1
|
Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, Azimzadeh Jamalkandi S, Ghanei M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem Biophys Rep 2023; 34:101438. [PMID: 36865738 PMCID: PMC9971187 DOI: 10.1016/j.bbrep.2023.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to activation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling pathway critical steps can be taken in the treatment of this disease.
Collapse
Affiliation(s)
- Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Atanasov P, Moneva-Sakelarieva M, Kobakova Y, Obreshkova D, Ivanov I, Chaneva M, Popova M, Petkova V, Ivanova S. Tobacco smokers as target group for complicated coronavirus infection. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e91095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of current study was to determine, retrospectively, possible correlations between smoking and the incidence, course severity, intubation rate, and mortality (by gender and age) in patients treated for complicated coronavirus infection in the internal medicine clinic at UMHATEM ”N. I. Pirogov” Sofia for the period 01.03.2020–31.12.2020. In a prospective study, the recovery period and immunogenesis in smokers and non-smokers within a one-year period after hospital discharge was investigated. The applied methods were: 1) computed tomography and blood gas analysis 2) chemiluminescent immunoassay for the qualitative determination of total IgM, IgA and IgG anti-SARS-CoV2 AB. Results showed that the part of non-smokers with a positive PCR test is significantly higher compared to the group of former and current smokers. The data obtained from the study confirmed that Covid infection is much more severe among smokers and former smokers with a higher levels of inflammatory markers noticed among the smoking group.
Collapse
|
3
|
de Oliveira Alves N, Martins Pereira G, Di Domenico M, Costanzo G, Benevenuto S, de Oliveira Fonoff AM, de Souza Xavier Costa N, Ribeiro Júnior G, Satoru Kajitani G, Cestari Moreno N, Fotoran W, Iannicelli Torres J, de Andrade JB, Matera Veras M, Artaxo P, Menck CFM, de Castro Vasconcellos P, Saldiva P. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. ENVIRONMENT INTERNATIONAL 2020; 145:106150. [PMID: 33039876 DOI: 10.1016/j.envint.2020.106150] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Air pollution represents a considerable threat to health worldwide. The São Paulo Metropolitan area, in Brazil, has a unique composition of atmospheric pollutants with a population of nearly 20 million people and 9 million passenger cars. It is long known that exposure to particulate matter less than 2.5 µm (PM2.5) can cause various health effects such as DNA damage. One of the most versatile defense mechanisms against the accumulation of DNA damage is the nucleotide excision repair (NER), which includes XPC protein. However, the mechanisms by which NER protects against adverse health effects related to air pollution are largely unknown. We hypothesized that reduction of XPC activity may contribute to inflammation response, oxidative stress and DNA damage after PM2.5 exposure. To address these important questions, XPC knockout and wild type mice were exposed to PM2.5 using the Harvard Ambient Particle concentrator. Results from one-single exposure have shown a significant increase in the levels of anti-ICAM, IL-1β, and TNF-α in the polluted group when compared to the filtered air group. Continued chronic PM2.5 exposure increased levels of carbonylated proteins, especially in the lung of XPC mice, probably as a consequence of oxidative stress. As a response to DNA damage, XPC mice lungs exhibit increased γ-H2AX, followed by severe atypical hyperplasia. Emissions from vehicles are composed of hazardous substances, with polycyclic aromatic hydrocarbons (PAHs) and metals being most frequently cited as the major contributors to negative health impacts. This analysis showed that benzo[b]fluoranthene, 2-nitrofluorene and 9,10-anthraquinone were the most abundant PAHs and derivatives. Taken together, these findings demonstrate the participation of XPC protein, and NER pathway, in the protection of mice against the carcinogenic potential of air pollution. This implicates that DNA is damaged directly (forming adducts) or indirectly (Reactive Oxygen Species) by the various compounds detected in urban PM2.5.
Collapse
Affiliation(s)
| | | | - Marlise Di Domenico
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Giovanna Costanzo
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah Benevenuto
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Gustavo Satoru Kajitani
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Wesley Fotoran
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Mariana Matera Veras
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo Artaxo
- Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Paulo Saldiva
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Mechanisms of Virus-Induced Airway Immunity Dysfunction in the Pathogenesis of COPD Disease, Progression, and Exacerbation. Front Immunol 2020; 11:1205. [PMID: 32655557 PMCID: PMC7325903 DOI: 10.3389/fimmu.2020.01205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the integrated form of chronic obstructive bronchitis and pulmonary emphysema, characterized by persistent small airway inflammation and progressive irreversible airflow limitation. COPD is characterized by acute pulmonary exacerbations and associated accelerated lung function decline, hospitalization, readmission and an increased risk of mortality, leading to huge social-economic burdens. Recent evidence suggests ~50% of COPD acute exacerbations are connected with a range of respiratory viral infections. Nevertheless, respiratory viral infections have been linked to the severity and frequency of exacerbations and virus-induced secondary bacterial infections often result in a synergistic decline of lung function and longer hospitalization. Here, we review current advances in understanding the cellular and molecular mechanisms underlying the pathogenesis of COPD and the increased susceptibility to virus-induced exacerbations and associated immune dysfunction in patients with COPD. The multiple immune regulators and inflammatory signaling pathways known to be involved in host-virus responses are discussed. As respiratory viruses primarily target airway epithelial cells, virus-induced inflammatory responses in airway epithelium are of particular focus. Targeting virus-induced inflammatory pathways in airway epithelial cells such as Toll like receptors (TLRs), interferons, inflammasomes, or direct blockade of virus entry and replication may represent attractive future therapeutic targets with improved efficacy. Elucidation of the cellular and molecular mechanisms of virus infections in COPD pathogenesis will undoubtedly facilitate the development of these potential novel therapies that may attenuate the relentless progression of this heterogeneous and complex disease and reduce morbidity and mortality.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Dermot Linden
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Joseph C Kidney
- Department of Respiratory Medicine Mater Hospital Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Kang L, Guo N, Liu X, Wang X, Guo W, Xie SM, Liu C, Lv P, Xing L, Zhang X, Shen H. High mobility group box-1 protects against Aflatoxin G 1-induced pulmonary epithelial cell damage in the lung inflammatory environment. Toxicol Lett 2020; 331:92-101. [PMID: 32446815 DOI: 10.1016/j.toxlet.2020.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Aflatoxin G1 (AFG1) is a member of the carcinogenic aflatoxin family. Our previous studies indicated that oral administration of AFG1 caused tumor necrosis factor (TNF)-α-dependent inflammation that enhanced oxidative DNA damage in alveolar epithelial cells, which may be related to AFG1-induced lung carcinogenesis. High mobility group box-1 (HMGB1) is a nuclear DNA-binding protein; the intracellular and extracellular roles of HMGB1 have been shown to contribute to DNA repair and sterile inflammation. The role of HMGB1 in DNA damage in an aflatoxin-induced lung inflammatory environment was investigated in this study. Upregulation of HMGB1, TLR2, and RAGE was observed in AFG1-induced lung inflamed tissues and adenocarcinoma. Blocking AFG1-induced inflammation by neutralization of TNF-α inhibited the upregulation of HMGB1 in mouse lung tissues, suggesting that AFG1-induced TNF-α-dependent inflammation regulated HMGB1 expression. In the in vitro human pulmonary epithelial cell line model, Beas-2b, AFG1 directly enhanced the cytosolic translocation of HMGB1 and its extracellular secretion. The addition of extracellular soluble HMGB1 protected AFG1-induced DNA damage through the TLR2/NF-κB pathway in Beas-2b cells. In addition, blockade of endogenous HMGB1 by siRNA significantly enhanced AFG1-induced damage. Thus, our findings showed that both extracellularly-released and nuclear and cytosolic HMGB1 could protect the cell from AFG1-induced cell damage in a TNF-α-dependent lung inflammatory environment.
