1
|
Raab M, Becker S, Sanhaji M. Targeting polo-like kinase 1: advancements and future directions in anti-cancer drug discovery. Expert Opin Drug Discov 2024; 19:1153-1157. [PMID: 39075888 DOI: 10.1080/17460441.2024.2385603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Affiliation(s)
- Monika Raab
- School of Medicine, Department of Obstetrics and Gynecology, J.W. Goethe University, Frankfurt, Germany
| | - Sven Becker
- School of Medicine, Department of Obstetrics and Gynecology, J.W. Goethe University, Frankfurt, Germany
| | - Mourad Sanhaji
- School of Medicine, Department of Obstetrics and Gynecology, J.W. Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Cavalu S, Abdelhamid AM, Saber S, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Yahya G, Salama MM. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J 2024; 38:e23734. [PMID: 38847486 DOI: 10.1096/fj.202400769r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
3
|
Li P, Li Y, Ma X, Li L, Zeng S, Peng Y, Liang H, Zhang G. Identification of naphthalimide-derivatives as novel PBD-targeted polo-like kinase 1 inhibitors with efficacy in drug-resistant lung cancer cells. Eur J Med Chem 2024; 271:116416. [PMID: 38657480 DOI: 10.1016/j.ejmech.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Targeting polo-box domain (PBD) small molecule for polo-like kinase 1 (PLK1) inhibition is a viable alternative to target kinase domain (KD), which could avoid pan-selectivity and dose-limiting toxicity of ATP-competitive inhibitors. However, their efficacy in these settings is still low and inaccessible to clinical requirement. Herein, we utilized a structure-based high-throughput virtual screen to find novel chemical scaffold capable of inhibiting PLK1 via targeting PBD and identified an initial hit molecule compound 1a. Based on the lead compound 1a, a structural optimization approach was carried out and several series of derivatives with naphthalimide structural motif were synthesized. Compound 4Bb was identified as a new potent PLK1 inhibitor with a KD value of 0.29 μM. 4Bb could target PLK1 PBD to inhibit PLK1 activity and subsequently suppress the interaction of PLK1 with protein regulator of cytokinesis 1 (PRC1), finally leading to mitotic catastrophe in drug-resistant lung cancer cells. Furthermore, 4Bb could undergo nucleophilic substitution with the thiol group of glutathione (GSH) to disturb the redox homeostasis through exhausting GSH. By regulating cell cycle machinery and increasing cellular oxidative stress, 4Bb exhibited potent cytotoxicity to multiple cancer cells and drug-resistant cancer cells. Subcutaneous and oral administration of 4Bb could effectively inhibit the growth of drug-resistant tumors in vivo, doubling the survival time of tumor bearing mice without side effects in normal tissues. Thus, our study offers an orally-available, structurally-novel PLK1 inhibitor for drug-resistant lung cancer therapy.
Collapse
Affiliation(s)
- Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yongkun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
4
|
Warmington E, Smith G, Chortis V, Liang R, Lippert J, Steinhauer S, Landwehr LS, Hantel C, Kiseljak-Vassiliades K, Wierman ME, Altieri B, Foster PA, Ronchi CL. PLK1 inhibitors as a new targeted treatment for adrenocortical carcinoma. Endocr Connect 2024; 13:e230403. [PMID: 37992487 PMCID: PMC10762563 DOI: 10.1530/ec-23-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive malignancy with limited treatment options. Polo-like kinase 1 (PLK1) is a promising drug target; PLK1 inhibitors (PLK1i) have been investigated in solid cancers and are more effective in TP53-mutated cases. We evaluated PLK1 expression in ACC samples and the efficacy of two PLK1i in ACC cell lines with different genetic backgrounds. PLK1 protein expression was investigated by immunohistochemistry in tissue samples and correlated with clinical data. The efficacy of rigosertib (RGS), targeting RAS/PI3K, CDKs and PLKs, and poloxin (Pol), specifically targeting the PLK1 polo-box domain, was tested in TP53-mutated NCI-H295R, MUC-1, and CU-ACC2 cells and in TP53 wild-type CU-ACC1. Effects on proliferation, apoptosis, and viability were determined. PLK1 immunostaining was stronger in TP53-mutated ACC samples vs wild-type (P = 0.0017). High PLK1 expression together with TP53 mutations correlated with shorter progression-free survival (P= 0.041). NCI-H295R showed a time- and dose-dependent reduction in proliferation with both PLK1i (P< 0.05at 100 nM RGS and 30 µM Pol). In MUC-1, a less pronounced decrease was observed (P< 0.05at 1000 nM RGS and 100 µM Pol). 100 nM RGS increased apoptosis in NCI-H295R (P< 0.001), with no effect on MUC-1. CU-ACC2 apoptosis was induced only at high concentrations (P < 0.05 at 3000 nM RGS and 100 µM Pol), while proliferation decreased at 1000 nM RGS and 30 µM Pol. CU-ACC1 proliferation reduced, and apoptosis increased, only at 100 µM Pol. TP53-mutated ACC cell lines demonstrated better response to PLK1i than wild-type CU-ACC1. These data suggest PLK1i may be a promising targeted treatment of a subset of ACC patients, pre-selected according to tumour genetic signature.
Collapse
Affiliation(s)
- Emily Warmington
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Vasileios Chortis
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Raimunde Liang
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
- Department of Neurosurgery, Technical University Munich (TMU), Munich, Germany
| | - Juliane Lippert
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sonja Steinhauer
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik Und Poliklinik III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret E Wierman
- Division of Endocrinology Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Paul A Foster
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Cristina L Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
5
|
El-Kalyoubi S, El-Sebaey SA, Elfeky SM, AL-Ghulikah HA, El-Zoghbi MS. Novel Aminopyrimidine-2,4-diones, 2-Thiopyrimidine-4-ones, and 6-Arylpteridines as Dual-Target Inhibitors of BRD4/PLK1: Design, Synthesis, Cytotoxicity, and Computational Studies. Pharmaceuticals (Basel) 2023; 16:1303. [PMID: 37765111 PMCID: PMC10535864 DOI: 10.3390/ph16091303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Structural-based drug design and solvent-free synthesis were combined to obtain three novel series of 5-arylethylidene-aminopyrimidine-2,4-diones (4, 5a-c, 6a,b), 5-arylethylidene-amino-2-thiopyrimidine-4-ones (7,8), and 6-arylpteridines (9,10) as dual BRD4 and PLK1 inhibitors. MTT assays of synthesized compounds against breast (MDA-MB-231), colorectal (HT-29), and renal (U-937) cancer cells showed excellent-to-good cytotoxic activity, compared to Methotrexate; MDA-MB-231 were the most sensitive cancer cells. The most active compounds were tested against normal Vero cells. Compounds 4 and 7 significantly inhibited BRD4 and PLK1, with IC50 values of 0.029, 0.042 µM, and 0.094, 0.02 µM, respectively, which are nearly comparable to volasertib (IC50 = 0.017 and 0.025 µM). Compound 7 triggered apoptosis and halted cell growth at the G2/M phase, similarly to volasertib. It also upregulated the BAX and caspase-3 markers while downregulating the Bcl-2 gene. Finally, active compounds fitted the volasertib binding site at BRD4 and PLK1 and showed ideal drug-like properties and pharmacokinetics, making them promising anticancer candidates.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Samiha A. El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Youssef Abbas Street, Cairo 11754, Egypt
| | - Sherin M. Elfeky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 355516, Egypt;
| | - Hanan A. AL-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mona S. El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Gamal Abd Al-Nasir Street, Shibin-Elkom 32511, Egypt;
| |
Collapse
|
6
|
Park JE, Kirsch K, Lee H, Oliva P, Ahn JI, Ravishankar H, Zeng Y, Fox SD, Kirby SA, Badhwar P, Andresson T, Jacobson KA, Lee KS. Specific inhibition of an anticancer target, polo-like kinase 1, by allosterically dismantling its mechanism of substrate recognition. Proc Natl Acad Sci U S A 2023; 120:e2305037120. [PMID: 37603740 PMCID: PMC10629583 DOI: 10.1073/pnas.2305037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is considered an attractive target for anticancer therapy. Over the years, studies on the noncatalytic polo-box domain (PBD) of Plk1 have raised the expectation of generating highly specific protein-protein interaction inhibitors. However, the molecular nature of the canonical PBD-dependent interaction, which requires extensive water network-mediated interactions with its phospholigands, has hampered efforts to identify small molecules suitable for Plk1 PBD drug discovery. Here, we report the identification of the first allosteric inhibitor of Plk1 PBD, called Allopole, a prodrug that can disrupt intracellular interactions between PBD and its cognate phospholigands, delocalize Plk1 from centrosomes and kinetochores, and induce mitotic block and cancer cell killing. At the structural level, its unmasked active form, Allopole-A, bound to a deep Trp-Phe-lined pocket occluded by a latch-like loop, whose adjoining region was required for securely retaining a ligand anchored to the phospho-binding cleft. Allopole-A binding completely dislodged the L2 loop, an event that appeared sufficient to trigger the dissociation of a phospholigand and inhibit PBD-dependent Plk1 function during mitosis. Given Allopole's high specificity and antiproliferative potency, this study is expected to open an unexplored avenue for developing Plk1 PBD-specific anticancer therapeutic agents.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Hobin Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Paola Oliva
