1
|
Pecha B, Martinez S, Milburn LJ, Rojas OL, Koch MA. Identification of Intestinal Lamina Propria Plasma Cells by Surface Transmembrane Activator and CAML Interactor Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1022-1028. [PMID: 38294253 PMCID: PMC10932850 DOI: 10.4049/jimmunol.2300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Plasma cells secrete an abundance of Abs and are a crucial component of our immune system. The intestinal lamina propria harbors the largest population of plasma cells, most of which produce IgA. These Abs can bind to beneficial gut bacteria to reinforce intestinal homeostasis and provide protection against enteric pathogens. Plasma cells downregulate many cell-surface proteins commonly used to identify B cells. In mice, expression of the surface marker CD138 has been widely used to identify plasma cells in lymph nodes, bone marrow, and spleen. Intestinal plasma cells require liberation via extensive tissue processing involving treatment with collagenase. We report that detection of CD138 surface expression is reduced following collagenase treatment. Using a mouse in which yellow fluorescent protein expression is controlled by the plasma cell requisite transcription factor Blimp-1, we show that surface detection of transmembrane activator and CAML interactor captures a significant proportion of Ab-secreting plasma cells in the intestinal lamina propria and gut-draining mesenteric lymph nodes. Additionally, we describe a flow cytometry panel based on the detection of surface markers to identify murine B cell subsets in the intestinal lamina propria and, as a proof of concept, combine it with a cutting-edge fate-tracking system to characterize the fate of germinal center B cells activated in early life. By identifying plasma cells and other key intestinal B subsets in a manner compatible with several downstream applications, including sorting and culturing and in vitro manipulations, this efficient and powerful approach can enhance studies of mucosal immunity.
Collapse
Affiliation(s)
- Bingjie Pecha
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
| | | | - Luke J Milburn
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Olga L Rojas
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meghan A Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
2
|
De Leon-Oliva D, Barrena-Blázquez S, Jiménez-Álvarez L, Fraile-Martinez O, García-Montero C, López-González L, Torres-Carranza D, García-Puente LM, Carranza ST, Álvarez-Mon MÁ, Álvarez-Mon M, Diaz R, Ortega MA. The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1752. [PMID: 37893470 PMCID: PMC10608105 DOI: 10.3390/medicina59101752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
The RANK-RANKL-OPG system is a complex signaling pathway that plays a critical role in bone metabolism, mammary epithelial cell development, immune function, and cancer. RANKL is a ligand that binds to RANK, a receptor expressed on osteoclasts, dendritic cells, T cells, and other cells. RANKL signaling promotes osteoclast differentiation and activation, which leads to bone resorption. OPG is a decoy receptor that binds to RANKL and inhibits its signaling. In cancer cells, RANKL expression is often increased, which can lead to increased bone resorption and the development of bone metastases. RANKL-neutralizing antibodies, such as denosumab, have been shown to be effective in the treatment of skeletal-related events, including osteoporosis or bone metastases, and cancer. This review will provide a comprehensive overview of the functions of the RANK-RANKL-OPG system in bone metabolism, mammary epithelial cells, immune function, and cancer, together with the potential therapeutic implications of the RANK-RANKL pathway for cancer management.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Surgery Service, University Hospital Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura López-González
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
| | - Luis M. García-Puente
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sara T. Carranza
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Surgery Service, University Hospital Principe de Asturias, 28801 Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (S.B.-B.); (L.J.-Á.); (O.F.-M.); (C.G.-M.); (D.T.-C.); (L.M.G.-P.); (S.T.C.); (M.Á.Á.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
3
|
Frede A, Czarnewski P, Monasterio G, Tripathi KP, Bejarano DA, Ramirez Flores RO, Sorini C, Larsson L, Luo X, Geerlings L, Novella-Rausell C, Zagami C, Kuiper R, Morales RA, Castillo F, Hunt M, Mariano LL, Hu YOO, Engblom C, Lennon-Duménil AM, Mittenzwei R, Westendorf AM, Hövelmeyer N, Lundeberg J, Saez-Rodriguez J, Schlitzer A, Das S, Villablanca EJ. B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity 2022; 55:2336-2351.e12. [PMID: 36462502 DOI: 10.1016/j.immuni.2022.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 07/14/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.
Collapse
Affiliation(s)
- Annika Frede
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Czarnewski
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Gustavo Monasterio
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David A Bejarano
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ludvig Larsson
- KTH Royal Institute of Technology Stockholm, Science for Life Laboratory, Stockholm, Sweden
| | - Xinxin Luo
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Geerlings
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claudio Novella-Rausell
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Zagami
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Raoul Kuiper
- Norwegian Veterinary Institute, Section for Aquatic Biosecurity Research, Elisabeth Stephansens vei 1, 1433 Ås, Norway; Core Facility for Morphologic Phenotype Analysis, Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francisca Castillo
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Hunt
- Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - Yue O O Hu
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - Romy Mittenzwei
- Institute for Molecular Medicine and Research Center for Immunotherapy (FZI), University Medical Center Mainz, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine and Research Center for Immunotherapy (FZI), University Medical Center Mainz, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Joakim Lundeberg
- KTH Royal Institute of Technology Stockholm, Science for Life Laboratory, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Jejunal transcriptomic profiling of two layer strains throughout the entire production period. Sci Rep 2021; 11:20086. [PMID: 34635722 PMCID: PMC8505660 DOI: 10.1038/s41598-021-99566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
The jejunum plays crucial roles for the digestion and absorption of nutrients and minerals and for barrier functions that are essential for a healthy, productive life cycle of farm animals, including laying hens. Accordingly, knowledge of the molecular pathways that emerge in the intestine during development, and particularly at the beginning of laying activity, will help to derive strategies for improving nutrient efficiency in laying hens. In this study, jejunal samples were obtained from two high-yielding layer strains at five developmental stages (weeks 10, 16, 24, 30 and 60 of life) for RNA-sequencing, alongside the profiling of blood plasma parameters to approximate the dynamics of mineral homeostasis. The results reflected a marked distinction between the pre-laying and laying phase as inferred from levels of parathyroid hormone, triiodothyronine, estradiol, vitamin D, and calcium. Moreover, the expression patterns of the intestinal mucosa responded directly to the changing metabolic and nutritional profiles at the beginning of the laying phase in maturing high-yielding strains of laying hens. These comprise signaling events namely RANK/RANKL signaling and cellular senescence. Taken together, the timing of sexual maturity of laying hens demands closer examination to unravel metabolic requirements and associated endogenous mechanisms.
