1
|
Raoufinia R, Afrasiabi P, Dehghanpour A, Memarpour S, Hosseinian SHS, Saburi E, Naghipoor K, Rezaei S, Haghmoradi M, Keyhanvar N, Rostami M, Fakoor F, Kazemi MI, Moghbeli M, Rahimi HR. The Landscape of microRNAs in Bone Tumor: A Comprehensive Review in Recent Studies. Microrna 2024; 13:175-201. [PMID: 39005129 DOI: 10.2174/0122115366298799240625115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Cancer, the second greatest cause of mortality worldwide, frequently causes bone metastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord compression. These injurious incidents leave uncomfortably in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and exhibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various biological processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Afrasiabi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Memarpour
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naghipoor
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Haghmoradi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Fakoor
- Department of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Izadpanah Kazemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Riemann A, Rauschner M, Reime S, Thews O. The Role of microRNAs in Gene Expression and Signaling Response of Tumor Cells to an Acidic Environment. Int J Mol Sci 2023; 24:16919. [PMID: 38069241 PMCID: PMC10707721 DOI: 10.3390/ijms242316919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Many tumors are characterized by marked extracellular acidosis due to increased glycolytic metabolism, which affects gene expression and thereby tumor biological behavior. At the same time, acidosis leads to altered expression of several microRNAs (Mir7, Mir183, Mir203, Mir215). The aim of this study was to analyze whether the acidosis-induced changes in cytokines and tumor-related genes are mediated via pH-sensitive microRNAs. Therefore, the expression of Il6, Nos2, Ccl2, Spp1, Tnf, Acat2, Aox1, Crem, Gls2, Per3, Pink1, Txnip, and Ypel3 was examined in acidosis upon simultaneous transfection with microRNA mimics or antagomirs in two tumor lines in vitro and in vivo. In addition, it was investigated whether microRNA expression in acidosis is affected via known pH-sensitive signaling pathways (MAPK, PKC, PI3K), via ROS, or via altered intracellular Ca2+ concentration. pH-dependent microRNAs were shown to play only a minor role in modulating gene expression. Individual genes (e.g., Ccl2, Txnip, Ypel3) appear to be affected by Mir183, Mir203, or Mir215 in acidosis, but these effects are cell line-specific. When examining whether acid-dependent signaling affects microRNA expression, it was found that Mir203 was modulated by MAPK and ROS, Mir7 was affected by PKC, and Mir215 was dependent on the intracellular Ca2+ concentration. Mir183 could be increased by ROS scavenging. These correlations could possibly result in new therapeutic approaches for acidotic tumors.
Collapse
Affiliation(s)
| | | | | | - Oliver Thews
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, 06108 Halle, Germany
| |
Collapse
|
3
|
Jiang M, Jike Y, Liu K, Gan F, Zhang K, Xie M, Zhang J, Chen C, Zou X, Jiang X, Dai Y, Chen W, Qiu Y, Bo Z. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1. Mol Cancer 2023; 22:113. [PMID: 37461104 PMCID: PMC10351131 DOI: 10.1186/s12943-023-01804-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most prevalent orthopedic malignancy with a dismal prognosis. The high iron absorption rate in OS cells of patients suggests that ferroptosis may be related to the progression of OS, but its potential molecular regulatory role is still unclear. Based on the ability to couple with exosomes for targeted delivery of signals, exosome-derived micro ribonucleic acids (miRNAs) can potentially serve as diagnostic biomarkers for OS. METHODS We identified ferroptosis-related miRNAs and messenger ribonucleic acids(mRNAs) in OS using bioinformatics analysis and performed survival analysis. Then we measured miRNA expression levels through exosome microarray sequencing, and used RT-qPCR and IHC to verify the expression level of miR-144-3p and ZEB1. Stable gene expression cell lines were fabricated for in vitro experiments. Cell viability, migration and invasion were determined by CCK-8 and transwell experiment. Use the corresponding reagent kit to detect GSH/GSSG ratio, Fe2+ level, MDA level and ROS level, and measure the expression levels of GPX4, ACSL4 and xCT through RT-qPCR and WB. We also constructed nude mice model for in vivo experiments. Finally, the stability of the miRNA/mRNA axis was verified through functional rescue experiments. RESULTS Low expression