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Stephen D. Fox
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Samuel A. Kirby
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Pooja Badhwar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Kyung S. Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| |
Collapse
|
7
|
Park JE, Lee H, Oliva P, Kirsch K, Kim B, Ahn JI, Alverez CN, Gaikwad S, Krausz KW, O’Connor R, Rai G, Simeonov A, Mock BA, Gonzalez FJ, Lee KS, Jacobson KA. Structural Optimization and Anticancer Activity of Polo-like Kinase 1 (Plk1) Polo-Box Domain (PBD) Inhibitors and Their Prodrugs. ACS Pharmacol Transl Sci 2023; 6:422-446. [PMID: 36926457 PMCID: PMC10012257 DOI: 10.1021/acsptsci.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 02/22/2023]
Abstract
Polo-like kinase 1 (Plk1), a mitotic kinase whose activity is widely upregulated in various human cancers, is considered an attractive target for anticancer drug discovery. Aside from the kinase domain, the C-terminal noncatalytic polo-box domain (PBD), which mediates the interaction with the enzyme's binding targets or substrates, has emerged as an alternative target for developing a new class of inhibitors. Various reported small molecule PBD inhibitors exhibit poor cellular efficacy and/or selectivity. Here, we report structure-activity relationship (SAR) studies on triazoloquinazolinone-derived inhibitors, such as 43 (a 1-thioxo-2,4-dihydrothieno[2,3-e][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one) that effectively block Plk1, but not Plk2 and Plk3 PBDs, with improved affinity and drug-like properties. The range of prodrug moieties needed for thiol group masking of the active drugs has been expanded to increase cell permeability and mechanism-based cancer cell (L363 and HeLa) death. For example, a 5-thio-1-methyl-4-nitroimidazolyl prodrug 80, derived from 43, showed an improved cellular potency (GI50 4.1 μM). As expected, 80 effectively blocked Plk1 from localizing to centrosomes and kinetochores and consequently induced potent mitotic block and apoptotic cell death. Another prodrug 78 containing 9-fluorophenyl in place of the thiophene-containing heterocycle in 80 also induced a comparable degree of anti-Plk1 PBD effect. However, orally administered 78 was rapidly converted in the bloodstream to parent drug 15, which was shown be relatively stable toward in vivo oxidation due to its 9-fluorophenyl group in comparison to unsubstituted phenyl. Further derivatization of these inhibitors, particularly to improve the systemic prodrug stability, could lead to a new class of therapeutics against Plk1-addicted cancers.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hobin Lee
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Paola Oliva
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Klara Kirsch
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bora Kim
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jong Il Ahn
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Celeste N. Alverez
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Snehal Gaikwad
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Kristopher W. Krausz
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert O’Connor
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Ganesha Rai
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Beverly A. Mock
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Frank J. Gonzalez
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung S. Lee
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
8
|
Stafford JM, Wyatt MD, McInnes C. Inhibitors of the PLK1 polo-box domain: drug design strategies and therapeutic opportunities in cancer. Expert Opin Drug Discov 2023; 18:65-81. [PMID: 36524399 DOI: 10.1080/17460441.2023.2159942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Polo Like Kinase 1 (PLK1) is a key regulator of mitosis and its overexpression is frequently observed in a wide variety of human cancers, while often being associated with poor survival rates. Therefore, it is considered a potential and attractive target for cancer therapeutic development. The Polo like kinase family is characterized by the presence of a unique C terminal polobox domain (PBD) involved in regulating kinase activity and subcellular localization. Among the two functionally essential, druggable sites with distinct properties that PLK1 offers, targeting the PBD presents an alternative approach for therapeutic development. AREAS COVERED Significant progress has been made in progressing from the peptidic PBD inhibitors first identified, to peptidomimetic and recently drug-like small molecules. In this review, the rationale for targeting the PBD over the ATP binding site is discussed, along with recent progress, challenges, and outlook. EXPERT OPINION The PBD has emerged as a viable alternative target for the inhibition of PLK1, and progress has been made in using compounds to elucidate mechanistic aspects of activity regulation and in determining roles of the PBD. Studies have resulted in proof of concept of in vivo efficacy suggesting promise for PBD binders in clinical development.
Collapse
Affiliation(s)
- Jessy M Stafford
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
9
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
10
|
Craig SN, Baxter M, Chapagai D, Stafford JM, Nurmemmedov E, Altomare D, Wyatt MD, McInnes C. Structure-activity and mechanistic studies of non-peptidic inhibitors of the PLK1 polo box domain identified through REPLACE. Eur J Med Chem 2022; 227:113926. [PMID: 34735919 PMCID: PMC9137042 DOI: 10.1016/j.ejmech.2021.113926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023]
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase involved in cell cycle regulation and mitotic progression. Studies have shown that PLK1 is upregulated in many tumors and high levels are adversely related to a poor prognosis. Knocking down or inhibiting PLK1 results in synthetic lethality in PTEN deficient prostate tumors and Kras mutant colorectal tumors, further validating PLK1 as an oncotarget. Substrate recognition by PLK1 occurs through the Polo-Box Domain (PBD), which is a phospho-peptide binding site also responsible for subcellular localization. Much effort has been directed to target this kinase therapeutically through the ATP-binding site, and a few such inhibitors have advanced to clinical trials however with limited clinical efficacy. Moreover, it has been shown that a point mutation in PLK1 (C67V) confers dramatic cellular resistance to catalytic site inhibitors. An alternative approach to target PLK1 potently and selectively is through the PBD to block its protein-protein interactions. Through the REPLACE strategy, for converting peptide inhibitors into more drug-like non peptidic compounds, a PBD targeting compound series ("ABBAs"), has been identified and the key determinants of potency and selectivity elucidated through structure-activity relationship studies. In cellular experiments, the ABBAs were shown to lead to profound effects on the cell cycle, to inhibit tumor proliferation and overcome resistance of cells expressing the PLK1 C67V mutant to ATP-based inhibitors. These non-ATP competitive inhibitors of PLK1 were also used chemical biology probes to investigate the gene regulatory effects of PLK1, known to act on transcription factors such as p53.
Collapse
Affiliation(s)
- Sandra N Craig
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Merissa Baxter
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Danda Chapagai
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Jessy M Stafford
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Elmar Nurmemmedov
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
11
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
12
|
Chapagai D, Ramamoorthy G, Varghese J, Nurmemmedov E, McInnes C, Wyatt MD. Nonpeptidic, Polo-Box Domain-Targeted Inhibitors of PLK1 Block Kinase Activity, Induce Its Degradation and Target-Resistant Cells. J Med Chem 2021; 64:9916-9925. [PMID: 34210138 PMCID: PMC10451095 DOI: 10.1021/acs.jmedchem.1c00133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PLK1, polo-like kinase 1, is a central player regulating mitosis. Inhibition of the subcellular localization and kinase activity of PLK1 through the PBD, polo-box domain, is a viable alternative to ATP-competitive inhibitors, for which the development of resistance and inhibition of related PLK family members are concerns. We describe novel nonpeptidic PBD-binding inhibitors, termed abbapolins, identified through successful application of the REPLACE strategy and demonstrate their potent antiproliferative activity in prostate tumors and other cell lines. Furthermore, abbapolins show PLK1-specific binding and inhibitory activity, as measured by a cellular thermal shift assay and an ability to block phosphorylation of TCTP, a validated target of PLK1-mediated kinase activity. Additional evidence for engagement of PLK1 was obtained through the unique observation that abbapolins induce PLK1 degradation in a manner that closely matches antiproliferative activity. Moreover, abbapolins demonstrate antiproliferative activity in cells that are dramatically resistant to ATP-competitive PLK1 inhibitors.