Collapse
|
6
|
Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol 2021; 14:793-802. [PMID: 33753873 DOI: 10.1038/s41385-021-00389-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Gut-associated lymphoid tissues (GALT) are the key antigen sampling and adaptive immune inductive sites within the intestinal wall. Human GALT includes the multi-follicular Peyer's patches of the ileum, the vermiform appendix, and the numerous isolated lymphoid follicles (ILF) which are distributed along the length of the intestine. Our current understanding of GALT diversity and function derives primarily from studies in mice, and the relevance of many of these findings to human GALT remains unclear. Here we review our current understanding of human GALT diversity, structure, and composition as well as their potential for regulating intestinal immune responses during homeostasis and inflammatory bowel disease (IBD). Finally, we outline some key remaining questions regarding human GALT, the answers to which will advance our understanding of intestinal immune responses and provide potential opportunities to improve the treatment of intestinal diseases.
Collapse
|
7
|
Xiong J, Zhou L, Tian J, Yang X, Li Y, Jin R, Le Y, Rao Y, Sun Y. Cigarette Smoke-Induced Lymphoid Neogenesis in COPD Involves IL-17/RANKL Pathway. Front Immunol 2021; 11:588522. [PMID: 33613513 PMCID: PMC7892459 DOI: 10.3389/fimmu.2020.588522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
IL-17 is critical in lung lymphoid neogenesis in COPD, but the cellular and molecular mechanisms remain to be elucidated. Receptor activator of nuclear factor-κB ligand (RANKL) functions in lymphoid follicle formation in other organs, whether it is involved in IL-17A-dependent lymphoid neogenesis in COPD is unknown. To elucidate the expression and functional role of IL-17A/RANKL pathway in COPD. We first quantified and localized RANKL, its receptor RANK and IL-17A in lungs of patients with COPD, smokers and non-smokers. Next, IL-17A-/- and wild-type (WT) mice were exposed to air or cigarette smoke (CS) for 24 weeks, and lung lymphoid follicles and RANKL-RANK expression were measured. Lastly, we studied the in vitro biological function of RANKL pertaining to lymphoid neogenesis. We found that the expressions of RANKL-RANK and IL-17A, together with lymphoid follicles, were increased in lung tissues from patients with COPD. In WT mice exposed to CS, RANKL-RANK expressions were prominent in lung lymphoid follicles, which were absent in IL-17A-/- mice exposed to CS. In the lymphoid follicles, RANKL+ cells were identified mostly as B cells and RANK was localized in dendritic cells (DCs). In vitro IL-17A increased the expressions of RANKL in B cells and RANK in DCs, which in turn responded to RANKL stimulation by upregulation of CXCL13. Altogether, these results suggest that B lymphocyte RANKL pathway is involved in IL-17A-dependent lymphoid neogenesis in COPD.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Lu Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jieyu Tian
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xia Yang
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunsong Li
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Walsh MC, Choi Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 2021; 39:54-63. [PMID: 33438173 PMCID: PMC8670018 DOI: 10.1007/s00774-020-01178-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
The receptor activator of nuclear factor kappa-B ligand (RANKL)-RANK-osteoprotegerin (OPG) system is critical to bone homeostasis, but genetically deficient mouse models have revealed important roles in the immune system as well. RANKL-RANK-OPG is particularly important to T cell biology because of its organogenic control of thymic development and secondary lymphoid tissues influence central T cell tolerance and peripheral T cell function. RANKL-RANK-OPG cytokine-receptor interactions are often controlled by regulation of expression of RANKL on developing T cells, which interacts with RANK expressed on some lymphoid tissue cells to stimulate key downstream signaling pathways that affect critical tuning functions of the T cell compartment, like cell survival and antigen presentation. Activation of peripheral T cells is regulated by RANKL-enhanced dendritic cell survival, and dysregulation of the RANKL-RANK-OPG system in this context is associated with loss of T cell tolerance and autoimmune disease. Given its broader implications for immune homeostasis and osteoimmunology, it is critical to further understand how the RANKL-RANK-OPG system operates in T cell biology.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol 2020; 10:1283. [PMID: 32850393 PMCID: PMC7426519 DOI: 10.3389/fonc.2020.01283] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
RANKL and RANK are expressed in different cell types and tissues throughout the body. They were originally described for their essential roles in bone remodeling and the immune system but have subsequently been shown to provide essential signals from regulating mammary gland homeostasis during pregnancy to modulating tumorigenesis. The success of RANKL/RANK research serves as a paragon for translational research from the laboratory to the bedside. The case in point has been the development of Denosumab, a RANKL-blocking monoclonal antibody which has already helped millions of patients suffering from post-menopausal osteoporosis and skeletal related events in cancer. Here we will provide an overview of the pathway from its origins to its clinical relevance in disease, with a special focus on emerging evidence demonstrating the therapeutic value of targeting the RANKL/RANK/OPG axis not only in breast cancer but also as an addition to the cancer immunotherapy arsenal.
Collapse
Affiliation(s)
- Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Fenton TM, Jørgensen PB, Niss K, Rubin SJS, Mörbe UM, Riis LB, Da Silva C, Plumb A, Vandamme J, Jakobsen HL, Brunak S, Habtezion A, Nielsen OH, Johansson-Lindbom B, Agace WW. Immune Profiling of Human Gut-Associated Lymphoid Tissue Identifies a Role for Isolated Lymphoid Follicles in Priming of Region-Specific Immunity. Immunity 2020; 52:557-570.e6. [PMID: 32160523 PMCID: PMC7155934 DOI: 10.1016/j.immuni.2020.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
The intestine contains some of the most diverse and complex immune compartments in the body. Here we describe a method for isolating human gut-associated lymphoid tissues (GALTs) that allows unprecedented profiling of the adaptive immune system in submucosal and mucosal isolated lymphoid follicles (SM-ILFs and M-ILFs, respectively) as well as in GALT-free intestinal lamina propria (LP). SM-ILF and M-ILF showed distinct patterns of distribution along the length of the intestine, were linked to the systemic circulation through MAdCAM-1+ high endothelial venules and efferent lymphatics, and had immune profiles consistent with immune-inductive sites. IgA sequencing analysis indicated that human ILFs are sites where intestinal adaptive immune responses are initiated in an anatomically restricted manner. Our findings position ILFs as key inductive hubs for regional immunity in the human intestine, and the methods presented will allow future assessment of these compartments in health and disease.