Collapse
Affiliation(s)
- Lifei Kang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, Hebei Chest Hospital, Shijiazhuang, China
| | - Ningfei Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyi Liu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xiuqing Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Wenli Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shelly M Xie
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Chunping Liu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
6
|
Chu PH, Chen G, Kuo D, Braisted J, Huang R, Wang Y, Simeonov A, Boehm M, Gerhold DL. Stem Cell-Derived Endothelial Cell Model that Responds to Tobacco Smoke Like Primary Endothelial Cells. Chem Res Toxicol 2020; 33:751-763. [PMID: 32119531 DOI: 10.1021/acs.chemrestox.9b00363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To clarify how smoking leads to heart attack and stroke, we developed an endothelial cell model (iECs) generated from human induced Pluripotent Stem Cells (iPSC) and evaluated its responses to tobacco smoke. These iECs exhibited a uniform endothelial morphology, and expressed markers PECAM1/CD31, VWF/ von Willebrand Factor, and CDH5/VE-Cadherin. The iECs also exhibited tube formation and acetyl-LDL uptake comparable to primary endothelial cells (EC). RNA sequencing (RNA-Seq) revealed a robust correlation coefficient between iECs and EC (R = 0.76), whereas gene responses to smoke were qualitatively nearly identical between iECs and primary ECs (R = 0.86). Further analysis of transcriptional responses implicated 18 transcription factors in regulating responses to smoke treatment, and identified gene sets regulated by each transcription factor, including pathways for oxidative stress, DNA damage/repair, ER stress, apoptosis, and cell cycle arrest. Assays for 42 cytokines in HUVEC cells and iECs identified 23 cytokines that responded dynamically to cigarette smoke. These cytokines and cellular stress response pathways describe endothelial responses for lymphocyte attachment, activation of coagulation and complement, lymphocyte growth factors, and inflammation and fibrosis; EC-initiated events that collectively lead to atherosclerosis. Thus, these studies validate the iEC model and identify transcriptional response networks by which ECs respond to tobacco smoke. Our results systematically trace how ECs use these response networks to regulate genes and pathways, and finally cytokine signals to other cells, to initiate the diverse processes that lead to atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guibin Chen
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, Maryland 20892, United States
| | - David Kuo
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John Braisted
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Wang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, Maryland 20892, United States
| | - David L Gerhold
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Seet LF, Toh LZ, Chu SWL, Wong TT. RelB regulates basal and proinflammatory induction of conjunctival CCL2. Ocul Immunol Inflamm 2019; 29:29-42. [PMID: 31618101 DOI: 10.1080/09273948.2019.1662060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: This study investigated the involvement of NF-kB in regulating postoperative conjunctival inflammation.Methods: Experimental surgery was performed as described for the mouse model of conjunctival scarring. Expression of NF-κB in postoperative conjunctival tissues or conjunctival fibroblasts were assessed by real-time PCR, immunoblotting and immunofluorescence analyses. Downregulation of RelB was achieved using small interfering RNA. Cellular cytokine secretion was determined using multiplex cytokine assay.Results: RelB was the most highly induced member of the NF-kB family on day 2 post-surgery. Elevated RelB may be found associated with vimentin-positive cells and fibroblasts in vivo and in vitro. In conjunctival fibroblasts, RelB may be induced by TNF-α but not TGF-β2 while its silencing caused selective induction of CCL2 secretion by both basal and TNF-α-stimulated fibroblasts.Conclusions: High RelB induction in the inflammatory phase and the selective modulation of CCL2 suggest a specific anti-inflammatory role for RelB in the postoperative conjunctiva.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore.,Glaucoma Service, Singapore National Eye Center, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
9
|
Pareek S, Traboulsi H, Allard B, Rico de Souza A, Eidelman DH, Baglole CJ. Pulmonary neutrophilia caused by absence of the NF-κB member RelB is dampened by exposure to cigarette smoke. Mol Immunol 2019; 114:395-409. [PMID: 31476634 DOI: 10.1016/j.molimm.2019.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023]
Abstract
Inflammation is a response to injury and infection. Although protective under physiological conditions, excessive and persistent inflammation is linked to numerous diseases. As the lungs are continuously exposed to the external environment, the respiratory system is particularly liable to damage from inflammation. RelB is a member of the non-canonical NF-κB pathway that may control lung inflammation caused by cigarette smoke (CS), a leading cause of morbidity and mortality worldwide. Our lab has previously shown that RelB protects against CS-induced inflammation in vitro, leading us to hypothesize that RelB would protect against acute CS-induced pulmonary inflammation in vivo. We exposed wild-type (Relb+/+) and RelB-deficient mice (Relb-/-) mice to room air or to CS and found that CS exposure caused a sustained decrease in pulmonary granulocytes in Relb-/- mice that was predominated by a decrease in neutrophils. Pulmonary inflammation caused by other irritants, including chlorine, ovalbumin (OVA; to mimic features of asthma) and lipopolysaccharide (LPS) was not controlled by RelB. Differential cytokine analysis suggests that alterations in chemotactic cytokines do not fully account for the CS-specific decrease in neutrophils in Relb-/- mice. Flow cytometric analysis of the bronchoalveolar lavage and bone marrow cells also reveal that it is unlikely that the sustained decrease is caused by excessive cell death or decreased hematopoiesis from the bone marrow. Overall, our results indicate that RelB regulates acute CS-induced pulmonary inflammation. Understanding how RelB regulates CS-induced inflammation may potentiate the discovery of new therapeutic strategies for many of the inflammatory diseases caused by CS.
Collapse
Affiliation(s)
- Swati Pareek
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Pathology, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Benoit Allard
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Medicine, McGill University, Montreal, Quebec, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Pathology, McGill University, Montreal, Quebec, Canada; Medicine, McGill University, Montreal, Quebec, Canada; Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Kojima K, Asai K, Kubo H, Sugitani A, Kyomoto Y, Okamoto A, Yamada K, Ijiri N, Watanabe T, Hirata K, Kawaguchi T. Isoflavone Aglycones Attenuate Cigarette Smoke-Induced Emphysema via Suppression of Neutrophilic Inflammation in a COPD Murine Model. Nutrients 2019; 11:nu11092023. [PMID: 31470503 PMCID: PMC6769447 DOI: 10.3390/nu11092023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a lung disease caused by chronic exposure to cigarette smoke, increases the number of inflammatory cells such as macrophages and neutrophils and emphysema. Isoflavone is a polyphenolic compound that exists in soybeans. Daidzein and genistein, two types of isoflavones, have been reported to have anti-inflammatory effects in various organs. We hypothesized that the daidzein-rich soy isoflavone aglycones (DRIAs) attenuate cigarette smoke-induced emphysema in mice. Mice were divided into four groups: the (i) control group, (ii) isoflavone group, (iii) smoking group, and (iv) isoflavone + smoking group. The number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and the airspace enlargement using the mean linear intercept (MLI) were determined 12 weeks after smoking exposure. Expressions of neutrophilic inflammatory cytokines and chemokines were also examined. In the isoflavone + smoking group, the number of neutrophils in BALF and MLI was significantly less than that in the smoking group. Furthermore, the gene-expressions of TNF-α and CXCL2 (MIP-2) in the isoflavone + smoking group were significantly less than those in the smoking group. Supplementation of the COPD murine model with DRIAs significantly attenuates pathological changes of COPD via suppression of neutrophilic inflammation.
Collapse
Affiliation(s)
- Kazuya Kojima
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Hiroaki Kubo
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Arata Sugitani
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Yohkoh Kyomoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Atsuko Okamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Kazuhiro Yamada
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Naoki Ijiri
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Kazuto Hirata
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
11
|
Lin L, Hou G, Han D, Yin Y, Kang J, Wang Q. Ursolic acid alleviates airway-vessel remodeling and muscle consumption in cigarette smoke-induced emphysema rats. BMC Pulm Med 2019; 19:103. [PMID: 31170951 PMCID: PMC6555740 DOI: 10.1186/s12890-019-0826-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This study assessed the effects of ursolic acid (UA) on airway-vessel remodeling and muscle atrophy in cigarette smoke (CS)-induced emphysema rats and investigated potential underlying mechanisms. METHODS Emphysema was induced in a rat model with 3 months of CS exposure. Histology and immunohistochemistry (IHC) stains were used to assess airway-vessel remodeling and muscle atrophy-associated changes. Levels of cleaved-caspase3, 8-OHdG, and S100A4 were measured in airways and associated vessels to evaluate cell apoptosis, oxidant stress, epithelial-to-mesenchymal transition (EMT), and endothelial-to-mesenchymal transition (EndMT)-associated factors. Western blot and/or IHC analyses were performed to measure transforming growth factor-beta 1(TGF-β1)/Smad2.3, alpha-smooth muscle actin (α-SMA), and insulin-like growth factor 1 (IGF1) expression. We also gave cultured HBE and HUVEC cells Cigarette Smoke Extract (CSE) administration and UA intervention. Using Western blot method to measure TGF-β1/Smad2.3, α-SMA, S100A4, and IGF1 molecules expression. RESULTS UA decreased oxidant stress and cell apoptosis in airway and accompanying vascular walls of cigarette smoke-induced emphysema model rats. UA alleviated EMT, EndMT, changes associated with airway-vessel remodeling and muscle atrophy. The UA effects were associated with IGF1 and TGF-β1/Smad2.3 pathways. CONCLUSIONS UA reduced EMT, EndMT, airway-vessel remodeling, and musculi soleus atrophy in CS-induced emphysema model rats at least partly through IGF1 and TGF-β1/Smad2.3 signaling pathways.