Collapse
Affiliation(s)
- Danda Chapagai
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gurusankar Ramamoorthy
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jessy Varghese
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, California 90404-2312, United States
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
14
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
15
|
Gunasekaran P, Yim MS, Ahn M, Soung NK, Park JE, Kim J, Bang G, Shin SC, Choi J, Kim M, Kim HN, Lee YH, Chung YH, Lee K, EunKyeong Kim E, Jeon YH, Kim MJ, Lee KR, Kim BY, Lee KS, Ryu EK, Bang JK. Development of a Polo-like Kinase-1 Polo-Box Domain Inhibitor as a Tumor Growth Suppressor in Mice Models. J Med Chem 2020; 63:14905-14920. [PMID: 33142063 PMCID: PMC8919061 DOI: 10.1021/acs.jmedchem.0c01451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polo-like kinase-1 (Plk1) plays a key role in mitosis and has been identified as an attractive anticancer drug target. Plk1 consists of two drug-targeting sites, namely, N-terminal kinase domain (KD) and C-terminal polo-box domain (PBD). As KD-targeting inhibitors are associated with severe side effects, here we report on the pyrazole-based Plk1 PBD inhibitor, KBJK557, which showed a remarkable in vitro anticancer effect by inducing Plk1 delocalization, mitotic arrest, and apoptosis in HeLa cells. Further, in vivo optical imaging analysis and antitumorigenic activities in mouse xenograft models demonstrate that KBJK557 preferentially accumulates in cancer cells and selectively inhibits cancer cell proliferation. Pharmacokinetic profiles and partition coefficients suggest that KBJK557 was exposed in the blood and circulated through the organs with an intermediate level of clearance (t1/2, 7.73 h). The present investigation offers a strategy for specifically targeting cancer using a newly identified small-molecule inhibitor that targets the Plk1 PBD.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Min Su Yim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jaehi Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Geul Bang
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Republic of Korea
| | - Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Joonhyeok Choi
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University, 52 Dongguk-ro, Ilsandong-gu, Goyang 10320, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Young-Ho Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Young-Ho Chung
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, 52 Dongguk-ro, Ilsandong-gu, Goyang 10320, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Young-Ho Jeon
- Laboratory of Biochemistry and Structural Biology, College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Min Ju Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Bo-Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
16
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
17
|
Abdelfatah S, Fleischer E, Klinger A, Wong VKW, Efferth T. Identification of inhibitors of the polo-box domain of polo-like kinase 1 from natural and semisynthetic compounds. Invest New Drugs 2020; 38:1-9. [PMID: 30877426 DOI: 10.1007/s10637-019-00752-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
PLK1 has an important role in the regulation of cell cycle and represents an important target for cancer treatment. This enzyme belongs to the Polo-like kinases family, which is characterized by a regulatory domain named Polo-box domain (PBD). Rather than regular kinase inhibitors, this domain provides high selectivity to PLK1. Here, we report on four novel PLK1 PBD inhibitors identified by cytotoxicity screening and fluorescence polarization assay of a chemical library of natural and semisynthetic compounds. These compounds revealed two- to three-fold higher selectivity to the PDB of PLK1 than to those of the related family members, PLK2 and PLK3. These four substances inhibited tumor cell growth of sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. The tested compounds increased the apoptotic cell fraction, which indicates apoptosis as a major mechanism of cell death. Cell cycle analysis showed compound (5) arrested the cell cycle of CCRF-CEM cells in the G2/M phase, while the other three molecules ((compound (3), compound (4), and compound (6)) exerted pronounced cytotoxicity with an increase of cells in the sub-G1 population. Molecular docking was performed for the understanding of ligand-protein interaction, the tested candidates showed strong binding affinity to PLK1 PBD. In conclusion, we identified four new chemical scaffolds that may serve as lead compounds for the development of selective PLK1 inhibitors in the future.
Collapse
Affiliation(s)
- Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | | | | | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128, Mainz, Germany.
| |
Collapse
|
18
|
Zhou Y, Yan F, Huo X, Niu MM. Discovery of a Potent PLK1-PBD Small-Molecule Inhibitor as an Anticancer Drug Candidate through Structure-Based Design. Molecules 2019; 24:E4351. [PMID: 31795214 PMCID: PMC6930574 DOI: 10.3390/molecules24234351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Polo-box domain of polo-like kinase 1 (PLK1-PBD) has a pivotal role in cell proliferation and could be implicated as a potential anticancer target. Although some small-molecule inhibitors have been developed, their clinical application has been restricted by the poor selectivity. Therefore, there is an urgent need to develop effective PLK1-PBD inhibitors. Herein, we have developed a virtual screening protocol to find PLK1-PBD inhibitors by using combination of structure-based pharmacophore modeling and molecular docking. This protocol was successfully applied to screen PLK1-PBD inhibitors from specs database. MTT assay indicated that five screened hits suppressed the growth of HeLa cells. Particularly, hit-5, as a selective PLK1 inhibitor targeting PLK1-PBD, significantly inhibited the progression of HeLa cells-derived xenograft, with no obvious side effects. This work demonstrates that hit-5 may be a potential anticancer agent.
Collapse
Affiliation(s)
- Yunjiang Zhou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (F.Y.); (X.H.)
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Yan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (F.Y.); (X.H.)
| | - Xiangyun Huo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (F.Y.); (X.H.)
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (F.Y.); (X.H.)
| |
Collapse
|
19
|
Kreis NN, Louwen F, Yuan J. The Multifaceted p21 (Cip1/Waf1/ CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091220. [PMID: 31438587 PMCID: PMC6770903 DOI: 10.3390/cancers11091220] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | - Frank Louwen
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
20
|
Yabuno Y, Uchihashi T, Sasakura T, Shimizu H, Naito Y, Fukushima K, Ota K, Kogo M, Nojima H, Yabuta N. Clathrin heavy chain phosphorylated at T606 plays a role in proper cell division. Cell Cycle 2019; 18:1976-1994. [PMID: 31272276 PMCID: PMC6681784 DOI: 10.1080/15384101.2019.1637201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022] Open
Abstract
Clathrin regulates mitotic progression, in addition to membrane trafficking. However, the detailed regulatory mechanisms of clathrin during mitosis remain elusive. Here, we demonstrate novel regulation of clathrin during mitotic phase of the cell cycle. Clathrin heavy chain (CHC) was phosphorylated at T606 by its association partner cyclin G-associated kinase (GAK). This phosphorylation was required for proper cell proliferation and tumor growth of cells implanted into nude mice. Immunofluorescence analysis showed that the localization of CHC-pT606 signals changed during mitosis. CHC-pT606 signals localized in the nucleus and at the centrosome during interphase, whereas CHC signals were mostly cytoplasmic. Co-immunoprecipitation suggested that CHC formed a complex with GAK and polo-like kinase 1 (PLK1). Depletion of GAK using siRNA induced metaphase arrest and aberrant localization of CHC-pT606, which abolished Kiz-pT379 (as a phosphorylation target of PLK1) signals on chromatin at metaphase. Taken together, we propose that the GAK_CHC-pT606_PLK1_Kiz-pT379 axis plays a role in proliferation of cancer cells.
Collapse
Affiliation(s)
- Yusuke Yabuno
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Toshihiro Uchihashi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Shimizu
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Ota
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
21
|
Stratmann JA, Sebastian M. Polo-like kinase 1 inhibition in NSCLC: mechanism of action and emerging predictive biomarkers. LUNG CANCER-TARGETS AND THERAPY 2019; 10:67-80. [PMID: 31308774 PMCID: PMC6612950 DOI: 10.2147/lctt.s177618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Due to often unspecific disease symptoms, locally advanced or metastatic disease is diagnosed in the majority of all cases. Palliative treatment options comprise of conventional cytotoxic agents, immunotherapy with checkpoint inhibitors and the use of specific small-molecule tyrosine kinase inhibitors (TKI). However, these TKIs are mainly restricted to a small proportion of patients with lung cancer that harbor activating driver mutations. Still, the effectiveness and favorable safety profile of these compounds have prompted a systematic search for specific driver mechanisms of tumorigenesis and moreover the development of corresponding kinase inhibitors. In recent years, the Polo-like kinase (PLK) family has emerged as a key regulator in mitotic regulation. Its role in cell proliferation and the frequently observed overexpression in various tumor entities have raised much interest in basic and clinical oncology aiming to attenuate tumor growth by targeting the PLK. In this review, we give a comprehensive summary on the (pre-) clinical development of the different types of PLK inhibitors in lung cancer and summarize their mechanisms of action, safety and efficacy data and give an overview on translational research aiming to identify predictive biomarkers for a rational use of PLK inhibitors.
Collapse
Affiliation(s)
- Jan A Stratmann
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| | - Martin Sebastian
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
22
|
Rubner S, Schubert S, Berg T. Poloxin-2HT+: changing the hydrophobic tag of Poloxin-2HT increases Plk1 degradation and apoptosis induction in tumor cells. Org Biomol Chem 2019; 17:3113-3117. [PMID: 30848278 DOI: 10.1039/c9ob00080a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the hydrophobically-tagged Plk1 PBD inhibitor Poloxin-2HT+, which selectively degrades the tumor target Plk1 and induces apoptosis in human tumor cells with higher potency than the hydrophobically-tagged inhibitor Poloxin-2HT. Our data provide further evidence that hydrophobically tagged inhibitors of protein-protein interactions can target and destroy disease-relevant proteins.
