1
|
Ma H, Suleman M, Zhang F, Cao T, Wen S, Sun D, Chen L, Jiang B, Wang Y, Lin F, Wang J, Li B, Li Q. Pirin Inhibits FAS-Mediated Apoptosis to Support Colorectal Cancer Survival. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301476. [PMID: 38148593 PMCID: PMC10933653 DOI: 10.1002/advs.202301476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Resistance to immunotherapy in colorectal cancer (CRC) is associated with obstruction of FAS (Apo-1 or CD95)-dependent apoptosis, a hallmark of cancer. Here it is demonstrated that the upregulation of pirin (PIR) protein in colon cancers promotes tumorigenesis. Knockout or inhibition of PIR dramatically increases FAS expression, FAS-dependent apoptosis and attenuates colorectal tumor formation in mice. Specifically, NFκB2 is a direct transcriptional activator of FAS and robustly suppressed by PIR in dual mechanisms. One is the disruption of NFκB2 complex (p52-RELB) association with FAS promoter, the other is the inhibition of NIK-mediated NFκB2 activation and nuclear translocation, leading to the inability of active NFκB2 complex toward the transcription of FAS. Furthermore, PIR interacts with FAS and recruits it in cytosol, preventing its membrane translocation and assembling. Importantly, knockdown or knockout of PIR dramatically sensitizes cells to FAS mAb- or active CD8+ T cells-triggered cell death. Taken together, a PIR-NIK-NFκB2-FAS survival pathway is established, which plays a key role in supporting CRC survival.
Collapse
Affiliation(s)
- Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Muhammad Suleman
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Tingyan Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Shixiong Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Dachao Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Lili Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Yue Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| |
Collapse
|
2
|
Ahsan T, Shoily SS, Ahmed T, Sajib AA. Role of the redox state of the Pirin-bound cofactor on interaction with the master regulators of inflammation and other pathways. PLoS One 2023; 18:e0289158. [PMID: 38033031 PMCID: PMC10688961 DOI: 10.1371/journal.pone.0289158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 12/02/2023] Open
Abstract
Persistent cellular stress induced perpetuation and uncontrolled amplification of inflammatory response results in a shift from tissue repair toward collateral damage, significant alterations of tissue functions, and derangements of homeostasis which in turn can lead to a large number of acute and chronic pathological conditions, such as chronic heart failure, atherosclerosis, myocardial infarction, neurodegenerative diseases, diabetes, rheumatoid arthritis, and cancer. Keeping the vital role of balanced inflammation in maintaining tissue integrity in mind, the way to combating inflammatory diseases may be through identification and characterization of mediators of inflammation that can be targeted without hampering normal body function. Pirin (PIR) is a non-heme iron containing protein having two different conformations depending on the oxidation state of the iron. Through exploration of the Pirin interactome and using molecular docking approaches, we identified that the Fe2+-bound Pirin directly interacts with BCL3, NFKBIA, NFIX and SMAD9 with more resemblance to the native binding pose and higher affinity than the Fe3+-bound form. In addition, Pirin appears to have a function in the regulation of inflammation, the transition between the canonical and non-canonical NF-κB pathways, and the remodeling of the actin cytoskeleton. Moreover, Pirin signaling appears to have a critical role in tumor invasion and metastasis, as well as metabolic and neuro-pathological complications. There are regulatory variants in PIR that can influence expression of not only PIR but also other genes, including VEGFD and ACE2. Disparity exists between South Asian and European populations in the frequencies of variant alleles at some of these regulatory loci that may lead to differential occurrence of Pirin-mediated pathogenic conditions.
Collapse
Affiliation(s)
- Tamim Ahsan
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka, Bangladesh
| | - Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Tasnim Ahmed
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Penas C, Arroyo-Berdugo Y, Apraiz A, Rasero J, Muñoa-Hoyos I, Andollo N, Cancho-Galán G, Izu R, Gardeazabal J, Ezkurra PA, Subiran N, Alvarez-Dominguez C, Alonso S, Bosserhoff AK, Asumendi A, Boyano MD. Pirin is a prognostic marker of human melanoma that dampens the proliferation of malignant cells by downregulating JARID1B/KDM5B expression. Sci Rep 2023; 13:9561. [PMID: 37308689 DOI: 10.1038/s41598-023-36684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Originally considered to act as a transcriptional co-factor, Pirin has recently been reported to play a role in tumorigenesis and the malignant progression of many tumors. Here, we have analyzed the diagnostic and prognostic value of Pirin expression in the early stages of melanoma, and its role in the biology of melanocytic cells. Pirin expression was analyzed in a total of 314 melanoma biopsies, correlating this feature with the patient's clinical course. Moreover, PIR downregulated primary melanocytes were analyzed by RNA sequencing, and the data obtained were validated in human melanoma cell lines overexpressing PIR by functional assays. The immunohistochemistry multivariate analysis revealed that early melanomas with stronger Pirin expression were more than twice as likely to develop metastases during the follow-up. Transcriptome analysis of PIR downregulated melanocytes showed a dampening of genes involved in the G1/S transition, cell proliferation, and cell migration. In addition, an in silico approach predicted that JARID1B as a potential transcriptional regulator that lies between PIR and its downstream modulated genes, which was corroborated by co-transfection experiments and functional analysis. Together, the data obtained indicated that Pirin could be a useful marker for the metastatic progression of melanoma and that it participates in the proliferation of melanoma cells by regulating the slow-cycling JARID1B gene.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA, 15213, USA
| | - Iraia Muñoa-Hoyos
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | | | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Basurto University Hospital, 48013, Bilbo, Spain
| | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Pilar A Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Carmen Alvarez-Dominguez
- MEDONLINE Multidisciplinary Research Group, Faculty of Health Sciences and Faculty of Education, International University of La Rioja, 26006, Logroño, Spain
| | - Santos Alonso
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940, Leioa, Spain
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054, Erlangen, Germany
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain.
