1
|
Badr DA, Carlin A, Kadji C, Kang X, Cannie MM, Jani JC. Timing of induction of labor in suspected macrosomia: retrospective cohort study, systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:443-452. [PMID: 38477187 DOI: 10.1002/uog.27643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVES Large-for-gestational age (LGA) is associated with several adverse maternal and neonatal outcomes. Although many studies have found that early induction of labor (IOL) in case of a LGA fetus reduces the incidence of shoulder dystocia, no current guidelines recommend this particular clinical strategy, owing to concerns about increased rates of Cesarean delivery (CD) and neonatal complications. The purpose of this study was to assess whether the timing of IOL in LGA fetuses affected maternal and neonatal outcomes in a single center, and to combine these results with evidence reported in the literature. METHODS This study comprised two parts. The first part was a retrospective cohort study that included consecutive patients with a singleton pregnancy and an estimated fetal weight ≥ 90th percentile on ultrasound between 35 + 0 and 39 + 0 weeks' gestation, who were eligible for normal vaginal delivery. The second part of the study was a systematic review of the literature and meta-analysis, including the results of our cohort study as well as those of previous studies that compared IOL with expectant management in patients with a LGA fetus. The perinatal outcomes of the study were CD, operative vaginal delivery, shoulder dystocia, brachial plexus palsy, anal sphincter injury, postpartum hemorrhage, Apgar score, umbilical artery pH, admission to the neonatal intensive care unit, use of continuous positive airway pressure, intracranial hemorrhage, need for phototherapy and bone fracture. RESULTS Of the 547 patients included in this retrospective cohort study, 329 (60.1%) underwent IOL and 218 (39.9%) experienced spontaneous labor. Following covariate balancing, the odds of CD were significantly higher in the IOL group compared with the spontaneous-labor group. This difference only became apparent beyond 40 weeks' gestation (hazard ratio, 1.90; P = 0.030). The difference between the IOL and spontaneous-labor groups for the rate of shoulder dystocia was not statistically significant (hazard ratio, 1.57; P = 0.200). Seventeen studies, in addition to our own results, were included in the systematic review and meta-analysis, giving a total population of 111 300 participants. Although there was no significant difference in the rate of CD between IOL and expectant management after pooling the results of included studies, the risk for shoulder dystocia was significantly lower in the IOL group (odds ratio (OR), 0.64 (95% CI, 0.42-0.98); I2 = 19% from 12 studies) when considering only IOL performed before 40 + 0 weeks. When the studies in which IOL was carried out exclusively before 40 + 0 weeks were removed from the analysis, the risk for CD in the remaining studies was significantly higher in the IOL group (OR, 1.46 (95% CI, 1.02-2.09); I2 = 56%). There were no statistically significant differences between the IOL and expectant-management groups for the remaining perinatal outcomes. Nulliparity, history of CD and low Bishop score, but not method of induction, were independent risk factors for intrapartum CD in patients that underwent IOL for LGA. CONCLUSIONS The timing of IOL in patients with suspected macrosomia significantly impacts on perinatal adverse outcomes. IOL has no impact on rates of shoulder dystocia but increases the odds of CD when considered irrespective of gestational age; in contrast, IOL may decrease the risk of shoulder dystocia without increasing the risk of other adverse maternal outcomes, in particular CD, when performed before 40 + 0 weeks (GRADE: low/very low). © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- D A Badr
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - A Carlin
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - C Kadji
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - X Kang
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - M M Cannie
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - J C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Amgalan A, Kapse K, Krishnamurthy D, Andersen NR, Izem R, Baschat A, Quistorff J, Gimovsky AC, Ahmadzia HK, Limperopoulos C, Andescavage NN. Measuring intrauterine growth in healthy pregnancies using quantitative magnetic resonance imaging. J Perinatol 2022; 42:860-865. [PMID: 35194161 PMCID: PMC9380865 DOI: 10.1038/s41372-022-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/04/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The aim of this study was to determine in utero fetal-placental growth patterns using in vivo three-dimensional (3D) quantitative magnetic resonance imaging (qMRI). STUDY DESIGN Healthy women with singleton pregnancies underwent fetal MRI to measure fetal body, placenta, and amniotic space volumes. The fetal-placental ratio (FPR) was derived using 3D fetal body and placental volumes (PV). Descriptive statistics were used to describe the association of each measurement with increasing gestational age (GA) at MRI. RESULTS Fifty-eight (58) women underwent fetal MRI between 16 and 38 completed weeks gestation (mean = 28.12 ± 6.33). PV and FPR varied linearly with GA at MRI (rPV,GA = 0.83, rFPR,GA = 0.89, p value < 0.001). Fetal volume varied non-linearly with GA (p value < 0.01). CONCLUSIONS We describe in-utero growth trajectories of fetal-placental volumes in healthy pregnancies using qMRI. Understanding healthy in utero development can establish normative benchmarks where departures from normal may identify early in utero placental failure prior to the onset of fetal harm.