Collapse
Affiliation(s)
- Stefan Rubner
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
23
|
Rubner S, Scharow A, Schubert S, Berg T. Selective Degradation of Polo-like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo-Box Domain. Angew Chem Int Ed Engl 2018; 57:17043-17047. [PMID: 30351497 DOI: 10.1002/anie.201809640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Hydrophobic tagging (HT) of bioactive compounds can induce target degradation via the proteasomal pathway. The first application of hydrophobic tagging to an existing inhibitor of protein-protein interactions is now presented. We developed Poloxin-2HT by fusing an adamantyl tag to Poloxin-2, an inhibitor of the polo-box domain of the protein kinase Plk1, which is a target for tumor therapy. Poloxin-2HT selectively reduced the protein levels of Plk1 in HeLa cells and had a significantly stronger effect on cell viability and the induction of apoptosis than the untagged PBD inhibitor Poloxin-2. The change in cellular phenotype associated with the addition of the hydrophobic tag to Poloxin-2 demonstrated that Poloxin-2HT targets Plk1 in living cells. Our data validate hydrophobic tagging of selective inhibitors of protein-protein interactions as a novel strategy to target and destroy disease-relevant proteins.
Collapse
Affiliation(s)
- Stefan Rubner
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Andrej Scharow
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Sabine Schubert
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
24
|
Rubner S, Scharow A, Schubert S, Berg T. Selective Degradation of Polo‐like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo‐Box Domain. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Stefan Rubner
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Andrej Scharow
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Sabine Schubert
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Thorsten Berg
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
25
|
Pearson RJ, Blake DG, Mezna M, Fischer PM, Westwood NJ, McInnes C. The Meisenheimer Complex as a Paradigm in Drug Discovery: Reversible Covalent Inhibition through C67 of the ATP Binding Site of PLK1. Cell Chem Biol 2018; 25:1107-1116.e4. [PMID: 30017915 DOI: 10.1016/j.chembiol.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/25/2017] [Accepted: 05/31/2018] [Indexed: 12/16/2022]
Abstract
The polo kinase family are important oncology targets that act in regulating entry into and progression through mitosis. Structure-guided discovery of a new class of inhibitors of Polo-like kinase 1 (PLK1) catalytic activity that interact with Cys67 of the ATP binding site is described. Compounds containing the benzothiazole N-oxide scaffold not only bind covalently to this residue, but are reversible inhibitors through the formation of Meisenheimer complexes. This mechanism of kinase inhibition results in compounds that can target PLK1 with high selectivity, while avoiding issues with irreversible covalent binding and interaction with other thiol-containing molecules in the cell. Due to renewed interest in covalent drugs and the plethora of potential drug targets, these represent prototypes for the design of kinase inhibitory compounds that achieve high specificity through covalent interaction and yet still bind reversibly to the ATP cleft, a strategy that could be applied to avoid issues with conventional covalent binders.
Collapse
Affiliation(s)
- Russell J Pearson
- School of Pharmacy, Keele University, Staffordshire ST5 5BG, UK; Department of Chemistry, University of St Andrews, Fife KY16 9ST, UK
| | - David G Blake
- Cyclacel Ltd., James Lindsay Place, Dundee DD1 5JJ, UK
| | - Mokdad Mezna
- Cyclacel Ltd., James Lindsay Place, Dundee DD1 5JJ, UK
| | - Peter M Fischer
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | | | - Campbell McInnes
- Cyclacel Ltd., James Lindsay Place, Dundee DD1 5JJ, UK; Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
26
|
Mi L, Hu K, Wen X, Sun J, Wu A, Wang M, Zheng M, Zang L, Ji J. Upregulation of C/EBPα contributes to colorectal cancer growth, metastasis and indicates poor survival outcome. Am J Cancer Res 2018; 8:1449-1465. [PMID: 30210916 PMCID: PMC6129490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023] Open
Abstract
The function and clinical implication of transcription factor CCAAT/enhancer-binding protein α (C/EBPα) in colorectal cancer (CRC) still remains undefined. In fact, C/EBPα has long been considered as a tumor suppressor in hematopoietic system and also found lowly expressed in numerous solid tumors. However, our results here for the first time showed that C/EBPα was unexpectedly upregulated and was an independent prognostic marker for patients with CRC. We therefore aimed to explore the detailed role and mechanisms of C/EBPα in CRC. Our investigation demonstrated that C/EBPα promoted tumor growth both in vitro and in vivo. In addition, suppression of C/EBPα inhibited cell proliferation by inducing G1 phase arrest and inducing apoptosis. Also, C/EBPα enhances CRC cells migration and invasion in vitro as well as metastasis in vivo through regulating EMT. Mechanistically, C/EBPα exerts its oncogenic role by targeting c-Myc/cyclin D1 mediated by β-catenin involved pathway and we provide evidence indicating that cytoplasmic exclusion of C/EBPα might contribute to its oncogenic function in tumor progression. In conclusion, C/EBPα acts as an oncogene in CRC and could be a potential biomarker of colon carcinogenesis.
Collapse
Affiliation(s)
- Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and InstituteBeijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and InstituteBeijing, China
| | - Kai Hu
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital HeidelbergHeidelberg, Germany
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and InstituteBeijing, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and InstituteBeijing, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and InstituteBeijing, China
| |
Collapse
|
27
|
Saatci Ö, Borgoni S, Akbulut Ö, Durmuş S, Raza U, Eyüpoğlu E, Alkan C, Akyol A, Kütük Ö, Wiemann S, Şahin Ö. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene 2018; 37:2251-2269. [PMID: 29391599 DOI: 10.1038/s41388-017-0108-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 12/18/2022]
Abstract
Trastuzumab-refractory, HER2 (human epidermal growth factor receptor 2)-positive breast cancer is commonly treated with trastuzumab emtansine (T-DM1), an antibody-drug conjugate of trastuzumab and the microtubule-targeting agent, DM1. However, drug response reduces greatly over time due to acquisition of resistance whose molecular mechanisms are mostly unknown. Here, we uncovered a novel mechanism of resistance against T-DM1 by combining whole transcriptome sequencing (RNA-Seq), proteomics and a targeted small interfering RNA (siRNA) sensitization screen for molecular level analysis of acquired and de novo T-DM1-resistant models of HER2-overexpressing breast cancer. We identified Polo-like kinase 1 (PLK1), a mitotic kinase, as a resistance mediator whose genomic as well as pharmacological inhibition restored drug sensitivity. Both acquired and de novo resistant models exhibited synergistic growth inhibition upon combination of T-DM1 with a selective PLK1 inhibitor, volasertib, at a wide concentration range of the two drugs. Mechanistically, T-DM1 sensitization upon PLK1 inhibition with volasertib was initiated by a spindle assembly checkpoint (SAC)-dependent mitotic arrest, leading to caspase activation, followed by DNA damage through CDK1-dependent phosphorylation and inactivation of Bcl-2/xL. Furthermore, we showed that Ser70 phosphorylation of Bcl-2 directly regulates apoptosis by disrupting the binding to and sequestration of the pro-apoptotic protein Bim. Importantly, T-DM1 resistance signature or PLK1 expression correlated with cell cycle progression and DNA repair, and predicted a lower sensitivity to taxane/trastuzumab combination in HER2-positive breast cancer patients. Finally, volasertib in combination with T-DM1 greatly synergized in models of T-DM1 resistance in terms of growth inhibition both in three dimensional (3D) cell culture and in vivo. Altogether, our results provide promising pre-clinical evidence for potential testing of T-DM1/volasertib combination in T-DM1 refractory HER2-positive breast cancer patients for whom there is currently no treatment available.