| |
Collapse
|
4
|
Colón-Bolea P, García-Gómez R, Casar B. RAC1 Activation as a Potential Therapeutic Option in Metastatic Cutaneous Melanoma. Biomolecules 2021; 11:1554. [PMID: 34827551 PMCID: PMC8615836 DOI: 10.3390/biom11111554] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Metastasis is a complex process by which cancer cells escape from the primary tumor to colonize distant organs. RAC1 is a member of the RHO family of small guanosine triphosphatases that plays an important role in cancer migration, invasion, angiogenesis and metastasis. RAC1 activation has been related to most cancers, such as cutaneous melanoma, breast, lung, and pancreatic cancer. RAC1P29S driver mutation appears in a significant number of cutaneous melanoma cases. Likewise, RAC1 is overexpressed or hyperactivated via signaling through oncogenic cell surface receptors. Thus, targeting RAC1 represents a promising strategy for cutaneous melanoma therapy, as well as for inhibition of other signaling activation that promotes resistance to targeted therapies. In this review, we focus on the role of RAC1 in metastatic cutaneous melanoma emphasizing the anti-metastatic potential of RAC1- targeting drugs.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Li B, Kong X, Post H, Raaijmakers L, Peeper DS, Altelaar M. Proteomics and Phosphoproteomics Profiling of Drug-Addicted BRAFi-Resistant Melanoma Cells. J Proteome Res 2021; 20:4381-4392. [PMID: 34343000 PMCID: PMC8419860 DOI: 10.1021/acs.jproteome.1c00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Acquired resistance to MAPK inhibitors limits the clinical efficacy in melanoma treatment. We and others have recently shown that BRAF inhibitor (BRAFi)-resistant melanoma cells can develop a dependency on the therapeutic drugs to which they have acquired resistance, creating a vulnerability for these cells that can potentially be exploited in cancer treatment. In drug-addicted melanoma cells, it was shown that this induction of cell death was preceded by a specific ERK2-dependent phenotype switch; however, the underlying molecular mechanisms are largely lacking. To increase the molecular understanding of this drug dependency, we applied a mass spectrometry-based proteomic approach on BRAFi-resistant BRAFMUT 451Lu cells, in which ERK1, ERK2, and JUNB were silenced separately using CRISPR-Cas9. Inactivation of ERK2 and, to a lesser extent, JUNB prevents drug addiction in these melanoma cells, while, conversely, knockout of ERK1 fails to reverse this phenotype, showing a response similar to that of control cells. Our analysis reveals that ERK2 and JUNB share comparable proteome responses dominated by reactivation of cell division. Importantly, we find that EMT activation in drug-addicted melanoma cells upon drug withdrawal is affected by silencing ERK2 but not ERK1. Moreover, transcription factor (regulator) enrichment shows that PIR acts as an effector of ERK2 and phosphoproteome analysis reveals that silencing of ERK2 but not ERK1 leads to amplification of GSK3 kinase activity. Our results depict possible mechanisms of drug addiction in melanoma, which may provide a guide for therapeutic strategies in drug-resistant melanoma.
Collapse
Affiliation(s)
- Bohui Li
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Xiangjun Kong
- Division
of Molecular Oncology and Immunology, The
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Harm Post
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Linsey Raaijmakers
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Daniel S. Peeper
- Division
of Molecular Oncology and Immunology, The
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Appleton KM, Palsuledesai CC, Misek SA, Blake M, Zagorski J, Gallo KA, Dexheimer TS, Neubig RR. Inhibition of the Myocardin-Related Transcription Factor Pathway Increases Efficacy of Trametinib in NRAS-Mutant Melanoma Cell Lines. Cancers (Basel) 2021; 13:cancers13092012. [PMID: 33921974 PMCID: PMC8122681 DOI: 10.3390/cancers13092012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Malignant melanoma is the most aggressive skin cancer, and treatment is often ineffective due to the development of resistance to targeted therapeutic agents. The most prevalent form of melanoma with a mutated BRAF gene has an effective treatment, but the second most common mutation in melanoma (NRAS) leads to tumors that lack targeted therapies. In this study, we show that NRAS mutant human melanoma cells that are most resistant to inhibition of the oncogenic pathway have a second activated pathway (Rho). Inhibiting that pathway at one of several points can produce more effective cell killing than inhibition of the NRAS pathway alone. This raises the possibility that such a combination treatment could prove effective in those melanomas that fail to respond to existing targeted therapies such as vemurafenib and trametinib. Abstract The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.