Collapse
Affiliation(s)
- Ariunzaya Amgalan
- School of Medicine, Georgetown University, 3900 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Kushal Kapse
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Dhineshvikram Krishnamurthy
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Nicole R Andersen
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Rima Izem
- Division of Biostatistics & Study Methodology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Ahmet Baschat
- Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Jessica Quistorff
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Alexis C Gimovsky
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, George Washington University, Washington, DC, 20037, USA
| | - Homa K Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, George Washington University, Washington, DC, 20037, USA
| | - Catherine Limperopoulos
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA. .,Department of Pediatrics, George Washington University, Washington, DC, 20037, USA.
| | - Nickie N Andescavage
- Department of Pediatrics, George Washington University, Washington, DC, 20037, USA.,Division of Neonatology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| |
Collapse
|
3
|
Carlin A, Kadji C, Cannie MM, Resta S, Kang X, Jani JC. The use of magnetic resonance imaging in the prediction of birthweight. Prenat Diagn 2019; 40:125-135. [PMID: 31319434 DOI: 10.1002/pd.5530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023]
Abstract
Extremes of fetal growth can increase adverse pregnancy outcomes, and this is equally applicable to single and multiple gestations. Traditionally, these cases have been identified using simple two-dimensional ultrasound which is quite limited by its low precision. Magnetic resonance imaging (MRI) has now been used for many years in obstetrics, mainly as an adjunct to ultrasound for congenital abnormalities and increasingly as part of the post-mortem examination. However, MRI can also be used to accurately assess fetal weight as first demonstrated by Baker et al in 1994, using body volumes rather than standard biometric measurements. This publication was followed by several others, all of which confirmed the superiority of MRI; however, despite this initial promise, the technique has never been successfully integrated into clinical practice. In this review, we provide an overview of the literature, detail the various techniques and formulas currently available, discuss the applicability to specific high-risk groups and present our vision for the future of MRI within clinical obstetrics.
Collapse
Affiliation(s)
- Andrew Carlin
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline Kadji
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium.,Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serena Resta
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Xin Kang
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques C Jani
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Kadji C, Cannie MM, Resta S, Guez D, Abi-Khalil F, De Angelis R, Jani JC. Magnetic resonance imaging for prenatal estimation of birthweight in pregnancy: review of available data, techniques, and future perspectives. Am J Obstet Gynecol 2019; 220:428-439. [PMID: 30582928 DOI: 10.1016/j.ajog.2018.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Fetuses at the extremes of growth abnormalities carry a risk of perinatal morbidity and death. Their identification traditionally is done by 2-dimensional ultrasound imaging, the performance of which is not always optimal. Magnetic resonance imaging superbly depicts fetal anatomy and anomalies and has contributed largely to the evaluation of high-risk pregnancies. In 1994, magnetic resonance imaging was introduced for the estimation of fetal weight, which is done by measuring the fetal body volume and converting it through a formula to fetal weight. Approximately 10 studies have shown that magnetic resonance imaging is more accurate than 2-dimensional ultrasound imaging in the estimation of fetal weight. Yet, despite its promise, the magnetic resonance imaging technique currently is not implemented clinically. Over the last 5 years, this technique has evolved quite rapidly. Here, we review the literature data, provide details of the various measurement techniques and formulas, consider the application of the magnetic resonance imaging technique in specific populations such as patients with diabetes mellitus and twin pregnancies, and conclude with what we believe could be the future perspectives and clinical application of this challenging technique. The estimation of fetal weight by ultrasound imaging is based mainly on an algorithm that takes into account the measurement of biparietal diameter, head circumference, abdominal circumference, and femur length. The estimation of fetal weight by magnetic resonance imaging is based on one of the 2 formulas: (1) magnetic resonance imaging-the estimation of fetal weight (in kilograms)=1.031×fetal body volume (in liters)+0.12 or (2) magnetic resonance imaging-the estimation of fetal weight (in grams)=1.2083×fetal body volume (in milliliters)ˆ0.9815. Comparison of these 2 formulas for the detection of large-for-gestational age neonates showed similar performance for preterm (P=.479) and for term fetuses (P=1.000). Literature data show that the estimation of fetal weight with magnetic resonance imaging carries a mean or median relative error of 2.6 up to 3.7% when measurements were performed at <1 week from delivery; whereas for the same fetuses, the relative error at 2-dimensional ultrasound imaging varied between 6.3% and 11.4%. Further, in a series of 270 fetuses who were evaluated within 48 hours from birth and for a fixed false-positive rate of 10%, magnetic resonance imaging detected 98% of large-for-gestational age neonates (≥95th percentile for gestation) compared with 67% with ultrasound imaging estimates. For the same series, magnetic resonance imaging applied to the detection of small-for-gestational age neonates ≤10th percentile for gestation, for a fixed 10% false-positive rate, reached a detection rate of 100%, compared with only 78% for ultrasound imaging. Planimetric measurement has been 1 of the main limitations of magnetic resonance imaging for the estimation of fetal weight. Software programs that allow semiautomatic segmentation of the fetus are available from imaging manufacturers or are self-developed. We have shown that all of them perform equally well for the prediction of large-for-gestational age neonates, with the advantage of the semiautomatic methods being less time-consuming. Although many challenges remain for this technique to be generalized, a 2-step strategy after the selection of a group who are at high risk of the extremes of growth abnormalities is the most likely scenario. Results of ongoing studies are awaited (ClinicalTrials.gov Identifier # NCT02713568).
