1
|
Reichel C, Filip T, Gmeiner G, Thevis M. Gel Electrophoretic Detection of Black Market ACE-031. Drug Test Anal 2025. [PMID: 40312924 DOI: 10.1002/dta.3898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
The usage of ACE-031 (Ramatercept), a dimeric fusion protein consisting of a human activin receptor IIB (ACVR2B) fragment linked to an Fc-part of human IgG1, is banned according to chapter S4.3 of the "WADA 2024 List of Prohibited Substances and Methods" due to its potential performance enhancing properties. While ACE-031 has not yet been pharmaceutically approved, it is sold as research chemical on the "black market" (BM). The article presents a study on BM ACE-031 products and its detection by gel-electrophoresis and Western blotting. Of 14 tested products, only 12 contained an ACVR2B-immunoreactive protein. Electrophoretic separation by SDS-PAGE also showed that the 12 ACVR2B-products contained many other proteins in addition to the main compound (ca. 58.4 kDa). Further analyses by mass spectrometry and immunoblotting revealed that the 12 products contained the full-length human activin receptor IIB instead of ACE-031. The absence of an Fc-fusion protein was further confirmed by treatment with IdeS protease, which was unable to cleave the BM products. In addition, it was demonstrated that the protocol we developed to detect luspatercept (another ACVR2B-Fc fusion protein) in human serum could also be successfully applied for the detection of BM ACE-031. Because administering black market products to human subjects was not ethically justifiable, a study was conducted with rats. In rat serum, BM ACE-031 was detectable up to 48 h post administration. However, due to the relatively high dose applied (10 mg/kg body weight) and possible differences in metabolism, the detection window may be different in humans.
Collapse
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory Seibersdorf, Seibersdorf Labor GmbH, Seibersdorf, Austria
- European Monitoring Center for Emerging Doping Agents, German Sport University Cologne, Cologne, Germany
| | - Thomas Filip
- University of Veterinary Medicine Vienna, Vienna, Austria
| | - Günter Gmeiner
- Doping Control Laboratory Seibersdorf, Seibersdorf Labor GmbH, Seibersdorf, Austria
| | - Mario Thevis
- European Monitoring Center for Emerging Doping Agents, German Sport University Cologne, Cologne, Germany
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
2
|
Oleksak P, Nepovimova E, Valko M, Alwasel S, Alomar S, Kuca K. Comprehensive analysis of prohibited substances and methods in sports: Unveiling trends, pharmacokinetics, and WADA evolution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104447. [PMID: 38636744 DOI: 10.1016/j.etap.2024.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
This review systematically compiles sports-related drugs, substances, and methodologies based on the most frequently detected findings from prohibited lists published annually by the World Anti-Doping Agency (WADA) between 2003 and 2021. Aligned with structure of the 2023 prohibited list, it covers all proscribed items and details the pharmacokinetics and pharmacodynamics of five representatives from each section. Notably, it explores significant metabolites and metabolic pathways associated with these substances. Adverse analytical findings are summarized in tables for clarity, and the prevalence is visually represented through charts. The review includes a concise historical overview of doping and WADA's role, examining modifications in the prohibited list for an understanding of evolving anti-doping measures.
Collapse
Affiliation(s)
- Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain.
| |
Collapse
|
3
|
Gonzalez-Ponce F, Ramirez-Villafaña M, Gomez-Ramirez EE, Saldaña-Cruz AM, Gallardo-Moya SG, Rodriguez-Jimenez NA, Jacobo-Cuevas H, Nava-Valdivia CA, Avalos-Salgado FA, Totsuka-Sutto S, Cardona-Muñoz EG, Valdivia-Tangarife ER. Role of Myostatin in Rheumatoid Arthritis: A Review of the Clinical Impact. Diagnostics (Basel) 2024; 14:1085. [PMID: 38893612 PMCID: PMC11171688 DOI: 10.3390/diagnostics14111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects synovial joints and that frequently involves extra-articular organs. A multiplicity of interleukins (IL) participates in the pathogenesis of RA, including IL-6, IL-1β, transforming growth factor-beta (TGF-β), and tumor necrosis factor (TNF)-α; immune cells such as monocytes, T and B lymphocytes, and macrophages; and auto-antibodies, mainly rheumatoid factor and anti-citrullinated protein antibodies (ACPAs). Skeletal muscle is also involved in RA, with many patients developing muscle wasting and sarcopenia. Several mechanisms are involved in the myopenia observed in RA, and one of them includes the effects of some interleukins and myokines on myocytes. Myostatin is a myokine member of the TGF-β superfamily; the overproduction of myostatin acts as a negative regulator of growth and differentiates the muscle fibers, limiting their number and size. Recent studies have identified abnormalities in the serum myostatin levels of RA patients, and these have been found to be associated with muscle wasting and other manifestations of severe RA. This review analyzes recent information regarding the relationship between myostatin levels and clinical manifestations of RA and the relevance of myostatin as a therapeutic target for future research.
Collapse
Affiliation(s)
- Fabiola Gonzalez-Ponce
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Melissa Ramirez-Villafaña
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Eli Efrain Gomez-Ramirez
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Ana Miriam Saldaña-Cruz
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Sergio Gabriel Gallardo-Moya
- Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.G.G.-M.); (F.A.A.-S.)
| | - Norma Alejandra Rodriguez-Jimenez
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Heriberto Jacobo-Cuevas
- Programa de Postdoctorado, Departamento de Psicología Básica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Cesar Arturo Nava-Valdivia
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Felipe Alexis Avalos-Salgado
- Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.G.G.-M.); (F.A.A.-S.)
| | - Sylvia Totsuka-Sutto
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Ernesto German Cardona-Muñoz
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | | |
Collapse
|
4
|
Schellino R, Boido M, Vrijbloed JW, Fariello RG, Vercelli A. Synergistically Acting on Myostatin and Agrin Pathways Increases Neuromuscular Junction Stability and Endurance in Old Mice. Aging Dis 2024; 15:893-910. [PMID: 37548943 PMCID: PMC10917542 DOI: 10.14336/ad.2023.0713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
Sarcopenia is the primary cause of impaired motor performance in the elderly. The current prevailing approach to counteract such condition is increasing the muscle mass through inhibition of the myostatin system: however, this strategy only moderately improves muscular strength, not being able to sustain the innervation of the hypertrophic muscle per se, leading to a progressive worsening of motor performances. Thus, we proposed the administration of ActR-Fc-nLG3, a protein that combines the soluble activin receptor, a strong myostatin inhibitor, with the C-terminal agrin nLG3 domain. This compound has the potential of reinforcing neuro-muscular stability to the hypertrophic muscle. We previously demonstrated an enhancement of motor endurance and ACh receptor aggregation in young mice after ActR-Fc-nLG3 administration. Now we extended these observations by demonstrating that also in aged (2 years-old) mice, long-term administration of ActR-Fc-nLG3 increases in a sustained way both motor endurance and muscle strength, compared with ActR-Fc, a myostatin inhibitor, alone. Histological data demonstrate that the administration of this biological improves neuromuscular stability and fiber innervation maintenance, preventing muscle fiber atrophy and inducing only moderate hypertrophy. Moreover, at the postsynaptic site we observe an increased folding in the soleplate, a likely anatomical substrate for improved neurotransmission efficiency in the NMJ, that may lead to enhanced motor endurance. We suggest that ActR-Fc-nLG3 may become a valid option for treating sarcopenia and possibly other disorders of striatal muscles.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | | | | | - Alessandro Vercelli
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| |
Collapse
|
5
|
Bin Haidar H, Almeida JR, Williams J, Guo B, Bigot A, Senthilkumaran S, Vaiyapuri S, Patel K. Differential effects of the venoms of Russell's viper and Indian cobra on human myoblasts. Sci Rep 2024; 14:3184. [PMID: 38326450 PMCID: PMC10850160 DOI: 10.1038/s41598-024-53366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Local tissue damage following snakebite envenoming remains a poorly researched area. To develop better strategies to treat snakebites, it is critical to understand the mechanisms through which venom toxins induce envenomation effects including local tissue damage. Here, we demonstrate how the venoms of two medically important Indian snakes (Russell's viper and cobra) affect human skeletal muscle using a cultured human myoblast cell line. The data suggest that both venoms affect the viability of myoblasts. Russell's viper venom reduced the total number of cells, their migration, and the area of focal adhesions. It also suppressed myogenic differentiation and induced muscle atrophy. While cobra venom decreased the viability, it did not largely affect cell migration and focal adhesions. Cobra venom affected the formation of myotubes and induced atrophy. Cobra venom-induced atrophy could not be reversed by small molecule inhibitors such as varespladib (a phospholipase A2 inhibitor) and prinomastat (a metalloprotease inhibitor), and soluble activin type IIb receptor (a molecule used to promote regeneration of skeletal muscle), although the antivenom (raised against the Indian 'Big Four' snakes) has attenuated the effects. However, all these molecules rescued the myotubes from Russell's viper venom-induced atrophy. This study demonstrates key steps in the muscle regeneration process that are affected by both Indian Russell's viper and cobra venoms and offers insights into the potential causes of clinical features displayed in envenomed victims. Further research is required to investigate the molecular mechanisms of venom-induced myotoxicity under in vivo settings and develop better therapies for snakebite-induced muscle damage.
