed. Additionally, the review proposes implementation methods to further enhance the effectiveness of the treatment outcome.
Collapse
Affiliation(s)
- Poom Narongdej
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
| | - Mana Hassanpour
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| | - Nicolas Alterman
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| | | | - Ehsan Barjasteh
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
10
|
Stoev YY, Uzunov TT, Stoyanova NS, Grozdanova-Uzunova RG, Kosturkov DN, Taneva IK. Mechanical properties of materials for 3D printed orthodontic retainers. Folia Med (Plovdiv) 2023; 65:986-992. [PMID: 38351789 DOI: 10.3897/folmed.65.e107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 02/16/2024] Open
Abstract
AIM The purpose of this study was to compare the mechanical properties of materials used for orthodontic retainers made by direct 3D printing and thermoforming.
Collapse
|
11
|
Spangler T, Ammoun R, Carrico CK, Bencharit S, Tüfekçi E. The effect of crowding on the accuracy of 3-dimensional printing. Am J Orthod Dentofacial Orthop 2023; 164:879-888. [PMID: 37656070 DOI: 10.1016/j.ajodo.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION The purpose of this study was to evaluate the accuracy of 3-dimensional (3D) printed aligners compared to conventional vacuum-formed thermoplastic aligners with varying levels of dental crowding. METHODS Digital intraoral scans of 10 cases were assigned to their respective groups (n = 10, each, 30 total) as follows: no crowding (control), moderate crowding, and severe crowding. Digital images of these models were created in standard tessellation language (STL) file format using 3Shape software and randomly 3D printed. The STL files of each case were also sent to a dental laboratory to fabricate vacuum-formed samples, the current technology used for manufacturing aligners. The intaglio surfaces of fabricated aligners in both groups were scanned using cone beam computed tomography to create STL files, which were then compared to the original STL files of the cases using Geomagic Control X software. Absolute deviations from the original file and root mean square values were recorded. A Kruskal-Wallis test was conducted to analyze the difference in average deviation, and a t-test was repeated for the RMS measure. The significance level was set at 0.05. RESULTS The crowding did not affect the trueness of aligners manufactured using 3D printing or conventional vacuum-forming techniques (P = 0.79). 3D-printed aligners showed less deviation than the vacuum-formed samples (0.1125 mm vs 0.1312 mm; P <0.01). Aligners manufactured with the vacuum-forming technique had significantly higher variation than those with the 3D printing process (P = 0.04). CONCLUSIONS 3D aligners printed directly from an STL file exhibited better precision and trueness than those fabricated using the conventional vacuum-forming technique. Since accuracy is defined as a combination of precision and trueness, it is concluded that direct printing from an STL file can be used to manufacture aligners.
Collapse
Affiliation(s)
- Tonya Spangler
- Department of Orthodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Va
| | - Rami Ammoun
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, Va
| | - Caroline K Carrico
- Department of Dental Public Health and Policy, School of Dentistry, Virginia Commonwealth University, Richmond, Va
| | - Sompop Bencharit
- Office of Oral Health Innovation, Department of Oral Rehabilitation, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC
| | - Eser Tüfekçi
- Department of Orthodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Va.
| |
Collapse
|
12
|
Bangalore D, Alshehri AM, Alsadon O, Alaqeel SM, Alageel O, Alsarani MM, Almansour H, AlShahrani O. Coffee Staining and Simulated Brushing Induced Color Changes and Surface Roughness of 3D-Printed Orthodontic Retainer Material. Polymers (Basel) 2023; 15:polym15092164. [PMID: 37177310 PMCID: PMC10180946 DOI: 10.3390/polym15092164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
This in vitro study evaluated the influence of combined coffee staining and simulated brushing-induced color changes and surface roughness on 3D-printed orthodontic retainers. Specimens measuring 10 × 10 × 0.75 mm3 were obtained either by conventional vacuum forming or 3D printing at four print angulations (0°, 15°, 30°, and 45°) (n = 10). The prepared specimens were immersed in a coffee beverage and then mechanically brushed using a simulating device. The specimen's color difference (ΔE) and surface roughness (Ra) were quantified using a spectrophotometer and a non-contact profilometer, respectively. The highest and lowest mean ΔE values were recorded for the 3D-printed-45° (4.68 ± 2.07) and conventional (2.18 ± 0.87) groups, respectively. The overall mean comparison of ΔE between the conventional and 3D-printed groups was statistically significant (p < 0.01). After simulated brushing, all groups showed a statistically significant increase in the Ra values (p < 0.01). The highest Ra was in the 3D-printed-45° (1.009 ± 0.13 µm) and conventional (0.743 ± 0.12 µm) groups, respectively. The overall ΔE of 3D-printed orthodontic retainers was not comparable to conventional VFRs. Among the different angulations used to print the retainers, 15° angulations were the most efficient in terms of color changes and surface roughness and were comparable to conventional VFRs.