of miR-144-3p and high expression of ZEB1 in OS cell lines and tissues was observed. Overexpression of miR-144-3p can promote ferroptosis, reduce the survival ability of OS cells, and prevent the progression of OS. In addition, overexpression of miR-144-3p can downregulate the expression of ZEB1 in cell lines and nude mice. Knockdown of miR-144-3p has the opposite effect. The functional rescue experiment validated that miR-144-3p can regulate downstream ZEB1, and participates in the occurrence and development of OS by interfering with redox homeostasis and iron metabolism. CONCLUSIONS MiR-144-3p can induce the occurrence of ferroptosis by negatively regulating the expression of ZEB1, thereby inhibiting the proliferation, migration, and invasion of OS cells.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiji Jike
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kaicheng Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fu Gan
- Department of Urology Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ke Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingjing Xie
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junlei Zhang
- Department of Sports Medicine, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Chuanliang Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaochong Zou
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohong Jiang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongheng Dai
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weikui Chen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yue Qiu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhandong Bo
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int J Mol Sci 2022; 23:ijms23179741. [PMID: 36077137 PMCID: PMC9456544 DOI: 10.3390/ijms23179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to a lack of novel therapies and biomarkers, the clinical outcomes of osteosarcoma patients have not significantly improved for decades. The advancement of mass spectrometry (MS), peptide quantification, and downstream pathway analysis enables the investigation of protein profiles across a wide range of input materials, from cell culture to long-term archived clinical specimens. This can provide insight into osteosarcoma biology and identify candidate biomarkers for diagnosis, prognosis, and stratification of chemotherapy response. In this review, we provide an overview of proteomics studies of osteosarcoma, indicate potential biomarkers that might be promising therapeutic targets, and discuss the challenges and opportunities of mass spectrometric-based proteomics in future osteosarcoma research.
Collapse
Affiliation(s)
- Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.C.); (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (P.C.); (S.C.)
| |
Collapse
|
5
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
6
|
MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 2022; 201:115094. [PMID: 35588853 DOI: 10.1016/j.bcp.2022.115094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the third most common cancer in young adults after lymphoma and brain cancer. Metastasis, like other cellular events, is dependent on signaling pathways; a series of changes in some proteins and signaling pathways pave the way for OS cells to invade and migrate. Ezrin, TGF-β, Notch, RUNX2, matrix metalloproteinases (MMPs), Wnt/β-catenin, and phosphoinositide 3-kinase (PI3K)/AKT are among the most important of these proteins and signaling pathways. Despite the improvements in treating OS, the overall survival of patients suffering from the metastatic disease has not experienced any significant change after surgical treatments and chemotherapy and 5-years overall survival in patients with metastatic OS is about 20%. Studies have shown that overexpression or inhibition of some microRNAs (miRNAs) has significant effects in limiting the invasion and migration of OS cells. The results of these studies highlight the potential of the clinical application of some miRNA mimics and miRNA inhibitors (antagomiRs) to inhibit OS metastasis in the future. In addition, some studies have shown that miRNAs are associated with the most important drug resistance mechanisms in OS, and some miRNAs are highly effective targets to increase chemosensitivity. The results of these studies suggest that miRNA mimics and antagomiRs may be helpful to increase the efficacy of conventional chemotherapy drugs in the treatment of metastatic OS. In this article, we discussed the role of various signaling pathways and the involved miRNAs in the metastasis of OS, attempting to provide a comprehensive review of the literature on OS metastasis and chemosensitivity.