Collapse
Affiliation(s)
- Özge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), INF580, Heidelberg, 69120, Germany
| | - Özge Akbulut
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Selvi Durmuş
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Umar Raza
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Erol Eyüpoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Hacettepe University School of Medicine, 06410, Ankara, Turkey
| | - Özgür Kütük
- Department of Medical Genetics, Başkent University, 01250, Adana, Turkey
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), INF580, Heidelberg, 69120, Germany
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
- National Nanotechnology Research Center (UNAM), Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
28
|
Johnson-Ajinwo OR, Ullah I, Mbye H, Richardson A, Horrocks P, Li WW. The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. Bioorg Med Chem Lett 2018. [DOI: 10.1016/j.bmcl.2018.02.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Kolosenko I, Edsbäcker E, Björklund AC, Hamil AS, Goroshchuk O, Grandér D, Dowdy SF, Palm-Apergi C. RNAi prodrugs targeting Plk1 induce specific gene silencing in primary cells from pediatric T-acute lymphoblastic leukemia patients. J Control Release 2017; 261:199-206. [PMID: 28684168 DOI: 10.1016/j.jconrel.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022]
Abstract
Epidemiological studies of childhood leukemia survivors reveal an alarmingly high incidence of chronic health disabilities after treatment, therefore, more specific therapies need to be developed. Polo-like kinase 1 (Plk1) is a key player in mitosis and a target for drug development as it is upregulated in multiple cancer types. Small molecules targeting Plk1 are mainly ATP-competitors and, therefore, are known to elicit side effects due to lack of specificity. RNA interference (RNAi) is known for its high catalytic activity and target selectivity; however, the biggest barrier for its introduction into clinical use is its delivery. RNAi prodrugs are modified, self-delivering short interfering Ribonucleic Neutrals (siRNNs), cleaved by cytoplasmic enzymes into short interfering Ribonucleic Acids (siRNAs) once inside cells. In this study we aimed to investigate the potential of siRNNs as therapeutic tools in T-acute lymphoblastic leukemia (T-ALL) using T-ALL cell lines and patient-derived samples. We demonstrate for the first time that RNAi prodrugs (siRNNs) targeting Plk1, can enter pediatric T-ALL patient cells without a transfection reagent and induce Plk1 knockdown on both protein and mRNA levels resulting in G2/M-arrest and apoptosis. We also show that siRNNs targeting Plk1 generate less toxicity in normal cells compared to the small molecule Plk1 inhibitor, BI6727, suggesting a potentially good therapeutic index.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden
| | - Elin Edsbäcker
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden
| | - Ann-Charlotte Björklund
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden
| | - Alexander S Hamil
- Department of Cellular & Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Oksana Goroshchuk
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden
| | - Dan Grandér
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden
| | - Steven F Dowdy
- Department of Cellular & Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Caroline Palm-Apergi
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden.
| |
Collapse
|
30
|
Narvaez AJ, Ber S, Crooks A, Emery A, Hardwick B, Guarino Almeida E, Huggins DJ, Perera D, Roberts-Thomson M, Azzarelli R, Hood FE, Prior IA, Walker DW, Boyce R, Boyle RG, Barker SP, Torrance CJ, McKenzie GJ, Venkitaraman AR. Modulating Protein-Protein Interactions of the Mitotic Polo-like Kinases to Target Mutant KRAS. Cell Chem Biol 2017; 24:1017-1028.e7. [PMID: 28807782 PMCID: PMC5563081 DOI: 10.1016/j.chembiol.2017.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/16/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
Abstract
Mutations activating KRAS underlie many forms of cancer, but are refractory to therapeutic targeting. Here, we develop Poloppin, an inhibitor of protein-protein interactions via the Polo-box domain (PBD) of the mitotic Polo-like kinases (PLKs), in monotherapeutic and combination strategies to target mutant KRAS. Poloppin engages its targets in biochemical and cellular assays, triggering mitotic arrest with defective chromosome congression. Poloppin kills cells expressing mutant KRAS, selectively enhancing death in mitosis. PLK1 or PLK4 depletion recapitulates these cellular effects, as does PBD overexpression, corroborating Poloppin's mechanism of action. An optimized analog with favorable pharmacokinetics, Poloppin-II, is effective against KRAS-expressing cancer xenografts. Poloppin resistance develops less readily than to an ATP-competitive PLK1 inhibitor; moreover, cross-sensitivity persists. Poloppin sensitizes mutant KRAS-expressing cells to clinical inhibitors of c-MET, opening opportunities for combination therapy. Our findings exemplify the utility of small molecules modulating the protein-protein interactions of PLKs to therapeutically target mutant KRAS-expressing cancers.
Collapse
Affiliation(s)
- Ana J Narvaez
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Suzan Ber
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Alex Crooks
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Amy Emery
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Bryn Hardwick
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Estrella Guarino Almeida
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David J Huggins
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; University of Cambridge, Theory of Condensed Matter Group, Cavendish Laboratory, 19 J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - David Perera
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Meredith Roberts-Thomson
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fiona E Hood
- Division of Cellular and Molecular Physiology, Crown Street, University of Liverpool, Liverpool L69 3BX, UK
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Crown Street, University of Liverpool, Liverpool L69 3BX, UK
| | - David W Walker
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Richard Boyce
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Robert G Boyle
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Samuel P Barker
- PhoreMost Ltd., Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - Grahame J McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; PhoreMost Ltd., Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
31
|
Dasgupta N, Thakur BK, Ta A, Das S, Banik G, Das S. Polo-like kinase 1 expression is suppressed by CCAAT/enhancer-binding protein α to mediate colon carcinoma cell differentiation and apoptosis. Biochim Biophys Acta Gen Subj 2017; 1861:1777-1787. [PMID: 28341486 DOI: 10.1016/j.bbagen.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/12/2017] [Accepted: 03/18/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. METHODS PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. RESULTS PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. CONCLUSION This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. GENERAL SIGNIFICANCE Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India; Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Bhupesh Kumar Thakur
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Atri Ta
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Sayan Das
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - George Banik
- BD Biosciences, Salt Lake, Kolkata 700102, India
| | - Santasabuj Das
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India.
| |
Collapse
|
32
|
Archambault V, Normandin K. Several inhibitors of the Plk1 Polo-Box Domain turn out to be non-specific protein alkylators. Cell Cycle 2017; 16:1220-1224. [PMID: 28521657 PMCID: PMC5499904 DOI: 10.1080/15384101.2017.1325043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022] Open
Abstract
For almost a decade, there has been much interest in the development of chemical inhibitors of Polo-like kinase 1 (Plk1) protein interactions. Plk1 is a master regulator of the cell division cycle that controls numerous substrates. It is a promising target for cancer drug development. Inhibitors of the kinase domain of Plk1 had some success in clinical trials. However, they are not perfectly selective. In principle, Plk1 can also be inhibited by interfering with its protein interaction domain, the Polo-Box Domain (PBD). Selective chemical inhibitors of the PBD would constitute tools to probe for PBD-dependent functions of Plk1 and could be advantageous in cancer therapy. The discovery of Poloxin and thymoquinone as PBD inhibitors indicated that small, cell-permeable chemical inhibitors could be identified. Other efforts followed, including ours, reporting additional molecules capable of blocking the PBD. It is now clear that, unfortunately, most of these compounds are non-specific protein alkylators (defined here as groups covalently added via a carbon) that have little or no potential for the development of real Plk1 PBD-specific drugs. This situation should be minded by biologists potentially interested in using these compounds to study Plk1. Further efforts are needed to develop selective, cell-permeable PBD inhibitors.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| |
Collapse
|
33
|
Abstract
Mutations in cancer cells frequently result in cell cycle alterations that lead to unrestricted growth compared to normal cells. Considering this phenomenon, many drugs have been developed to inhibit different cell-cycle phases. Mitotic phase targeting disturbs mitosis in tumor cells, triggers the spindle assembly checkpoint and frequently results in cell death. The first anti-mitotics to enter clinical trials aimed to target tubulin. Although these drugs improved the treatment of certain cancers, and many anti-microtubule compounds are already approved for clinical use, severe adverse events such as neuropathies were observed. Since then, efforts have been focused on the development of drugs that also target kinases, motor proteins and multi-protein complexes involved in mitosis. In this review, we summarize the major proteins involved in the mitotic phase that can also be targeted for cancer treatment. Finally, we address the activity of anti-mitotic drugs tested in clinical trials in recent years.
Collapse
|
34
|
Chen Y, Zhang J, Li D, Jiang J, Wang Y, Si S. Identification of a novel Polo-like kinase 1 inhibitor that specifically blocks the functions of Polo-Box domain. Oncotarget 2017; 8:1234-1246. [PMID: 27902479 PMCID: PMC5352051 DOI: 10.18632/oncotarget.13603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a promising target for cancer therapy due to its essential role in cell division. In addition to a highly conserved kinase domain, Plk1 also contains a Polo-Box domain (PBD), which is essential for Plk1's subcellular localization and mitotic functions. We adopted a fluorescence polarization assay and identified a new Plk1 PBD inhibitor T521 from a small-molecule compound library. T521 specifically inhibits the PBD of Plk1, but not those of Plk2-3. T521 exhibits covalent binding to some lysine residues of Plk1 PBD, which causes significant changes in the secondary structure of Plk1 PBD. Using a cell-based assay, we showed that T521 impedes the interaction between Plk1 and Bub1, a mitotic checkpoint protein. Moreover, HeLa cells treated with T521 exhibited dramatic mitotic defects. Importantly, T521 suppresses the growth of A549 cells in xenograft nude mice. Taken together, we have identified a novel Plk1 inhibitor that specifically disrupts the functions of Plk1 PBD and shows anticancer activity.