Collapse
Affiliation(s)
- Li Lin
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Gang Hou
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Dan Han
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Yan Yin
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Jian Kang
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| | - Qiuyue Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001 China
| |
Collapse
|
12
|
Shao P, Guo N, Wang C, Zhao M, Yi L, Liu C, Kang L, Cao L, Lv P, Xing L, Zhang X, Shen H. Aflatoxin G
1
induced TNF‐α‐dependent lung inflammation to enhance DNA damage in alveolar epithelial cells. J Cell Physiol 2018; 234:9194-9206. [PMID: 30478833 DOI: 10.1002/jcp.27596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Peilu Shao
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
- Department of Pathology The Second Hospital, Hebei Medical University Shijiazhuang China
| | - Ningfei Guo
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Can Wang
- Department of Pathology The Second Hospital, Hebei Medical University Shijiazhuang China
| | - Mei Zhao
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Li Yi
- Department of Pathology The Second Hospital, Hebei Medical University Shijiazhuang China
| | - Chunping Liu
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Lifei Kang
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Lei Cao
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Ping Lv
- Department of Pharmacology Hebei Medical University Shijiazhuang China
| | - Lingxiao Xing
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| | - Xianghong Zhang
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
- Department of Pathology The Second Hospital, Hebei Medical University Shijiazhuang China
| | - Haitao Shen
- Laboratory of Pathology, School of Basic Medical Sciences, Hebei Medical University Shijiazhuang China
| |
Collapse
|
13
|
Nair PM, Starkey MR, Haw TJ, Ruscher R, Liu G, Maradana MR, Thomas R, O'Sullivan BJ, Hansbro PM. RelB-Deficient Dendritic Cells Promote the Development of Spontaneous Allergic Airway Inflammation. Am J Respir Cell Mol Biol 2018; 58:352-365. [PMID: 28960101 DOI: 10.1165/rcmb.2017-0242oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RelB is a member of the NF-κB family, which is essential for dendritic cell (DC) function and maturation. However, the contribution of RelB to the development of allergic airway inflammation (AAI) is unknown. Here, we identify a pivotal role for RelB in the development of spontaneous AAI that is independent of exogenous allergen exposure. We assessed AAI in two strains of RelB-deficient (RelB-/-) mice: one with a targeted deletion and one expressing a major histocompatibility complex transgene. To determine the importance of RelB in DCs, RelB-sufficient DCs (RelB+/+ or RelB-/-) were adoptively transferred into RelB-/- mice. Both strains had increased pulmonary inflammation compared with their respective wild-type (RelB+/+) and heterozygous (RelB+/-) controls. RelB-/- mice also had increased inflammatory cell influx into the airways, levels of chemokines (CCL2/3/4/5/11/17 and CXCL9/10/13) and T-helper cell type 2-associated cytokines (IL-4/5) in lung tissues, serum IgE, and airway remodeling (mucus-secreting cell numbers, collagen deposition, and epithelial thickening). Transfer of RelB+/- CD11c+ DCs into RelB-/- mice decreased pulmonary inflammation, with reductions in lung chemokines, T-helper cell type 2-associated cytokines (IL-4/5/13/25/33 and thymic stromal lymphopoietin), serum IgE, type 2 innate lymphoid cells, myeloid DCs, γδ T cells, lung Vβ13+ T cells, mucus-secreting cells, airway collagen deposition, and epithelial thickening. These data indicate that RelB deficiency may be a key pathway underlying AAI, and that DC-encoded RelB is sufficient to restore control of this inflammation.
Collapse
Affiliation(s)
- Prema M Nair
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- 1 Priority Research Centre for Healthy Lungs and.,3 Priority Research Centre GrowUpWell, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt Jhong Haw
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Roland Ruscher
- 4 Department of Laboratory Medicine and Pathology, and.,5 Center for Immunology, University of Minnesota, Minneapolis, Minnesota; and.,6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Gang Liu
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Muralidhara R Maradana
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Ranjeny Thomas
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Brendan J O'Sullivan
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
14
|
Tu CY, Cheng FJ, Chen CM, Wang SL, Hsiao YC, Chen CH, Hsia TC, He YH, Wang BW, Hsieh IS, Yeh YL, Tang CH, Chen YJ, Huang WC. Cigarette smoke enhances oncogene addiction to c-MET and desensitizes EGFR-expressing non-small cell lung cancer to EGFR TKIs. Mol Oncol 2018; 12:705-723. [PMID: 29570930 PMCID: PMC5928373 DOI: 10.1002/1878-0261.12193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/23/2022] Open
Abstract
Cigarette smoking is one of the leading risks for lung cancer and is associated with the insensitivity of non‐small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, it remains undetermined whether and how cigarette smoke affects the therapeutic efficacy of EGFR TKIs. In this study, our data showed that chronic exposure to cigarette smoke extract (CSE) or tobacco smoke‐derived carcinogen benzo[α]pyrene, B[α]P, but not nicotine‐derived nitrosamine ketone (NNK), reduced the sensitivity of wild‐type EGFR‐expressing NSCLC cells to EGFR TKIs. Treatment with TKIs almost abolished EGFR tyrosine kinase activity but did not show an inhibitory effect on downstream Akt and ERK pathways in B[α]P‐treated NSCLC cells. CSE and B[α]P transcriptionally upregulate c‐MET and activate its downstream Akt pathway, which is not inhibited by EGFR TKIs. Silencing of c‐MET reduces B[α]P‐induced Akt activation. The CSE‐treated NSCLC cells are sensitive to the c‐MET inhibitor crizotinib. These findings suggest that cigarette smoke augments oncogene addiction to c‐MET in NSCLC cells and that MET inhibitors may show clinical benefits for lung cancer patients with a smoking history.
Collapse
Affiliation(s)
- Chih-Yen Tu
- Department of Life Science, the iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Fang-Ju Cheng
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chuan-Mu Chen
- Department of Life Science, the iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Ling Wang
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yu-Chun Hsiao
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Respiratory Therapy, China Medical University, Taichung, Taiwan.,Hyperbaric Oxygen Therapy Center, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Hao He
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Bo-Wei Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - I-Shan Hsieh
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yi-Lun Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan.,Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Research Center for New Drug Development, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Shen F, Guo Q, Hu Q, Zeng A, Wu W, Yan W, You Y. RelB, a good prognosis predictor, links cell-cycle and migration to glioma tumorigenesis. Oncol Lett 2018. [PMID: 29541209 PMCID: PMC5835853 DOI: 10.3892/ol.2018.7894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor κB (NF-κB) exhibits an important role in inflammation and tumorigenesis. The key regulatory protein of the pathway, RELB Proto-Oncogene, NF-KB Subunit (relB), is overexpressed and associated with the pathogenesis of a variety of malignant tumors. However, the molecular features and clinical signature of relB expression in gliomas remains to be elucidated. The present study obtained the raw sequencing data of 325 glioma samples of all grades from the Chinese Glioma Genome Atlas (CGGA) database and human glioma cell line (LN229) from the Chinese Academy of Sciences cell bank. Cell proliferation, invasion and wound healing assays were used for functional annotation of relB. Western blot analysis was used for validating the protein expression of relB, matrix metalloproteinase (MMP)-2 and MMP-9 in a further 77 glioma samples. In Diffuse Glioma data, relB expression was associated with glioma grade, demonstrated a mesenchymal subtype preference and cell development association. The downregulation of relB expression inhibited glioma cell migration and invasion by regulating the MMPs in vitro. relB expression was independently associated with grade and prognosis of grade III and grade IV gliomas, suggesting that relB is a novel biomarker with therapeutic potential for predicting prognosis in glioma.
Collapse
Affiliation(s)
- Feng Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Qing Guo
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Qi Hu
- Department of Neurosurgery, The First People's Hospital of Yueyang, Yueyang, Hunan 414000, P.R. China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
16
|
Gao Y, Zhang H, Luo L, Lin J, Li D, Zheng S, Huang H, Yan S, Yang J, Hao Y, Li H, Gao Smith F, Jin S. Resolvin D1 Improves the Resolution of Inflammation via Activating NF-κB p50/p50-Mediated Cyclooxygenase-2 Expression in Acute Respiratory Distress Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:ji1700315. [PMID: 28794232 PMCID: PMC5583748 DOI: 10.4049/jimmunol.1700315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe illness characterized by uncontrolled inflammation. The resolution of inflammation is a tightly regulated event controlled by endogenous mediators, such as resolvin D1 (RvD1). Cyclooxygenase-2 (COX-2) has been reported to promote inflammation, along with PGE2, in the initiation of inflammation, as well as in prompting resolution, with PGD2 acting in the later phase of inflammation. Our previous work demonstrated that RvD1 enhanced COX-2 and PGD2 expression to resolve inflammation. In this study, we investigated mechanisms underlying the effect of RvD1 in modulating proresolving COX-2 expression. In a self-limited ARDS model, an LPS challenge induced the biphasic activation of COX-2, and RvD1 promoted COX-2 expression during the resolution phase. However, it was significantly blocked by treatment of a NF-κB inhibitor. In pulmonary fibroblasts, NF-κB p50/p50 was shown to be responsible for the proresolving activity of COX-2. Additionally, RvD1 potently promoted p50 homodimer nuclear translocation and robustly triggered DNA-binding activity, upregulating COX-2 expression via lipoxin A4 receptor/formyl peptide receptor 2. Finally, the absence of p50 in knockout mice prevented RvD1 from promoting COX-2 and PGD2 expression and resulted in excessive pulmonary inflammation. In conclusion, RvD1 expedites the resolution of inflammation through activation of lipoxin A4 receptor/formyl peptide receptor 2 receptor and NF-κB p50/p50-COX-2 signaling pathways, indicating that RvD1 might have therapeutic potential in the management of ARDS.
Collapse
Affiliation(s)
- Ye Gao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Huawei Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Lingchun Luo
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jing Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Dan Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Sisi Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hua Huang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Songfan Yan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jingxiang Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Yu Hao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hui Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Fang Gao Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
- Institute of Inflammation and Ageing, College of Medical and Dental Science, University of Birmingham, Birmingham B15 2WB, United Kingdom
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| |
Collapse
|
17
|
Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability. PLoS One 2017; 12:e0180881. [PMID: 28749959 PMCID: PMC5531650 DOI: 10.1371/journal.pone.0180881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 11/19/2022] Open
Abstract
Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.