Collapse
Affiliation(s)
- Thomas M Fenton
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| | - Peter B Jørgensen
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Kristoffer Niss
- Translational Disease Systems Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Samuel J S Rubin
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Urs M Mörbe
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Lene B Riis
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Clément Da Silva
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Adam Plumb
- Immunological Memory Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Julien Vandamme
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Henrik L Jakobsen
- Department of Gastroenterology, Surgical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Søren Brunak
- Translational Disease Systems Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Aida Habtezion
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ole H Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden; Immunological Memory Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - William W Agace
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden.
| |
Collapse
|
11
|
Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. MUCOSAL VACCINES 2020. [PMCID: PMC7149644 DOI: 10.1016/b978-0-12-811924-2.00002-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Hara S, Sasaki T, Satoh-Takayama N, Kanaya T, Kato T, Takikawa Y, Takahashi M, Tachibana N, Kim KS, Surh CD, Ohno H. Dietary Antigens Induce Germinal Center Responses in Peyer's Patches and Antigen-Specific IgA Production. Front Immunol 2019; 10:2432. [PMID: 31681315 PMCID: PMC6803481 DOI: 10.3389/fimmu.2019.02432] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
The primary induction sites for intestinal IgA are the gut-associated lymphoid tissues (GALT), such as Peyer's patches (PPs) and isolated lymphoid follicles (ILFs). The commensal microbiota is known to contribute to IgA production in the gut; however, the role of dietary antigens in IgA production is poorly understood. To understand the effect of dietary antigens on IgA production, post-weaning mice were maintained on an elemental diet without any large immunogenic molecules. We found that dietary antigens contribute to IgA production in PPs through induction of follicular helper T cells and germinal center B cells. The role of dietary antigens in the PP responses was further confirmed by adding bovine serum albumin (BSA) into the elemental diet. Although dietary antigens are important for PP responses, they have fewer effects than the microbiota on the development and maturation of ILFs. Furthermore, we demonstrated that dietary antigens are essential for a normal antigen-specific IgA response to Salmonella typhi serovar Typhimurium infection. These results provide new insights into the role of dietary antigens in the regulation of mucosal immune responses.
Collapse
Affiliation(s)
- Satoko Hara
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yui Takikawa
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masumi Takahashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kwang Soon Kim
- Institute for Basic Science (IBS), Academy of Immunology and Microbiology, Pohang, South Korea
| | - Charles D Surh
- Institute for Basic Science (IBS), Academy of Immunology and Microbiology, Pohang, South Korea
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| |
Collapse
|
13
|
Wyss A, Raselli T, Perkins N, Ruiz F, Schmelczer G, Klinke G, Moncsek A, Roth R, Spalinger MR, Hering L, Atrott K, Lang S, Frey-Wagner I, Mertens JC, Scharl M, Sailer AW, Pabst O, Hersberger M, Pot C, Rogler G, Misselwitz B. The EBI2-oxysterol axis promotes the development of intestinal lymphoid structures and colitis. Mucosal Immunol 2019; 12:733-745. [PMID: 30742043 DOI: 10.1038/s41385-019-0140-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 12/09/2018] [Accepted: 12/16/2018] [Indexed: 02/04/2023]
Abstract
The gene encoding for Epstein-Barr virus-induced G-protein-coupled receptor 2 (EBI2) is a risk gene for inflammatory bowel disease (IBD). Together with its oxysterol ligand 7α,25-dihydroxycholesterol, EBI2 mediates migration and differentiation of immune cells. However, the role of EBI2 in the colonic immune system remains insufficiently studied. We found increased mRNA expression of EBI2 and oxysterol-synthesizing enzymes (CH25H, CYP7B1) in the inflamed colon of patients with ulcerative colitis and mice with acute or chronic dextran sulfate sodium (DSS) colitis. Accordingly, we detected elevated levels of 25-hydroxylated oxysterols, including 7α,25-dihydroxycholesterol in mice with acute colonic inflammation. Knockout of EBI2 or CH25H did not affect severity of DSS colitis; however, inflammation was decreased in male EBI2-/- mice in the IL-10 colitis model. The colonic immune system comprises mucosal lymphoid structures, which accumulate upon chronic inflammation in IL-10-deficient mice and in chronic DSS colitis. However, EBI2-/- mice formed significantly less colonic lymphoid structures at baseline and showed defects in inflammation-induced accumulation of lymphoid structures. In summary, we report induction of the EBI2-7α,25-dihydroxycholesterol axis in colitis and a role of EBI2 for the accumulation of lymphoid tissue during homeostasis and inflammation. These data implicate the EBI2-7α,25-dihydroxycholesterol axis in IBD pathogenesis.
Collapse
Affiliation(s)
- Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nathan Perkins
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Epalinges, Switzerland
| | - Gérard Schmelczer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Glynis Klinke
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - René Roth
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas W Sailer
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Oliver Pabst
- Institute for Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Epalinges, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Benjamin Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Klisuric A, Thierry B, Delon L, Prestidge CA, Gibson RJ. Identifying human and murine M cells in vitro. Exp Biol Med (Maywood) 2019; 244:554-564. [PMID: 30907132 DOI: 10.1177/1535370219838674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPACT STATEMENT The study of M cells, a specialized epithelial cell type found in the follicle-associated epithelium, is hampered by the lack of a universal M cell marker. As such, many studies lack reliable and universally recognized methods to identify M cells in their proposed models. As a result of this it is difficult to ascertain whether the effects observed are due to the presence of M cells or an unaccounted variable. The outcome of this review is the thorough evaluation of the many M cell markers that have been used in the literature thus far and a proposed criterion for the identification of M cells for future publications. This will hopefully lead to an improvement in the quality of future publications in this field.