Collapse
|
7
|
Nguyen MT, Min KH, Lee W. MiR-183-5p Induced by Saturated Fatty Acids Hinders Insulin Signaling by Downregulating IRS-1 in Hepatocytes. Int J Mol Sci 2022; 23:ijms23062979. [PMID: 35328400 PMCID: PMC8953084 DOI: 10.3390/ijms23062979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Excessive saturated fatty acids (SFA) uptake is known to be a primary cause of obesity, a widely acknowledged risk factor of insulin resistance and type 2 diabetes. Although specific microRNAs (miRNAs) targeting insulin signaling intermediates are dysregulated by SFA, their effects on insulin signaling and sensitivity are largely unknown. Here, we investigated the role of SFA-induced miR-183-5p in the regulation of proximal insulin signaling molecules and the development of hepatic insulin resistance. HepG2 hepatocytes treated with palmitate and the livers of high-fat diet (HFD)-fed mice exhibited impaired insulin signaling resulting from dramatic reductions in the protein expressions of insulin receptor (INSR) and insulin receptor substrate-1 (IRS-1). Differential expression analysis showed the level of miR-183-5p, which tentatively targets the 3'UTR of IRS-1, was significantly elevated in palmitate-treated HepG2 hepatocytes and the livers of HFD-fed mice. Dual-luciferase analysis showed miR-183-5p bound directly to the 3'UTR of IRS-1 and reduced IRS-1 expression at the post-transcriptional stage. Moreover, transfection of HepG2 hepatocytes with miR-183-5p mimic significantly inhibited IRS-1 expression and hindered insulin signaling, consequently inhibiting insulin-stimulated glycogen synthesis. Collectively, this study reveals a novel mechanism whereby miR-183-5p induction by SFA impairs insulin signaling and suggests miR-183-5p plays a crucial role in the pathogenesis of hepatic insulin resistance in the background of obesity.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
| | - Kyung-Ho Min
- Department of Biochemistry, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
| | - Wan Lee
- Department of Biochemistry, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
- Channelopathy Research Center, College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
8
|
Raimondi L, Gallo A, Cuscino N, De Luca A, Costa V, Carina V, Bellavia D, Bulati M, Alessandro R, Fini M, Conaldi PG, Giavaresi G. Potential Anti-Metastatic Role of the Novel miR-CT3 in Tumor Angiogenesis and Osteosarcoma Invasion. Int J Mol Sci 2022; 23:705. [PMID: 35054891 PMCID: PMC8775549 DOI: 10.3390/ijms23020705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor mainly occurring in young adults and derived from primitive bone-forming mesenchyme. OS develops in an intricate tumor microenvironment (TME) where cellular function regulated by microRNAs (miRNAs) may affect communication between OS cells and the surrounding TME. Therefore, miRNAs are considered potential therapeutic targets in cancer and one of the goals of research is to accurately define a specific signature of a miRNAs, which could reflect the phenotype of a particular tumor, such as OS. Through NGS approach, we previously found a specific molecular profile of miRNAs in OS and discovered 8 novel miRNAs. Among these, we deepen our knowledge on the fifth candidate renamed now miR-CT3. MiR-CT3 expression was low in OS cells when compared with human primary osteoblasts and healthy bone. Through TargetScan, VEGF-A was predicted as a potential biological target of miR-CT3 and luciferase assay confirmed it. We showed that enforced expression of miR-CT3 in two OS cell lines, SAOS-2 and MG-63, reduced expression of VEGF-A mRNA and protein, inhibiting tumor angiogenesis. Enforced expression of miR-CT3 also reduced OS cell migration and invasion as confirmed by soft agar colony formation assay. Interestingly, we found that miR-CT3 behaves inducing the activation of p38 MAP kinase pathway and modulating the epithelial-mesenchymal transition (EMT) proteins, in particular reducing Vimentin expression. Overall, our study highlights the novel role of miR-CT3 in regulating tumor angiogenesis and progression in OS cells, linking also to the modulation of EMT proteins.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Alessia Gallo
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Nicola Cuscino
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Matteo Bulati
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (B.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Pier Giulio Conaldi
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| |
Collapse
|
9
|
Wang Y, Hao W, Wang H. miR-557 suppressed the malignant behaviours of osteosarcoma cells by reducing HOXB9 and deactivating the EMT process. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:230-239. [PMID: 33666541 DOI: 10.1080/21691401.2021.1890100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are vital gene regulators, which play a profound role in the process of forming and developing many diseases, especially tumour. The study intends to excavate the potential regulatory mechanisms of miR-557 and its targeting gene Homeobox B9 (HOXB9) in osteosarcoma. GEO dataset on osteosarcoma was applied to detect the expression of miR-557 and HOXB9. Associations between miR-557 and HOXB9 were speculated by prediction software and verified by dual luciferase assay. Cell proliferation, colony formation and mobility were measured by cell counting kit-8, plate clone formation and transwell assays. Expression of mesenchymal transitions (MTs) related proteins was assessed by western blot analysis. Low expression of miR-557 was presented in osteosarcoma tissues and cell lines. Upregulation of miR-557 restrained osteosarcoma cells proliferation, movement and MT process. HOXB9, served as a target gene of miR-557, was highly expressed in osteosarcoma, and its high expression was associated with poor prognosis in patients with osteosarcoma. In addition, overexpression of HOXB9 attenuated the inhibitory effects of miR-557 on tumour progression by MT process. Overexpression of miR-557 suppressed the growth, metastasis and MT process of osteosarcoma cells by targeting HOXB9, affording novel molecular selection for targeted therapy of osteosarcoma.