Collapse
Affiliation(s)
- Kathryn M. Appleton
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Charuta C. Palsuledesai
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Sean A. Misek
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (S.A.M.); (K.A.G.)
| | - Maja Blake
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Joseph Zagorski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Kathleen A. Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (S.A.M.); (K.A.G.)
| | - Thomas S. Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
- Department of Medicine, Division of Dermatology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-353-7145
| |
Collapse
|
7
|
Role of Pirin, an Oxidative Stress Sensor Protein, in Epithelial Carcinogenesis. BIOLOGY 2021; 10:biology10020116. [PMID: 33557375 PMCID: PMC7915911 DOI: 10.3390/biology10020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Pirin is an oxidative stress (OS) sensor belonging to the functionally diverse cupin superfamily of proteins. Pirin is a suggested quercetinase and transcriptional activator of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Its biological role in cancer development remains a novel area of study. This review presents accumulating evidence on the contribution of Pirin in epithelial cancers, involved signaling pathways, and as a suggested therapeutic target. Finally, we propose a model in which Pirin is upregulated by physical, chemical or biological factors involved in OS and cancer development.
Collapse
|
8
|
Harshitha KR, Sarojini BK, Narayana B, Lobo AG, Kalal BS. Molecular Docking of 4-ethoxychalcones on Oxidoreductase/Pirin Inhibitors and Cytotoxic Evaluation on Breast/Skin Cancer Cell Lines. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200129143803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The role of α, β unsaturated propenone derivatives, has attracted the
chemists for its biological importance. An attempt is made to reveal the interaction between breast
and skin cancer cell lines with the help of molecular docking studies.
Objective:
The study aimed to synthesize and characterize 4-ethoxychalcones for testing breast and
skin cancer targets.
Methods:
A series of chalcone analogues starting from 4-ethoxyacetophenone and substituted
aromatic aldehydes were synthesized, well-characterized and evaluated for their in vitro anticancer
activities against human breast cancer (MDA-MB-231) and human metastatic melanoma (A-375)
cell lines by MTT assay. Docking simulation was performed to study the drug-receptor interaction
of chalcone scaffold on the active site of target inhibitor bound to cytochrome P450 family
oxidoreductase for breast cancer and Pirin inhibiting target for skin cancer, respectively.
Results and Discussion:
After performing cytotoxic evaluation, it was observed that compounds
having a substitution at the para position showed better results compared to ortho and meta positions
for both the cell lines. Molecular docking studies revealed different types of interactions with
selected oxidoreductase and Pirin inhibiting targets. Ligand-protein interactions and morphological
changes are monitored by molecular dynamics.
Conclusion:
The presence of electron-withdrawing and donating groups on ring B marginally
affected IC50 and docking scores. The stability of the binding mode of ligands having high inhibitory
efficiency for compounds 8 and 10 predicted by docking studies was confirmed by molecular
dynamics simulation. The pharmacokinetic parameters were found to be within the acceptable
range. Further molecular dynamics study would provide the necessary information.
Collapse
Affiliation(s)
- Kishori Ramachandra Harshitha
- Department of Industrial Chemistry, Kishori Ramachandra Harshitha, Mangalore University, Mangalagangothri Mangaluru, Karnataka 574199, India
| | - Balladka Kunhanna Sarojini
- Department of Industrial Chemistry, Balladka Kunhanna Sarojini, Mangalore University, Mangalagangothri, Mangaluru, Karnataka 574199, India
| | - Badiadka Narayana
- Department of Studies in Chemistry, Badiadka Narayana, Mangalore University, Mangalagangothri, Mangaluru, Karnataka 574199, India
| | - Anupam Glorious Lobo
- School of Chemical Sciences, Anupam Glorious Lobo, Mahatma Gandhi University Kottayam, Kerala 686560, India
| | - Bhuvanesh Sukhlal Kalal
- Department of Biochemistry, Bhuvanesh Sukhlal Kalal, Yenepoya Medical College, Yenepoya Research Centre, Yenepoya University Mangaluru, Karnataka, 575018, India
| |
Collapse
|
9
|
RAC1 as a Therapeutic Target in Malignant Melanoma. Trends Cancer 2020; 6:478-488. [PMID: 32460002 DOI: 10.1016/j.trecan.2020.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Small GTPases of the RAS and RHO families are related signaling proteins that, when activated by growth factors or by mutation, drive oncogenic processes. While activating mutations in KRAS, NRAS, and HRAS genes have long been recognized and occur in many types of cancer, similar mutations in RHO family genes, such as RAC1 and RHOA, have only recently been detected as the result of extensive cancer genome-sequencing efforts and are linked to a restricted set of malignancies. In this review, we focus on the role of RAC1 signaling in malignant melanoma, emphasizing recent advances that describe how this oncoprotein alters melanocyte proliferation and motility and how these findings might lead to new therapeutics in RAC1-mutant tumors.
Collapse
|
10
|
Misek SA, Appleton KM, Dexheimer TS, Lisabeth EM, Lo RS, Larsen SD, Gallo KA, Neubig RR. Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells. Oncogene 2020; 39:1466-1483. [PMID: 31659259 PMCID: PMC7024013 DOI: 10.1038/s41388-019-1074-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 01/04/2023]
Abstract
Over half of cutaneous melanoma tumors have BRAFV600E/K mutations. Acquired resistance to BRAF inhibitors (BRAFi) remains a major hurdle in attaining durable therapeutic responses. In this study we demonstrate that ~50-60% of melanoma cell lines with vemurafenib resistance acquired in vitro show activation of RhoA family GTPases. In BRAFi-resistant melanoma cell lines and tumors, activation of RhoA is correlated with decreased expression of melanocyte lineage genes. Using a machine learning approach, we built gene expression-based models to predict drug sensitivity for 265 common anticancer compounds. We then projected these signatures onto the collection of TCGA cutaneous melanoma and found that poorly differentiated tumors were predicted to have increased sensitivity to multiple Rho kinase (ROCK) inhibitors. Two transcriptional effectors downstream of Rho, MRTF and YAP1, are activated in the RhoHigh BRAFi-resistant cell lines, and resistant cells are more sensitive to inhibition of these transcriptional mechanisms. Taken together, these results support the concept of targeting Rho-regulated gene transcription pathways as a promising therapeutic approach to restore sensitivity to BRAFi-resistant tumors or as a combination therapy to prevent the onset of drug resistance.