Collapse
Affiliation(s)
- Ana Klisuric
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,3 School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| | - Benjamin Thierry
- 2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,4 Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Ludivine Delon
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,4 Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Clive A Prestidge
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Rachel J Gibson
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
15
|
Vojkovics D, Kellermayer Z, Gábris F, Schippers A, Wagner N, Berta G, Farkas K, Balogh P. Differential Effects of the Absence of Nkx2-3 and MAdCAM-1 on the Distribution of Intestinal Type 3 Innate Lymphoid Cells and Postnatal SILT Formation in Mice. Front Immunol 2019; 10:366. [PMID: 30891037 PMCID: PMC6413488 DOI: 10.3389/fimmu.2019.00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 01/08/2023] Open
Abstract
Seeding of leukocytes to developing lymphoid tissues in embryonic and early postnatal age and to the mucosa throughout adulthood depends on the interaction between endothelial MAdCAM-1 addressin and its cognate ligand α4β7 integrin. Nkx2-3 as a transcriptional regulator of MAdCAM-1 controls vascular patterning in visceral lymphoid tissues in mice, and has been identified as a susceptibility factor for inflammatory bowel diseases in humans, associated with lymphoid neogenesis in the inflamed intestines. The role of Nkx2-3 in the organogenesis of the solitary intestinal lymphoid tissues (SILTs) involving type 3 innate lymphoid cells (ILC3) is still unknown. Here we investigated the effect of Nkx2-3 on the postnatal distribution of intestinal ILC3s and the development of SILTs, comparing these to mice lacking MAdCAM-1, but preserving Nkx2-3. At 1 week of age small intestines (SI) contained significantly higher number of ILC3s relative to the colon, with a substantial reduction in MAdCAM-1−/− mice compared to C57BL/6 controls. One week later SI ILC3 number decreased in all genotypes, the number of colonic ILC3 of both Nkx2-3-deficient and Nkx2-3-heterozygous mice significantly increased. On the fourth postnatal week a further reduction of SI ILC3s was observed in both Nkx2-3-deficient and Nkx2-3-heterozygous mice, while in the colon the number of ILC3s showed a significant reduction in all genotypes. At 1 week of age only sporadic SILT components were present in all genotypes. By the second week mice deficient for either Nkx2-3 or MAdCAM-1 showed absence of SILT maturation compared to their relevant controls, lacking mature isolated lymphoid follicles (ILF). By the fourth week both Nkx2-3-deficient and Nkx2-3-heterozygous mice showed a similar distribution of ILFs relative to cryptopatches (CP), whereas in MAdCAM-1−/− mice CPs and immature ILFs were present, mature ILFs were scarce. Our data demonstrate that the complete absence of MAdCAM-1 partially impairs intestinal seeding of ILC3s and causes partial blockade of SILT maturation, without affecting peripheral lymph node development. In contrast, the inactivation of Nkx2-3 permits postnatal seeding, and its blocking effect on SILT maturation prevails at later stage, thus other adhesion molecules may compensate for the intestinal homing of ILC3s in the absence of MAdCAM-1.
Collapse
Affiliation(s)
- Dóra Vojkovics
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Fanni Gábris
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Angela Schippers
- Department of Pediatrics, University Hospital RWTH, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, University Hospital RWTH, Aachen, Germany
| | - Gergely Berta
- Central Electron Microscope Laboratory, Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Kornélia Farkas
- Department of Bioanalytics, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
16
|
Kellermayer Z, Vojkovics D, Dakah TA, Bodó K, Botz B, Helyes Z, Berta G, Kajtár B, Schippers A, Wagner N, Scotto L, O'Connor OA, Arnold HH, Balogh P. IL-22-Independent Protection from Colitis in the Absence of Nkx2.3 Transcription Factor in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1833-1844. [PMID: 30700585 DOI: 10.4049/jimmunol.1801117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/31/2018] [Indexed: 01/03/2023]
Abstract
The transcription factor Nkx2.3 regulates the vascular specification of Peyer patches in mice through determining endothelial addressin preference and may function as a susceptibility factor in inflammatory bowel diseases in humans. We wished to analyze the role of Nkx2.3 in colonic solitary intestinal lymphoid tissue composition and in colitis pathogenesis. We studied the colonic solitary intestinal lymphoid tissue of Nkx2.3-deficient mice with immunofluorescence and flow cytometry. Colitis was induced in mice using 2.5% dextran sodium sulfate, and severity was assessed with histology, flow cytometry, and quantitative PCR. We found that the lack of Nkx2.3 impairs maturation of isolated lymphoid follicles and attenuates dextran sodium sulfate-induced colitis independent of endothelial absence of mucosal addressin cell-adhesion molecule-1 (MAdCAM-1), which was also coupled with enhanced colonic epithelial regeneration. Although we observed increased numbers of group 3 innate lymphoid cells and Th17 cells and enhanced transcription of IL-22, Ab-mediated neutralization of IL-22 did not abolish the protection from colitis in Nkx2.3-deficient mice. Nkx2.3-/- hematopoietic cells could not rescue wild-type mice from colitis. Using LacZ-Nkx2.3 reporter mice, we found that Nkx2.3 expression was restricted to VAP-1+ myofibroblast-like pericryptal cells. These results hint at a previously unknown stromal role of Nkx2.3 as driver of colitis and indicate that Nkx2.3+ stromal cells play a role in epithelial cell homeostasis.
Collapse
Affiliation(s)
- Zoltán Kellermayer
- Department of Immunology and Biotechnology, Clinical Center, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
| | - Dóra Vojkovics
- Department of Immunology and Biotechnology, Clinical Center, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
| | - Tareq Abu Dakah
- Department of Immunology and Biotechnology, Clinical Center, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
| | - Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
| | - Bálint Botz
- Molecular Pharmacology Research Group, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
- Department of Radiology, Clinical Center, University of Pécs, Pécs H-7624, Hungary
| | - Zsuzsanna Helyes
- Molecular Pharmacology Research Group, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Béla Kajtár
- Department of Pathology, Clinical Center, University of Pécs, Pécs H-7624, Hungary
| | - Angela Schippers
- Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Norbert Wagner
- Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Luigi Scotto
- Department of Experimental Therapeutics, Columbia University Medical Center, New York 10019, NY
| | - Owen A O'Connor
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York 10019, NY; and
| | - Hans-Henning Arnold
- Department of Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary;
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs H-7624, Hungary
| |
Collapse
|
17
|
Leukocyte-Stromal Interactions Within Lymph Nodes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:1-22. [PMID: 30155619 DOI: 10.1007/978-3-319-78127-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lymph nodes play a crucial role in the formation and initiation of immune responses, allowing lymphocytes to efficiently scan for foreign antigens and serving as rendezvous points for leukocyte-antigen interactions. Here we describe the major stromal subsets found in lymph nodes, including fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells, marginal reticular cells, follicular dendritic cells and other poorly defined subsets such as integrin alpha-7+ pericytes. We focus on biomedically relevant interactions with T cells, B cells and dendritic cells, describing pro-survival mechanisms of support for these cells, promotion of their migration and tolerance-inducing mechanisms that help keep the body free of autoimmune-mediated damage.