Collapse
Affiliation(s)
- Durgesh Bangalore
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 7268, Saudi Arabia
| | - Abdullah M Alshehri
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 7268, Saudi Arabia
| | - Omar Alsadon
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 7268, Saudi Arabia
| | - Samer M Alaqeel
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 7268, Saudi Arabia
| | - Omar Alageel
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 7268, Saudi Arabia
| | - Majed M Alsarani
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 7268, Saudi Arabia
| | - Haitham Almansour
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 7268, Saudi Arabia
| | - Obaid AlShahrani
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 7268, Saudi Arabia
| |
Collapse
|
13
|
Shirey N, Mendonca G, Groth C, Kim-Berman H. Comparison of mechanical properties of 3-dimensional printed and thermoformed orthodontic aligners. Am J Orthod Dentofacial Orthop 2023; 163:720-728. [PMID: 37142355 DOI: 10.1016/j.ajodo.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Orthodontic treatment using clear aligners has experienced exponential growth since its introduction in the late 1990s. Three-dimensional (3D) printing has also grown in popularity among orthodontists, and companies have begun to produce resins to directly print clear aligners. This study aimed to examine the mechanical properties of commercially available thermoformed aligners and direct 3D-printed aligners under laboratory conditions and a simulated oral environment. METHODS Samples were prepared (approximately 2.5 × 20 mm) from 2 thermoformed materials, EX30 and LD30 (Align Technology Inc, San Jose, Calif), as well as 2 direct 3D-printing resins, Material X (Envisiontec, Inc; Dearborn, Mich) and OD-Clear TF (3DResyns, Barcelona, Spain). Wet samples were subjected to phosphate-buffered saline at 37°C for 7 days, whereas dry samples were stored at 25°C. Tensile and stress relaxation tests were carried out on an RSA3 Dynamic Mechanical Analyzer (Texas Instruments, Dallas, Tex) and Instron Universal Testing System (Instron, Norwood, Mass) to calculate elastic modulus, ultimate tensile strength, and stress relaxation. RESULTS The elastic modulus of dry and wet samples was 103.2 ± 17.3 MPa and 114.4 ± 17.9 MPa (EX30), 61.3 ± 9.18 MPa and 103.5 ± 11.4 MPa (LD30), 431.2 ± 16.0 MPa and 139.9 ± 34.6 MPa (Material X), and 38.4 ± 14.7 MPa and 38.3 ± 8.4 MPa (OD-Clear TF), respectively. The ultimate tensile strength of dry and wet samples was 64.41 ± 7.25 MPa and 61.43 ± 7.41MPa (EX30), 40.04 ± 5.00 MPa and 30.09 ± 1.50 MPa (LD30), 28.11 ± 3.75 MPa and 27.57 ± 4.09 MPa (Material X), and 9.34 ± 1.96 MPa and 8.27 ± 0.93 MPa (OD-Clear TF), respectively. Residual stress of wet samples at 2% strain for 2 hours was 59.99 ± 3.02% (EX30), 52.57 ± 12.28% (LD30), 6.98 ± 2.64% (Material X), and 4.39 ± 0.84% (OD-Clear TF). CONCLUSIONS There was a significant difference in elastic modulus, ultimate tensile strength, and stress relaxation among the samples tested. Moisture, specifically a simulated oral environment, appears to have a greater effect on the mechanical properties of direct 3D-printed aligners when compared with thermoformed aligners. This is likely to impact the ability of 3D-printed aligners to generate and maintain adequate force levels for tooth movement.