Collapse
Affiliation(s)
- Husain Bin Haidar
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
- Kuwait Cancer Control Centre, Ministry of Health, Kuwait City, Kuwait
| | - José R Almeida
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Bokai Guo
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Anne Bigot
- INSERM, CNRS, Institute of Myology, Centre of Research in Myology, Sorbonne Universities, UPMC University Paris, Paris, France
| | | | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK.
| |
Collapse
|
6
|
Manohar-Sindhu S, Merfeld-Clauss S, Goddard Y, March KL, Traktuev DO. Diminished vasculogenesis under inflammatory conditions is mediated by Activin A. Angiogenesis 2023; 26:423-436. [PMID: 36977946 DOI: 10.1007/s10456-023-09873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Severe inflammatory stress often leads to vessel rarefaction and fibrosis, resulting in limited tissue recovery. However, signaling pathways mediating these processes are not completely understood. Patients with ischemic and inflammatory conditions have increased systemic Activin A level, which frequently correlates with the severity of pathology. Yet, Activin A's contribution to disease progression, specifically to vascular homeostasis and remodeling, is not well defined. This study investigated vasculogenesis in an inflammatory environment with an emphasis on Activin A's role. Exposure of endothelial cells (EC) and perivascular cells (adipose stromal cells, ASC) to inflammatory stimuli (represented by blood mononuclear cells from healthy donors activated with lipopolysaccharide, aPBMC) dramatically decreased EC tubulogenesis or caused vessel rarefaction compared to control co-cultures, concurrent with increased Activin A secretion. Both EC and ASC upregulated Inhibin Ba mRNA and Activin A secretion in response to aPBMC or their secretome. We identified TNFα (in EC) and IL-1β (in EC and ASC) as the exclusive inflammatory factors, present in aPBMC secretome, responsible for induction of Activin A. Similar to ASC, brain and placental pericytes upregulated Activin A in response to aPBMC and IL-1β, but not TNFα. Both these cytokines individually diminished EC tubulogenesis. Blocking Activin A with neutralizing IgG mitigated detrimental effects of aPBMC or TNFα/IL-1β on tubulogenesis in vitro and vessel formation in vivo. This study delineates the signaling pathway through which inflammatory cells have a detrimental effect on vessel formation and homeostasis, and highlights the central role of Activin A in this process. Transitory interference with Activin A during early phases of inflammatory or ischemic insult, with neutralizing antibodies or scavengers, may benefit vasculature preservation and overall tissue recovery.
Collapse
Affiliation(s)
- Sahana Manohar-Sindhu
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Stephanie Merfeld-Clauss
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Yana Goddard
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Keith L March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Dmitry O Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Hatamzade Esfahani N, Day AS. The Role of TGF-β, Activin and Follistatin in Inflammatory Bowel Disease. GASTROINTESTINAL DISORDERS 2023; 5:167-186. [DOI: 10.3390/gidisord5020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition predominantly affecting the gastrointestinal (GI) tract. An increasing prevalence of IBD has been observed globally. The pathogenesis of IBD includes a complex interplay between the intestinal microbiome, diet, genetic factors and immune responses. The consequent imbalance of inflammatory mediators ultimately leads to intestinal mucosal damage and defective repair. Growth factors, given their specific roles in maintaining the homeostasis and integrity of the intestinal epithelium, are of particular interest in the setting of IBD. Furthermore, direct targeting of growth factor signalling pathways involved in the regeneration of the damaged epithelium and the regulation of inflammation could be considered as therapeutic options for individuals with IBD. Several members of the transforming growth factor (TGF)-β superfamily, particularly TGF-β, activin and follistatin, are key candidates as they exhibit various roles in inflammatory processes and contribute to maintenance and homeostasis in the GI tract. This article aimed firstly to review the events involved in the pathogenesis of IBD with particular emphasis on TGF-β, activin and follistatin and secondly to outline the potential role of therapeutic manipulation of these pathways.
Collapse
Affiliation(s)
| | - Andrew S. Day
- Paediatric Department, University of Otago Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
8
|
Zhang L, Lv J, Wang C, Ren Y, Yong M. Myokine, a key cytokine for physical exercise to alleviate sarcopenic obesity. Mol Biol Rep 2023; 50:2723-2734. [PMID: 36571655 DOI: 10.1007/s11033-022-07821-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/29/2022] [Accepted: 07/24/2022] [Indexed: 12/27/2022]
Abstract
Skeletal muscle has a robust endocrine function as a powerful organ and can secrete and release cytokines or polypeptides known as myokines. These myokines have significant regulatory effects on signal transduction in skeletal muscle and the metabolism of peripheral tissues and organs and exert biological effects via autocrine, paracrine, or endocrine forms. Obesity and aging cause myokine secretion dysregulation, and hastening sarcopenic obesity (SO) development. Exercise is currently an excellent intervention and prevention method for SO. Meanwhile, exercise impacts many organs and tissues. These organs and tissues will produce various myokines in response to movement and metabolism throughout the body to govern muscle differentiation, growth, and remodeling. According to accumulating data, exercise can increase the release of myokines from diverse tissues into the blood and postpone the SO onset and progression by influencing protein metabolism, inflammation, mitochondrial quality control, and other mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Junjie Lv
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Cenyi Wang
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuanyuan Ren
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China.
| | - Ming Yong
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
9
|
Joo SK, Kim W. Interaction between sarcopenia and nonalcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S68-S78. [PMID: 36472051 PMCID: PMC10029947 DOI: 10.3350/cmh.2022.0358] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia and nonalcoholic fatty liver disease (NAFLD) are common health problems related to aging. Despite the differences in their diagnostic methods, several cross-sectional and longitudinal studies have revealed the close link between sarcopenia and NAFLD. Sarcopenia and NAFLD are linked by several shared pathogenetic mechanisms, including insulin resistance, hormonal imbalance, systemic inflammation, myostatin and adiponectin dysregulation, nutritional deficiencies, and physical inactivity, thus implicating a bidirectional relationship between sarcopenia and NAFLD. However, there is not sufficient data to support a direct causal relationship between sarcopenia and NAFLD. Moreover, it is currently difficult to conclude whether sarcopenia is a risk factor for nonalcoholic steatohepatitis (NASH) or is a consequence of NASH. Therefore, this review intends to touch on the shared common mechanisms and the bidirectional relationship between sarcopenia and NAFLD.
Collapse
Affiliation(s)
- Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Srivastava S, Rathor R, Singh SN, Suryakumar G. Insight into the role of myokines and myogenic regulatory factors under hypobaric hypoxia induced skeletal muscle loss. Biomarkers 2022; 27:753-763. [PMID: 35946424 DOI: 10.1080/1354750x.2022.2112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aim: The present study aimed to analyze the role of myokines and the regeneration capacity of skeletal muscle during chronic hypobaric hypoxia (HH).Method: Male SD rats were exposed to HH for 1d, 3d, and 7d.Results: Exposure to HH enhanced the levels of decorin, irisin, IL-6 and IL-15 till 3 days of hypoxia and on 7 day of exposure, no significant changes were observed in relation to control. A significant upregulation in myostatin, AMPK, SMAD3, SMAD4, FOXO-1, MURF-1 expression was observed with prolonged HH exposure as compared to normoxic control. Further, myogenesis-related markers, PAX-7, Cyclin D1, and MYOG were downregulated during chronic HH exposure in comparison to control. Energy metabolism regulators such as SIRT1, PGC-1α, and GLUT-4, were also increased on 1d HH exposure that showed a declining trend on chronic HH exposure.Conclusion: These results indicated the impairment in the levels of myokines and myogenesis during prolonged hypoxia. Chronic HH exposure enhanced the levels of myostatin and reduced the regeneration or repair capacity of the skeletal muscles. Myokine levels could be a predictive biomarker for evaluating skeletal muscle performance and loss at high altitudes.
Collapse
Affiliation(s)
- Sukanya Srivastava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054
| | - Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054
| | - Som Nath Singh
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054
| |
Collapse
|
11
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Alqallaf A, Engelbeen S, Palo A, Cutrupi F, Tanganyika-de Winter C, Plomp J, Vaiyapuri S, Aartsma-Rus A, Patel K, van Putten M. The therapeutic potential of soluble activin type receptor IIB treatment in a limb girdle muscular dystrophy type 2D mouse model. Neuromuscul Disord 2022; 32:419-435. [DOI: 10.1016/j.nmd.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
|
13
|
Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice. Biomedicines 2022; 10:biomedicines10020304. [PMID: 35203514 PMCID: PMC8869250 DOI: 10.3390/biomedicines10020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Muscular dystrophies constitute a broad group of genetic disorders leading to muscle wasting. We have previously demonstrated that treating a muscular atrophy mouse model with growth factors resulted in increased muscle mass. In the present study, we treated the Duchenne mouse model mdx for 12 weeks with myogenic growth factors peri- and post-onset of muscular degeneration to explore the effects in the oxidative muscle soleus and the glycolytic muscle extensor digitorum longus (EDL). We found no overall beneficial effect in the peri-onset group at the conclusion of the study. In the post-onset group, the functional improvement by means of electrophysiological examinations ex vivo was mostly confined to the soleus. EDL benefitted from the treatment on a molecular level but did not improve functionally. Histopathology revealed signs of inflammation at the end of treatment. In conclusion, the growth factor cocktail failed to improve the mdx on a functional level.