Collapse
Affiliation(s)
- Yuanhao Wang
- Department of Spinal Orthopedics, Weihai Municipal Hospital, Weihai City, P. R. China
| | - Wei Hao
- Department of Joint and Sports Medicine, Shandong Provincial Third Hospital affiliated to Shandong University, Jinan City, Shandong Province, P. R. China
| | - Hui Wang
- Department of Orthopaedics, Jining No.1 People's Hospital, Jining City, P. R. China
| |
Collapse
|
10
|
Rauschner M, Hüsing T, Lange L, Jarosik K, Reime S, Riemann A, Thews O. Role of acidosis-sensitive microRNAs in gene expression and functional parameters of tumors in vitro and in vivo. Neoplasia 2021; 23:1275-1288. [PMID: 34781085 PMCID: PMC8605108 DOI: 10.1016/j.neo.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
Background: The acidic extracellular environment of tumors has been shown to affect the malignant progression of tumor cells by modulating proliferation, cell death or metastatic potential. The aim of the study was to analyze whether acidosis-dependent miRNAs play a role in the signaling cascade from low pH through changes in gene expression to functional properties of tumors in vitro and in vivo. Methods: In two experimental tumor lines the expression of 13 genes was tested under acidic conditions in combination with overexpression or downregulation of 4 pH-sensitive miRNAs (miR-7, 183, 203, 215). Additionally, the impact on proliferation, cell cycle distribution, apoptosis, necrosis, migration and cell adhesion were measured. Results: Most of the genes showed a pH-dependent expression, but only a few of them were additionally regulated by miRNAs in vitro (Brip1, Clspn, Rif1) or in vivo (Fstl, Tlr5, Txnip). Especially miR-215 overexpression was able to counteract the acidosis effect in some genes. The impact on proliferation was cell line-dependent and most pronounced with overexpression of miR-183 and miR-203, whereas apoptosis and necrosis were pH-dependent but not influenced by miRNAs. The tumor growth was markedly regulated by miR-183 and miR-7. In addition, acidosis had a strong effect on cell adhesion, which could be modulated by miR-7, miR-203 and miR-215. Conclusions: The results indicate that the acidosis effect on gene expression and functional properties of tumor cells could be mediated by pH-dependent miRNAs. Many effects were cell line dependent and therefore do not reflect universal intracellular signaling cascades. However, the role of miRNAs in the adaptation to an acidic environment may open new therapeutic strategies.
Collapse
Affiliation(s)
- Mandy Rauschner
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6, Halle (Saale) 06112, Germany
| | - Thea Hüsing
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6, Halle (Saale) 06112, Germany
| | - Luisa Lange
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6, Halle (Saale) 06112, Germany
| | - Kristin Jarosik
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6, Halle (Saale) 06112, Germany
| | - Sarah Reime
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6, Halle (Saale) 06112, Germany
| | - Anne Riemann
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6, Halle (Saale) 06112, Germany
| | - Oliver Thews
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6, Halle (Saale) 06112, Germany.