Collapse
Affiliation(s)
- Yunyu Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jing Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Dongsheng Li
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yanchang Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
35
|
Kim TG, Lee JH, Lee MY, Kim KU, Lee JH, Park CH, Lee BH, Oh KS. Development of a High-Throughput Assay for Inhibitors of the Polo-Box Domain of Polo-Like Kinase 1 Based on Time-Resolved Fluorescence Energy Transfer. Biol Pharm Bull 2017; 40:1454-1462. [PMID: 28867728 DOI: 10.1248/bpb.b17-00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although enzyme-linked immunosorbent assay (ELISA) technology has been widely accepted for binding assays against the polo-box domain (PBD) of polo-like kinase-1 (Plk1), these assays have a limitation-related heterogeneous procedure, such as multiple incubations and washing steps to apply high-throughput screenings (HTSs). In the present study, a Plk1-PBD binding assay based on time-resolved fluorescence energy transfer (TR-FRET) was developed for HTS of PBD-binding inhibitors. The TR-FRET-based Plk1-PBD binding assay is sensitive and robust and can be miniaturized into the 384-well plate-based format. Compared with the ELISA-based Plk1-PBD binding assay (Z' factor, 0.53; signal-to-background ratio, 4.19), the TR-FRET-based Plk1-PBD binding assay improved the Z' factor (0.72) and signal-to-background ratio (8.16). Using TR-FRET based Plk1-PBD binding assay, pilot library screening of 1019 natural compounds was conducted and five hit compounds such as haematoxylin, verbascoside, menadione, lithospermic acid and (1,3-dioxolo[4,5-g]isoquinolinium 5,6,7,8-tetrahydro-4-methoxy-6,6-dimethyl-5-[2-oxo-2-(2-pyridinyl)ethyl]-iodide) (DITMD) were identified as Plk1-PBD inhibitor. In a functional assay to validate the hit compounds, five hit compounds exhibited suppression of HeLa cells proliferation. These results suggest that TR-FRET-based Plk1-PBD binding assay can be applied for an efficient and less time-consuming HTS of compound libraries.
Collapse
Affiliation(s)
- Tae Gi Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Ju Hee Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Mi Young Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Ka-Ul Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Jeong Hyun Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Chi Hoon Park
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Byung Ho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Kwang-Seok Oh
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| |
Collapse
|
36
|
Ritter A, Friemel A, Kreis NN, Louwen F, Yuan J. Impact of Polo-like kinase 1 inhibitors on human adipose tissue-derived mesenchymal stem cells. Oncotarget 2016; 7:84271-84285. [PMID: 27713178 PMCID: PMC5356661 DOI: 10.18632/oncotarget.12482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
Polo-like kinase 1 (Plk1) has been established as one of the most promising targets for molecular anticancer intervention. In fact, various Plk1 inhibitors have been identified and characterized. While the data derived from the bench are prospective, the clinical outcomes are less encouraging by showing modest efficacy. One of the explanations for this discrepancy could be unintendedly targeting of non-malignant cells by Plk1 inhibitors. In this work, we have addressed the effect of Plk1 inhibition in adipose tissue-derived mesenchymal stem cells (ASCs). We show that both visceral and subcutaneous ASCs display monopolar spindles, reduced viability and strong apoptosis induction upon treatment with BI 2536 and BI 6727, the Plk1 kinase domain inhibitors, and with Poloxin, the regulatory Polo-box domain inhibitor. While Poloxin triggers quickly apoptosis, BI 2536 and BI 6727 result in mitotic arrest in ASCs. Importantly, survived ASCs exhibit DNA damage and a pronounced senescent phenotype. In addition, Plk1 inhibition impairs ASCs' motility and homing ability. These results show that Plk1 inhibitors target slowly proliferating ASCs, an important population of anti-inflammation and immune modulation. The toxic effects on primary cells like ASCs could be partially responsible for the reported moderate antitumor activity in patients treated with Plk1 inhibitors.
Collapse
Affiliation(s)
- Andreas Ritter
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Alexandra Friemel
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
37
|
Muschol-Steinmetz C, Jasmer B, Kreis NN, Steinhäuser K, Ritter A, Rolle U, Yuan J, Louwen F. B-cell lymphoma 6 promotes proliferation and survival of trophoblastic cells. Cell Cycle 2016; 15:827-39. [PMID: 27029530 DOI: 10.1080/15384101.2016.1149273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Preeclampsia is one of the leading causes of maternal and perinatal mortality and morbidity and its pathogenesis is not fully understood. B-cell lymphoma 6 (BCL6), a key regulator of B-lymphocyte development, is altered in preeclamptic placentas. We show here that BCL6 is present in all 3 studied trophoblast cell lines and it is predominantly expressed in trophoblastic HTR-8/SVneo cells derived from a 1(st) trimester placenta, suggestive of its involvement in trophoblast expansion in the early stage of placental development. BCL6 is strongly stabilized upon stress stimulation. Inhibition of BCL6, by administrating either small interfering RNA or a specific small molecule inhibitor 79-6, reduces proliferation and induces apoptosis in trophoblastic cells. Intriguingly, depletion of BCL6 in HTR-8/SVneo cells results in a mitotic arrest associated with mitotic defects in centrosome integrity, indicative of its involvement in mitotic progression. Thus, like in haematopoietic cells and breast cancer cells, BCL6 promotes proliferation and facilitates survival of trophoblasts under stress situation. Further studies are required to decipher its molecular roles in differentiation, migration and the fusion process of trophoblasts. Whether increased BCL6 observed in preeclamptic placentas is one of the causes or the consequences of preeclampsia warrants further investigations in vivo and in vitro.
Collapse
Affiliation(s)
- Cornelia Muschol-Steinmetz
- a Department of Gynecology and Obstetrics , School of Medicine, J. W. Goethe-University , Frankfurt, Germany
| | - Britta Jasmer
- a Department of Gynecology and Obstetrics , School of Medicine, J. W. Goethe-University , Frankfurt, Germany
| | - Nina-Naomi Kreis
- a Department of Gynecology and Obstetrics , School of Medicine, J. W. Goethe-University , Frankfurt, Germany
| | - Kerstin Steinhäuser
- a Department of Gynecology and Obstetrics , School of Medicine, J. W. Goethe-University , Frankfurt, Germany
| | - Andreas Ritter
- a Department of Gynecology and Obstetrics , School of Medicine, J. W. Goethe-University , Frankfurt, Germany
| | - Udo Rolle
- b Department of Pediatric Surgery and Pediatric Urology , School of Medicine, J. W. Goethe-University , Frankfurt , Germany
| | - Juping Yuan
- a Department of Gynecology and Obstetrics , School of Medicine, J. W. Goethe-University , Frankfurt, Germany
| | - Frank Louwen
- a Department of Gynecology and Obstetrics , School of Medicine, J. W. Goethe-University , Frankfurt, Germany
| |
Collapse
|
38
|
Liu Z, Sun Q, Wang X. PLK1, A Potential Target for Cancer Therapy. Transl Oncol 2016; 10:22-32. [PMID: 27888710 PMCID: PMC5124362 DOI: 10.1016/j.tranon.2016.10.003] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays an important role in the initiation, maintenance, and completion of mitosis. Dysfunction of PLK1 may promote cancerous transformation and drive its progression. PLK1 overexpression has been found in a variety of human cancers and was associated with poor prognoses in cancers. Many studies have showed that inhibition of PLK1 could lead to death of cancer cells by interfering with multiple stages of mitosis. Thus, PLK1 is expected to be a potential target for cancer therapy. In this article, we examined PLK1’s structural characteristics, its regulatory roles in cell mitosis, PLK1 expression, and its association with survival prognoses of cancer patients in a wide variety of cancer types, PLK1 interaction networks, and PLK1 inhibitors under investigation. Finally, we discussed the key issues in the development of PLK1-targeted cancer therapy.
Collapse
Affiliation(s)
- Zhixian Liu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
39
|
Normandin K, Lavallée JF, Futter M, Beautrait A, Duchaine J, Guiral S, Marinier A, Archambault V. Identification of Polo-like kinase 1 interaction inhibitors using a novel cell-based assay. Sci Rep 2016; 5:37581. [PMID: 27874094 PMCID: PMC5118709 DOI: 10.1038/srep37581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Polo-like kinase 1 (Plk1) plays several roles in cell division and it is a recognized cancer drug target. Plk1 levels are elevated in cancer and several types of cancer cells are hypersensitive to Plk1 inhibition. Small molecule inhibitors of the kinase domain (KD) of Plk1 have been developed. Their selectivity is limited, which likely contributes to their toxicity. Polo-like kinases are characterized by a Polo-Box Domain (PBD), which mediates interactions with phosphorylation substrates or regulators. Inhibition of the PBD could allow better selectivity or result in different effects than inhibition of the KD. In vitro screens have been used to identify PBD inhibitors with mixed results. We developed the first cell-based assay to screen for PBD inhibitors, using Bioluminescence Resonance Energy Transfer (BRET). We screened through 112 983 compounds and characterized hits in secondary biochemical and biological assays. Subsequent Structure-Activity Relationship (SAR) analysis on our most promising hit revealed that it requires an alkylating function for its activity. In addition, we show that the previously reported PBD inhibitors thymoquinone and Poloxin are also alkylating agents. Our cell-based assay is a promising tool for the identification of new PBD inhibitors with more drug-like profiles using larger and more diverse chemical libraries.