Collapse
|
18
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2017; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
19
|
Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int J Mol Sci 2017; 18:ijms18020243. [PMID: 28125025 PMCID: PMC5343780 DOI: 10.3390/ijms18020243] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 01/10/2023] Open
Abstract
Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.
Collapse
|
20
|
Qin H, Zhou J, Zhou P, Xu J, Tang Z, Ma H, Guo F. Prognostic significance of RelB overexpression in non-small cell lung cancer patients. Thorac Cancer 2016; 7:415-21. [PMID: 27385983 PMCID: PMC4930960 DOI: 10.1111/1759-7714.12345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/06/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung cancer is a major public health issue in most countries, including China. The expression of RelB is associated with poor prognosis in diverse cancers. However, whether RelB expression could be an indicator of poor prognosis in non-small cell lung cancer (NSCLC) is still unclear. METHODS The expression of RelB in NSCLC tumor tissue and adjacent non-neoplastic tissues were examined by immunohistochemistry. Chi-square or two-tailed Fisher's exact tests were used to analyze possible associations between qualitative clinicopathological variables and RelB expression. Kaplan-Meier analysis and a Cox regression model were employed to determine independent prognostic factors. RESULTS The expression of RelB was increased in tumor tissue compared with adjacent non-neoplastic tissue in NSCLC patients. High RelB expression was significantly correlated with degree of differentiation (P = 0.023), depth of tumor invasion (P < 0.001), lymph node metastasis (P = 0.017), distant metastases (P = 0.004), and tumor node metastasis stage (P < 0.001) in patients with NSCLC. NSCLC patients with high RelB expression had significantly shorter overall survival than those with low RelB expression (P < 0.001). Our results indicate that high RelB expression is an independent prognostic factor for patients with NSCLC (P < 0.001). CONCLUSIONS High RelB expression could provide a basis for judgment of prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Hualong Qin
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China; Central Laboratory The First Affiliated Hospital of Soochow University Suzhou China
| | - Jun Zhou
- Central Laboratory The First Affiliated Hospital of Soochow University Suzhou China
| | - Peng Zhou
- Central Laboratory The First Affiliated Hospital of Soochow University Suzhou China
| | - Jingjing Xu
- Central Laboratory The First Affiliated Hospital of Soochow University Suzhou China
| | - Zaixiang Tang
- Department of Biostatistics Medical College of Soochow University Suzhou China
| | - Haitao Ma
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China
| | - Feng Guo
- Central Laboratory The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
21
|
Labonté LE, Bourbeau J, Daskalopoulou SS, Zhang M, Coulombe P, Garland K, Baglole CJ. Club Cell-16 and RelB as Novel Determinants of Arterial Stiffness in Exacerbating COPD Patients. PLoS One 2016; 11:e0149974. [PMID: 26914709 PMCID: PMC4767820 DOI: 10.1371/journal.pone.0149974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/08/2016] [Indexed: 01/15/2023] Open
Abstract
Background Exacerbations of chronic obstructive pulmonary disease (COPD) are acute events of worsened respiratory symptoms that may increase the risk of cardiovascular disease (CVD), a leading cause of mortality amongst COPD patients. The utility of lung-specific inflammatory mediators such as club cell protein-16 (CC-16) and surfactant protein D (SPD) and that of a novel marker of CV outcomes in COPD- RelB- in predicting adverse cardiovascular events during exacerbation is not known. Methods Thirty-eight subjects with COPD admitted to the hospital for severe exacerbation were included in this analysis. Clinical, physiological and arterial stiffness measurements were performed within 72 hours of admission; this was followed by measurements taken every 3 days until hospital discharge, then once a week until 30 days after discharge, and then again at 90 and 180 days. Plasma concentrations of inflammatory mediators were measured from peripheral venous blood taken at admission, and at days 15, 30, 90 and 180. Results CC-16 and RelB concentrations were increased at day 15 of exacerbations whereas SPD concentrations were decreased. The course of change in CC-16 and RelB levels over time was inversely associated with that of carotid-femoral pulse wave velocity, the gold-standard measure of arterial stiffness. Increases in CC-16 could predict a decreased number of subsequent exacerbations during follow-up. Conclusions Lung-specific (CC-16) and novel (RelB) biomarkers are associated with systemic cardiovascular changes over time. CC-16 can predict subsequent exacerbations in subjects with severe COPD and may be an important biomarker of pulmonary and systemic stress in COPD.
Collapse
Affiliation(s)
- Laura E. Labonté
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Center, Montreal, Québec, Canada
| | - Jean Bourbeau
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Center, Montreal, Québec, Canada
| | | | - Michele Zhang
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Center, Montreal, Québec, Canada
| | - Patrick Coulombe
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Center, Montreal, Québec, Canada
| | - Katie Garland
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Center, Montreal, Québec, Canada
| | - Carolyn J. Baglole
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Québec, Canada
- Meakins Christie Laboratories, McGill University, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
22
|
Saxon JA, Cheng DS, Han W, Polosukhin VV, McLoed AG, Richmond BW, Gleaves LA, Tanjore H, Sherrill TP, Barham W, Yull FE, Blackwell TS. p52 Overexpression Increases Epithelial Apoptosis, Enhances Lung Injury, and Reduces Survival after Lipopolysaccharide Treatment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:1891-9. [PMID: 26773153 PMCID: PMC4744539 DOI: 10.4049/jimmunol.1501555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
Although numerous studies have demonstrated a critical role for canonical NF-κB signaling in inflammation and disease, the function of the noncanonical NF-κB pathway remains ill-defined. In lung tissue from patients with acute respiratory distress syndrome, we identified increased expression of the noncanonical pathway component p100/p52. To investigate the effects of p52 expression in vivo, we generated a novel transgenic mouse model with inducible expression of p52 in Clara cell secretory protein-expressing airway epithelial cells. Although p52 overexpression alone did not cause significant inflammation, p52 overexpression caused increased lung inflammation, injury, and mortality following intratracheal delivery of Escherichia coli LPS. No differences in cytokine/chemokine expression were measured between p52-overexpressing mice and controls, but increased apoptosis of Clara cell secretory protein-positive airway epithelial cells was observed in transgenic mice after LPS stimulation. In vitro studies in lung epithelial cells showed that p52 overexpression reduced cell survival and increased the expression of several proapoptotic genes during cellular stress. Collectively, these studies demonstrate a novel role for p52 in cell survival/apoptosis of airway epithelial cells and implicate noncanonical NF-κB signaling in the pathogenesis of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Jamie A Saxon
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Dong-Sheng Cheng
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Wei Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Vasiliy V Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Allyson G McLoed
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Bradley W Richmond
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232; and
| | - Linda A Gleaves
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Taylor P Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232; Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232; and Department of Veterans Affairs Medical Center, Nashville, TN 37232
| |
Collapse
|
23
|
Uncoupling Protein 2 Increases Susceptibility to Lipopolysaccharide-Induced Acute Lung Injury in Mice. Mediators Inflamm 2016; 2016:9154230. [PMID: 27057102 PMCID: PMC4761398 DOI: 10.1155/2016/9154230] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022] Open
Abstract
Uncoupling protein 2 (UCP2) is upregulated in patients with systemic inflammation and infection, but its functional role is unclear. We up- or downregulated UCP2 expression using UCP2 recombinant adenovirus or the UCP2 inhibitor, genipin, in lungs of mice, and investigated the mechanisms of UCP2 in ALI. UCP2 overexpression in mouse lungs increased LPS-induced pathological changes, lung permeability, lung inflammation, and lowered survival rates. Furthermore, ATP levels and mitochondrial membrane potential were decreased, while reactive oxygen species production was increased. Additionally, mitogen-activated protein kinases (MAPKs) activity was elevated, which increased the sensitivity to LPS-induced apoptosis and inflammation. LPS-induced apoptosis and release of inflammatory factors were alleviated by pretreatment of the Jun N-terminal kinase (JNK) inhibitor SP600125 or the p38 MAPK inhibitor SB203580, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 in UCP2-overexpressing mice. On the other hand, LPS-induced alveolar epithelial cell death and inflammation were attenuated by genipin. In conclusion, UCP2 increased susceptibility to LPS-induced cell death and pulmonary inflammation, most likely via ATP depletion and activation of MAPK signaling following ALI in mice.