| |
Collapse
|
11
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
12
|
El-Shal AS, Shalaby SM, Abouhashem SE, Elbary EHA, Azazy S, Rashad NM, Sarhan W. Urinary exosomal microRNA-96-5p and microRNA-183-5p expression as potential biomarkers of bladder cancer. Mol Biol Rep 2021; 48:4361-4371. [PMID: 34085193 DOI: 10.1007/s11033-021-06451-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022]
Abstract
Because of low sensitivity and specificity of the currently available urine biomarkers of bladder cancer (BC) detection and painful cystoscopy procedure. Our study aimed to evaluate expression of urinary exosomal miR-96-5p and miR-183-5p as probable non-invasive and accurate biomarkers for the diagnosis and follow up of BC. Using quantitative real-time polymerase chain reaction; expression of exosomal microRNA (miR)-96-5p and miR- 183-5p in the urine samples of 51 patients with BC, 21 patients with benign urinary bladder lesions and in 24 normal individuals as control group was done. Our study results showed higher expressions of both miR-96-5p and miR-183-5p in urine of BC patients in comparison with control group (P < 0.001 for each). Receiver operating characteristic curve (ROC) analysis showed that each microRNA had good sensitivity and specificity to differentiate BC from non-BC patients miR-96-5p 80.4% and 91.8% and miR-183-5p 78.4% and 81.6% respectively compared to cytology (37.3% and 100%). In addition, it was obvious that the sensitivity of combined miR-96-5p and miR-183-5p for the diagnosis of BC reached 88.2%% and specificity reached 87.8%, which were higher than each one alone. We also found that expression of miR-96-5p and miR-183-5p with high grade, and pathological stage was significantly increased. After surgery, collected urine samples showed significantly lower expression of miR-96-5p-: P < 0.001; and miR-183-5p: P = 0.002. In conclusion, urine miR-96-5p and miR-183-5p are promising tumor biomarkers of BC diagnosis; particularly, when they combined with each other or with urinary cytology.
Collapse
Affiliation(s)
- Amal S El-Shal
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sally M Shalaby
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Safwat E Abouhashem
- Urology Departments, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman H Abd Elbary
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samir Azazy
- Urology Department, Faculty of Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Sarhan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Zhang T, Li W, Gu M, Wang Z, Zhou S, Hao X, Li W, Xu S. Clinical Significance of miR-183-3p and miR-182-5p in NSCLC and Their Correlation. Cancer Manag Res 2021; 13:3539-3550. [PMID: 33953608 PMCID: PMC8089025 DOI: 10.2147/cmar.s305179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
Purpose Accumulating evidence has indicated that dysregulated microRNAs (miRNAs) are involved in cancer progression. In this study, we evaluated the clinicopathologic significance of miR-183-3p and miR-182-5p, and the role of miR-183-3p in non-small-cell lung cancer (NSCLC) progression. Patients and Methods Seventy-six NSCLC patients from Beijing Chest Hospital were included. The expression of miR-183-3p and miR-182-5p was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Then, cell growth curve assays and colony formation assays were performed. Bioinformatics analysis of TCGA database was performed to explore the clinicopathological significance and prognostic value. Results miR-183-3p and miR-182-5p were significantly increased in NSCLC tumor tissues (both P < 0.0001) and were positively correlated (r = 0.8519, P < 0.0001). miR-183-3p (P = 0.0444) and miR-182-5p (P = 0.0132) were correlated with tumor size. In addition, miR-183-3p (P = 0.0135) and miR-182-5p (P = 0.0009) were upregulated in normal lung tissues from smokers. In vitro, miR-183-3p was correlated with cell proliferation. In addition, bioinformatics analysis indicated that miR-183-3p was correlated with poor prognosis (P = 0.0466) and tumor size (P = 0.0017). In addition, miR-183-3p was higher in lung squamous carcinoma (LUSC) tissue (P < 0.0001) than in lung adenocarcinoma (LUAD) tissue, and miR-183-3p was higher in the tumor tissue of smokers (P = 0.0053) than in that of nonsmokers. Conclusion Upregulation of miR-183-3p and miR-182-5p may play an oncogenic role in NSCLC. miR-183-3p could be used as a potential prognostic biomarker and therapeutic target to manage lung cancer.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Wei Li
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Ziyu Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shijie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Xuefeng Hao
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Weiying Li
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shaofa Xu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| |
Collapse
|
14
|
Huang Y, Zhang M, Li Y, Luo J, Wang Y, Geng W, Yang Z, Ma H, Bai Y. miR-183 promotes radioresistance of lung adenocarcinoma H1299 cells via epithelial-mesenchymal transition. ACTA ACUST UNITED AC 2021; 54:e9700. [PMID: 33825780 PMCID: PMC8021227 DOI: 10.1590/1414-431x20209700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/17/2020] [Indexed: 12/02/2022]
Abstract
Lung adenocarcinomas are usually sensitive to radiation therapy, but some develop resistance. Radiation resistance can lead to poor patient prognosis. Studies have shown that lung adenocarcinoma cells (H1299 cells) can develop radioresistance through epithelial-mesenchymal transition (EMT), and this process is regulated by miRNAs. However, it is unclear which miRNAs are involved in the process of EMT. In our present study, we found that miR-183 expression was increased in a radioresistant lung adenocarcinoma cell line (H1299R cells). We then explored the regulatory mechanism of miR-183 and found that it may be involved in the regulation of zinc finger E-box-binding homeobox 1 (ZEB1) expression and mediate EMT in lung adenocarcinoma cells. qPCR results showed that miR-183, ZEB1, and vimentin were highly expressed in H1299R cells, whereas no difference was observed in E-cadherin expression. Western blot results showed that ZEB1 and vimentin were highly expressed in H1299R cells, while E-cadherin expression was decreased. When miR-183 expression was inhibited in H1299R cells, radiation resistance, proliferation, and cell migration were decreased. The expression of ZEB1 and vimentin in H1299R cells was decreased, while the expression of E-cadherin was increased. Moreover, miR-183 overexpression in H1299 cells enhanced radiation resistance, proliferative capacity, and cell migration ability. The expression of ZEB1 and vimentin in H1299 cells was increased, while that of E-cadherin was decreased. In conclusion, miR-183 may promote EMT and radioresistance in H1299 cells, and targeting the miR-183-ZEB1 signaling pathway may be a promising approach for lung cancer treatment.