Collapse
|
14
|
Ozawa T, Miyazono K, Morikawa M. Preparation of monovalent follistatin-like 3-Fc-fusion protein and evaluation of its effects on muscle mass in mice. STAR Protoc 2021; 2:100839. [PMID: 34585166 PMCID: PMC8455479 DOI: 10.1016/j.xpro.2021.100839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Follistatin-like 3 (FSTL3) is an endogenous antagonist against transforming growth factor-β family ligands. Monovalent FSTL3-Fc fusion protein (mono-FSTL3-Fc) generated with knobs-into-holes technology overcomes limitations of current anti-myostatin therapies. We have developed a facile protocol for affinity purification of the Fc-fused protein from the supernatant of HEK293T cells stably expressing the protein. This protocol is advantageous by only requiring readily accessible equipment. We further outline the steps for validation of mono-FSTL3-Fc increasing systemic muscle mass in mice after intraperitoneal administration. For complete details on the use and execution of this protocol, please refer to Ozawa et al. (2021).
Collapse
Affiliation(s)
- Takayuki Ozawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Li J, Fredericks M, Cannell M, Wang K, Sako D, Maguire MC, Grenha R, Liharska K, Krishnan L, Bloom T, Belcheva EP, Martinez PA, Castonguay R, Keates S, Alexander MJ, Choi H, Grinberg AV, Pearsall RS, Oh P, Kumar R, Suragani RN. ActRIIB:ALK4-Fc alleviates muscle dysfunction and comorbidities in murine models of neuromuscular disorders. J Clin Invest 2021; 131:138634. [PMID: 33586684 DOI: 10.1172/jci138634] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023] Open
Abstract
Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-β superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9). ActRIIB:ALK4-Fc and ActRIIB-Fc administered to mice exerted differential effects - concordant with SPR results - on vessel outgrowth in a retinal explant assay. ActRIIB:ALK4-Fc induced a systemic increase in muscle mass and function in wild-type mice and in murine models of Duchenne muscular dystrophy (DMD), amyotrophic lateral sclerosis (ALS), and disuse atrophy. Importantly, ActRIIB:ALK4-Fc improved neuromuscular junction abnormalities in murine models of DMD and presymptomatic ALS and alleviated acute muscle fibrosis in a DMD model. Furthermore, in combination therapy ActRIIB:ALK4-Fc increased the efficacy of antisense oligonucleotide M12-PMO on dystrophin expression and skeletal muscle endurance in an aged DMD model. ActRIIB:ALK4-Fc shows promise as a therapeutic agent, alone or in combination with dystrophin rescue therapy, to alleviate muscle weakness and comorbidities of neuromuscular disorders.
Collapse
Affiliation(s)
- Jia Li
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Kathryn Wang
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | - Dianne Sako
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Rosa Grenha
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Troy Bloom
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Sarah Keates
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Hyunwoo Choi
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Paul Oh
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
16
|
Demonbreun AR, Fallon KS, Oosterbaan CC, Vaught LA, Reiser NL, Bogdanovic E, Velez MP, Salamone IM, Page PGT, Hadhazy M, Quattrocelli M, Barefield DY, Wood LD, Gonzalez JP, Morris C, McNally EM. Anti-latent TGFβ binding protein 4 antibody improves muscle function and reduces muscle fibrosis in muscular dystrophy. Sci Transl Med 2021; 13:eabf0376. [PMID: 34516828 PMCID: PMC9559620 DOI: 10.1126/scitranslmed.abf0376] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Duchenne muscular dystrophy, like other muscular dystrophies, is a progressive disorder hallmarked by muscle degeneration, inflammation, and fibrosis. Latent transforming growth factor β (TGFβ) binding protein 4 (LTBP4) is an extracellular matrix protein found in muscle. LTBP4 sequesters and inhibits a precursor form of TGFβ. LTBP4 was originally identified from a genome-wide search for genetic modifiers of muscular dystrophy in mice, where there are two different alleles. The protective form of LTBP4, which contains an insertion of 12 amino acids in the protein’s hinge region, was linked to increased sequestration of latent TGFβ, enhanced muscle membrane stability, and reduced muscle fibrosis. The deleterious form of LTBP4 protein, lacking 12 amino acids, was more susceptible to proteolysis and promoted release of latent TGF-β, and together, these data underscored the functional role of LTBP4’s hinge. Here, we generated a monoclonal human anti-LTBP4 antibody directed toward LTBP4’s hinge region. In vitro, anti-LTBP4 bound LTBP4 protein and reduced LTBP4 proteolytic cleavage. In isolated myofibers, the LTBP4 antibody stabilized the sarcolemma from injury. In vivo, anti-LTBP4 treatment of dystrophic mice protected muscle against force loss induced by eccentric contraction. Anti-LTBP4 treatment also reduced muscle fibrosis and enhanced muscle force production, including in the diaphragm muscle, where respiratory function was improved. Moreover, the anti-LTBP4 in combination with prednisone, a standard of care for Duchenne muscular dystrophy, further enhanced muscle function and protected against injury in mdx mice. These data demonstrate the potential of anti-LTBP4 antibodies to treat muscular dystrophy.
Collapse
Affiliation(s)
- Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Katherine S Fallon
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren A Vaught
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nina L Reiser
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Bogdanovic
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew P Velez
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Isabella M Salamone
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick G T Page
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Ozawa T, Morikawa M, Morishita Y, Ogikubo K, Itoh F, Koinuma D, Nygren PÅ, Miyazono K. Systemic administration of monovalent follistatin-like 3-Fc-fusion protein increases muscle mass in mice. iScience 2021; 24:102488. [PMID: 34113826 PMCID: PMC8170004 DOI: 10.1016/j.isci.2021.102488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Targeting the signaling pathway of growth differentiation factor 8 (GDF8), also known as myostatin, has been regarded as a promising strategy to increase muscle mass in the elderly and in patients. Accumulating evidence in animal models and clinical trials has indicated that a rational approach is to inhibit a limited number of transforming growth factor β (TGF-β) family ligands, including GDF8 and activin A, without affecting other members. Here, we focused on one of the endogenous antagonists against TGF-β family ligands, follistatin-like 3 (FSTL3), which mainly binds and neutralizes activins, GDF8, and GDF11. Although bivalent human FSTL3 Fc-fusion protein was rapidly cleared from mouse circulation similar to follistatin (FST)-Fc, monovalent FSTL3-Fc (mono-FSTL3-Fc) generated with the knobs-into-holes technology exhibited longer serum half-life. Systemic administration of mono-FSTL3-Fc in mice induced muscle fiber hypertrophy and increased muscle mass in vivo. Our results indicate that the monovalent FSTL3-based therapy overcomes the difficulties of current anti-GDF8 therapies. FSTL3-Fc has a more specific binding profile for TGF-β family ligands than ActRIIB-Fc. Bivalent two-armed FSTL3-Fc is rapidly cleared from mouse circulation. Monovalent FSTL3-Fc has longer serum half-life and causes systemic muscle hypertrophy. ActRIIB-Fc-related side effects are not detected in monovalent FSTL3-Fc-treated mice.
Collapse
Affiliation(s)
- Takayuki Ozawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuki Ogikubo
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 106 91 Stockholm, Sweden.,Science for Life Laboratory, 171 65 Solna, Sweden
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Lodberg A. Principles of the activin receptor signaling pathway and its inhibition. Cytokine Growth Factor Rev 2021; 60:1-17. [PMID: 33933900 DOI: 10.1016/j.cytogfr.2021.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
This review captures the anabolic and stimulatory effects observed with inhibition of the transforming growth factor β superfamily in muscle, blood, and bone. New medicinal substances that rectify activin, myostatin, and growth differentiation factor 11 signaling give hope to the many whose lives are affected by deterioration of these tissues. The review first covers the origin, structure, and common pathway of activins, myostatin, and growth differentiation factor 11 along with the pharmacodynamics of the new class of molecules designed to oppose the activin receptor signaling pathway. Current terminology surrounding this new class of molecules is inconsistent and does not infer functionality. Adopting inhibitors of the activin receptor signaling pathway (IASPs) as a generic term is proposed because it encapsulates the molecular mechanisms along the pathway trajectory. To conclude, a pragmatic classification of IASPs is presented that integrates functionality and side effects based on the data available from animals and humans. This provides researchers and clinicians with a tool to tailor IASPs therapy according to the need of projects or patients and with respect to side effects.
Collapse
Affiliation(s)
- Andreas Lodberg
- Department of Biomedicine, Aarhus University, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Wilhelm Meyers Allé, DK-8000, Aarhus, Denmark.
| |
Collapse
|
19
|
Myostatin Inhibition-Induced Increase in Muscle Mass and Strength Was Amplified by Resistance Exercise Training, and Dietary Essential Amino Acids Improved Muscle Quality in Mice. Nutrients 2021; 13:nu13051508. [PMID: 33947024 PMCID: PMC8146053 DOI: 10.3390/nu13051508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
It has been frequently reported that myostatin inhibition increases muscle mass, but decreases muscle quality (i.e., strength/muscle mass). Resistance exercise training (RT) and essential amino acids (EAAs) are potent anabolic stimuli that synergistically increase muscle mass through changes in muscle protein turnover. In addition, EAAs are known to stimulate mitochondrial biogenesis. We have investigated if RT amplifies the anabolic potential of myostatin inhibition while EAAs enhance muscle quality through stimulations of mitochondrial biogenesis and/or muscle protein turnover. Mice were assigned into ACV (myostatin inhibitor), ACV+EAA, ACV+RT, ACV+EAA +RT, or control (CON) over 4 weeks. RT, but not EAA, increased muscle mass above ACV. Despite differences in muscle mass gain, myofibrillar protein synthesis was stimulated similarly in all vs. CON, suggesting a role for changes in protein breakdown in muscle mass gains. There were increases in MyoD expression but decreases in Atrogin-1/MAFbx expression in ACV+EAA, ACV+RT, and ACV+EAA+RT vs. CON. EAA increased muscle quality (e.g., grip strength and maximal carrying load) without corresponding changes in markers of mitochondrial biogenesis and neuromuscular junction stability. In conclusion, RT amplifies muscle mass and strength through changes in muscle protein turnover in conjunction with changes in implicated signaling, while EAAs enhance muscle quality through unknown mechanisms.