Collapse
Affiliation(s)
- Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Jean-François Lavallée
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Marie Futter
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Sébastien Guiral
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de chimie, Université de Montréal, Montréal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
40
|
Qin T, Chen F, Zhuo X, Guo X, Yun T, Liu Y, Zhang C, Lai L. Discovery of Novel Polo-Like Kinase 1 Polo-Box Domain Inhibitors to Induce Mitotic Arrest in Tumor Cells. J Med Chem 2016; 59:7089-96. [PMID: 27425654 DOI: 10.1021/acs.jmedchem.6b00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polo-like kinase 1(Plk1) is vital for cell mitosis and has been identified as anticancer target. Its polo-box domain (PBD) mediates substrate binding, blocking of which may offer selective Plk1 inhibition compared to kinase domain inhibitors. Although several PBD inhibitors were reported, most of them suffer from low cell activity. Here, we report the discovery of novel inhibitors to induce mitotic arrest in HeLa cells by virtual screening with Plk1 PBD and cellular activity testing. Of the 81 compounds tested in the cell assay, 10 molecules with diverse chemical scaffolds are potent to induce mitotic arrest of HeLa at low micromolar concentrations. The best compound induces mitotic arrest of HeLa cells with an EC50 of 4.4 μM. The cellular active inhibitors showed binding to Plk1 PBD and compete with PBD substrate in microscale thermophoresis analysis.
Collapse
Affiliation(s)
- Tan Qin
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing, 100871, China
| | - Fangjin Chen
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing, 100871, China
- Center for Quantitative Biology, Peking University , Beijing, 100871, China
| | - Xiaolong Zhuo
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University , Beijing, 100871, China
| | - Xiao Guo
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University , Beijing, 100871, China
| | - Taikangxiang Yun
- Center for Quantitative Biology, Peking University , Beijing, 100871, China
| | - Ying Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing, 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University , Beijing, 100871, China
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing, 100871, China
- Center for Quantitative Biology, Peking University , Beijing, 100871, China
| |
Collapse
|
41
|
Gutteridge REA, Ndiaye MA, Liu X, Ahmad N. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol Cancer Ther 2016; 15:1427-35. [PMID: 27330107 PMCID: PMC4936921 DOI: 10.1158/1535-7163.mct-15-0897] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023]
Abstract
Polo-like kinase 1 (Plk1) overexpression has been shown to occur in a wide range of tumors, prompting research and development of Plk1 inhibitors as a means of cancer treatment. This review discusses recent advances in the development of Plk1 inhibitors for cancer management. Plk1 inhibition has been shown to cause mitotic block and apoptosis of cells with higher mitotic index and therefore higher Plk1 expression. The potential of Plk1 inhibitors as cancer therapeutics has been widely investigated. However, a complete understanding of Plk1 biology/mechanism is yet to be fully achieved. Resistance to certain chemotherapeutic drugs has been linked to Plk1 overexpression, and Plk1-mediated mitotic events such as microtubule rearrangement have been found to reduce the efficacy of chemotherapeutic agents. The Plk1 inhibitor volasertib has shown considerable promise in clinical studies, having reached phase III trials. However, preclinical success with Plk1 inhibitors has not translated well into clinical success. In our view, combined therapies targeting other relevant pathways together with Plk1 may be vital to combat issues observed with monotherapy, especially resistance. In addition, research should also be directed toward understanding the mechanisms of Plk1 and designing additional next generations of specific, potent Plk1 inhibitors to target cancer. Mol Cancer Ther; 15(7); 1427-35. ©2016 AACR.
Collapse
Affiliation(s)
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin. William S. Middleton Memorial VA Hospital, Madison, Wisconsin.
| |
Collapse
|
42
|
Abstract
Polo-like kinase 1 (Plk1), a key player in mitosis, is overexpressed in a wide range of tumor types and has been validated as a target for tumor therapy. In addition to its N-terminal kinase domain, Plk1 harbors a C-terminal protein-protein interaction domain, referred to as the polo-box domain (PBD). Because the PBD is unique to the five-member family of polo-like kinases, and its inhibition is sufficient to inhibit the enzyme, the Plk1 PBD is an attractive target for the inhibition of Plk1 function. Although peptide-based inhibitors are invaluable tools for elucidating the nature of the binding interface, small molecules are better suited for the induction of mitotic arrest and apoptosis in tumor cells by Plk1 inhibition. This review describes the considerable progress that has been made in developing small-molecule and peptide-based inhibitors of the Plk1 PBD.
Collapse
Affiliation(s)
- Angela Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
43
|
Helmke C, Becker S, Strebhardt K. The role of Plk3 in oncogenesis. Oncogene 2016; 35:135-47. [PMID: 25915845 DOI: 10.1038/onc.2015.105] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
The polo-like kinases (Plks) encompass a family of five serine/threonine protein kinases that play essential roles in many cellular processes involved in the control of the cell cycle, including entry into mitosis, DNA replication and the response to different types of stress. Plk1, which has been validated as a cancer target, came into the focus of many pharmaceutical companies for the development of small-molecule inhibitors as anticancer agents. Recently, FDA (Food and Drug Administration) has granted a breakthrough therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. However, the various ATP-competitive inhibitors of Plk1 that are currently in clinical development also inhibit the activities of Plk2 and Plk3, which are considered as tumor suppressors. Plk3 contributes to the control and progression of the cell cycle while acting as a mediator of apoptosis and various types of cellular stress. The aberrant expression of Plk3 was found in different types of tumors. Recent progress has improved our understanding of Plk3 in regulating stress signaling and tumorigenesis. When using ATP-competitive Plk1 inhibitors, the biological roles of Plk1-related family members like Plk3 in cancer cells need to be considered carefully to improve treatment strategies against cancer.
Collapse
Affiliation(s)
- C Helmke
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - S Becker
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - K Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
44
|
Long T, Neitz RJ, Beasley R, Kalyanaraman C, Suzuki BM, Jacobson MP, Dissous C, McKerrow JH, Drewry DH, Zuercher WJ, Singh R, Caffrey CR. Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni. PLoS Negl Trop Dis 2016; 10:e0004356. [PMID: 26751972 PMCID: PMC4709140 DOI: 10.1371/journal.pntd.0004356] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Schistosoma flatworm parasites cause schistosomiasis, a chronic and debilitating disease of poverty in developing countries. Praziquantel is employed for treatment and disease control. However, its efficacy spectrum is incomplete (less active or inactive against immature stages of the parasite) and there is a concern of drug resistance. Thus, there is a need to identify new drugs and drug targets. METHODOLOGY/PRINCIPAL FINDINGS We show that RNA interference (RNAi) of the Schistosoma mansoni ortholog of human polo-like kinase (huPLK)1 elicits a deleterious phenotypic alteration in post-infective larvae (schistosomula or somules). Phenotypic screening and analysis of schistosomula and adult S. mansoni with small molecule inhibitors of huPLK1 identified a number of potent anti-schistosomals. Among these was a GlaxoSmithKline (GSK) benzimidazole thiophene inhibitor that has completed Phase I clinical trials for treatment of solid tumor malignancies. We then obtained GSKs Published Kinase Inhibitor Sets (PKIS) 1 and 2, and phenotypically screened an expanded series of 38 benzimidazole thiophene PLK1 inhibitors. Computational analysis of controls and PLK1 inhibitor-treated populations of somules demonstrated a distinctive phenotype distribution. Using principal component analysis (PCA), the phenotypes exhibited by these populations were mapped, visualized and analyzed through projection to a low-dimensional space. The phenotype distribution was found to have a distinct shape and topology, which could be elicited using cluster analysis. A structure-activity relationship (SAR) was identified for the benzimidazole thiophenes that held for both somules and adult parasites. The most potent inhibitors produced marked phenotypic alterations at 1-2 μM within 1 h. Among these were compounds previously characterized as potent inhibitors of huPLK1 in cell assays. CONCLUSIONS/SIGNIFICANCE The reverse genetic and chemical SAR data support a continued investigation of SmPLK1 as a possible drug target and/or the prosecution of the benzimidazole thiophene chemotype as a source of novel anti-schistosomals.