Collapse
Affiliation(s)
- S A Misek
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - K M Appleton
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - T S Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - E M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - R S Lo
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - S D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - R R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
- Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, 48824, MI, USA.
| |
Collapse
|
11
|
Lisabeth EM, Kahl D, Gopallawa I, Haynes SE, Misek SA, Campbell PL, Dexheimer TS, Khanna D, Fox DA, Jin X, Martin BR, Larsen SD, Neubig RR. Identification of Pirin as a Molecular Target of the CCG-1423/CCG-203971 Series of Antifibrotic and Antimetastatic Compounds. ACS Pharmacol Transl Sci 2019; 2:92-100. [PMID: 32039344 DOI: 10.1021/acsptsci.8b00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-β- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| | - Dylan Kahl
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Indiwari Gopallawa
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| | - Sarah E Haynes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Sean A Misek
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| | - Phillip L Campbell
- Department of Internal Medicine, Division of Rheumatology, and University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Thomas S Dexheimer
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| | - Dinesh Khanna
- Department of Internal Medicine, Division of Rheumatology, and University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - David A Fox
- Department of Internal Medicine, Division of Rheumatology, and University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Xiangshu Jin
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Brent R Martin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States.,Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Richard R Neubig
- Department of Pharmacology & Toxicology and Michigan State University, East Lansing, Michigan, 48824, United States
| |
Collapse
|
12
|
Adeniran C, Hamelberg D. Redox-Specific Allosteric Modulation of the Conformational Dynamics of κB DNA by Pirin in the NF-κB Supramolecular Complex. Biochemistry 2017; 56:5002-5010. [DOI: 10.1021/acs.biochem.7b00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charles Adeniran
- Department of Chemistry and the Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry and the Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
13
|
Banerjee A, Haswell LE, Baxter A, Parmar A, Azzopardi D, Corke S, Thorne D, Adamson J, Mushonganono J, Gaca MD, Minet E. Differential Gene Expression Using RNA Sequencing Profiling in a Reconstituted Airway Epithelium Exposed to Conventional Cigarette Smoke or Electronic Cigarette Aerosols. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anisha Banerjee
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | | | - Andrew Baxter
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Aleesha Parmar
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - David Azzopardi
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Sarah Corke
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - David Thorne
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Jason Adamson
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Emmanuel Minet
- British American Tobacco R&D Centre, Southampton, United Kingdom
| |
Collapse
|
14
|
Cheeseman M, Chessum NEA, Rye CS, Pasqua AE, Tucker M, Wilding B, Evans LE, Lepri S, Richards M, Sharp SY, Ali S, Rowlands M, O’Fee L, Miah A, Hayes A, Henley AT, Powers M, te Poele R, De Billy E, Pellegrino L, Raynaud F, Burke R, van Montfort RLM, Eccles SA, Workman P, Jones K. Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. J Med Chem 2017; 60:180-201. [PMID: 28004573 PMCID: PMC6014687 DOI: 10.1021/acs.jmedchem.6b01055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/20/2022]
Abstract
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.
Collapse
Affiliation(s)
- Matthew
D. Cheeseman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - A. Elisa Pasqua
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael
J. Tucker
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Susan Lepri
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Meirion Richards
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Swee Y. Sharp
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Salyha Ali
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Martin Rowlands
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lisa O’Fee
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Asadh Miah
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Marissa Powers
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Robert te Poele
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Emmanuel De Billy
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Loredana Pellegrino
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Florence Raynaud
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A. Eccles
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
15
|
Jungk C, Mock A, Exner J, Geisenberger C, Warta R, Capper D, Abdollahi A, Friauf S, Lahrmann B, Grabe N, Beckhove P, von Deimling A, Unterberg A, Herold-Mende C. Spatial transcriptome analysis reveals Notch pathway-associated prognostic markers in IDH1 wild-type glioblastoma involving the subventricular zone. BMC Med 2016; 14:170. [PMID: 27782828 PMCID: PMC5080721 DOI: 10.1186/s12916-016-0710-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/01/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The spatial relationship of glioblastoma (GBM) to the subventricular zone (SVZ) is associated with inferior patient survival. However, the underlying molecular phenotype is largely unknown. We interrogated an SVZ-dependent transcriptome and potential location-specific prognostic markers. METHODS mRNA microarray data of a discovery set (n = 36 GBMs) were analyzed for SVZ-dependent gene expression and process networks using the MetaCore™ workflow. Differential gene expression was confirmed by qPCR in a validation set of 142 IDH1 wild-type GBMs that was also used for survival analysis. RESULTS Microarray analysis revealed a transcriptome distinctive of SVZ+ GBM that was enriched for genes associated with Notch signaling. No overlap was found to The Cancer Genome Atlas's molecular subtypes. Independent validation of SVZ-dependent expression confirmed four genes with simultaneous prognostic impact: overexpression of HES4 (p = 0.034; HR 1.55) and DLL3 (p = 0.017; HR 1.61) predicted inferior, and overexpression of NTRK2 (p = 0.049; HR 0.66) and PIR (p = 0.025; HR 0.62) superior overall survival (OS). Additionally, overexpression of DLL3 was predictive of shorter progression-free survival (PFS) (p = 0.043; HR 1.64). Multivariate analysis revealed overexpression of HES4 to be independently associated with inferior OS (p = 0.033; HR 2.03), and overexpression of DLL3 with inferior PFS (p = 0.046; HR 1.65). CONCLUSIONS We identified four genes with SVZ-dependent expression and prognostic significance, among those HES4 and DLL3 as part of Notch signaling, suggesting further evaluation of location-tailored targeted therapies.