Collapse
Affiliation(s)
- Caroline Kadji
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium; Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serena Resta
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - David Guez
- Advanced Technology Center, Sheba Tel Hashomer Hospital, Ramat Gan, Israel
| | - Fouad Abi-Khalil
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
5
|
Bevilacqua E, Resta S, Carlin A, Kang X, Cos Sanchez T, de Marchin J, Jani JC. Profile of women choosing the Harmony® Prenatal Test. Expert Rev Mol Diagn 2019; 18:591-599. [PMID: 29911931 DOI: 10.1080/14737159.2018.1489242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The Harmony® Prenatal Test, a noninvasive cell-free DNA (cfDNA) method for major trisomies has been available since January 2013 at our unit, and tests were sent to the Ariosa Clinical Laboratory Improvement Amendments (CLIA) laboratory in California. From July 2017 onward, prenatal cfDNA has been reimbursed in Belgium for all pregnancies; however, since then samples are sent to a local laboratory. Little data are available on patient's profile and choices toward cfDNA and on the performance of local technology transfer centers. Areas covered: The profiles and choices of women regarding this test were evaluated. Further, the performance of cfDNA at the local laboratory was compared to the one in California. Our results showed that women from the Netherlands, as compared to Belgium, were more likely to undergo cfDNA testing for maternal request and would be less likely to undergo karyotyping if cfDNA were unavailable, therefore are better candidates for cfDNA testing, when this is used as first-line screening. Expert commentary: Our findings highlight the importance of conducting these types of studies, before decisions about clinical implementation are made by national governments and ministries of health.
Collapse
Affiliation(s)
- Elisa Bevilacqua
- a Department of Obstetrics and Gynecology , University Hospital Brugmann, Université Libre de Bruxelles , Brussels , Belgium
| | - Serena Resta
- a Department of Obstetrics and Gynecology , University Hospital Brugmann, Université Libre de Bruxelles , Brussels , Belgium
| | - Andrew Carlin
- a Department of Obstetrics and Gynecology , University Hospital Brugmann, Université Libre de Bruxelles , Brussels , Belgium
| | - Xin Kang
- a Department of Obstetrics and Gynecology , University Hospital Brugmann, Université Libre de Bruxelles , Brussels , Belgium
| | - Teresa Cos Sanchez
- a Department of Obstetrics and Gynecology , University Hospital Brugmann, Université Libre de Bruxelles , Brussels , Belgium
| | | | - Jacques C Jani
- a Department of Obstetrics and Gynecology , University Hospital Brugmann, Université Libre de Bruxelles , Brussels , Belgium
| |
Collapse
|
6
|
Kadji C, Cannie MM, Carlin A, Jani JC. Protocol for the prospective observational clinical study: estimation of fetal weight by MRI to PREdict neonatal MACROsomia (PREMACRO study) and small-for-gestational age neonates. BMJ Open 2019; 9:e027160. [PMID: 30918039 PMCID: PMC6475185 DOI: 10.1136/bmjopen-2018-027160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Macrosomia refers to growth beyond a specific threshold, regardless of gestational age. These fetuses are also frequently referred to as large for gestational age (LGA). Various cut-offs have been used but for research purposes, a cut-off above the 95th centile for birth weight is often preferred because it defines 90% of the population as normal weight. The use of centiles, rather than estimated weights, also accommodates preterm macrosomic infants, although most of the complications, maternal and fetal, arise during the delivery of large babies at term. This means that accurate identification of LGA fetuses (≥95th centile) may play an important role in guiding obstetric interventions, such