Collapse
|
24
|
Croasdell A, Lacy SH, Thatcher TH, Sime PJ, Phipps RP. Resolvin D1 Dampens Pulmonary Inflammation and Promotes Clearance of Nontypeable Haemophilus influenzae. THE JOURNAL OF IMMUNOLOGY 2016; 196:2742-52. [PMID: 26843331 DOI: 10.4049/jimmunol.1502331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/03/2016] [Indexed: 12/19/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative, opportunistic pathogen that frequently causes ear infections, bronchitis, pneumonia, and exacerbations in patients with underlying inflammatory diseases, such as chronic obstructive pulmonary disease. In mice, NTHi is rapidly cleared, but a strong inflammatory response persists, underscoring the concept that NTHi induces dysregulation of normal inflammatory responses and causes a failure to resolve. Lipid-derived specialized proresolving mediators (SPMs) play a critical role in the active resolution of inflammation by both suppressing proinflammatory actions and promoting resolution pathways. Importantly, SPMs lack the immunosuppressive properties of classical anti-inflammatory therapies. On the basis of these characteristics, we hypothesized that aspirin-triggered resolvin D1 (AT-RvD1) would dampen NTHi-induced inflammation while still enhancing bacterial clearance. C57BL/6 mice were treated with AT-RvD1 and infected with live NTHi. AT-RvD1-treated mice had lower total cell counts and neutrophils in bronchoalveolar lavage fluid, and had earlier influx of macrophages. In addition, AT-RvD1-treated mice showed changes in temporal regulation of inflammatory cytokines and enzymes, with decreased KC at 6 h and decreased IL-6, TNF-α, and cyclooxygenase-2 expression at 24 h post infection. Despite reduced inflammation, AT-RvD1-treated mice had reduced NTHi bacterial load, mediated by enhanced clearance by macrophages and a skewing toward an M2 phenotype. Finally, AT-RvD1 protected NTHi-infected mice from weight loss, hypothermia, hypoxemia, and respiratory compromise. This research highlights the beneficial role of SPMs in pulmonary bacterial infections and provides the groundwork for further investigation into SPMs as alternatives to immunosuppressive therapies like steroids.
Collapse
Affiliation(s)
- Amanda Croasdell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and
| | - Shannon H Lacy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and
| | - Thomas H Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
25
|
MacLoughlin RJ, Higgins BD, Devaney J, O'Toole D, Laffey JG, O'Brien T. Aerosol-mediated delivery of AAV2/6-IκBα attenuates lipopolysaccharide-induced acute lung injury in rats. Hum Gene Ther 2015; 26:36-46. [PMID: 25382145 DOI: 10.1089/hum.2014.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibition of the proinflammatory transcription factor NF-κB has previously been shown to attenuate the inflammatory response in tissue after injury. However, the feasibility and efficacy of aerosolized adeno-associated viral (AAV) vector-delivered transgenes to inhibit the NF-κB pathway are less clear. Initial studies optimized the AAV vector for delivery of transgenes to the pulmonary epithelium. The effect of repeated nebulization on the integrity and transduction efficacy of the AAV vector was then examined. Subsequent in vivo studies examined the efficacy of aerosolized rAAV2/6 overexpressing the NF-κB inhibitor IκBα in a rodent endotoxin-induced lung injury model. Initial in vitro investigations indicated that rAAV2/6 was the most effective vector to transduce the lung epithelium, and maintained its integrity and transduction efficacy after repeated nebulization. In our in vivo studies, animals that received aerosolized rAAV2/6-IκBα demonstrated a significant increase in total IκBα levels in lung tissue relative to null vector-treated animals. Aerosolized rAAV2/6-IκBα attenuated endotoxin-induced bronchoalveolar lavage-detected neutrophilia, interleukin-6 and cytokine-induced neutrophil chemoattractant-1 levels, as well as total protein content, and decreased histologic indices of injury. These results demonstrate that aerosolized AAV vectors encoding human IκBα significantly attenuate endotoxin-mediated lung injury and may be a potential therapeutic candidate in the treatment of acute lung injury.
Collapse
Affiliation(s)
- Ronan J MacLoughlin
- 1 Regenerative Medicine Institute (REMEDI), National University of Ireland , Galway, Ireland
| | | | | | | | | | | |
Collapse
|
26
|
Croasdell A, Thatcher TH, Kottmann RM, Colas RA, Dalli J, Serhan CN, Sime PJ, Phipps RP. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. Am J Physiol Lung Cell Mol Physiol 2015; 309:L888-901. [PMID: 26301452 DOI: 10.1152/ajplung.00125.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a protective response to injury, but it can become chronic, leading to tissue damage and disease. Cigarette smoke causes multiple inflammatory diseases, which account for thousands of deaths and cost billions of dollars annually. Cigarette smoke disrupts the function of immune cells, such as macrophages, by prolonging inflammatory signaling, promoting oxidative stress, and impairing phagocytosis, contributing to increased incidence of infections. Recently, new families of lipid-derived mediators, "specialized proresolving mediators" (SPMs), were identified. SPMs play a critical role in the active resolution of inflammation by counterregulating proinflammatory signaling and promoting resolution pathways. We have identified dysregulated concentrations of lipid mediators in exhaled breath condensate, bronchoalveolar lavage fluid, and serum from patients with chronic obstructive pulmonary disease (COPD). In human alveolar macrophages from COPD and non-COPD patients, D-series resolvins decreased inflammatory cytokines and enhanced phagocytosis. To further investigate the actions of resolvins on human cells, macrophages were differentiated from human blood monocytes and treated with D-series resolvins and then exposed to cigarette smoke extract. Resolvins significantly suppressed macrophage production of proinflammatory cytokines, enzymes, and lipid mediators. Resolvins also increased anti-inflammatory cytokines, promoted an M2 macrophage phenotype, and restored cigarette smoke-induced defects in phagocytosis, highlighting the proresolving functions of these molecules. These actions were receptor-dependent and involved modulation of canonical and noncanonical NF-κB expression, with the first evidence for SPM action on alternative NF-κB signaling. These data show that resolvins act on human macrophages to attenuate cigarette smoke-induced inflammatory effects through proresolving mechanisms and provide new evidence of the therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Amanda Croasdell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Thomas H Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - R Matthew Kottmann
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| |
Collapse
|
27
|
Cabanski M, Fields B, Boue S, Boukharov N, DeLeon H, Dror N, Geertz M, Guedj E, Iskandar A, Kogel U, Merg C, Peck MJ, Poussin C, Schlage WK, Talikka M, Ivanov NV, Hoeng J, Peitsch MC. Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains. Inflamm Res 2015; 64:471-86. [PMID: 25962837 PMCID: PMC4464601 DOI: 10.1007/s00011-015-0820-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/15/2015] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). OBJECTIVE In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. METHODS The lung transcriptomes of five mouse models (C57BL/6, ApoE (-/-) , A/J, CD1, and Nrf2 (-/-) ) were analyzed following 5-7 months of CS exposure. RESULTS We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1. CONCLUSION These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Maciej Cabanski
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- />Novartis Pharma AG, Novartis Institutes for Biomedical Research (NIBR), 4002 Basel, Switzerland
| | - Brett Fields
- />Selventa, One Alewife Center, Cambridge, MA 02140 USA
| | - Stephanie Boue
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | - Hector DeLeon
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Natalie Dror
- />Selventa, One Alewife Center, Cambridge, MA 02140 USA
| | - Marcel Geertz
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- />Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | - Emmanuel Guedj
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita Iskandar
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ulrike Kogel
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Celine Merg
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michael J. Peck
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carine Poussin
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K. Schlage
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V. Ivanov
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C. Peitsch
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
28
|
Sheridan JA, Zago M, Nair P, Li PZ, Bourbeau J, Tan WC, Hamid Q, Eidelman DH, Benedetti AL, Baglole CJ. Decreased expression of the NF-κB family member RelB in lung fibroblasts from Smokers with and without COPD potentiates cigarette smoke-induced COX-2 expression. Respir Res 2015; 16:54. [PMID: 25943190 PMCID: PMC4427974 DOI: 10.1186/s12931-015-0214-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/21/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Heightened inflammation, including expression of COX-2, is associated with COPD pathogenesis. RelB is an NF-κB family member that attenuates COX-2 in response to cigarette smoke by a mechanism that may involve the miRNA miR-146a. There is no information on the expression of RelB in COPD or if RelB prevents COX-2 expression through miR-146a. METHODS RelB, Cox-2 and miR-146a levels were evaluated in lung fibroblasts and blood samples derived from non-smokers (Normal) and smokers (At Risk) with and without COPD by qRT-PCR. RelB and COX-2 protein levels were evaluated by western blot. Human lung fibroblasts from Normal subjects and smokers with and without COPD, along with RelB knock-down (siRNA) in Normal cells, were exposed to cigarette smoke extract (CSE) in vitro and COX-2 mRNA/protein and miR-146a levels assessed. RESULTS Basal expression of RelB mRNA and protein were significantly lower in lung cells derived from smokers with and without COPD, the latter of which expressed more Cox-2 mRNA and protein in response to CSE. Knock-down of RelB in Normal fibroblasts increased Cox-2 mRNA and protein induction by CSE. Basal miR-146a levels were not different between the three groups, and only Normal fibroblasts increased miR-146a expression in response to smoke. There was a positive correlation between systemic RelB and Cox-2 mRNA levels and circulating miR-146a levels were higher only in GOLD stage I subjects. CONCLUSIONS Our data indicate that RelB attenuates COX-2 expression in lung structural cells, such that loss of pulmonary RelB may be an important determinant in the aberrant, heightened inflammation associated with COPD pathogenesis.
Collapse
Affiliation(s)
- Jared A Sheridan
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Michela Zago
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | | | - Pei Z Li
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montreal, QC, Canada.
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montreal, QC, Canada.
| | - Wan C Tan
- The UBC James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Qutayba Hamid
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - David H Eidelman
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Andrea L Benedetti
- Department of Epidemiology and Biostatistics, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| | - Carolyn J Baglole
- Department of Medicine, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
29
|
Zhang S, Patel A, Chu C, Jiang W, Wang L, Welty SE, Moorthy B, Shivanna B. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB. Toxicol Appl Pharmacol 2015; 286:92-101. [PMID: 25831079 DOI: 10.1016/j.taap.2015.03.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 02/03/2023]
Abstract
Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells.