Collapse
Affiliation(s)
- Nic Shirey
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Mich.
| | - Gustavo Mendonca
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, Va
| | - Christian Groth
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Mich
| | - Hera Kim-Berman
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
14
|
Tsoukala E, Lyros I, Tsolakis AI, Maroulakos MP, Tsolakis IA. Direct 3D-Printed Orthodontic Retainers. A Systematic Review. CHILDREN 2023; 10:children10040676. [PMID: 37189925 DOI: 10.3390/children10040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Three-dimensional (3D) printing technology has shed light on many fields in medicine and dentistry, including orthodontics. Direct 3D-printed prosthetics, implants or surgical devices are well-documented. The fabrication of orthodontic retainers using CAD technology and additive manufacturing is an emerging trend but the available data are scarce. The research approach of the present review included keywords in Medline, Scopus, Cochrane Library and Google Scholar up to December 2022. The searching process concluded with five studies eligible for our project. Three of them investigated directly 3D-printed clear retainers in vitro. The other two studies investigated directly 3D-printed fixed retainers. Among them, one study was in vitro and the second was a prospective clinical trial. Directly 3D-printed retainers can be evolved over time as a good alternative to all the conventional materials for retention. Devices that are 3D-printed are more time and cost efficient, offer more comfortable procedures for both practitioners and patients and the materials used in additive manufacturing can solve aesthetic problems, periodontal issues or problems with the interference of these materials with magnetic resonance imaging (MRI). More well-designed prospective clinical trials are necessary for more evaluable results.
Collapse
Affiliation(s)
- Efthimia Tsoukala
- Department of Orthodontics, National and Kapodistrian University of Athens, School of Dentistry, 11527 Athens, Greece
| | - Ioannis Lyros
- Department of Orthodontics, National and Kapodistrian University of Athens, School of Dentistry, 11527 Athens, Greece
| | - Apostolos I. Tsolakis
- Department of Orthodontics, National and Kapodistrian University of Athens, School of Dentistry, 11527 Athens, Greece
- Department of Orthodontics, School of Dentistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael P. Maroulakos
- Department of Orthodontics, National and Kapodistrian University of Athens, School of Dentistry, 11527 Athens, Greece
| | - Ioannis A. Tsolakis
- Department of Orthodontics, School of Dentistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Goracci C, Juloski J, D’Amico C, Balestra D, Volpe A, Juloski J, Vichi A. Clinically Relevant Properties of 3D Printable Materials for Intraoral Use in Orthodontics: A Critical Review of the Literature. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062166. [PMID: 36984045 PMCID: PMC10058724 DOI: 10.3390/ma16062166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/05/2023]
Abstract
The review aimed at analyzing the evidence available on 3D printable materials and techniques used for the fabrication of orthodontic appliances, focusing on materials properties that are clinically relevant. MEDLINE/PubMed, Scopus, and Cochrane Library databases were searched. Starting from an initial retrieval of 669 citations, 47 articles were finally included in the qualitative review. Several articles presented proof-of-concept clinical cases describing the digital workflow to manufacture a variety of appliances. Clinical studies other than these case reports are not available. The fabrication of aligners is the most investigated application of 3D printing in orthodontics, and, among materials, Dental LT Clear Resin (Formlabs) has been tested in several studies, although Tera Harz TC-85 (Graphy) is currently the only material specifically marketed for direct printing of aligners. Tests of the mechanical properties of aligners materials lacked homogeneity in the protocols, while biocompatibility tests failed to assess the influence of intraoral conditions on eluents release. The aesthetic properties of 3D-printed appliances are largely unexplored. The evidence on 3D-printed metallic appliances is also limited. The scientific evidence on 3D printable orthodontic materials and techniques should be strengthened by defining international standards for laboratory testing and by starting the necessary clinical trials.
Collapse
Affiliation(s)
- Cecilia Goracci
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jovana Juloski
- Department of Orthodontics, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Claudio D’Amico
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Dario Balestra
- School of Dental Medicine, Alfonso X El Sabio University, 28691 Madrid, Spain
| | - Alessandra Volpe
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jelena Juloski
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Alessandro Vichi
- Dental Academy, University of Portsmouth, Portsmouth PO1 2QG, UK
| |
Collapse
|