as induction of labour or caesarean section. Traditionally, identification of fetuses suspected of macrosomia has been based on biometric measurements using two-dimensional (2D) ultrasound (US), yet this method is rather sub-optimal. We present a protocol (V.2.1, date 19 May 2016) for the estimation of fetal weight (EFW) by MRI to PREdict neonatal MACROsomia (PREMACRO study), which is a prospective observational clinical study designed to determine whether MRI at 36 + 0 to 36 + 6 weeks of gestation, as compared with 2D US, can improve the identification of LGA neonates ≥95th centile. METHODS AND ANALYSIS All eligible women attending the 36-week clinic will be invited to participate in the screening study for LGA fetuses ≥95th centile and will undergo US-EFW and MRI-EFW within minutes of each other. From these estimations, a centile will be derived which will be compared with the centile of birth weight used as the gold standard. Besides birth weight, other pregnancy and neonatal outcomes will be collected and analysed. The first enrolment for the study was in May 2016. As of September 2018, 2004 women have been screened and recruited to the study. The study is due to end in April 2019. ETHICS AND DISSEMINATION The study will be conducted in accordance with the International Conference on Harmonisation for good clinical practice and the appropriate regulatory requirement(s). A favourable ethical opinion was obtained from the Ethics Committee of the University Hospital Brugmann, reference number CE2016/44. Results will be published in peer-reviewed journals and disseminated at international conferences. TRIAL REGISTRATION NUMBER NCT02713568.
Collapse
Affiliation(s)
- Caroline Kadji
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrew Carlin
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
The value of ultrasound in predicting isolated inter-twin discordance and adverse perinatal outcomes. Arch Gynecol Obstet 2018; 299:459-468. [PMID: 30564927 DOI: 10.1007/s00404-018-5002-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate the value of ultrasound approaching delivery to predict isolated inter-twin discordance and adverse perinatal outcomes. METHODS We retrospectively included twin pregnancies with sonography approaching delivery in ten maternal-foetal medicine centres in China from 2013 to 2014. Estimated foetal weight (EFW) and inter-twin EFW disparity (EFWD) were calculated based on biometry parameters. Percentage errors between EFW and actual birthweight or between EFWD and actual inter-twin disparity were calculated. ROC curves and multiple logistic regression were applied to evaluate the ability of EFWD to predict inter-twin disparity ≥ 25%, stillbirth, asphyxia and admission to a neonatal intensive unit (NICU). Chorionicity-stratified analysis was further performed. RESULTS Two hundred sixty-six monochorionic and 760 dichorionic twin pregnancies were analysed. The percentage errors in foetal weight estimations were 7-13%, whereas percentage errors in the estimation of inter-twin disparity were nearly 100%. Among eight formulas, Hadlock1 performed best, with a detectable rate of 65% and a false positive rate of 5% when predicting inter-twin disparity ≥ 25%. EFWD ≥ 22% was strongly associated with stillbirth (OR = 4.17, 95% CI 1.40-12.40) and NICU admission (OR = 3.48, 95% CI 2.03-5.97) after adjustment for gestational age, parity and abnormal umbilical systolic/diastolic ratio. Ultrasound had better predictive ability in monochorionic twins. CONCLUSION The predictive value of ultrasound for isolated inter-twin discordance and adverse perinatal outcomes was limited, which was possibly due to the magnifying of systematic errors in the disparity estimation compared with weight estimation. Despite this, abnormal biometry was an independent contributor for the poor prognosis of neonates.