Collapse
Affiliation(s)
- Yi Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Gui Zhou, Zun Yi, China
| | - Mengmei Zhang
- Zunyi Medical and Pharmaceutical College, Gui Zhou, Zun Yi, China
| | - Yang Li
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Gui Zhou, Zun Yi, China
| | - Jihang Luo
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Gui Zhou, Zun Yi, China
| | - Yuanyan Wang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Gui Zhou, Zun Yi, China
| | - Wenjing Geng
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Gui Zhou, Zun Yi, China
| | - Ze Yang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Gui Zhou, Zun Yi, China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Gui Zhou, Zun Yi, China
| | - Yuju Bai
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Gui Zhou, Zun Yi, China
| |
Collapse
|
15
|
Jin L, Luo Y, Zhao YC, Tao H. MiR-183-5p Promotes Tumor Progression of Osteosarcoma and Predicts Poor Prognosis in Patients. Cancer Manag Res 2021; 13:805-814. [PMID: 33536788 PMCID: PMC7850385 DOI: 10.2147/cmar.s285909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Although miRNA-183-5p plays a critical role in many cancer types, including gastric cancer, hepatocellular carcinoma, prostate cancer, renal cell cancer and breast cancer, its role in osteosarcoma remains unclear. Methods Expression levels of miR-183-5p were detected in osteosarcoma tissues and cell lines using qRT-PCR. The effect of miR-183-5p on the survival and recurrence of osteosarcoma patients was analyzed in a cohort of 80 patients using Kaplan-Meier curves and Cox regression analysis. Effects of miR-183-5p on cell proliferation, migration and invasion abilities were evaluated using CCK-8, crystal violet and transwell assays. Results The expression of miR-183-5p was found to be upregulated in human osteosarcoma tissues and cell lines. Moreover, miR-183-5p expression was observed to be closely associated with tumor size, TNM stage and lung metastasis. Notably, high expression of miR-183-5p was shown to be able to predict unfavorable clinical prognosis in osteosarcoma patients. Additionally, whilst overexpression of miR-183-5p was observed to significantly promote the proliferation, migration and invasion of osteosarcoma cells; an inhibitory effect was observed with knockdown of miR-183-5p. Conclusion This study demonstrated that miR-183-5p acts as an oncogene and plays a critical role in the regulation of osteosarcoma tumor progression, and our results suggest a novel potential prognostic and therapeutic value of miR-183-5p in osteosarcoma.