Collapse
Affiliation(s)
- Shaojie Zhang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ananddeep Patel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chun Chu
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiwu Jiang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lihua Wang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen E Welty
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bhagavatula Moorthy
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Binoy Shivanna
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Labonté L, Coulombe P, Zago M, Bourbeau J, Baglole CJ. Alterations in the expression of the NF-κB family member RelB as a novel marker of cardiovascular outcomes during acute exacerbations of chronic obstructive pulmonary disease. PLoS One 2014; 9:e112965. [PMID: 25409035 PMCID: PMC4237338 DOI: 10.1371/journal.pone.0112965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) exacerbations are acute events of worsened respiratory symptoms and enhanced inflammation partly mediated by NF-κB activation. RelB, an NF-κB family member, suppresses cigarette smoke-induced inflammation but its expression in COPD is unknown. Moreover, there is no information on its association with clinical features of COPD. The objectives of this study were to assess RelB expression relative to markers of inflammation as well as its association with cardiovascular and pulmonary features of COPD patients at stable-state and exacerbation. METHODS Data from 48 COPD patients were analyzed. Blood samples were collected from stable-state and exacerbating patients. After RNA isolation, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to assess RelB, Cox-2, IL-8 and IL-1β mRNA expression and their associations with measured clinical variables. RESULTS Of the 48 COPD subjects, 18 were in stable-state and 30 were in exacerbation. RelB mRNA expression was lower than that of Cox-2, IL-8, and IL-1β in all cases (all p<0.001, except for IL-8 at exacerbation (p = 0.22)). Cox-2, IL-8 and IL-1β were significantly associated with clinical features of patients in both stable-state and at exacerbation. There was no association with RelB expression and any clinical features in COPD subjects at stable-state. RelB mRNA levels were significantly associated with cardiovascular events such as systolic blood pressure during exacerbation. CONCLUSIONS RelB mRNA expression is lower than that of the other inflammatory mediators. Expression of Cox-2, IL-8 and IL-1β were related to clinical features in both stable-state and at exacerbation. However, RelB expression was associated with clinical features of patients only during exacerbation, suggesting that RelB may represent a novel marker of health outcomes, in particular cardiovascular, during exacerbation in COPD.
Collapse
Affiliation(s)
- Laura Labonté
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Respiratory Epidemiology and Clinical Research Unit (RECRU), Montreal Chest Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Patrick Coulombe
- Respiratory Epidemiology and Clinical Research Unit (RECRU), Montreal Chest Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Michela Zago
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Jean Bourbeau
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Respiratory Epidemiology and Clinical Research Unit (RECRU), Montreal Chest Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Carolyn J. Baglole
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Kong S, Thiruppathi M, Qiu Q, Lin Z, Dong H, Chini EN, Prabhakar BS, Fang D. DBC1 is a suppressor of B cell activation by negatively regulating alternative NF-κB transcriptional activity. THE JOURNAL OF IMMUNOLOGY 2014; 193:5515-24. [PMID: 25362179 DOI: 10.4049/jimmunol.1401798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD40 and BAFFR signaling play important roles in B cell proliferation and Ig production. In this study, we found that B cells from mice with deletion of Dbc1 gene (Dbc1(-/-)) show elevated proliferation, and IgG1 and IgA production upon in vitro CD40 and BAFF, but not BCR and LPS stimulation, indicating that DBC1 inhibits CD40/BAFF-mediated B cell activation in a cell-intrinsic manner. Microarray analysis and chromatin immunoprecipitation experiments reveal that DBC1 inhibits B cell function by selectively suppressing the transcriptional activity of alternative NF-κB members RelB and p52 upon CD40 stimulation. As a result, when immunized with nitrophenylated-keyhole limpet hemocyanin, Dbc1(-/-) mice produce significantly increased levels of germinal center B cells, plasma cells, and Ag-specific Ig. Finally, loss of DBC1 in mice leads to higher susceptibility to experimental autoimmune myasthenia gravis. Our study identifies DBC1 as a novel regulator of B cell activation by suppressing the alternative NF-κB pathway.
Collapse
Affiliation(s)
- Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Muthusamy Thiruppathi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Chicago, IL 60612
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Hongxin Dong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Eduardo N Chini
- Laboratory of Signal Transduction, Department of Anesthesiology and Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Chicago, IL 60612
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| |
Collapse
|
32
|
Spinelli SL, Xi X, McMillan DH, Woeller CF, Richardson ME, Cavet ME, Zhang JZ, Feldon SE, Phipps RP. Mapracorat, a selective glucocorticoid receptor agonist, upregulates RelB, an anti-inflammatory nuclear factor-kappaB protein, in human ocular cells. Exp Eye Res 2014; 127:290-8. [DOI: 10.1016/j.exer.2014.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
|
33
|
Meijer M, Rijkers GT, van Overveld FJ. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2014; 9:1055-68. [PMID: 24168412 DOI: 10.1586/1744666x.2013.851347] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a decreased airflow due to airway narrowing that, once it occurs, is not fully reversible. The disease usually is progressive and associated with an enhanced inflammatory response in the lungs after exposure to noxious particles or gases. After removal of the noxious particles, the inflammation can continue in a self-sustaining manner. It has been established that improper activation of neutrophils lies at the core of the pathology. This paper provides an overview of the mechanisms by which neutrophils can induce the pulmonary damage of COPD. As the pathogenesis of COPD is slowly being unraveled, new points of intervention are discovered, some of which with promising results.
Collapse
Affiliation(s)
- Mariska Meijer
- Department of Science, University College Roosevelt, Lange Noordstraat 1, 4113 CB Middelburg, The Netherlands
| | | | | |
Collapse
|
34
|
He F, Zheng LL, Luo WT, Yang R, Xu XQ, Cai L. Inferring Single Nucleotide Polymorphisms in MicroRNA Binding Sites of Lung Cancer-related Inflammatory Genes. Asian Pac J Cancer Prev 2014; 15:3601-6. [DOI: 10.7314/apjcp.2014.15.8.3601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
de Souza AR, Zago M, Eidelman DH, Hamid Q, Baglole CJ. Aryl hydrocarbon receptor (AhR) attenuation of subchronic cigarette smoke-induced pulmonary neutrophilia is associated with retention of nuclear RelB and suppression of intercellular adhesion molecule-1 (ICAM-1). Toxicol Sci 2014; 140:204-23. [PMID: 24752502 DOI: 10.1093/toxsci/kfu068] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoke is associated with chronic and enhanced pulmonary inflammation characterized by increased cytokine production and leukocyte recruitment to the lung. Although the aryl hydrocarbon receptor (AhR) is well-known to mediate toxic effects of manmade environmental contaminants, the AhR has emerged as a suppressor of acute cigarette smoke-induced neutrophilia by a mechanism involving the NF-κB protein RelB. Yet individuals who smoke often smoke for many years and vary in their cigarette consumption. As there is currently no information on the AhR prevention of lung inflammation, including neutrophilia, due to varied and prolonged exposure regimes, we exposed control and AhR(-/-) mice to cigarette smoke for 2 weeks (subchronic exposure) utilizing low and high exposure protocols and evaluated pulmonary inflammation. Subchronic cigarette smoke exposure significantly increased pulmonary neutrophilia dose-dependently in AhR(-/-) mice. Surprisingly, there was no difference between smoke-exposed AhR(+/-) and AhR(-/-) mice in the expression of cytokines associated with neutrophil recruitment. Expression of pulmonary intercellular adhesion molecule-1 (ICAM-1), an adhesion molecule involved in neutrophil migration and retention, was higher in pulmonary endothelial cells from AhR(-/-) mice. Although total lung RelB expression was increased by cigarette smoke, nuclear RelB was significantly lower in subchronically exposed AhR(-/-) mice. Inhibition of AhR activity by CH-223191 in endothelial cells potentiated ICAM-1 expression and prevented RelB nuclear translocation but had no effect on neutrophil adhesion. These data support that genetic absence of the AhR contributes to heightened pulmonary neutrophilia in response to ongoing cigarette smoke exposure. Interindividual variations in AhR expression may enhance the susceptibility to cigarette smoke-induced diseases.
Collapse
Affiliation(s)
| | - Michela Zago
- Research Institute of the McGill University Health Centre
| | - David H Eidelman
- Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H2X 2P2
| | - Qutayba Hamid
- Research Institute of the McGill University Health Centre Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H2X 2P2
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H2X 2P2
| |
Collapse
|
36
|
Preparation of lung-targeting, emodin-loaded polylactic acid microspheres and their properties. Int J Mol Sci 2014; 15:6241-51. [PMID: 24733070 PMCID: PMC4013625 DOI: 10.3390/ijms15046241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been identified to have the potential to improve lung fibrosis and lung cancer. To avoid the liver and kidney toxicities and the fast metabolism of emodin, emodin-loaded polylactic acid microspheres (ED-PLA-MS) were prepared and their characteristics were studied. ED-PLA-MS were prepared by the organic phase dispersion-solvent diffusion method. By applying an orthogonal design, our results indicated that the optimal formulation was 12 mg/mL PLA, 0.5% gelatin, and an organic phase:glycerol ratio of 1:20. Using the optimal experimental conditions, the drug loading and encapsulation efficiencies were (19.0±1.8)% and (62.2±2.6)%, respectively. The average particle size was 9.7±0.7 μm. In vitro studies indicated that the ED-PLA-MS demonstrated a well-sustained release efficacy. The microspheres delivered emodin, primarily to the lungs of mice, upon intravenous injection. It was also detected by microscopy that partial lung inflammation was observed in lung tissues and no pathological changes were found in other tissues of the ED-PLA-MS-treated animals. These results suggested that ED-PLA-MS are of potential value in treating lung diseases in animals.