Collapse
|
20
|
Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells 2021; 10:cells10030533. [PMID: 33802348 PMCID: PMC8001237 DOI: 10.3390/cells10030533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.
Collapse
|
21
|
Kamimura H, Sato T, Natsui K, Kobayashi T, Yoshida T, Kamimura K, Tsuchiya A, Murayama T, Yokoyama J, Kawai H, Takamura M, Terai S. Molecular Mechanisms and Treatment of Sarcopenia in Liver Disease: A Review of Current Knowledge. Int J Mol Sci 2021; 22:1425. [PMID: 33572604 PMCID: PMC7867020 DOI: 10.3390/ijms22031425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Sarcopenia is characterized by progressive and generalized loss of skeletal muscle mass and strength that occurs with aging or in association with various diseases. The condition is prevalent worldwide and occurs more frequently in patients with chronic diseases owing to the intrinsic relationship of muscles with glucose, lipid, and protein metabolism. Liver cirrhosis is characterized by the progression of necro-inflammatory liver diseases, which leads to fibrosis, portal hypertension, and a catabolic state, which causes loss of muscle tissue. Sarcopenia is of significant concern in the state of liver cirrhosis because sarcopenia has been associated with higher mortality, increased hospital admissions, worse post-liver transplant outcomes, decreased quality of life, and increased risk for other complications associated with cirrhosis. Therefore, sarcopenia is also an important feature of liver cirrhosis, representing a negative prognostic factor and influencing mortality. An increased understanding of sarcopenia could lead to the development of novel therapeutic approaches that could help improve the cognitive impairment of cirrhotic patients; therefore, we present a review of the mechanisms and diagnosis of sarcopenia in liver disease and existing therapeutic approaches.
Collapse
Affiliation(s)
- Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
- Nutrition Support Team, Niigata University Medical and Dental Hospital, Niigata 951-8510, Japan;
| | - Takeki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
| | - Kazuki Natsui
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
| | - Takamasa Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
| | - Tomoaki Yoshida
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
| | - Toshiko Murayama
- Nutrition Support Team, Niigata University Medical and Dental Hospital, Niigata 951-8510, Japan;
| | - Junji Yokoyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
- Nutrition Support Team, Niigata University Medical and Dental Hospital, Niigata 951-8510, Japan;
| | - Hirokazu Kawai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (T.S.); (K.N.); (T.K.); (T.Y.); (K.K.); (A.T.); (J.Y.); (H.K.); (M.T.); (S.T.)
- Nutrition Support Team, Niigata University Medical and Dental Hospital, Niigata 951-8510, Japan;
| |
Collapse
|
22
|
Yue F, Song C, Huang D, Narayanan N, Qiu J, Jia Z, Yuan Z, Oprescu SN, Roseguini BT, Deng M, Kuang S. PTEN Inhibition Ameliorates Muscle Degeneration and Improves Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2020; 29:132-148. [PMID: 33068545 DOI: 10.1016/j.ymthe.2020.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by a mutation of the muscle membrane protein dystrophin and characterized by severe degeneration of myofibers, progressive muscle wasting, loss of mobility, and, ultimately, cardiorespiratory failure and premature death. Currently there is no cure for DMD. Herein, we report that skeletal muscle-specific knockout (KO) of the phosphatase and tensin homolog (Pten) gene in an animal model of DMD (mdx mice) alleviates myofiber degeneration and restores muscle function without increasing tumor incidence. Specifically, Pten KO normalizes myofiber size and prevents muscular atrophy, and it improves grip strength and exercise performance in mdx mice. Pten KO also reduces fibrosis and inflammation, and it ameliorates muscle pathology in mdx mice. Unbiased RNA sequencing reveals that Pten KO upregulates extracellular matrix and basement membrane components positively correlated with wound healing and suppresses negative regulators of wound healing and lipid biosynthesis, thus improving the integrity of muscle basement membrane at the ultrastructural level. Importantly, pharmacological inhibition of PTEN similarly ameliorates muscle pathology and improves muscle integrity and function in mdx mice. Our findings provide evidence that PTEN inhibition may represent a potential therapeutic strategy to restore muscle function in DMD.
Collapse
Affiliation(s)
- Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Changyou Song
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Di Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhengrong Yuan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, USA
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Farhang-Sardroodi S, Wilkie KP. Mathematical Model of Muscle Wasting in Cancer Cachexia. J Clin Med 2020; 9:jcm9072029. [PMID: 32605273 PMCID: PMC7409297 DOI: 10.3390/jcm9072029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia is a debilitating condition characterized by an extreme loss of skeletal muscle mass, which negatively impacts patients' quality of life, reduces their ability to sustain anti-cancer therapies, and increases the risk of mortality. Recent discoveries have identified the myostatin/activin A/ActRIIB pathway as critical to muscle wasting by inducing satellite cell quiescence and increasing muscle-specific ubiquitin ligases responsible for atrophy. Remarkably, pharmacological blockade of the ActRIIB pathway has been shown to reverse muscle wasting and prolong the survival time of tumor-bearing animals. To explore the implications of this signaling pathway and potential therapeutic targets in cachexia, we construct a novel mathematical model of muscle tissue subjected to tumor-derived cachectic factors. The model formulation tracks the intercellular interactions between cancer cell, satellite cell, and muscle cell populations. The model is parameterized by fitting to colon-26 mouse model data, and the analysis provides insight into tissue growth in healthy, cancerous, and post-cachexia treatment conditions. Model predictions suggest that cachexia fundamentally alters muscle tissue health, as measured by the stem cell ratio, and this is only partially recovered by anti-cachexia treatment. Our mathematical findings suggest that after blocking the myostatin/activin A pathway, partial recovery of cancer-induced muscle loss requires the activation and proliferation of the satellite cell compartment with a functional differentiation program.
Collapse
|
24
|
Szabó Z, Vainio L, Lin R, Swan J, Hulmi JJ, Rahtu-Korpela L, Serpi R, Laitinen M, Pasternack A, Ritvos O, Kerkelä R, Magga J. Systemic blockade of ACVR2B ligands attenuates muscle wasting in ischemic heart failure without compromising cardiac function. FASEB J 2020; 34:9911-9924. [PMID: 32427381 DOI: 10.1096/fj.201903074rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blockade of ACVR2B ligands did not rescue the heart from ischemic injury or alleviate post-MI remodeling and ischemic HF. Collectively, ACVR2B-Fc did not affect cardiomyocyte hypertrophy, fibrosis, angiogenesis, nor factors associated with cardiac regeneration except modification of certain genes involved in metabolism or cell growth/survival. ACVR2B-Fc, however, was able to reduce skeletal muscle wasting in chronic ischemic HF, accompanied by reduced LC3II as a marker of autophagy and increased mTOR signaling and Cited4 expression as markers of physiological hypertrophy in quadriceps muscle. Our results ascertain pharmacological blockade of ACVR2B ligands as a possible therapy for skeletal muscle wasting in ischemic HF. Pharmacological blockade of ACVR2B ligands preserved myofiber size in ischemic HF, but did not compromise cardiac function nor exacerbate cardiac remodeling after ischemic injury.