Collapse
Affiliation(s)
- Lin Jin
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yue Luo
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Ying-Chun Zhao
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Hai Tao
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
16
|
Prediction of novel miRNA biomarker candidates for diagnostic and prognostic analysis of STAD and LIHC: An integrated in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Xu Z, Zhou X, Wu J, Cui X, Wang M, Wang X, Gao Z. Mesenchymal stem cell-derived exosomes carrying microRNA-150 suppresses the proliferation and migration of osteosarcoma cells via targeting IGF2BP1. Transl Cancer Res 2020; 9:5323-5335. [PMID: 35117898 PMCID: PMC8798822 DOI: 10.21037/tcr-20-83] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND MicroRNA-150 (miR-150) plays a critical role in varied types of human cancers. In this study, we explored the effect and mechanism of mesenchymal stem cell (MSC)-derived exosomes (exo) carrying miR-150 (MSC-Exo-150) on the proliferation, migration, invasion, and apoptosis of osteosarcoma (OS) cells. METHODS MiR-150 expression in OS cell lines was assessed by quantitative reverse-transcription PCR (qRT-PCR). MSCs were transfected with cell-miR-67 or has-miR-150, and grouped as MSC-67 or MSC-150. Exosomes were isolated from each group, and separately named MSC-Exo-67, MSC-Exo-150 and MSC-Exo. MTT or flow cytometry assay was used to analyze the proliferation or apoptosis of U2SO and HOS cells, respectively. Wound healing or transwell assay was utilized to examine the migration or invasion of U2SO and HOS cells, respectively. The target relationship of miR-150 and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) was established using StarBase2.0 and verified by dual-luciferase reporter gene analysis. Xenografted tumor model was established in rats to confirm the inhibitory effect of MSC-Exo-150 on the growth of xenografted tumor in vivo. RESULTS The expression of miR-150 was downregulated in OS cell lines, and significantly higher in MSC-150 cells than that in MSCs. MiR-150 was overexpressed in MSC-Exo-150 group compared with MSC-Exo group. After transfection of MSC-Exo-150 into U2SO and HOS cells, cell viability, mobility and invasion rate were decreased, and the cell apoptosis was increased. MiR-150 targeted IGF2BP1 and IGF2BP1 expression was negatively modulated by miR-150. Overexpression of IGF2BP1 reversed the anti-tumor effect of MSC-Exo-150 on HOS cells. CONCLUSIONS MSC-Exo-150 inhibited proliferation, migration, invasion, and induced apoptosis of OS cells by targeting IGF2BP1.
Collapse
Affiliation(s)
- Zhengfeng Xu
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaoxiao Zhou
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jiajun Wu
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xu Cui
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Minghui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhenchao Gao
- Department of Orthopedics, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
18
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ayad EE, eldin YOK, El-hindawi AA, Abdelmagid MS, Elmeligy HA. Immunohistochemical Study of Ezrin Expression in Colorectal Carcinoma: A Comparative Study between Objective Method and Digital Quantitative Assessment. Asian Pac J Cancer Prev 2020; 21:967-974. [PMID: 32334457 PMCID: PMC7445977 DOI: 10.31557/apjcp.2020.21.4.967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/28/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Colorectal cancer is one of the leading causes of cancer death in both developed and developing nations. It is the third most common type of cancer and the fourth leading cause of cancer-related deaths worldwide. Ezrin is involved in maintaining cell structure and cell motility. Expression levels of the ezrin gene correlate with numerous human malignancies. MATERIAL AND METHODS Ezrin expression was evaluated in fifty one cases of colorectal carcinoma by using two methods; objective and quantitative method to determine the statistical relation between ezrin objective analysis score and clinicopathological parameters and to do a comparative study between both methods of analysis. RESULTS Ezrin was expressed in 92.2% of cases, and it showed a statistical significant relation with tumor grade. A statistically significant relation was found between ezrin objective analysis score and ezrin quantitative analysis score (P-value <0.05). A strong positive Pearson correlation exists between both methods of analysis (R=0.868). CONCLUSION Ezrin has a role in colorectal cancer progression and it might provide clinically valuable information in predicting the behavior of colorectal cancer. Digital pathology offers the potential for improvements in quality, efficacy and safety. It will be necessary to carry out similar studies on a larger sample size in order to elucidate the possible prognostic significance of ezrin in colorectal carcinoma and ensure the ability of digital pathology to transform the practice of diagnostic pathology. .