Collapse
|
18
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
19
|
Torrecillas S, Caballero MJ, Mompel D, Montero D, Zamorano MJ, Robaina L, Rivero-Ramírez F, Karalazos V, Kaushik S, Izquierdo M. Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass (Dicentrarchus labrax) fed low fish meal and fish oil diets. FISH & SHELLFISH IMMUNOLOGY 2017; 67:302-311. [PMID: 28602741 DOI: 10.1016/j.fsi.2017.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the effects of low levels of dietary fish meal (FM) and fish oil (FO) on disease resistance and gut associated lymphoid tissue (GALT) response after an experimental intestinal infection with V. anguillarum in European sea bass (Dicentrarchus labrax) For that purpose, sea bass juveniles were fed one of four diets containing combined levels of FO and FM as follows: 20%FM/6%FO, 20%FM/3%FO, 5%FM/6%FO and 5%FM/3%FO during 153 days. At the end of the feeding trial, fish were subjected to either an in vivo exposure to a sub-lethal dose of V. anguillarum via anal inoculation or to an ex vivo exposure to V. anguillarum. Additionally, inducible nitric oxide synthase (iNOS) and tumor necrosis factor α (TNFα) gut patterns of immunopositivity were studied. Growth performance was affected by dietary FM level, however ex vivo gut bacterial translocation rates and survival after the in vivo challenge test were affected by dietary FO level. After 5 months of feeding, low dietary FM levels led to a posterior gut up-regulation of interleukin-1β (IL-1β) and TNFα, major histocompatibility complex-II (MHCII) and cyclooxygenase-2 (COX2), which in turn reduced the gut associated lymphoid tissue (GALT) capacity of response after 24 h post infection and conditioned European sea bass capacity to recover gut homeostasis 7 days post infection. Immunoreactivity to anti-iNOS and anti-TNFα presented a gradient of increased immunopositivity towards the anus, regardless of the dietary FM/FO fed. Strong positive anti-TNFα isolated enterocytes were observed in the anterior gut in relation to low levels of dietary FM/FO. Submucosa and lamina propria immunoreactivity grade was related to the amount of leucocyte populations infiltrated and goblet cells presented immunopositivity to anti-iNOS but not to anti-TNFα. Thus, reducing FO content from 6% to a 3% by VO in European sea bass diets increases ex vivo and in vivo gut bacterial translocation rates, whereas reducing FM content from 20% down to 5% up-regulates the expression of several posterior gut inflammation-related genes conditioning fish growth and GALT capacity of response after bacterial infection.
Collapse
Affiliation(s)
- S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - M J Caballero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - D Mompel
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - M J Zamorano
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - L Robaina
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - F Rivero-Ramírez
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - V Karalazos
- Biomar UK, North Shore Road, Grangemouth FK3 8UL, Scotland, UK
| | - S Kaushik
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - M Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| |
Collapse
|
20
|
Agace WW, McCoy KD. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity 2017; 46:532-548. [PMID: 28423335 DOI: 10.1016/j.immuni.2017.04.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life.
Collapse
Affiliation(s)
- William W Agace
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark; Immunology Section, Department of Experimental Medical Science, Lund University, BMC D14, Sölvegatan 19, 221 84 Lund, Sweden.
| | - Kathy D McCoy
- Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
21
|
Kellermayer Z, Vojkovics D, Balogh P. Innate lymphoid cells and their stromal microenvironments. Immunol Lett 2017; 189:3-9. [PMID: 28414182 DOI: 10.1016/j.imlet.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners.
Collapse
Affiliation(s)
- Zoltán Kellermayer
- Department of Immunology and Biotechnology, Szentágothai Research Center, University of Pécs, Hungary; Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Hungary
| | - Dóra Vojkovics
- Department of Immunology and Biotechnology, Szentágothai Research Center, University of Pécs, Hungary; Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Szentágothai Research Center, University of Pécs, Hungary; Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Hungary.
| |
Collapse
|
22
|
Matsumoto Y, Larose J, Kent OA, Lim M, Changoor A, Zhang L, Storozhuk Y, Mao X, Grynpas MD, Cong F, Rottapel R. RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146. J Clin Invest 2017; 127:1303-1315. [PMID: 28287403 DOI: 10.1172/jci90527] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Bone undergoes continuous remodeling due to balanced bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. Osteoclasts arise from the macrophage lineage, and their differentiation is dependent on RANKL, a member of the TNF family of cytokines. Here, we have provided evidence that RANKL controls the expression of 3BP2, an adapter protein that is required for activation of SRC tyrosine kinase and simultaneously coordinates the attenuation of β-catenin, both of which are required to execute the osteoclast developmental program. We found that RANKL represses the transcription of the E3 ubiquitin ligase RNF146 through an NF-κB-related inhibitory element in the RNF146 promoter. RANKL-mediated suppression of RNF146 results in the stabilization of its substrates, 3BP2 and AXIN1, which consequently triggers the activation of SRC and attenuates the expression of β-catenin, respectively. Depletion of RNF146 caused hypersensitivity to LPS-induced TNF-α production in vivo. RNF146 thus acts as an inhibitory switch to control osteoclastogenesis and cytokine production and may be a control point underlying the pathogenesis of chronic inflammatory diseases.