Collapse
Affiliation(s)
- Zoltán Szabó
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Ruizhu Lin
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Julia Swan
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mika Laitinen
- Department of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
25
|
|
26
|
Jin Q, Qiao C, Li J, Xiao B, Li J, Xiao X. A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice. Skelet Muscle 2019; 9:16. [PMID: 31133057 PMCID: PMC6537384 DOI: 10.1186/s13395-019-0197-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023] Open
Abstract
Background Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily. The GDF11 propeptide, which is derived from the GDF11 precursor protein, blocks the activity of GDF11 and its homolog, myostatin, which are both potent inhibitors of muscle growth. Thus, treatment with GDF11 propeptide may be a potential therapeutic strategy for diseases associated with muscle atrophy like sarcopenia and the muscular dystrophies. Here, we evaluate the impact of GDF11 propeptide-Fc (GDF11PRO-Fc) gene delivery on skeletal muscle in normal and dystrophic adult mice. Methods A pull-down assay was used to obtain physical confirmation of a protein-protein interaction between GDF11PRO-Fc and GDF11 or myostatin. Next, differentiated C2C12 myotubes were treated with AAV6-GDF11PRO-Fc and challenged with GDF11 or myostatin to determine if GDF11PRO-Fc could block GDF11/myostatin-induced myotube atrophy. Localized expression of GDF11PRO-Fc was evaluated via a unilateral intramuscular injection of AAV9-GDF11PRO-Fc into the hindlimb of C57BL/6J mice. In mdx mice, intravenous injection of AAV9-GDF11PRO-Fc was used to achieve systemic expression. The impact of GDF11PRO-Fc on muscle mass, function, and pathological features were assessed. Results GDF11PRO-Fc was observed to bind both GDF11 and myostatin. In C2C12 myotubes, expression of GDF11PRO-Fc was able to mitigate GDF11/myostatin-induced atrophy. Following intramuscular injection in C57BL/6J mice, increased grip strength and localized muscle hypertrophy were observed in the injected hindlimb after 10 weeks. In mdx mice, systemic expression of GDF11PRO-Fc resulted in skeletal muscle hypertrophy without a significant change in cardiac mass after 12 weeks. In addition, grip strength and rotarod latency time were improved. Intramuscular fibrosis was also reduced in treated mdx mice; however, there was no change seen in central nucleation, membrane permeability to serum IgG or serum creatine kinase levels. Conclusions GDF11PRO-Fc induces skeletal muscle hypertrophy and improvements in muscle strength via inhibition of GDF11/myostatin signaling. However, GDF11PRO-Fc does not significantly improve the dystrophic pathology in mdx mice. Electronic supplementary material The online version of this article (10.1186/s13395-019-0197-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Jin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - Chunping Qiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jianbin Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Bin Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Juan Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Lodberg A, van der Eerden BCJ, Boers-Sijmons B, Thomsen JS, Brüel A, van Leeuwen JPTM, Eijken M. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB J 2019; 33:6001-6010. [PMID: 30759349 DOI: 10.1096/fj.201801969rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibitors of the activin receptor signaling pathway (IASPs) have become candidate therapeutics for sarcopenia and bone remodeling disorders because of their ability to increase muscle and bone mass. However, IASPs utilizing activin type IIA and IIB receptors are also potent stimulators of erythropoiesis, a feature that may restrict their usage to anemic patients because of increased risk of venous thromboembolism. Based on the endogenous TGF-β superfamily antagonist follistatin (FST), a molecule in the IASP class, FSTΔHBS-mFc, was generated and tested in both ovariectomized and naive BALB/c and C57BL/6 mice. In ovariectomized mice, FSTΔHBS-mFc therapy dose-dependently increased cancellous bone mass up to 42% and improved bone microstructural indices. For the highest dosage of FSTΔHBS-mFc (30 mg/kg, 2 times/wk), the increase in cancellous bone mass was similar to that observed with parathyroid hormone therapy (1-34, 80 µg/kg, 5 times/wk). Musculus quadriceps femoris mass dose-dependently increased up to 21% in ovariectomized mice. In both ovariectomized and naive mice, FSTΔHBS-mFc therapy did not influence red blood cell count or hematocrit or hemoglobin levels. If the results are reproduced, a human FSTΔHBS-mFc version could be applicable in patients with musculoskeletal conditions irrespective of hematocrit status.-Lodberg, A., van der Eerden, B. C. J., Boers-Sijmons, B., Thomsen, J. S., Brüel, A., van Leeuwen, J. P. T. M., Eijken, M. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice.
Collapse
Affiliation(s)
- Andreas Lodberg
- Department of Pulmonary Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Bianca Boers-Sijmons
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol 2019; 10:42. [PMID: 30761018 PMCID: PMC6363662 DOI: 10.3389/fphys.2019.00042] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Loss of skeletal muscle mass and strength has recently become a hot research topic with the extension of life span and an increasingly sedentary lifestyle in modern society. Maintenance of skeletal muscle mass is considered an essential determinant of muscle strength and function. Myokines are cytokines synthesized and released by myocytes during muscular contractions. They are implicated in autocrine regulation of metabolism in the muscle as well as in the paracrine/endocrine regulation of other tissues and organs including adipose tissue, the liver, and the brain through their receptors. Till date, secretome analysis of human myocyte culture medium has revealed over 600 myokines. In this review article, we summarize our current knowledge of major identified and characterized myokines focusing on their biological activity and function, particularly in muscle mass and function.
Collapse
Affiliation(s)
- Jong Han Lee
- College of Pharmacy, Gachon University, Incheon, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Hee-Sook Jun
- College of Pharmacy, Gachon University, Incheon, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon, South Korea
| |
Collapse
|
29
|
Hentilä J, Nissinen TA, Korkmaz A, Lensu S, Silvennoinen M, Pasternack A, Ritvos O, Atalay M, Hulmi JJ. Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver. Front Physiol 2019; 9:1917. [PMID: 30713500 PMCID: PMC6345696 DOI: 10.3389/fphys.2018.01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1–2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1–2 days after a single sACVR2B-Fc administration in healthy muscles, but protein carbonyls increased (p < 0.05). Two weeks of sACVR2B-Fc administration increased muscle size, which was accompanied by increased UPR markers: GRP78 (p < 0.05), phosphorylated eIF2α (p < 0.01) and HSP47 (p < 0.01). Additionally, protein carbonyls and reduced form of glutathione increased (GSH) (p < 0.05). On the other hand, C26 cancer cachexia manifested decreased UPR markers (p-eIF2α, HSP47, p-JNK; p < 0.05) and antioxidant GSH (p < 0.001) in muscle, whereas the ratio of oxidized to reduced glutathione increased (GSSG/GSH; p < 0.001). Administration of sACVR2B-Fc prevented the decline in GSH and increased some of the UPR indicators in tumor-bearing mice. Additionally, autophagy markers LC3II/I (p < 0.05), Beclin-1 (p < 0.01), and P62 (p < 0.05) increased in the skeletal muscle of tumor-bearing mice. Finally, indicators of UPR, PERK, p-eIF2α and GRP78, increased (p < 0.05), whereas ATF4 was strongly decreased (p < 0.01) in the liver of tumor-bearing mice while sACVR2B-Fc had no effect. Muscle GSH and many of the altered UPR indicators correlated with tumor mass, fat mass and body mass loss. In conclusion, experimental cancer cachexia is accompanied by distinct and tissue-specific changes in proteostasis. Muscle hypertrophy induced by blocking ACVR2B ligands may be accompanied by the induction of UPR and increased protein carbonyls but blocking ACVR2B ligands may upregulate antioxidant protection.
Collapse
Affiliation(s)
- Jaakko Hentilä
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tuuli A Nissinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mika Silvennoinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Tinklenberg JA, Siebers EM, Beatka MJ, Meng H, Yang L, Zhang Z, Ross JA, Ochala J, Morris C, Owens JM, Laing NG, Nowak KJ, Lawlor MW. Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and TgACTA1D286G nemaline myopathy mice. Hum Mol Genet 2019; 27:638-648. [PMID: 29293963 DOI: 10.1093/hmg/ddx431] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous congenital skeletal muscle disease with cytoplasmic rod-like structures (nemaline bodies) in muscle tissue. While weakness in NM is related to contractile abnormalities, myofiber smallness is an additional abnormality in NM that may be treatable. We evaluated the effects of mRK35 (a myostatin inhibitor developed by Pfizer) treatment in the TgACTA1D286G mouse model of NM. mRK35 induced skeletal muscle growth that led to significant increases in animal bodyweight, forelimb grip strength and muscle fiber force, although it should be noted that animal weight and forelimb grip strength in untreated TgACTA1D286G mice was not different from controls. Treatment was also associated with an increase in the number of tubular aggregates found in skeletal muscle. These findings suggest that myostatin inhibition may be useful in promoting muscle growth and strength in Acta1-mutant muscle, while also further establishing the relationship between low levels of myostatin and tubular aggregate formation.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Zizhao Zhang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| |
Collapse
|
31
|
Murphy AP, Greally E, O'Hogain D, Blamire A, Caravan P, Straub V. Noninvasive quantification of fibrosis in skeletal and cardiac muscle in mdx mice using EP3533 enhanced magnetic resonance imaging. Magn Reson Med 2018; 81:2728-2735. [PMID: 30394578 DOI: 10.1002/mrm.27578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE Duchenne muscular dystrophy (DMD) is a genetic condition caused by mutations in the DMD gene leading to muscle degeneration, fatty replacement of muscle cells and fibrosis. A major obstacle to advancing therapeutic research into muscular dystrophies is development of sensitive, noninvasive outcome measures. To date, no validated method to noninvasively quantify fibrosis within skeletal muscle exists. EP3533 is a gadolinium-based MRI contrast agent with an affinity to collagen-1. The purpose of this study was to determine whether EP3533-enhanced MRI could quantify fibrosis in a murine model of DMD (mdx) in muscle. METHODS Mdx (n = 8) and control mice (BL10; n = 5) underwent contrast-enhanced MRI acquisitions with EP3533. T1 mapping pre- and postcontrast was performed in skeletal and cardiac muscle. Post-MRI the tibialis anterior (TA) and gastrocnemius (GCN) muscles and the heart were removed for fibrosis quantification by means of Masson's trichrome staining and the hydroxyproline assay. RESULTS Significant differences in postcontrast R1 were demonstrated between mdx and BL10 mice using EP3533 (cardiac P = 0.02, GCN P = 0.04, TA P = 0.04). Change in R1 from baseline following EP3533 administration correlated strongly to hydroxyproline levels (GCN: r = 0.83, P = 0.001; TA: r = 0.73, P = 0.01). CONCLUSIONS This study provides evidence for the suitability of EP3533 in the quantification of muscular fibrosis in mdx mice and demonstrated that EP3533-derived measurements correlated strongly to ex vivo fibrosis measurement.