Collapse
Affiliation(s)
- Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Janina Exner
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christoph Geisenberger
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Heidelberg University Hospital; CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, Heidelberg University Hospital; Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Friauf
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Bernd Lahrmann
- Hamamatsu Tissue and Imaging Analysis Center, University of Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue and Imaging Analysis Center, University of Heidelberg, Heidelberg, Germany
| | - Philipp Beckhove
- Division of Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Regensburg Center for Interventional Immunology (RCI), University Hospital, Regensburg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital; CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Thomsen KG, Terp MG, Lund RR, Søkilde R, Elias D, Bak M, Litman T, Beck HC, Lyng MB, Ditzel HJ. miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations. Oncotarget 2016; 6:29224-39. [PMID: 26317550 PMCID: PMC4745722 DOI: 10.18632/oncotarget.4942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/29/2015] [Indexed: 01/07/2023] Open
Abstract
To gain insight into miRNA regulation in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using global miRNA profiling, 28 miRNAs were found to exhibit significantly altered expression between isogenic metastasizing and non-metastasizing cancer cells, with miR-155 being the most differentially expressed. Highly metastatic mesenchymal-like CL16 cancer cells showed very low miR-155 expression, and miR-155 overexpression in these cells lead to significantly decreased tumor burden in lungs when injected intravenously in immunodeficient mice. Our experiments addressing the underlying mechanism of the altered tumor burden revealed that miR-155-overexpressing CL16 cells were less invasive than CL16 control cells in vitro, while miR-155 overexpression had no effect on cancer cell proliferation or apoptosis in established lung tumors. To identify proteins regulated by miR-155 and thus delineate its function in our cell model, we compared the proteome of xenograft tumors derived from miR-155-overexpressing CL16 cells and CL16 control cells using mass spectrometry-based proteomics. >4,000 proteins were identified, of which 92 were consistently differentially expressed. Network analysis revealed that the altered proteins were associated with cellular functions such as movement, growth and survival as well as cell-to-cell signaling and interaction. Downregulation of the three metastasis-associated proteins ALDH1A1, PIR and PDCD4 in miR-155-overexpressing tumors was validated by immunohistochemistry. Our results demonstrate that miR-155 inhibits the ability of cancer cells to extravasate and/or colonize at distant organs and brings additional insight into the complexity of miR-155 regulation in metastatic seeding.
Collapse
Affiliation(s)
- Karina G Thomsen
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel G Terp
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Rikke R Lund
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Rolf Søkilde
- Department of Biomarker Discovery, Exiqon A/S, Vedbaek, Denmark
| | - Daniel Elias
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas Litman
- Department of Biomarker Discovery, Exiqon A/S, Vedbaek, Denmark
| | - Hans C Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Maria B Lyng
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Institute of Molecular Medicine, Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
17
|
Komai K, Niwa Y, Sasazawa Y, Simizu S. Pirin regulates epithelial to mesenchymal transition independently of Bcl3-Slug signaling. FEBS Lett 2015; 589:738-43. [DOI: 10.1016/j.febslet.2015.01.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/13/2015] [Accepted: 01/28/2015] [Indexed: 01/11/2023]
|
18
|
Rombouts C, Aerts A, Quintens R, Baselet B, El-Saghire H, Harms-Ringdahl M, Haghdoost S, Janssen A, Michaux A, Yentrapalli R, Benotmane MA, Van Oostveldt P, Baatout S. Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation. Int J Radiat Biol 2014; 90:560-74. [PMID: 24646080 DOI: 10.3109/09553002.2014.905724] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Ionizing radiation has been recognized to increase the risk of cardiovascular diseases (CVD). However, there is no consensus concerning the dose-risk relationship for low radiation doses and a mechanistic understanding of low dose effects is needed. MATERIAL AND METHODS Previously, human umbilical vein endothelial cells (HUVEC) were exposed to chronic low dose rate radiation (1.4 and 4.1 mGy/h) during one, three and six weeks which resulted in premature senescence in cells exposed to 4.1 mGy/h. To gain more insight into the underlying signaling pathways, we analyzed gene expression changes in these cells using microarray technology. The obtained data were analyzed in a dual approach, combining single gene expression analysis and Gene Set Enrichment Analysis. RESULTS An early stress response was observed after one week of exposure to 4.1 mGy/h which was replaced by a more inflammation-related expression profile after three weeks and onwards. This early stress response may trigger the radiation-induced premature senescence previously observed in HUVEC irradiated with 4.1 mGy/h. A dedicated analysis pointed to the involvement of insulin-like growth factor binding protein 5 (IGFBP5) signaling in radiation-induced premature senescence. CONCLUSION Our findings motivate further research on the shape of the dose-response and the dose rate effect for radiation-induced vascular senescence.