Collapse
|
23
|
Ruyssen-Witrand A, Degboé Y, Cantagrel A, Nigon D, Lukas C, Scaramuzzino S, Allanore Y, Vittecoq O, Schaeverbeke T, Morel J, Sibilia J, Cambon-Thomsen A, Dieudé P, Constantin A. Association between RANK, RANKL and OPG polymorphisms with ACPA and erosions in rheumatoid arthritis: results from a meta-analysis involving three French cohorts. RMD Open 2016; 2:e000226. [PMID: 27651922 PMCID: PMC5020667 DOI: 10.1136/rmdopen-2015-000226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The RANK/RANKL/osteoprotegerin (OPG) system plays a central role in the pathogenesis of bone erosions in rheumatoid arthritis (RA). The aim of this study was to test the association between 11 single-nucleotide polymorphisms (SNPs) located on RANK, RANKL and OPG genes and anticitrullinated peptide antibody (ACPA) presence or erosions in RA. METHODS PATIENTS This work was performed on three independent samples of French patients with RA: the Etude de Suivi des PolyArthrites Indifférenciées Récentes (ESPOIR) (n=632), Rangueil Midi-Pyrénées (RMP) (n=249) and French Rheumatoid Arthritis Genetic Consortium (FRAGC) (n=590) cohorts. Genotyping: the genotyping of 11 SNPs located on RANK, RANKL and OPG were performed by PCR. STATISTICAL ANALYSES The association between the genotypes with ACPA or erosions was first tested in the ESPOIR cohort using a χ(2) test and, in the case of significant association, replicated in the RMP and FRACG cohorts. A meta-analysis on the three cohorts was performed using the Mantel-Haenszel method. RESULTS One SNP on RANK (rs8086340) and three SNPs on RANKL (rs7984870, rs7325635, rs1054016) were significantly associated with ACPA presence, while one SNP on OPG (rs2073618) and one SNP on RANKL (rs7325635) were significantly associated with erosions in the ESPOIR cohort. Following meta-analysis performed on the three samples, the SNP on RANK and the GGG haplotype of the three SNPs located on RANKL were both significantly associated with ACPA presence, while only the SNP on OPG remained significantly associated with erosions. CONCLUSIONS This study identified one SNP located on RANK, one haplotype on RANKL associated with ACPA presence, and one SNP located on OPG associated with erosions in three different samples of French patients with RA.
Collapse
Affiliation(s)
- Adeline Ruyssen-Witrand
- UMR 1027, INSERM, Toulouse, France; University Paul Sabatier Toulouse III, Toulouse, France; Rheumatology Center, Purpan Hospital, Toulouse, France
| | - Yannick Degboé
- University Paul Sabatier Toulouse III, Toulouse, France; Rheumatology Center, Purpan Hospital, Toulouse, France; UMR 1043, INSERM, Toulouse, France
| | - A Cantagrel
- University Paul Sabatier Toulouse III, Toulouse, France; Rheumatology Center, Purpan Hospital, Toulouse, France; UMR 1043, INSERM, Toulouse, France
| | - D Nigon
- Rheumatology Center, Purpan Hospital , Toulouse , France
| | - C Lukas
- Rheumatology Department , Lapeyronie Teaching Hospital , Montpellier , France
| | - S Scaramuzzino
- UMR 1027, INSERM, Toulouse, France; University Paul Sabatier Toulouse III, Toulouse, France
| | - Y Allanore
- Rheumatology Department , Cochin Teaching Hospital , Paris , France
| | - O Vittecoq
- Department of Rheumatology , Rouen University Hospital & INSERM U905 , Rouen , France
| | - T Schaeverbeke
- Rheumatology Department , Pellegrin Hospital , Bordeaux , France
| | - J Morel
- Rheumatology Department , Lapeyronie Teaching Hospital , Montpellier , France
| | - J Sibilia
- Department of Rheumatology , Hôpitaux Universitaires de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - A Cambon-Thomsen
- UMR 1027, INSERM, Toulouse, France; University Paul Sabatier Toulouse III, Toulouse, France
| | - P Dieudé
- Rheumatology Department , Claude Bernard-Bichat Teaching Hospital, Paris VII University , Paris , France
| | - A Constantin
- University Paul Sabatier Toulouse III, Toulouse, France; Rheumatology Center, Purpan Hospital, Toulouse, France; UMR 1043, INSERM, Toulouse, France
| |
Collapse
|
24
|
Buettner M, Lochner M. Development and Function of Secondary and Tertiary Lymphoid Organs in the Small Intestine and the Colon. Front Immunol 2016; 7:342. [PMID: 27656182 PMCID: PMC5011757 DOI: 10.3389/fimmu.2016.00342] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 01/25/2023] Open
Abstract
The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer’s patches (PP) in the small intestine and their colonic counterparts that develop in a programed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT). In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP) to large, mature isolated lymphoid follicles (ILF). Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi) cells and the requirement for lymphotoxin beta (LTβ) receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO). While, so far, it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation.
Collapse
Affiliation(s)
- Manuela Buettner
- Central Animal Facility, Institute of Laboratory Animal Science, Hannover Medical School , Hannover , Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover , Germany
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Subclinical gut inflammation has been described in a significant proportion of patients with ankylosing spondylitis (AS), up to 10% of them developing it during the time of clinically overt inflammatory bowel disease. Histologic, immunologic, and intestinal microbiota alterations characterize the AS gut. RECENT FINDINGS Microbial dysbiosis as well as alterations of innate immune responses have been demonstrated in the gut of AS. Furthermore, a growing body of evidence suggests that the gut of AS patients may be actively involved in the pathogenesis of AS through the production of proinflammatory cytokines, such as IL-23p19, and the differentiation of potentially pathogenic innate lymphoid cells producing IL-22 and IL-17. Finally, a strong correlation between the presence of subclinical gut inflammation and the degree of spine inflammation have been also proved in AS. SUMMARY Subclinical gut inflammation and innate immune responses in AS may be considered a possible consequence of microbial dysbiosis. Relationships between cause and effect remain, however, to be answered.
Collapse
|
26
|
Caballero-Franco C, Guma M, Choo MK, Sano Y, Enzler T, Karin M, Mizoguchi A, Park JM. Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38α-Dependent Restraint of NF-κB Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 196:2368-76. [PMID: 26792803 DOI: 10.4049/jimmunol.1501724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023]
Abstract
The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. In this study, we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a noncell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are most likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy.