Collapse
|
37
|
Van Dyck E, Nazarov PV, Muller A, Nicot N, Bosseler M, Pierson S, Van Moer K, Palissot V, Mascaux C, Knolle U, Ninane V, Nati R, Bremnes RM, Vallar L, Berchem G, Schlesser M. Bronchial airway gene expression in smokers with lung or head and neck cancer. Cancer Med 2014; 3:322-36. [PMID: 24497500 PMCID: PMC3987082 DOI: 10.1002/cam4.190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/30/2013] [Accepted: 11/01/2013] [Indexed: 01/10/2023] Open
Abstract
Cigarette smoking is the major cause of cancers of the respiratory tract, including non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). In order to better understand carcinogenesis of the lung and upper airways, we have compared the gene expression profiles of tumor-distant, histologically normal bronchial biopsy specimens obtained from current smokers with NSCLC or HNC (SC, considered as a single group), as well as nonsmokers (NS) and smokers without cancer (SNC). RNA from a total of 97 biopsies was used for gene expression profiling (Affymetrix HG-U133 Plus 2.0 array). Differentially expressed genes were used to compare NS, SNC, and SC, and functional analysis was carried out using Ingenuity Pathway Analysis (IPA). Smoking-related cancer of the respiratory tract was found to affect the expression of genes encoding xenobiotic biotransformation proteins, as well as proteins associated with crucial inflammation/immunity pathways and other processes that protect the airway from the chemicals in cigarette smoke or contribute to carcinogenesis. Finally, we used the prediction analysis for microarray (PAM) method to identify gene signatures of cigarette smoking and cancer, and uncovered a 15-gene signature that distinguished between SNC and SC with an accuracy of 83%. Thus, gene profiling of histologically normal bronchial biopsy specimens provided insight into cigarette-induced carcinogenesis of the respiratory tract and gene signatures of cancer in smokers.
Collapse
Affiliation(s)
- Eric Van Dyck
- Département d'Oncologie, CRP-Santé du Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zago M, Rico de Souza A, Hecht E, Rousseau S, Hamid Q, Eidelman DH, Baglole CJ. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts. Toxicol Lett 2014; 226:107-16. [PMID: 24472607 DOI: 10.1016/j.toxlet.2014.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/23/2023]
Abstract
Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants.
Collapse
Affiliation(s)
- Michela Zago
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Emelia Hecht
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Carolyn J Baglole
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| |
Collapse
|
39
|
Tully JE, Hoffman SM, Lahue KG, Nolin JD, Anathy V, Lundblad LKA, Daphtary N, Aliyeva M, Black KE, Dixon AE, Poynter ME, Irvin CG, Janssen-Heininger YMW. Epithelial NF-κB orchestrates house dust mite-induced airway inflammation, hyperresponsiveness, and fibrotic remodeling. THE JOURNAL OF IMMUNOLOGY 2013; 191:5811-21. [PMID: 24227776 DOI: 10.4049/jimmunol.1301329] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
NF-κB activation within the epithelium has been implicated in the pathogenesis of asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and airway remodeling remains unclear. In the current study, we used an intranasal house dust mite (HDM) extract exposure regimen time course in BALB/c mice to evaluate inflammation, NF-κB activation, airway hyperresponsiveness (AHR), and airway remodeling. We used CC10-IκBαSR transgenic mice to evaluate the functional importance of epithelial NF-κB in response to HDM. After a single exposure of HDM, mRNA expression of proinflammatory mediators was significantly elevated in lung tissue of wild-type (WT) mice, in association with increases in nuclear RelA and RelB, components of the classical and alternative NF-κB pathway, respectively, in the bronchiolar epithelium. In contrast, CC10-IκBαSR mice displayed marked decreases in nuclear RelA and RelB and mRNA expression of proinflammatory mediators compared with WT mice. After 15 challenges with HDM, WT mice exhibited increases in inflammation, AHR, mucus metaplasia, and peribronchiolar fibrosis. CC10-IκBαSR transgenic mice displayed marked decreases in neutrophilic infiltration, tissue damping, and elastance parameters, in association will less peribronchiolar fibrosis and decreases in nuclear RelB in lung tissue. However, central airway resistance and mucus metaplasia remained elevated in CC10-IκBαSR transgenic mice, in association with the continued presence of lymphocytes, and partial decreases in eosinophils and IL-13. The current study demonstrates that following airway exposure with an asthma-relevant allergen, activation of classical and alternative NF-κB pathways occurs within the airway epithelium and may coordinately contribute to allergic inflammation, AHR, and fibrotic airway remodeling.
Collapse
Affiliation(s)
- Jane E Tully
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Berchtold CM, Coughlin A, Kasper Z, Thibeault SL. Paracrine potential of fibroblasts exposed to cigarette smoke extract with vascular growth factor induction. Laryngoscope 2013; 123:2228-36. [PMID: 23494588 PMCID: PMC4113205 DOI: 10.1002/lary.24052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES/HYPOTHESIS Nicotine, a major constituent of cigarette smoke, can activate the cholinergic anti-inflammatory pathway by binding to α7-nicotinic acetylcholine receptor (α7nAChR) expressed on the surface of certain cells. Here, we ask whether cigarette smoke extract induced different paracrine factors compared to the in vivo regulator of inflammation, tumor necrosis factor-α, in human vocal fold fibroblasts (hVFFs) shown to express low levels of α7nAChR. STUDY DESIGN In vitro. METHODS α7nAChR was detected by nested polymerase chain reaction and immunohistochemistry. γH2AX, a marker for DNA double-stand breaks, was measured by immunofluorescence. Cigarette smoke extract was prepared in accordance with investigators studying effects of cigarette smoke. hVFFs treated for 3 hours had media replaced for an additional 24 hours. Cytokine, chemokine, and growth factor levels in media were assessed by multiplex analysis. RESULTS α7nAChR expression levels decreased with the passage number of fibroblasts. Tumor necrosis factor-α induced a significantly different profile of cytokines, chemokines, and growth factor compared to cigarette smoke extract exposure. Cigarette smoke extract at a concentration not associated with induction of γH2AX nuclear foci significantly increased vascular endothelial growth factor. CONCLUSIONS Cigarette smoke extract elicited a response important for regulation of angiogenesis and vascular permeability during inflammation, without evidence of DNA double-stand breaks associated with carcinogenesis. hVFFs are capable of participating in paracrine regulation of pathological blood vessel formation associated with cigarette smoking-related diseases (ie, Reinke edema). These cells express α7nAChR, an essential component of the cholinergic anti-inflammatory pathway regulated by the vagus nerve in certain tissues and a target of therapeutic agents.
Collapse
Affiliation(s)
- Craig M Berchtold
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, U.S.A
| | | | | | | |
Collapse
|
41
|
Abstract
RelB is one of the more unusual members of the NF-κB family. This family, arguably the best known group of transcription regulators, regulates an astonishing array of cell types and biological processes. This includes regulation of cell growth, differentiation and death by apoptosis, and the development and function of the innate and adaptive-immune system. RelB is best known for its roles in lymphoid development, DC biology, and noncanonical signaling. Within the last few years, however, surprising functions of RelB have emerged. The N-terminal leucine zipper motif of RelB, a motif unique among the NF-κB family, may associate with more diverse DNA sequences than other NF-κB members. RelB is capable of direct binding to the AhR that supports the xenobiotic-detoxifying pathway. RelB can regulate the circadian rhythm by directly binding to the BMAL partner of CLOCK. Finally, RelB also couples with bioenergy NAD(+) sensor SIRT1 to integrate acute inflammation with changes in metabolism and mitochondrial bioenergetics. In this review, we will explore these unique aspects of RelB, specifically with regard to its role in immunity.