Collapse
Affiliation(s)
- Charlotte Rombouts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN , Mol , Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang B, Tremousaygue D, Denancé N, van Esse HP, Hörger AC, Dabos P, Goffner D, Thomma BPHJ, van der Hoorn RAL, Tuominen H. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1009-19. [PMID: 24947605 PMCID: PMC4321228 DOI: 10.1111/tpj.12602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 05/18/2023]
Abstract
PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R. solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis.
Collapse
Affiliation(s)
- Bo Zhang
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| | - Dominique Tremousaygue
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 44131326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 259431326 Castanet-Tolosan, France
| | - Nicolas Denancé
- Laboratoire de Recherche en Sciences Végétales, Unité Mixte de Recherche 5546, Université de Toulouse, UPS31326 Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 554631326 Castanet-Tolosan, France
| | - H Peter van Esse
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Anja C Hörger
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research50829, Cologne, Germany
| | - Patrick Dabos
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 44131326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 259431326 Castanet-Tolosan, France
| | - Deborah Goffner
- Laboratoire de Recherche en Sciences Végétales, Unité Mixte de Recherche 5546, Université de Toulouse, UPS31326 Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 554631326 Castanet-Tolosan, France
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research50829, Cologne, Germany
| | - Hannele Tuominen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| |
Collapse
|
20
|
Orozco-Nunnelly DA, Muhammad D, Mezzich R, Lee BS, Jayathilaka L, Kaufman LS, Warpeha KM. Pirin1 (PRN1) is a multifunctional protein that regulates quercetin, and impacts specific light and UV responses in the seed-to-seedling transition of Arabidopsis thaliana. PLoS One 2014; 9:e93371. [PMID: 24705271 PMCID: PMC3976398 DOI: 10.1371/journal.pone.0093371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/04/2014] [Indexed: 11/26/2022] Open
Abstract
Pirins are cupin-fold proteins, implicated in apoptosis and cellular stress in eukaryotic organisms. Pirin1 (PRN1) plays a role in seed germination and transcription of a light- and ABA-regulated gene under specific conditions in the model plant system Arabidopsis thaliana. Herein, we describe that PRN1 possesses previously unreported functions that can profoundly affect early growth, development, and stress responses. In vitro-translated PRN1 possesses quercetinase activity. When PRN1 was incubated with G-protein-α subunit (GPA1) in the inactive conformation (GDP-bound), quercetinase activity was observed. Quercetinase activity was not observed when PRN1 was incubated with GPA1 in the active form (GTP-bound). Dark-grown prn1 mutant seedlings produced more quercetin after UV (317 nm) induction, compared to levels observed in wild type (WT) seedlings. prn1 mutant seedlings survived a dose of high-energy UV (254 nm) radiation that killed WT seedlings. prn1 mutant seedlings grown for 3 days in continuous white light display disoriented hypocotyl growth compared to WT, but hypocotyls of dark-grown prn1 seedlings appeared like WT. prn1 mutant seedlings transformed with GFP constructs containing the native PRN1 promoter and full ORF (PRN1::PRN1-GFP) were restored to WT responses, in that they did not survive UV (254 nm), and there was no significant hypocotyl disorientation in response to white light. prn1 mutants transformed with PRN1::PRN1-GFP were observed by confocal microscopy, where expression in the cotyledon epidermis was largely localized to the nucleus, adjacent to the nucleus, and diffuse and punctate expression occurred within some cells. WT seedlings transformed with the 35S::PRN1-GFP construct exhibited widespread expression in the epidermis of the cotyledon, also with localization in the nucleus. PRN1 may play a critical role in cellular quercetin levels and influence light- or hormonal-directed early development.
Collapse
Affiliation(s)
- Danielle A. Orozco-Nunnelly
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - DurreShahwar Muhammad
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Raquel Mezzich
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Bao-Shiang Lee
- Protein Research Laboratory, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Lasanthi Jayathilaka
- Protein Research Laboratory, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Lon S. Kaufman
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
| | - Katherine M. Warpeha
- Molecular, Cell and Developmental Group, Department of Biological Sciences, Department of Biological Sciences, University of Illinois at Chicago (UIC), Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Qiao Z, Wang D, Hahn J, Ai J, Wang Z. Pirin down-regulates the EAF2/U19 protein and alleviates its growth inhibition in prostate cancer cells. Prostate 2014; 74:113-20. [PMID: 24272884 PMCID: PMC4827099 DOI: 10.1002/pros.22729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/20/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND The tumor suppressor ELL associated factor 2 (EAF2/U19) has been reported to induce apoptosis of LNCaP cells and suppress AT6.1 xenograft prostate tumor growth. EAF2/U19 expression level is down-regulated in advanced human prostate cancer. EAF2/U19 is also a putative transcription factor with a transactivation domain and capability of sequence-specific DNA binding. Identification of binding partners and regulators of EAF2/U19 is essential to understand its function in regulating apoptosis/survival of prostate cancer cells. METHODS Through a yeast two-hybrid screening system, we identified Pirin as a binding partner of EAF2. We further determined the interaction between epitope-tagged EAF2/U19 and Pirin by co-immunoprecipitation in mammalian cells. The effect of Pirin on EAF2/U19 inhibition of LNCaP growth was assayed by colony formation. RESULTS Pirin co-immunoprecipitated with EAF2/U19 and the overexpressed Pirin decreased the expression level of EAF2/U19 protein in prostate cancer cell lines LNCaP and PC3. Furthermore, overexpression of EAF2/U19 suppressed LNCaP colony formation, and co-expression of Pirin significantly blocked the growth inhibition induced by EAF2/U19 overexpression. CONCLUSION Pirin is a newly identified binding partner of EAF2/U19 capable of down-regulating EAF2/U19 protein and alleviating its inhibition of prostate cancer cell survival/proliferation. Pirin may play an important role involved in EAF2/U19 function as an androgen-responsive gene and tumor repressor.