Collapse
Affiliation(s)
- Celia Caballero-Franco
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Monica Guma
- Department of Pharmacology, Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, La Jolla, CA 92093; Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Yasuyo Sano
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Thomas Enzler
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129; Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724
| | - Michael Karin
- Department of Pharmacology, Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, La Jolla, CA 92093; Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093; and
| | - Atsushi Mizoguchi
- Department of Pathology, Molecular Pathology Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129;
| |
Collapse
|
27
|
Ofotokun I, Titanji K, Vikulina T, Roser-Page S, Yamaguchi M, Zayzafoon M, Williams IR, Weitzmann MN. Role of T-cell reconstitution in HIV-1 antiretroviral therapy-induced bone loss. Nat Commun 2015; 6:8282. [PMID: 26392000 PMCID: PMC4580984 DOI: 10.1038/ncomms9282] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 08/04/2015] [Indexed: 12/17/2022] Open
Abstract
HIV infection causes bone loss. We previously reported that immunosuppression-mediated B-cell production of receptor activator of NF-κB ligand (RANKL) coupled with decline in osteoprotegerin correlate with decreased bone mineral density (BMD) in untreated HIV infection. Paradoxically, antiretroviral therapy (ART) worsens bone loss although existing data suggest that such loss is largely independent of specific antiretroviral regimen. This led us to hypothesize that skeletal deterioration following HIV disease reversal with ART may be related to T-cell repopulation and/or immune reconstitution. Here we transplant T cells into immunocompromised mice to mimic ART-induced T-cell expansion. T-cell reconstitution elicits RANKL and TNFα production by B cells and/or T cells, accompanied by enhanced bone resorption and BMD loss. Reconstitution of TNFα- or RANKL-null T-cells and pharmacological TNFα antagonist all protect cortical, but not trabecular bone, revealing complex effects of T-cell reconstitution on bone turnover. These findings suggest T-cell repopulation and/or immune reconstitution as putative mechanisms for bone loss following ART initiation.
Collapse
Affiliation(s)
- Ighovwerha Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30303, USA
- Grady Healthcare System, Atlanta, Georgia 30303, USA
| | - Kehmia Titanji
- Division of Endocrinology &Metabolism &Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Tatyana Vikulina
- Division of Endocrinology &Metabolism &Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Susanne Roser-Page
- Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | - Masayoshi Yamaguchi
- Division of Endocrinology &Metabolism &Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Majd Zayzafoon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35223, USA
| | - Ifor R Williams
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA
| | - M Neale Weitzmann
- Division of Endocrinology &Metabolism &Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| |
Collapse
|
28
|
Donaldson DS, Bradford BM, Artis D, Mabbott NA. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol 2015; 8:582-95. [PMID: 25249168 PMCID: PMC4424384 DOI: 10.1038/mi.2014.90] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/29/2014] [Indexed: 02/04/2023]
Abstract
Isolated lymphoid follicles (ILFs) develop after birth in the small and large intestines (SI and LI) and represent a dynamic response of the gut immune system to the microbiota. Despite their similarities, ILF development in the SI and LI differs on a number of levels. We show that unlike ILF in the SI, the microbiota inhibits ILF development in the colon as conventionalization of germ-free mice reduced colonic ILFs. From this, we identified a novel mechanism regulating colonic ILF development through the action of interleukin (IL)-25 on IL-23 and its ability to modulate T regulatory cell (Treg) differentiation. Colonic ILF develop in the absence of a number of factors required for the development of their SI counterparts and can be specifically suppressed by factors other than IL-25. However, IL-23 is the only factor identified that specifically promotes colonic ILFs without affecting SI-ILF development. Both IL-23 and ILFs are associated with inflammatory bowel disease, suggesting that disruption to this pathway may have an important role in the breakdown of microbiota-immune homeostasis.
Collapse
Affiliation(s)
- D S Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - B M Bradford
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - D Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - N A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK,
| |
Collapse
|
29
|
Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Front Immunol 2014; 5:511. [PMID: 25368616 PMCID: PMC4202272 DOI: 10.3389/fimmu.2014.00511] [Citation(s) in RCA: 427] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/02/2014] [Indexed: 12/27/2022] Open
Abstract
Discovery and characterization of the cytokine receptor-cytokine-decoy receptor triad formed by receptor activator of nuclear factor kappa-B ligand (RANKL)–receptor activator of NF-κB (RANK)–osteoprotegerin (OPG) have led not only to immense advances in understanding the biology of bone homeostasis, but have also crystalized appreciation of the critical regulatory relationship that exists between bone and immunity, resulting in the emergence of the burgeoning field of osteoimmunology. RANKL–RANK–OPG are members of the tumor necrosis factor (TNF) and TNF receptor superfamilies, and share signaling characteristics common to many members of each. Developmentally regulated and cell-type specific expression patterns of each of these factors have revealed key regulatory functions for RANKL–RANK–OPG in bone homeostasis, organogenesis, immune tolerance, and cancer. Successful efforts at designing and developing therapeutic agents targeting RANKL–RANK–OPG have been undertaken for osteoporosis, and additional efforts are underway for other conditions. In this review, we will summarize the basic biology of the RANKL–RANK–OPG system, relate its cell-type specific functions to system-wide mechanisms of development and homeostasis, and highlight emerging areas of interest for this cytokine group.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA , USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA , USA
| |
Collapse
|
30
|
Abstract
The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.
Collapse
|
31
|
Hendricks JM, Lowe DC, Hardy ME. Differential induction of isolated lymphoid follicles in the gut by 18β-glycyrrhetinic acid. PLoS One 2014; 9:e100878. [PMID: 24992099 PMCID: PMC4081046 DOI: 10.1371/journal.pone.0100878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/31/2014] [Indexed: 11/19/2022] Open
Abstract
18β-glycyrrhetinic acid (GRA) is a pharmacologically active component of licorice root with documented immunomodulatory properties. We reported that GRA administered orally to mice induces B cell recruitment to isolated lymphoid follicles (ILF) in the small intestine and shortens the duration of rotavirus antigen shedding. ILF are dynamic lymphoid tissues in the gut acquired post-natally upon colonization with commensal bacteria and mature through B cell recruitment to the follicles, resulting in up-regulation of IgA synthesis in response to changes in the composition of microbiota. In this study, we investigated potential mechanisms by which GRA induces ILF maturation in the ileum and the colon using mice depleted of enteric bacteria and a select group of mice genetically deficient in pattern recognition receptors. The data show GRA was unable to induce ILF maturation in ileums of mice devoid of commensal bacteria, MyD88-/- or NOD2-/- mice, but differentially induced ILF in colons. Increased expression of chemokine and chemokine receptor genes that modulate B and T cell recruitment to the mucosa were in part dependent on NOD2, TLR, and signaling adaptor protein MyD88. Together the results suggest GRA induces ILF through cooperative signals provided by bacterial ligands under normal conditions to induce B cell recruitment to ILF to the gut, but that the relative contribution of these signals differ between ileum and colon.