Collapse
Affiliation(s)
- Alexander Peter Murphy
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, The International Centre for Life, Newcastle University, Central Parkway, Newcastle Upon Tyne, United Kingdom
| | - Elizabeth Greally
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, The International Centre for Life, Newcastle University, Central Parkway, Newcastle Upon Tyne, United Kingdom
| | - Dara O'Hogain
- Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Peter Caravan
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, The International Centre for Life, Newcastle University, Central Parkway, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
32
|
Iskenderian A, Liu N, Deng Q, Huang Y, Shen C, Palmieri K, Crooker R, Lundberg D, Kastrapeli N, Pescatore B, Romashko A, Dumas J, Comeau R, Norton A, Pan J, Rong H, Derakhchan K, Ehmann DE. Myostatin and activin blockade by engineered follistatin results in hypertrophy and improves dystrophic pathology in mdx mouse more than myostatin blockade alone. Skelet Muscle 2018; 8:34. [PMID: 30368252 PMCID: PMC6204036 DOI: 10.1186/s13395-018-0180-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/14/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Myostatin antagonists are being developed as therapies for Duchenne muscular dystrophy due to their strong hypertrophic effects on skeletal muscle. Engineered follistatin has the potential to combine the hypertrophy of myostatin antagonism with the anti-inflammatory and anti-fibrotic effects of activin A antagonism. METHODS Engineered follistatin was administered to C57BL/6 mice for 4 weeks, and muscle mass and myofiber size was measured. In the mdx model, engineered follistatin was dosed for 12 weeks in two studies comparing to an Fc fusion of the activin IIB receptor or an anti-myostatin antibody. Functional measurements of grip strength and tetanic force were combined with tissue analysis for markers of necrosis, inflammation, and fibrosis to evaluate improvement in dystrophic pathology. RESULTS In wild-type and mdx mice, dose-dependent increases in muscle mass and quadriceps myofiber size were observed for engineered follistatin. In mdx, increases in grip strength and tetanic force were combined with improvements in muscle markers for necrosis, inflammation, and fibrosis. Improvements in dystrophic pathology were greater for engineered follistatin than the anti-myostatin antibody. CONCLUSIONS Engineered follistatin generated hypertrophy and anti-fibrotic effects in the mdx model.
Collapse
Affiliation(s)
- Andrea Iskenderian
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Nan Liu
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Qingwei Deng
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Yan Huang
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Chuan Shen
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Kathleen Palmieri
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Robert Crooker
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Dianna Lundberg
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Niksa Kastrapeli
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Brian Pescatore
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Alla Romashko
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - John Dumas
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Robert Comeau
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Angela Norton
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Jing Pan
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Haojing Rong
- Nonclinical Development, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Katayoun Derakhchan
- Nonclinical Development, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - David E Ehmann
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA. .,Drug Discovery, Shire, Cambridge, MA, USA.
| |
Collapse
|
33
|
Zhou S, Qian B, Wang L, Zhang C, Hogan MV, Li H. Altered bone-regulating myokine expression in skeletal muscle Of Duchenne muscular dystrophy mouse models. Muscle Nerve 2018; 58:573-582. [PMID: 30028902 DOI: 10.1002/mus.26195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) has been well characterized as a disease that affects both skeletal muscle and bone. The pathophysiology responsible for the deficits in bone tissue is still unclear. METHODS Quantitative reverse-transcription polymerase chain reaction and Western blot analyses of known myokines from skeletal muscle were performed on dystrophic mouse models and wild-type (WT) controls to identify differentially expressed bone-regulating myokines. RESULTS Twenty-four of 43 myokine genes demonstrated significantly different mRNA expression in the skeletal muscles of dystrophic mice when compared with muscles of WT mice. Several differently expressed bone-regulating myokine genes were identified, and their protein levels were also verified by Western blot. CONCLUSIONS Dystrophic skeletal muscle demonstrated a significantly altered myokine gene expression profile. mRNA and protein levels of several bone-regulating myokines were significantly altered in dystrophic skeletal muscle, which suggests pathological role of bone-regulating myokines on bone homeostasis in DMD. Muscle Nerve 58: 573-582, 2018.
Collapse
Affiliation(s)
- Shumin Zhou
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, USA.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Baoli Qian
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, USA
| | - Ling Wang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Macalus V Hogan
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, USA
| | - Hongshuai Li
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder of skeletal fragility and more recently muscle weakness. This review highlights our current knowledge of the impact of compromised OI muscle function on muscle-bone interactions and skeletal strength in OI. RECENT FINDINGS The ramifications of inherent muscle weakness in OI muscle-bone interactions are just beginning to be elucidated. Studies in patients and in OI mouse models implicate altered mechanosensing, energy metabolism, mitochondrial dysfunction, and paracrine/endocrine crosstalk in the pathogenesis of OI. Compromised muscle-bone unit impacts mechanosensing and the ability of OI muscle and bone to respond to physiotherapeutic and pharmacologic treatment strategies. Muscle and bone are both compromised in OI, making it essential to understand the mechanisms responsible for both impaired muscle and bone functions and their interdependence, as this will expand and drive new physiotherapeutic and pharmacological approaches to treat OI and other musculoskeletal disorders.
Collapse
Affiliation(s)
- Charlotte L Phillips
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
- Department of Child Health, University of Missouri, Columbia, MO, 65211, USA.
| | - Youngjae Jeong
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| |
Collapse
|
35
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
36
|
Formicola L, Pannérec A, Correra RM, Gayraud-Morel B, Ollitrault D, Besson V, Tajbakhsh S, Lachey J, Seehra JS, Marazzi G, Sassoon DA. Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle. Front Physiol 2018; 9:515. [PMID: 29881353 PMCID: PMC5978452 DOI: 10.3389/fphys.2018.00515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70–80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration.
Collapse
Affiliation(s)
- Luigi Formicola
- UMR S 1166 French National Institute of Health and Medical Research, France and the Institute of Cardiometabolism and Nutrition, Stem Cells and Regenerative Medicine, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Alice Pannérec
- UMR S 1166 French National Institute of Health and Medical Research, France and the Institute of Cardiometabolism and Nutrition, Stem Cells and Regenerative Medicine, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Rosa Maria Correra
- UMR S 1166 French National Institute of Health and Medical Research, France and the Institute of Cardiometabolism and Nutrition, Stem Cells and Regenerative Medicine, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Barbara Gayraud-Morel
- Centre National de la Recherche Scientifique URA 2578, Institut Pasteur, Stem Cells and Development, Paris, France
| | - David Ollitrault
- UMR S 1166 French National Institute of Health and Medical Research, France and the Institute of Cardiometabolism and Nutrition, Stem Cells and Regenerative Medicine, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Vanessa Besson
- UMR S 1166 French National Institute of Health and Medical Research, France and the Institute of Cardiometabolism and Nutrition, Stem Cells and Regenerative Medicine, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Shahragim Tajbakhsh
- Centre National de la Recherche Scientifique URA 2578, Institut Pasteur, Stem Cells and Development, Paris, France
| | - Jennifer Lachey
- Acceleron Pharma, Cambridge, MA, United States.,Ember Therapeutics, Watertown, MA, United States
| | - Jasbir S Seehra
- Acceleron Pharma, Cambridge, MA, United States.,Ember Therapeutics, Watertown, MA, United States
| | - Giovanna Marazzi
- UMR S 1166 French National Institute of Health and Medical Research, France and the Institute of Cardiometabolism and Nutrition, Stem Cells and Regenerative Medicine, University of Pierre and Marie Curie Paris VI, Paris, France
| | - David A Sassoon
- UMR S 1166 French National Institute of Health and Medical Research, France and the Institute of Cardiometabolism and Nutrition, Stem Cells and Regenerative Medicine, University of Pierre and Marie Curie Paris VI, Paris, France
| |
Collapse
|
37
|
Jeong Y, Daghlas SA, Kahveci AS, Salamango D, Gentry BA, Brown M, Rector RS, Pearsall RS, Phillips CL. Soluble activin receptor type IIB decoy receptor differentially impacts murine osteogenesis imperfecta muscle function. Muscle Nerve 2018; 57:294-304. [PMID: 28555931 PMCID: PMC5702601 DOI: 10.1002/mus.25706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is characterized by skeletal fragility and muscle weakness. In this study we investigated the effects of soluble activin type IIB receptor (sActRIIB-mFc) on muscle mass and function in 2 distinct mouse models of OI: osteogenesis imperfecta murine (oim) and +/G610C. METHODS Wild-type (WT), +/G610C, and oim/oim mice were treated from 2 to 4 months of age with Tris-buffered saline (vehicle) or sActRIIB-mFc and their hindlimb muscles evaluated for mass, morphology, and contractile function. RESULTS sActRIIB-mFc-treated WT, +/G610C, and oim/oim mice had increased hindlimb muscle weights and myofiber cross-sectional area compared with vehicle-treated counterparts. sActRIIB-mFc-treated oim/oim mice also exhibited increased contractile function relative to vehicle-treated counterparts. DISCUSSION Blocking endogenous ActRIIB was effective at increasing muscle size in mouse models of OI, and increasing contractile function in oim/oim mice. ActRIIB inhibitors may provide a potential mutation-specific therapeutic option for compromised muscle function in OI. Muscle Nerve 57: 294-304, 2018.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Salah A. Daghlas
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Alp S. Kahveci
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Daniel Salamango
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Bettina A. Gentry
- Department of Veterinary Pathology, University of Missouri, Columbia MO 65211
| | - Marybeth Brown
- Department of Biomedical Science and Physical Therapy Program, University of Missouri, Columbia MO 65211
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | | | | |
Collapse
|
38
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
St Andre M, Johnson M, Bansal PN, Wellen J, Robertson A, Opsahl A, Burch PM, Bialek P, Morris C, Owens J. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skelet Muscle 2017; 7:25. [PMID: 29121992 PMCID: PMC5679155 DOI: 10.1186/s13395-017-0141-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients’ functional decline. Methods A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody’s effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Results Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. Conclusions We demonstrated that the potent anti-myostatin antibody mRK35 and its clinical analog, domagrozumab, were able to induce muscle anabolic activity in both rodents, including the mdx mouse model of DMD, and non-human primates. A Phase 2, potentially registrational, clinical study with domagrozumab in DMD patients is currently underway.