Collapse
Affiliation(s)
- Zhongjie Qiao
- Department of Urology, The 3rd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dan Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junghyun Hahn
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Junkui Ai
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhou Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence to: Zhou Wang, PhD, Department of Urology, Shadyside Medical Center, Suite G40, 5200 Centre Avenue, Pittsburgh, PA 15232.
| |
Collapse
|
22
|
Arceci RJ. Biological and therapeutic implications of the BRAF pathway in histiocytic disorders. Am Soc Clin Oncol Educ Book 2014:e441-e445. [PMID: 24857137 DOI: 10.14694/edbook_am.2014.34.e441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Langerhans cell histiocytosis (LCH) has historically evolved in its classification from a primary immune dysregulatory disorder to what current evidence supports as a dendritic cell neoplasm with an immune-inflammatory component. A key part of the classification of LCH as a neoplasm has been the identification of BRAF V600E mutations in 35% to 60% of cases. Tumor protein p53 (TP53) and RAS mutations have also been identified, albeit in less than 2% of reported cases. Of note, over 50% of patients with another dendritic cell disease, Erdheim-Chester Disease, have also been shown to have BRAF V600E mutations. Although the BRAF mutations have not been shown to be associated with extent of disease, they may still provide a target for a molecularly guided approach to therapy. In cases of LCH in which no BRAF mutations were identified, there was evidence for activation of the RAS-RAF-MEK-extracellular signal-regulated kinases (ERK) pathway, suggesting that similar to other tumors, this pathway may be therapeutically exploitable. Anecdotal responses have been reported in a few patients with LCH and Erdheim-Chester Disease to vemurafenib, a BRAF V600E inhibitor. Although these results pave the way for careful, prospective clinical testing, selection of the optimal groups in which to test such inhibitors, alone or in combination, will be critical based on the toxicity profile thus far observed in adults with melanoma and other BRAF mutated tumors.
Collapse
Affiliation(s)
- Robert J Arceci
- From the Children's Center for Cancer and Blood Disorders, Hematology/Oncology, Ron Matricaria Institute of Molecular Medicine, Phoenix Children's Hospital, University of Arizona, College of Medicine, Phoenix, AZ
| |
Collapse
|
23
|
Kahle M, Horsch M, Fridrich B, Seelig A, Schultheiß J, Leonhardt J, Irmler M, Beckers J, Rathkolb B, Wolf E, Franke N, Gailus-Durner V, Fuchs H, de Angelis MH, Neschen S. Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis. Mol Metab 2013; 2:435-46. [PMID: 24327959 DOI: 10.1016/j.molmet.2013.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022] Open
Abstract
Genetic predisposition and environmental factors contribute to an individual's susceptibility to develop hepatosteatosis. In a systematic, comparative survey we focused on genotype-dependent and -independent adaptations early in the pathogenesis of hepatosteatosis by characterizing C3HeB/FeJ, C57BL/6NTac, C57BL/6J, and 129P2/OlaHsd mice after 7, 14, or 21 days high-fat-diet exposure. Strain-specific metabolic responses during diet challenge and liver transcript signatures in mild hepatosteatosis outline the suitability of particular strains for investigating the relationship between hepatocellular lipid content and inflammation, glucose homeostasis, insulin action, or organelle physiology. Genetic background-independent transcriptional adaptations in liver paralleling hepatosteatosis suggest an early increase in the organ's vulnerability to oxidative stress damage what could advance hepatosteatosis to steatohepatitis. "Universal" adaptations in transcript signatures and transcription factor regulation in liver link insulin resistance, type 2 diabetes mellitus, cancer, and thyroid hormone metabolism with hepatosteatosis, hence, facilitating the search for novel molecular mechanisms potentially implicated in the pathogenesis of human non-alcoholic-fatty-liver-disease.
Collapse
Key Words
- 129, 129P2/OlaHsd
- ALT, alanine aminotransferase
- B6J, C57BL/6J
- B6N, C57BL/6NTac
- C3H, C3HeB/FeJ
- Cancer
- HDL, high-density lipoprotein
- HFD, high-fat diet
- IR, insulin resistance
- Inflammation
- Insulin resistance
- LDL, low-density lipoprotein
- LFD, low fat rodent laboratory diet
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic hepatosteatitis
- Non-alcoholic fatty liver disease
- Oxidative stress
- T2D, type 2 diabetes mellitus
- TAG, triacylglycerol
- Thyroid metabolism
- VLDL, very low density lipoprotein
- WAT, white adipose tissue
Collapse
Affiliation(s)
- Melanie Kahle
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany ; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg/Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Pirin is a nuclear nonheme Fe protein of unknown function present in all human tissues. Here we describe that pirin may act as a redox sensor for the nuclear factor κB (NF-κB) transcription factor, a critical mediator of intracellular signaling that has been linked to cellular responses to proinflammatory signals and controls the expression of a vast array of genes involved in immune and stress responses. Pirin's regulatory effect was tested with several metals and at different oxidations states, and our spectroscopic results show that only the ferric form of pirin substantially facilitates binding of NF-κB proteins to target κB genes, a finding that suggests that pirin performs a redox-sensing role in NF-κB regulation. The molecular mechanism of such a metal identity- and redox state-dependent regulation is revealed by our structural studies of pirin. The ferrous and ferric pirin proteins differ only by one electron, yet they have distinct conformations. The Fe center is shown to play an allosteric role on an R-shaped surface area that has two distinct conformations based on the identity and the formal redox state of the metal. We show that the R-shaped area composes the interface for pirin-NF-κB binding that is responsible for modulation of NF-κB's DNA-binding properties. The nonheme Fe protein pirin is proposed to serve as a reversible functional switch that enables NF-κB to respond to changes in the redox levels of the cell nucleus.