Collapse
Affiliation(s)
- Jay M. Hendricks
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Diana C. Lowe
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Michele E. Hardy
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
32
|
Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 2013; 6:666-77. [PMID: 23695511 PMCID: PMC3686595 DOI: 10.1038/mi.2013.30] [Citation(s) in RCA: 449] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer's patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady state and during aging; molecules expressed on M cells which appear to be used as "immunosurveillance" receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines.
Collapse
|
33
|
RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol 2013; 2013:412768. [PMID: 23762088 PMCID: PMC3671266 DOI: 10.1155/2013/412768] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Since its identification, the RANKL cytokine has been demonstrated to play a crucial role in bone homeostasis and lymphoid tissue organization. Genetic defects impairing its function lead to a peculiar form of autosomal recessive osteopetrosis (ARO), a rare genetic bone disease presenting early in life and characterized by increased bone density due to failure in bone resorption by the osteoclasts. Hematopoietic stem cell transplantation (HSCT) is the only option for the majority of patients affected by this life-threatening disease. However, the RANKL-dependent ARO does not gain any benefit from this approach, because the genetic defect is not intrinsic to the hematopoietic osteoclast lineage but rather to the mesenchymal one. Of note, we recently provided proof of concept of the efficacy of a pharmacological RANKL-based therapy to cure this form of the disease. Here we provide an overview of the diverse roles of RANKL in the bone and immune systems and review the clinical features of RANKL-deficient ARO patients and the results of our preclinical studies. We emphasize that these patients present a continuous worsening of the disease in the absence of a cure and strongly wish that the therapy we propose will be further developed.
Collapse
|
34
|
Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol 2013; 6:14-23. [PMID: 23131785 PMCID: PMC4034055 DOI: 10.1038/mi.2012.96] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucosal tissues are continually bombarded with infectious agents seeking to gain entry into the body. The absence of a tough physical exterior layer surrounding these tissues creates a unique challenge for the immune system, which manages to provide broad protection against a plethora of different organisms with the aid of special adaptations that augment immunity at these vulnerable sites. For example, specialized populations of memory T lymphocytes reside at initial sites of pathogen entry into the body, where they provide an important protective barrier. Similar anatomically-confined populations of pathogen-specific CD8 T cells can be found near the outer margins of the body following recovery from a variety of local infections, where they share very similar phenotypic characteristics. How these tissue-resident T cells are retained in a single anatomic location where they can promote immunity is beginning to be defined. Here, we will review current knowledge of the mechanisms that help establish and maintain these regional lymphocytes in the mucosal tissues and discuss relevant data that enhance our understanding of the contribution of these lymphocyte populations to protective immunity against infectious diseases.
Collapse
|
35
|
Mueller CG, Hess E. Emerging Functions of RANKL in Lymphoid Tissues. Front Immunol 2012; 3:261. [PMID: 22969763 PMCID: PMC3432452 DOI: 10.3389/fimmu.2012.00261] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) members play pivotal roles in embryonic development of lymphoid tissue and their homeostasis. RANKL (Receptor activator of NF-κB ligand, also called TRANCE, TNFSF11) is recognized as an important player in bone homeostasis and lymphoid tissue formation. In its absence bone mass control is deregulated and lymph nodes fail to develop. While its function in bone is well described, there is still little functional insight into the action of RANKL in lymphoid tissue development and homeostasis. Here we provide an overview of the known functions of RANKL, its signaling receptor RANK and its decoy receptor OPG from the perspective of lymphoid tissue development and immune activation in the mouse. Expressed by the hematopoietic lymphoid tissue inducing (LTi) cells and the mesenchymal lymphoid tissue organizer (LTo) cells, RANKL was shown to stimulate Lymphotoxin (LT) expression and to be implicated in LTi cell accumulation. Our recent finding that RANKL also triggers proliferation of adult lymph node stroma suggests that RANKL may furthermore directly activate LTo cells. Beyond bone, the RANKL-RANK-OPG triad plays important roles in immunobiology that are waiting to be unraveled.
Collapse
Affiliation(s)
- Christopher G Mueller
- CNRS, Laboratory of Therapeutic Immunology and Chemistry, Institut de Biologie Moléculaire et Cellulaire, University of Strasbourg Strasbourg, France
| | | |
Collapse
|
36
|
Knoop KA, Newberry RD. Isolated Lymphoid Follicles are Dynamic Reservoirs for the Induction of Intestinal IgA. Front Immunol 2012; 3:84. [PMID: 22566964 PMCID: PMC3343265 DOI: 10.3389/fimmu.2012.00084] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/03/2012] [Indexed: 12/12/2022] Open
Abstract
IgA is one of the most important molecules in the regulation of intestinal homeostasis. Peyer's patches have been traditionally recognized as sites for the induction of intestinal IgA responses, however more recent studies demonstrate that isolated lymphoid follicles (ILFs) can perform this function as well. ILF development is dynamic, changing in response to the luminal microbial burden, suggesting that ILFs play an important role providing an expandable reservoir of compensatory IgA inductive sites. However, in situations of immune dysfunction, ILFs can over-develop in response to uncontrollable enteric flora, resulting in ILF hyperplasia. The ability of ILFs to expand and respond to help control the enteric flora makes this dynamic reservoir an important arm of IgA inductive sites in intestinal immunity.
Collapse
Affiliation(s)
- Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine St. Louis, MO, USA
| | | |
Collapse
|
37
|
Abstract
Many prion diseases are orally acquired. Our data show that after oral exposure, early prion replication upon follicular dendritic cells (FDC) in Peyer's patches is obligatory for the efficient spread of disease to the brain (termed neuroinvasion). For prions to replicate on FDC within Peyer's patches after ingestion of a contaminated meal, they must first cross the gut epithelium. However, the mechanism through which prions are conveyed into Peyer's patches is uncertain. Within the follicle-associated epithelium overlying Peyer's patches are microfold cells (M cells), unique epithelial cells specialized for the transcytosis of particles. We show that following M cell-depletion, early prion accumulation upon FDC in Peyer's patches is blocked. Furthermore, in the absence of M cells at the time of oral exposure, neuroinvasion and disease development are likewise blocked. These data suggest M cells are important sites of prion uptake from the gut lumen into Peyer's patches.
Collapse
|