Collapse
Affiliation(s)
- Michael St Andre
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA. .,NIGMS Training Program in Biomolecular Pharmacology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Mark Johnson
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Prashant N Bansal
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA.,Present Address: PAREXEL Informatics, Billerica, MA, USA
| | - Jeremy Wellen
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | | | - Alan Opsahl
- Investigative Pathology, Pfizer Inc., Groton, CT, USA
| | - Peter M Burch
- Research and Development Drug Safety, Pfizer Inc., Groton, CT, USA.,Present Address: Summit Therapeutics, Cambridge, MA, USA
| | - Peter Bialek
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA.,Present Address: Proteostasis Therapeutics, Cambridge, MA, USA
| | - Carl Morris
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA.,Present Address: Solid Biosciences, Cambridge, MA, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
40
|
Fortes MAS, Scervino MVM, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Curi R. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats. Front Physiol 2017; 8:830. [PMID: 29123487 PMCID: PMC5662641 DOI: 10.3389/fphys.2017.00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.
Collapse
Affiliation(s)
- Marco A S Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria V M Scervino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriel N Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kaio F Vitzel
- School of Health Sciences, College of Health, Massey University, Albany, New Zealand
| | - Carlos H da Justa Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
41
|
Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. Proc Natl Acad Sci U S A 2017; 114:E5266-E5275. [PMID: 28607086 DOI: 10.1073/pnas.1620013114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle.
Collapse
|
42
|
Quattrocelli M, Spencer MJ, McNally EM. Outside in: The matrix as a modifier of muscular dystrophy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:572-579. [PMID: 28011285 PMCID: PMC5262521 DOI: 10.1016/j.bbamcr.2016.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies are genetic conditions leading to muscle degeneration and often, impaired regeneration. Duchenne Muscular Dystrophy is a prototypical form of muscular dystrophy, and like other forms of genetically inherited muscle diseases, pathological progression is variable. Variability in muscular dystrophy can arise from differences in the manner in which the primary mutation impacts the affected protein's function; however, clinical heterogeneity also derives from secondary mutations in other genes that can enhance or reduce pathogenic features of disease. These genes, called genetic modifiers, regulate the pathophysiological context of dystrophic degeneration and regeneration. Understanding the mechanistic links between genetic modifiers and dystrophic progression sheds light on pathologic remodeling, and provides novel avenues to therapeutically intervene to reduce muscle degeneration. Based on targeted genetic approaches and unbiased genomewide screens, several modifiers have been identified for muscular dystrophy, including extracellular agonists of signaling cascades. This review will focus on identification and possible mechanisms of recently identified modifiers for muscular dystrophy, including osteopontin, latent TGFβ binding protein 4 (LTBP4) and Jagged1. Moreover, we will review the investigational approaches that aim to target modifier pathways and thereby counteract dystrophic muscle wasting.
Collapse
Affiliation(s)
| | - Melissa J Spencer
- Dept of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
43
|
Nielsen C, Potter RM, Borowy C, Jacinto K, Kumar R, Carlson CG. Postnatal Hyperplasic Effects of ActRIIB Blockade in a Severely Dystrophic Muscle. J Cell Physiol 2017; 232:1774-1793. [PMID: 27859236 DOI: 10.1002/jcp.25694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023]
Abstract
The efficacy of two ActRIIB ligand-trapping agents (RAP-031 and RAP-435) in treating muscular dystrophy was examined by determining their morphological effects on the severely dystrophic triangularis sterni (TS) muscle of the mdx mouse, a model for Duchenne muscular dystrophy. These agents trap all endogenous ligands to the ActRIIB receptor and thereby block myostatin signaling in a highly selective manner. Short-term (1 month) and long-term (3 months) in vivo treatment of 1-month-old mdx mice increased myonuclei and fiber cross section (FCS) density but did not alter individual fiber size. Vehicle-treated mdx mice exhibited age-dependent increases in myonuclei and FCS density, and age-dependent reductions in centronucleation that were each enhanced by treatment with RAP-435. Distributions of FCS area (FCSA) in the mdx TS were 90% identical to those from untreated age-matched nondystrophic mice and were unaltered by the substantial fiber hyperplasia observed with age and RAP-435 treatment. These results were inconsistent with injury-induced fiber regeneration which produces altered FCSA distributions characterized by a distinct class of smaller regenerated fibers. Nondystrophic mice exhibited a constant postnatal density of fiber cross sections and myonuclei, and RAP-435 treatment of nondystrophic mice increased TS mean FCSA but had no effects on myonuclei or FCS density. These results demonstrating a continual postnatal proliferation and fusion of satellite cells and a response to myostatin blockade characteristic of developing prenatal muscle suggest that the lack of dystrophin directly results in unrestrained postnatal satellite cell activation that is not necessarily dependent upon prior fiber degeneration. J. Cell. Physiol. 232: 1774-1793, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cory Nielsen
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - Ross M Potter
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - Christopher Borowy
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - Kimberly Jacinto
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - Ravi Kumar
- Acceleron Pharma, Inc., Cambridge, Massachusetts
| | - C George Carlson
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| |
Collapse
|
44
|
BAYARSAIKHAN O, KAWAI N, MORI H, KINOUCHI N, NIKAWA T, TANAKA E. Co-Administration of Myostatin-Targeting siRNA and ActRIIB-Fc Fusion Protein Increases Masseter Muscle Mass and Fiber Size. J Nutr Sci Vitaminol (Tokyo) 2017; 63:244-248. [DOI: 10.3177/jnsv.63.244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Od BAYARSAIKHAN
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Nobuhiko KAWAI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiroyo MORI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Nao KINOUCHI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takeshi NIKAWA
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Eiji TANAKA
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
45
|
Campbell C, McMillan HJ, Mah JK, Tarnopolsky M, Selby K, McClure T, Wilson DM, Sherman ML, Escolar D, Attie KM. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve 2016; 55:458-464. [PMID: 27462804 DOI: 10.1002/mus.25268] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/13/2016] [Accepted: 07/26/2016] [Indexed: 11/07/2022]
Abstract
INTRODUCTION ACE-031 is a fusion protein of activin receptor type IIB and IgG1-Fc, which binds myostatin and related ligands. It aims to disrupt the inhibitory effect on muscle development and provide potential therapy for myopathies like Duchenne muscular dystrophy (DMD). METHODS ACE-031 was administered subcutaneously every 2-4 weeks to DMD boys in a randomized, double-blind, placebo-controlled, ascending-dose trial. The primary objective was safety evaluation. Secondary objectives included characterization of pharmacokinetics and pharmacodynamics. RESULTS ACE-031 was not associated with serious or severe adverse events. The study was stopped after the second dosing regimen due to potential safety concerns of epistaxis and telangiectasias. A trend for maintenance of the 6-minute walk test (6MWT) distance in the ACE-031 groups compared with a decline in the placebo group (not statistically significant) was noted, as was a trend for increased lean body mass and bone mineral density (BMD) and reduced fat mass. CONCLUSION ACE-031 use demonstrated trends for pharmacodynamic effects on lean mass, fat mass, BMD, and 6MWT. Non-muscle-related adverse events contributed to the decision to discontinue the study. Myostatin inhibition is a promising therapeutic approach for DMD. Muscle Nerve 55: 458-464, 2017.