Collapse
|
8
|
Kadji C, Cannie MM, De Angelis R, Camus M, Klass M, Fellas S, Cecotti V, Dütemeyer V, Jani JC. Prenatal prediction of postnatal large-for-dates neonates using a simplified MRI method: comparison with conventional 2D ultrasound estimates. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:250-257. [PMID: 28508549 DOI: 10.1002/uog.17523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To evaluate the performance of a simple semi-automated method for estimation of fetal weight (EFW) using magnetic resonance imaging (MRI) as compared with two-dimensional (2D) ultrasound (US) for the prediction of large-for-dates neonates. METHODS Data of two groups of women with singleton pregnancy between March 2011 and May 2016 were retrieved from our database and evaluated retrospectively: the first group included women who underwent US-EFW and MRI-EFW within 48 h before delivery and the second group included women who had these evaluations between 35 + 0 weeks and 37 + 6 weeks of gestation, more than 48 h before delivery. US-EFW was based on Hadlock et al. and MRI-EFW on the formula described by Baker et al. For MRI-EFW, planimetric measurement of the fetal body volume (FBV) was performed using a semi-automated method and the time required for measurement was noted. Outcome measure was the performance of MRI-EFW vs US-EFW in the prediction of large-for-dates neonates, both ≤ 48 h and > 48 h before delivery. Receiver-operating characteristics (ROC) curves for each method were compared using the DeLong method. RESULTS Of the 270 women included in the first group, 48 (17.8%) newborns had birth weight ≥ 90th centile and 30 (11.1%) ≥ 95th centile. The second group included 83 women, and nine (10.8%) newborns had birth weight ≥ 95th centile. Median time needed for FBV planimetric measurements in all 353 fetuses was 3.5 (range, 1.5-5.5) min. The area under the ROC curve (AUC) for prediction of large-for-dates neonates by prenatal MRI performed within 48 h before delivery was significantly higher than that by US (for birth weight ≥ 90th centile, difference between AUCs = 0.085, standard error (SE) = 0.020, P < 0.001; for birth weight ≥ 95th centile, difference between AUCs = 0.036, SE = 0.014, P = 0.01). Similarly, MRI-EFW was better than US-EFW in predicting birth weight ≥ 95th centile when both examinations were performed > 48 h prior to delivery (difference between AUCs = 0.077, SE = 0.039, P = 0.045). CONCLUSION MRI planimetry using our purpose-designed semi-automated method is not time-consuming. The predictive performance of MRI-EFW performed immediately prior to or remote from delivery is significantly better than that of US-EFW for the prediction of large-for-dates neonates. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- C Kadji
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Brussels, Belgium
| | - M M Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - R De Angelis
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium
| | - M Camus
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Brussels, Belgium
| | - M Klass
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Brussels, Belgium
| | - S Fellas
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Brussels, Belgium
| | - V Cecotti
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Brussels, Belgium
| | - V Dütemeyer
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Brussels, Belgium
| | - J C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Brussels, Belgium
| |
Collapse
|
9
|
Delhaes F, Giza SA, Koreman T, Eastabrook G, McKenzie CA, Bedell S, Regnault TRH, de Vrijer B. Altered maternal and placental lipid metabolism and fetal fat development in obesity: Current knowledge and advances in non-invasive assessment. Placenta 2018; 69:118-124. [PMID: 29907450 DOI: 10.1016/j.placenta.2018.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Abnormal maternal lipid profiles, a hallmark of increased maternal adiposity, are associated with pregnancy complications such as preeclampsia and gestational diabetes, and offspring long-term metabolic health is impacted as the consequence of altered fetal growth, physiology and often iatrogenic prematurity. The metabolic changes associated with maternal obesity and/or the consumption of a high-fat diet effecting maternal lipid profiles and metabolism have also been documented to specifically affect placental function and may underlie changes in fetal development and life course disease risk. The placenta plays a critical role in mediating nutritional signals between the fetus and the mother. As obesity rates in women of reproductive age continue to increase, it is becoming evident that inclusion of new technologies that allow for a better understanding of early changes in placental lipid transport and metabolism, non-invasively in maternal circulation, maternal tissues, placenta, fetal circulation and fetal tissues are needed to aid timely clinical diagnosis and treatment for obesity-associated diseases. This review describes pregnancy lipid homeostasis, with specific reference to changes arising from altered maternal body composition on placental and fetal lipid transport and metabolism. Current technologies for lipid assessments, such as metabolomics and lipidomics may be impacted by labour or mode of delivery and are only reflective of a single time point. This review further addresses how established and novel technologies for assessing lipids and their metabolism non-invasively and during the course of pregnancy may guide future research into the effect of maternal metabolic health on pregnancy outcome, placenta and fetus.
Collapse
Affiliation(s)
- Flavien Delhaes
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Stephanie A Giza
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Tianna Koreman
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Charles A McKenzie
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
10
|
Carlin A, Kadji C, De Angelis R, Cannie MM, Jani JC. Prenatal prediction of small-for-gestational age neonates using MR imaging: comparison with conventional 2D ultrasound. J Matern Fetal Neonatal Med 2017; 32:1673-1681. [DOI: 10.1080/14767058.2017.1414797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrew Carlin
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Brussels, Belgium
| | - Caroline Kadji
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Brussels, Belgium
| | | | - Mieke M. Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques C. Jani
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Brussels, Belgium
| |
Collapse
|