Collapse
|
25
|
Shubbar E, Helou K, Kovács A, Nemes S, Hajizadeh S, Enerbäck C, Einbeigi Z. High levels of γ-glutamyl hydrolase (GGH) are associated with poor prognosis and unfavorable clinical outcomes in invasive breast cancer. BMC Cancer 2013; 13:47. [PMID: 23374458 PMCID: PMC3576262 DOI: 10.1186/1471-2407-13-47] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
Background Previously, we performed analysis of gene expression in 46 axillary lymph node negative tumors and identified molecular gene signatures that resulted in different clinical outcomes. The aim of this study was to determine the correlation of γ-glutamyl hydrolase (GGH), fatty acid amide hydrolase (FAAH), Pirin (PIR) and TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65 kDa (TAF5L), selected from identified gene signatures, with clinical outcomes as well as classical clinicopathological characteristics in primary invasive breast cancer patients. Methods The protein levels of GGH, FAAH, PIR and TAF5L were assessed by immunohistochemistry (IHC) on a panel of 80 primary invasive breast tumors. Quantitative real-time PCR (qRT-PCR) and western blot analysis were performed to verify the expression levels of the candidate biomarkers. Patient disease-specific survival (DSS) and recurrence-free survival (RFS) were evaluated using the Kaplan-Meier method. The prognostic biomarkers were identified by univariate analysis with a log-rank test and by multivariate analysis with Cox proportional hazards regression models. Results The GGH and FAAH protein levels were significantly up-regulated in invasive breast cancer tumors compared with adjacent non-cancerous tissues. Furthermore, the protein levels of GGH and FAAH were significantly correlated in tumor tissues. Tumoral GGH protein expression was significantly correlated with shorter DSS and RFS. Furthermore, the protein expression of GGH was positively correlated with undifferentiated tumors (BRE grade III) and ER/PR expressing tumors. Multivariate regression analysis showed that only GGH protein expression independently predicts DSS. No such correlations were found for FAAH, PIR and TAF5L protein expression. However, elevated protein levels of FAAH were positively associated with high number of lymph node involvement and upregulated levels of PIR were positively related with lymph node metastasis. The TAF5L was pronouncedly down-regulated in primary invasive breast cancer tissues compared to matched adjacent non-cancerous tissues. Conclusion These data show for the first time that cytoplasmic GGH might play a relevant role in the development and progression of invasive breast cancer, warranting further investigations. Our findings suggest that GGH serve as a potential biomarker of unfavorable clinical outcomes over short-term follow-up in breast cancer. The GGH may be a very attractive targeted therapy for selected patients.
Collapse
Affiliation(s)
- Emman Shubbar
- Sahlgrenska Cancer Center, Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, SE-41345, Sweden.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cutaneous melanoma originates from pigment producing melanocytes or their precursors and is considered the deadliest form of skin cancer. For the last 40 years, few treatment options were available for patients with late-stage melanoma. However, remarkable advances in the therapy field were made recently, leading to the approval of two new drugs, the mutant BRAF inhibitor vemurafenib and the immunostimulant ipilimumab. Although these drugs prolong patients' lives, neither drug cures the disease completely, emphasizing the need for improvements of current therapies. Our knowledge about the complex genetic and biological mechanisms leading to melanoma development has increased, but there are still gaps in our understanding of the early events of melanocyte transformation and disease progression. In this review, we present a summary of the main contributing factors leading to melanocyte transformation and discuss recent novel findings and technologies that will help answer some of the key biological melanoma questions and lay the groundwork for novel therapies.
Collapse
Affiliation(s)
- Ana Slipicevic
- The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
27
|
In vitro RNase and nucleic acid binding activities implicate coilin in U snRNA processing. PLoS One 2012; 7:e36300. [PMID: 22558428 PMCID: PMC3338655 DOI: 10.1371/journal.pone.0036300] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/04/2012] [Indexed: 11/21/2022] Open
Abstract
Coilin is known as the marker protein for Cajal bodies (CBs), subnuclear domains important for the biogenesis of small nuclear ribonucleoproteins (snRNPs) which function in pre-mRNA splicing. CBs associate non-randomly with U1 and U2 gene loci, which produce the small nuclear RNA (snRNA) component of the respective snRNP. Despite recognition as the CB marker protein, coilin is primarily nucleoplasmic, and the function of this fraction is not fully characterized. Here we show that coilin binds double stranded DNA and has RNase activity in vitro. U1 and U2 snRNAs undergo a processing event of the primary transcript prior to incorporation in the snRNP. We find that coilin displays RNase activity within the CU region of the U2 snRNA primary transcript in vitro, and that coilin knockdown results in accumulation of the 3′ pre-processed U1 and U2 snRNA. These findings present new characteristics of coilin in vitro, and suggest additional functions of the protein in vivo.
Collapse
|