Collapse
Affiliation(s)
- Craig Campbell
- Pediatrics, Epidemiology and Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean K Mah
- Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | | | - Kathryn Selby
- British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ty McClure
- Acceleron Pharma, Cambridge, Massachusetts, USA
| | | | | | - Diana Escolar
- Kennedy Krieger Institute, Johns Hopkins Medical School, Baltimore, Maryland, USA
| | | |
Collapse
|
46
|
Lu-Nguyen N, Malerba A, Popplewell L, Schnell F, Hanson G, Dickson G. Systemic Antisense Therapeutics for Dystrophin and Myostatin Exon Splice Modulation Improve Muscle Pathology of Adult mdx Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:15-28. [PMID: 28325281 PMCID: PMC5363451 DOI: 10.1016/j.omtn.2016.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023]
Abstract
Antisense-mediated exon skipping is a promising approach for the treatment of Duchenne muscular dystrophy (DMD), a rare life-threatening genetic disease due to dystrophin deficiency. Such an approach can restore the disrupted reading frame of dystrophin pre-mRNA, generating a truncated form of the protein. Alternatively, antisense therapy can be used to induce destructive exon skipping of myostatin pre-mRNA, knocking down myostatin expression to enhance muscle strength and reduce fibrosis. We have reported previously that intramuscular or intraperitoneal antisense administration inducing dual exon skipping of dystrophin and myostatin pre-mRNAs was beneficial in mdx mice, a mouse model of DMD, although therapeutic effects were muscle type restricted, possibly due to the delivery routes used. Here, following systemic intravascular antisense treatment, muscle strength and body activity of treated adult mdx mice increased to the levels of healthy controls. Importantly, hallmarks of muscular dystrophy were greatly improved in mice receiving the combined exon-skipping therapy, as compared to those receiving dystrophin antisense therapy alone. Our results support the translation of antisense therapy for dystrophin restoration and myostatin inhibition into the clinical setting for DMD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Fred Schnell
- Sarepta Therapeutics Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Gunnar Hanson
- Sarepta Therapeutics Inc., 215 First Street, Cambridge, MA 02142, USA
| | - George Dickson
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
47
|
Hulmi JJ, Hentilä J, DeRuisseau KC, Oliveira BM, Papaioannou KG, Autio R, Kujala UM, Ritvos O, Kainulainen H, Korkmaz A, Atalay M. Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress. Free Radic Biol Med 2016; 99:308-322. [PMID: 27554968 DOI: 10.1016/j.freeradbiomed.2016.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, a model of DMD, under basal conditions and in response to seven weeks of voluntary exercise and/or activin receptor IIB ligand blocking using soluble activin receptor-Fc (sAcvR2B-Fc) administration. In conjunction with reduced muscle strength, mdx muscle displayed greater levels of UPR/ER-pathway indicators including greater protein levels of IRE1α, PERK and Atf6b mRNA. Downstream to IRE1α and PERK, spliced Xbp1 mRNA and phosphorylation of eIF2α, were also increased. Most of the cytoplasmic and ER chaperones and mitochondrial UPR markers were unchanged in mdx muscle. Oxidized glutathione was greater in mdx and was associated with increases in lysine acetylated proteome and phosphorylated sirtuin 1. Exercise increased oxidative stress when performed independently or combined with sAcvR2B-Fc administration. Although neither exercise nor sAcvR2B-Fc administration imparted a clear effect on ER stress/UPR pathways or heat shock proteins, sAcvR2B-Fc administration increased protein expression levels of GRP78/BiP, a triggering factor for ER stress/UPR activation and TxNIP, a redox-regulator of ER stress-induced inflammation. In conclusion, the ER stress and UPR are increased in mdx muscle. However, these processes are not distinctly improved by voluntary exercise or blocking activin receptor IIB ligands and thus do not appear to be optimal therapeutic choices for improving proteostasis in DMD.
Collapse
MESH Headings
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Activin Receptors, Type II/antagonists & inhibitors
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Gene Expression Regulation
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Phosphorylation/drug effects
- Physical Conditioning, Animal
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteostasis/drug effects
- Proteostasis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Thioredoxins/genetics
- Thioredoxins/metabolism
- Unfolded Protein Response/drug effects
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Juha J Hulmi
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.
| | - Jaakko Hentilä
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Keith C DeRuisseau
- Syracuse University, Department of Exercise Science, 820 Comstock Ave., 201 WB, Syracuse, NY, USA; Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Bernardo M Oliveira
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Konstantinos G Papaioannou
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Reija Autio
- School of Health Sciences, University of Tampere, Medisiinarinkatu 3, FI-33014, Finland
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, FI-40014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Heikki Kainulainen
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| |
Collapse
|
48
|
Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-β Signalling Network in Muscle Development, Adaptation and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:97-131. [PMID: 27003398 DOI: 10.1007/978-3-319-27511-6_5] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle possesses remarkable ability to change its size and force-producing capacity in response to physiological stimuli. Impairment of the cellular processes that govern these attributes also affects muscle mass and function in pathological conditions. Myostatin, a member of the TGF-β family, has been identified as a key regulator of muscle development, and adaptation in adulthood. In muscle, myostatin binds to its type I (ALK4/5) and type II (ActRIIA/B) receptors to initiate Smad2/3 signalling and the regulation of target genes that co-ordinate the balance between protein synthesis and degradation. Interestingly, evidence is emerging that other TGF-β proteins act in concert with myostatin to regulate the growth and remodelling of skeletal muscle. Consequently, dysregulation of TGF-β proteins and their associated signalling components is increasingly being implicated in muscle wasting associated with chronic illness, ageing, and inactivity. The growing understanding of TGF-β biology in muscle, and its potential to advance the development of therapeutics for muscle-related conditions is reviewed here.
Collapse
Affiliation(s)
- Justin L Chen
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia.,Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Timothy D Colgan
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Walton
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Neurology, School of Medicine, The University of Washington, Seattle, WA, USA.
| | - Craig A Harrison
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
49
|
Marzuca-Nassr GN, Vitzel KF, De Sousa LG, Murata GM, Crisma AR, Rodrigues Junior CF, Abreu P, Torres RP, Mancini-Filho J, Hirabara SM, Newsholme P, Curi R. Effects of high EPA and high DHA fish oils on changes in signaling associated with protein metabolism induced by hindlimb suspension in rats. Physiol Rep 2016; 4:e12958. [PMID: 27650250 PMCID: PMC5037913 DOI: 10.14814/phy2.12958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
The effects of either eicosapentaenoic (EPA)- or docosahexaenoic (DHA)-rich fish oils on hindlimb suspension (HS)-induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.w.) with mineral oil (MO) or high EPA or high DHA fish oils were performed in adult rats. After 2 weeks, the animals were subjected to HS for further 2 weeks. The treatments were maintained alongside HS At the end of 4 weeks, we evaluated: body weight gain, muscle mass and fat depots, composition of fatty acids, cross-sectional areas (CSA) of the soleus muscle and soleus muscle fibers, activities of cathepsin L and 26S proteasome, and content of carbonylated proteins in the soleus muscle. Signaling pathway activities associated with protein synthesis (Akt, p70S6K, S6, 4EBP1, and GSK3-beta) and protein degradation (atrogin-1/MAFbx, and MuRF1) were evaluated. HS decreased muscle mass, CSA of soleus muscle and soleus muscle fibers, and altered signaling associated with protein synthesis (decreased) and protein degradation (increased). The treatment with either fish oil decreased the ratio of omega-6/omega-3 fatty acids and changed protein synthesis-associated signaling. EPA-rich fish oil attenuated the changes induced by HS on 26S proteasome activity, CSA of soleus muscle fibers, and levels of p-Akt, total p70S6K, p-p70S6K/total p70S6K, p-4EBP1, p-GSK3-beta, p-ERK2, and total ERK 1/2 proteins. DHA-rich fish oil attenuated the changes induced by HS on p-4EBP1 and total ERK1 levels. The effects of EPA-rich fish oil on protein synthesis signaling were more pronounced. Both EPA- and DHA-rich fish oils did not impact skeletal muscle mass loss induced by non-inflammatory HS.
Collapse
Affiliation(s)
- Gabriel Nasri Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil Massey Institute of Food Science and Technology, College of Health Massey University, Albany, New Zealand
| | - Luís Gustavo De Sousa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Gilson M Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | | | - Phablo Abreu
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Rosângela Pavan Torres
- Department of Lipids Laboratory, Food Science & Nutrition, Faculty of Pharmaceutical Science University of São Paulo, São Paulo, Brazil
| | - Jorge Mancini-Filho
- Department of Lipids Laboratory, Food Science & Nutrition, Faculty of Pharmaceutical Science University of São Paulo, São Paulo, Brazil
| | - Sandro M Hirabara
- Institute of Physical Activity Sciences and Sport, Cruzeiro do Sul University, São Paulo, Brazil
| | - Philip Newsholme
- School of Biomedical Sciences, CHIRI Biosciences Curtin University, Perth, Australia
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Ma Y, Li X, Zhang H, Ou Y, Zhang Z, Li S, Wu F, Sheng Z, Liao E. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density. Endocr Res 2016; 41:223-8. [PMID: 27144806 DOI: 10.3109/07435800.2015.1044609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. METHODS A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). RESULTS In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (P<0.01). The osteoporotic women were older than women without osteoporosis (P<0.01). There were no differences between two groups with regard to serum BAP, CTX, (25OH-D), PTH, lipids and myostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. CONCLUSIONS Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.
Collapse
Affiliation(s)
- Yulin Ma
- a Department of Endocrinology , Affiliated Xiaolan Hospital of Southern Medical University , Zhongshan , PR China
| | - Xianping Li
- b Department of Clinical Laboratory , the Second Xiang-Ya Hospital, Central South University , Changsha , PR China
| | - Hongbin Zhang
- c Institute of Metabolism and Endocrinology, the Second Xiang-Ya Hospital , Central South University , Changsha , PR China
| | - Yangna Ou
- d Hospital Infection Control Center, the Second Xiang-Ya Hospital , Central South University , Changsha , PR China
| | - Zhimin Zhang
- c Institute of Metabolism and Endocrinology, the Second Xiang-Ya Hospital , Central South University , Changsha , PR China
| | - Shuang Li
- c Institute of Metabolism and Endocrinology, the Second Xiang-Ya Hospital , Central South University , Changsha , PR China
| | - Feng Wu
- c Institute of Metabolism and Endocrinology, the Second Xiang-Ya Hospital , Central South University , Changsha , PR China
| | - Zhifeng Sheng
- c Institute of Metabolism and Endocrinology, the Second Xiang-Ya Hospital , Central South University , Changsha , PR China
| | - Eryuan Liao
- c Institute of Metabolism and Endocrinology, the Second Xiang-Ya Hospital , Central South University , Changsha , PR China
| |
Collapse
|