Collapse
Affiliation(s)
- Patrick Millet
- 1.Wake Forest University Health Sciences, Wake Forest University, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
42
|
Thatcher TH, Hsiao HM, Pinner E, Laudon M, Pollock SJ, Sime PJ, Phipps RP. Neu-164 and Neu-107, two novel antioxidant and anti-myeloperoxidase compounds, inhibit acute cigarette smoke-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L165-74. [PMID: 23686858 DOI: 10.1152/ajplung.00036.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoke is a profound proinflammatory stimulus that causes acute lung inflammation and chronic lung disease, including chronic obstructive pulmonary disease (COPD, emphysema, and chronic bronchitis), via a variety of mechanisms, including oxidative stress. Cigarette smoke contains high levels of free radicals, whereas inflammatory cells, including macrophages and neutrophils, express enzymes, including NADPH oxidase, nitric oxide synthase, and myeloperoxidase, that generate reactive oxygen species in situ and contribute to inflammation and tissue damage. Neu-164 and Neu-107 are small-molecule inhibitors of myeloperoxidase, as well as potent antioxidants. We hypothesized that Neu-164 and Neu-107 would inhibit acute cigarette smoke-induced inflammation. Adult C57BL/6J mice were exposed to mainstream cigarette smoke for 3 days to induce acute inflammation and were treated daily by inhalation with Neu-164, Neu-107, or dexamethasone as a control. Inflammatory cells and cytokines were assessed by bronchoalveolar lavage and histology. mRNA levels of endogenous antioxidant genes heme oxygenase-1 and glutamate-cysteine ligase modifier subunit were determined by qPCR. Cigarette smoke exposure induced acute lung inflammation with accumulation of neutrophils and upregulation of proinflammatory cytokines, including IL-6, macrophage inflammatory protein-2, and keratinocyte-derived cytokine. Both Neu-164 and Neu-107 significantly reduced the accumulation of inflammatory cells and the expression of inflammatory cytokines as effectively as dexamethasone. Upregulation of endogenous antioxidant genes was dampened. Neu-164 and Neu-107 inhibit acute cigarette smoke-induced inflammation by scavenging reactive oxygen species in cigarette smoke and by inhibiting further oxidative stress caused by inflammatory cells. These compounds may have promise in preventing or treating lung disease associated with chronic smoke exposure, including COPD.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Devaney J, Curley GF, Hayes M, Masterson C, Ansari B, O'Brien T, O'Toole D, Laffey JG. Inhibition of pulmonary nuclear factor kappa-B decreases the severity of acute Escherichia coli pneumonia but worsens prolonged pneumonia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R82. [PMID: 23622108 PMCID: PMC4056114 DOI: 10.1186/cc12696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/27/2013] [Indexed: 12/19/2022]
Abstract
Introduction Nuclear factor (NF)-κB is central to the pathogenesis of inflammation in acute lung injury, but also to inflammation resolution and repair. We wished to determine whether overexpression of the NF-κB inhibitor IκBα could modulate the severity of acute and prolonged pneumonia-induced lung injury in a series of prospective randomized animal studies. Methods Adult male Sprague-Dawley rats were randomized to undergo intratracheal instillation of (a) 5 × 109 adenoassociated virus (AAV) vectors encoding the IκBα transgene (5 × 109 AAV-IκBα); (b) 1 × 1010 AAV-IκBα; (c) 5 × 1010 AAV-IκBα; or (d) vehicle alone. After intratracheal inoculation with Escherichia coli, the severity of the lung injury was measured in one series over a 4-hour period (acute pneumonia), and in a second series after 72 hours (prolonged pneumonia). Additional experiments examined the effects of IκBα and null-gene overexpression on E. coli-induced and sham pneumonia. Results In acute pneumonia, IκBα dose-dependently decreased lung injury, improving arterial oxygenation and lung static compliance, reducing alveolar protein leak and histologic injury, and decreasing alveolar IL-1β concentrations. Benefit was maximal at the intermediate (1 × 1010) IκBα vector dose; however, efficacy was diminished at the higher (5 × 1010) IκBα vector dose. In contrast, IκBα worsened prolonged pneumonia-induced lung injury, increased lung bacterial load, decreased lung compliance, and delayed resolution of the acute inflammatory response. Conclusions Inhibition of pulmonary NF-κB activity reduces early pneumonia-induced injury, but worsens injury and bacterial load during prolonged pneumonia.
Collapse
|
44
|
McMillan DH, Woeller CF, Thatcher TH, Spinelli SL, Maggirwar SB, Sime PJ, Phipps RP. Attenuation of inflammatory mediator production by the NF-κB member RelB is mediated by microRNA-146a in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2013; 304:L774-81. [PMID: 23564509 DOI: 10.1152/ajplung.00352.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lung inflammation can result from exposure to multiple types of inflammatory stimuli. Fibroblasts, key structural cells in the lung that are integral to inflammation and wound healing, produce inflammatory mediators after exposure to stimuli such as IL-1β. We and others have shown that the NF-κB member RelB has anti-inflammatory properties in mice. Little is known, however, about the anti-inflammatory role of RelB in human cells and how it functions. MicroRNAs (miRNAs), a novel class of small, noncoding RNAs, can mediate inflammatory signaling pathways, including NF-κB, through regulation of target gene expression. Our goal was to analyze the anti-inflammatory properties of RelB in human lung fibroblasts. We hypothesized that RelB regulates inflammatory mediator production in lung fibroblasts in part through a mechanism involving miRNAs. To accomplish this, we transfected human lung fibroblasts with a plasmid encoding RelB and small interfering (si)RNA targeting RelB mRNA to overexpress and downregulate RelB, respectively. IL-1β, a powerful proinflammatory stimulus, was used to induce NF-κB-driven inflammatory responses. RelB overexpression reduced IL-1β-induced cyclooxygenase (Cox)-2, PGE₂, and cytokine production, and RelB downregulation increased Cox-2 expression and PGE₂ production. Furthermore, RelB overexpression increased IL-1β-induced expression of miRNA-146a, an NF-κB-dependent miRNA with anti-inflammatory properties, whereas RelB downregulation reduced miRNA-146a. miR-146a overexpression ablated the effects of RelB downregulation on IL-1β-induced Cox-2, PGE₂, and IL-6 production, suggesting that RelB mediates IL-1β-induced inflammatory mediator production in lung fibroblasts through miRNA-146a. RelB and miRNA-146a may therefore be new therapeutic targets in the treatment of lung inflammation caused by various agents and conditions.
Collapse
Affiliation(s)
- David H McMillan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Bleck B, Grunig G, Chiu A, Liu M, Gordon T, Kazeros A, Reibman J. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3757-63. [PMID: 23455502 DOI: 10.4049/jimmunol.1201165] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollution contributes to acute exacerbations of asthma and the development of asthma in children and adults. Airway epithelial cells interface innate and adaptive immune responses, and have been proposed to regulate much of the response to pollutants. Thymic stromal lymphopoietin (TSLP) is a pivotal cytokine linking innate and Th2 adaptive immune disorders, and is upregulated by environmental pollutants, including ambient particulate matter (PM) and diesel exhaust particles (DEP). We show that DEP and ambient fine PM upregulate TSLP mRNA and human microRNA (hsa-miR)-375 in primary human bronchial epithelial cells (pHBEC). Moreover, transfection of pHBEC with anti-hsa-miR-375 reduced TSLP mRNA in DEP but not TNF-α-treated cells. In silico pathway evaluation suggested the aryl hydrocarbon receptor (AhR) as one possible target of miR-375. DEP and ambient fine PM (3 μg/cm(2)) downregulated AhR mRNA. Transfection of mimic-hsa-miR-375 resulted in a small downregulation of AhR mRNA compared with resting AhR mRNA. AhR mRNA was increased in pHBEC treated with DEP after transfection with anti-hsa-miR-375. Our data show that two pollutants, DEP and ambient PM, upregulate TSLP in human bronchial epithelial cells by a mechanism that includes hsa-miR-375 with complex regulatory effects on AhR mRNA. The absence of this pathway in TNF-α-treated cells suggests multiple regulatory pathways for TSLP expression in these cells.
Collapse
Affiliation(s)
- Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Tully JE, Nolin JD, Guala AS, Hoffman SM, Roberson EC, Lahue KG, van der Velden J, Anathy V, Blackwell TS, Janssen-Heininger YMW. Cooperation between classical and alternative NF-κB pathways regulates proinflammatory responses in epithelial cells. Am J Respir Cell Mol Biol 2012; 47:497-508. [PMID: 22652196 DOI: 10.1165/rcmb.2012-0014oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The transcription factor NF-κB has been causally linked to inflammatory lung diseases. Recent studies have unraveled the complexity of NF-κB activation by identifying two parallel activation pathways: the classical NF-κB pathway, which is controlled by IκB kinase complex-β (IKKβ) and RelA/p50, and the alternative pathway, which is controlled by IKKα and RelB/p52. The alternative pathway regulates adaptive immune responses and lymphoid development, yet its role in the regulation of innate immune responses remains largely unknown. In this study, we determined the relevance of the alternative NF-κB pathway in proinflammatory responses in lung epithelial cells. The exposure of C10 murine alveolar lung epithelial cells to diverse stimuli, or primary murine tracheal epithelial cells to LPS, resulted in the activation of both NF-κB pathways, based on the nuclear translocation of RelA, p50, RelB, and p52. Increases in the nuclear content of RelA occurred rapidly, but transiently, whereas increases in nuclear RelB content were protracted. The small interfering (si) RNA-mediated knockdown of IKKα, RelA, or RelB resulted in decreases of multiple LPS-induced proinflammatory cytokines. Surprisingly, the siRNA ablation of IKKα or RelB led to marked increases in the production of IL-6 in response to LPS. The simultaneous expression of constitutively active (CA)-IKKα and CA-IKKβ caused synergistic increases in proinflammatory mediators. Lastly, the disruption of the IKK signalsome inhibited the activation of both NF-κB pathways. These results demonstrate that the coordinated activation of both NF-κB pathways regulates the magnitude and nature of proinflammatory responses in lung epithelial cells.
Collapse
Affiliation(s)
- Jane E Tully
- Health Sciences Research Facility, Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|