Collapse
Affiliation(s)
- Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - R. Jeffrey Neitz
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Rachel Beasley
- Department of Computer Science, San Francisco State University, San Francisco, California, United States of America
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Brian M. Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Colette Dissous
- Center of Infection and Immunity of Lille, Université Lille Nord de France, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, Lille, France
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - David H. Drewry
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - William J. Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Rahul Singh
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Computer Science, San Francisco State University, San Francisco, California, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
45
|
Lee KS, Burke TR, Park JE, Bang JK, Lee E. Recent Advances and New Strategies in Targeting Plk1 for Anticancer Therapy. Trends Pharmacol Sci 2015; 36:858-877. [PMID: 26478211 PMCID: PMC4684765 DOI: 10.1016/j.tips.2015.08.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022]
Abstract
Polo-like kinase 1 (Plk1) plays key roles in regulating mitotic processes that are crucial for cellular proliferation. Overexpression of Plk1 is tightly associated with the development of particular cancers in humans, and a large body of evidence suggests that Plk1 is an attractive target for anticancer therapeutic development. Drugs targeting Plk1 can potentially be directed at two distinct sites: the N-terminal catalytic kinase domain (KD), which phosphorylates substrates, and the C-terminal polo-box domain (PBD) which is essential for protein-protein interactions. In this review we summarize recent advances and new challenges in the development of Plk1 inhibitors targeting these two domains. We also discuss novel strategies for designing and developing next-generation inhibitors to effectively treat Plk1-associated human disorders.
Collapse
Affiliation(s)
- Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, 804-1, Yangcheong Ri, Ochang, Chungbuk, Cheongwon 363-883, Republic of Korea
| | - Eunhye Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Scharow A, Raab M, Saxena K, Sreeramulu S, Kudlinzki D, Gande S, Dötsch C, Kurunci-Csacsko E, Klaeger S, Kuster B, Schwalbe H, Strebhardt K, Berg T. Optimized Plk1 PBD Inhibitors Based on Poloxin Induce Mitotic Arrest and Apoptosis in Tumor Cells. ACS Chem Biol 2015; 10:2570-9. [PMID: 26279064 DOI: 10.1021/acschembio.5b00565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polo-like kinase 1 (Plk1) is a central regulator of mitosis and has been validated as a target for antitumor therapy. The polo-box domain (PBD) of Plk1 regulates its kinase activity and mediates the subcellular localization of Plk1 and its interactions with a subset of its substrates. Functional inhibition of the Plk1 PBD by low-molecular weight inhibitors has been shown to represent a viable strategy by which to inhibit the enzyme, while avoiding selectivity issues caused by the conserved nature of the ATP binding site. Here, we report structure-activity relationships and mechanistic analysis for the first reported Plk1 PBD inhibitor, Poloxin. We present the identification of the optimized analog Poloxin-2, displaying significantly improved potency and selectivity over Poloxin. Poloxin-2 induces mitotic arrest and apoptosis in cultured human tumor cells at low micromolar concentrations, highlighting it as a valuable tool compound for exploring the function of the Plk1 PBD in living cells.
Collapse
Affiliation(s)
- Andrej Scharow
- Institute of Organic Chemistry, University of Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Monika Raab
- Johann Wolfgang Goethe-University , Medical School, Department of Gynecology and Obstetrics, Theodor-Stern-Kai 7-9, 60596 Frankfurt, Germany
| | - Krishna Saxena
- Johann Wolfgang Goethe-University Frankfurt , Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Sridhar Sreeramulu
- Johann Wolfgang Goethe-University Frankfurt , Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Denis Kudlinzki
- Johann Wolfgang Goethe-University Frankfurt , Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Santosh Gande
- Johann Wolfgang Goethe-University Frankfurt , Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Christina Dötsch
- Johann Wolfgang Goethe-University , Medical School, Department of Gynecology and Obstetrics, Theodor-Stern-Kai 7-9, 60596 Frankfurt, Germany
| | - Elisabeth Kurunci-Csacsko
- Johann Wolfgang Goethe-University , Medical School, Department of Gynecology and Obstetrics, Theodor-Stern-Kai 7-9, 60596 Frankfurt, Germany
| | - Susan Klaeger
- Technische Universität München , Emil Erlenmeyer Forum 5, 85354 Freising, Germany
- German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Bernhard Kuster
- Technische Universität München , Emil Erlenmeyer Forum 5, 85354 Freising, Germany
- German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Harald Schwalbe
- Johann Wolfgang Goethe-University Frankfurt , Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Klaus Strebhardt
- Johann Wolfgang Goethe-University , Medical School, Department of Gynecology and Obstetrics, Theodor-Stern-Kai 7-9, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Thorsten Berg
- Institute of Organic Chemistry, University of Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Kumar S, Kim J. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:705745. [PMID: 26557691 PMCID: PMC4628734 DOI: 10.1155/2015/705745] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022]
Abstract
Mitotic kinases are the key components of the cell cycle machinery and play vital roles in cell cycle progression. PLK-1 (Polo-like kinase-1) is a crucial mitotic protein kinase that plays an essential role in both the onset of G2/M transition and cytokinesis. The overexpression of PLK-1 is strongly correlated with a wide spectrum of human cancers and poor prognosis. The (si)RNA-mediated depletion of PLK-1 arrests tumor growth and triggers apoptosis in cancer cells without affecting normal cells. Therefore, PLK-1 has been selected as an attractive anticancer therapeutic drug target. Some small molecules have been discovered to target the catalytic and noncatalytic domains of PLK-1. These domains regulate the catalytic activation and subcellular localization of PLK-1. However, while PLK-1 inhibitors block tumor growth, they have been shown to cause severe adverse complications, such as toxicity, neutropenia, and bone marrow suppression during clinical trials, due to a lack of selectivity and specificity within the human kinome. To minimize these toxicities, inhibitors should be tested against all protein kinases in vivo and in vitro to enhance selectivity and specificity against targets. Here, we discuss the potency and selectivity of PLK-1-targeted inhibitors and their molecular interactions with PLK-1 domains.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, Republic of Korea
| |
Collapse
|
48
|
Archambault V, Lépine G, Kachaner D. Understanding the Polo Kinase machine. Oncogene 2015; 34:4799-807. [PMID: 25619835 DOI: 10.1038/onc.2014.451] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/26/2022]
Abstract
The Polo Kinase is a central regulator of cell division required for several events of mitosis and cytokinesis. In addition to a kinase domain (KD), Polo-like kinases (Plks) comprise a Polo-Box domain (PBD), which mediates protein interactions with targets and regulators of Plks. In all organisms that contain Plks, one Plk family member fulfills several essential functions in the regulation of cell division, and here we refer to this conserved protein as Polo Kinase (Plk1 in humans). The PBD and the KD are capable of both cooperation and mutual inhibition in their functions. Crystal structures of the PBD, the KD and, recently, a PBD-KD complex have helped understanding the inner workings of the Polo Kinase. In parallel, an impressive array of molecular mechanisms has been found to mediate the regulation of the protein. Moreover, the targeting of Polo Kinase in the development of anti-cancer drugs has yielded several molecules with which to chemically modulate Polo Kinase to study its biological functions. Here we review our current understanding of the protein function and regulation of Polo Kinase as a fascinating molecular device in control of cell division.
Collapse
Affiliation(s)
- V Archambault
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - G Lépine
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - D Kachaner
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
49
|
Kazazian K, Brashavitskaya O, Zih FSW, Berger-Richardson D, Xu RSZ, Pacholczyk K, Macmillan J, Swallow CJ. Polo-Like Kinases in Colorectal Cancer: Potential for Targeted Therapy. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0275-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Treatment. Transl Oncol 2015; 8:185-95. [PMID: 26055176 PMCID: PMC4486469 DOI: 10.1016/j.tranon.2015.03.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that regulate multiple intracellular processes including DNA replication, mitosis, and stress response. Plk1, the most well understood family member, regulates numerous stages of mitosis and is overexpressed in many cancers. Plk inhibitors are currently under clinical investigation, including phase III trials of volasertib, a Plk inhibitor, in acute myeloid leukemia and rigosertib, a dual inhibitor of Plk1/phosphoinositide 3-kinase signaling pathways, in myelodysplastic syndrome. Other Plk inhibitors, including the Plk1 inhibitors GSK461364A, TKM-080301, GW843682, purpurogallin, and poloxin and the Plk4 inhibitor CFI-400945 fumarate, are in earlier clinical development. This review discusses the biologic roles of Plks in cell cycle progression and cancer, and the mechanisms of action of Plk inhibitors currently in development as cancer therapies.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Purdue University, West Lafayette, IN, USA.
| |
Collapse
|