Collapse
Affiliation(s)
- Essam E Ayad
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo,
| | | | - Ali A El-hindawi
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo,
| | - Mona S Abdelmagid
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo,
| | - Hesham A Elmeligy
- Department of General Surgery, Theodor Bilharz Research Institute, Giza, Egypt.
| |
Collapse
|
20
|
Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 2020; 148:88-106. [PMID: 31958514 DOI: 10.1016/j.ejpb.2019.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma(OS) represents the main cancer affecting bone tissue, and one of the most frequent in children. In this review we discuss the major pathological hallmarks of this pathology, its current therapeutics, new active biomolecules, as well as the nanotechnology outbreak applied to the development of innovative strategies for selective OS targeting. Small RNA molecules play a role as key-regulator molecules capable of orchestrate different responses in what concerns cancer initiation, proliferation, migration and invasiveness. Frequently associated with lung metastasis, new strategies are urgent to upgrade the therapeutic outcomes and the life-expectancy prospects. Hence, the prominent rise of micelleplexes as multifaceted and efficient structures for nucleic acid delivery and selective drug targeting is revisited here with special emphasis on ligand-mediated active targeting. Future landmarks toward the development of novel nanostrategies for both OS diagnosis and OS therapy improvements are also discussed.
Collapse
|
21
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
22
|
Zhang C, Wan J, Long F, Liu Q, He H. Identification and validation of microRNAs and their targets expressed in osteosarcoma. Oncol Lett 2019; 18:5628-5636. [PMID: 31656545 DOI: 10.3892/ol.2019.10864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of bone cancer in children and adolescents, and has a poor prognosis. Previous studies have demonstrated that a number of microRNAs (miRNAs) were deregulated in OS, and that the expression of certain miRNAs was correlated with the stage of OS. Therefore, miRNAs may serve a role as a diagnostic and prognostic biomarker of OS. miRNA and mRNA integrated analysis of public expression profiles in the Gene Expression Omnibus database for OS was performed, and the regulated targets of miRNA in OS were predicted. Next, the regulatory network of miRNAs/genes was constructed and verified by reverse transcription-quantitative polymerase chain reaction in tissues and MG-63 cell lines. Two miRNA expression profiling studies and four eligible mRNA expression profiling studies were selected. Ten upregulated miRNAs, 5 downregulated miRNAs and 5 DGEs were identified in OS compared with normal tissues. hsa-miR-346 was inversely correlated with the target gene c-FLIP, which was consistent with the results of integrated analysis. In vitro, pre-miRNA-346 can downregulate the protein expression of c-FLIP, while not changing the mRNA level of c-FLIP. In the regulatory network, hsa-miR-346 and its target gene, c-FLIP, can be used as biomarkers for an earlier diagnosis of OS.
Collapse
Affiliation(s)
- Can Zhang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Wan
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Long
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongbo He
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Li Q, Lu C, Wang J, Gao M, Gao W. MicroRNA-449b-5p Suppresses Proliferation, Migration, and Invasion of Osteosarcoma by Targeting c-Met. Med Sci Monit 2019; 25:6236-6243. [PMID: 31425497 PMCID: PMC6713030 DOI: 10.12659/msm.918454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The aim of this study was to clarify the biological function of microRNA-449b-5p in the progression of osteosarcoma (OS) and to define the underlying mechanism. Material/Methods Relative levels of microRNA-449b-5p in OS tissues and cell lines was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between microRNA-449b-5p level and pathological characteristics of OS patients was analyzed by chi-square test. Kaplan-Meier analysis was used for survival analysis of OS patients based on their expression level of microRNA-449b-5p. Regulatory effects of microRNA-449b-5p on cellular behaviors of OS cells were evaluated by cell counting kit-8 (CCK-8) and Transwell assay. The binding relationship between microRNA-449b-5p and c-Met was verified through dual-luciferase reporter gene assay, and their interaction in OS progression was further examined through a series of rescue experiments. Results MicroRNA-449b-5p was expressed at low levels in OS. Lower levels of microRNA-449b-5p were seen in OS tissues with worse tumor grade or histological differentiation. OS patients with low levels of microRNA-449b-5p had worse overall survival relative to those with high level of microRNA-449b-5p. Overexpression of microRNA-449b-5p markedly attenuated proliferative, migratory, and invasive abilities of OS cells. C-Met is the downstream target of microRNA-449b-5p, and its level was inhibited in OS cells overexpressing microRNA-449b-5p. Importantly, c-Met partially rescued the inhibitory effects of microRNA-449b-5p on behavior of OS cells. Conclusions MicroRNA-449b-5p is downregulated in OS, which alleviates the malignant progression of OS by targeting c-Met.
Collapse
Affiliation(s)
- Qian Li
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Changliang Lu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Jingye Wang
- Department of Pathology, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong, China (mainland)
| | - Min Gao
- Department of Otolaryngology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Wei Gao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China (mainland)
| |
Collapse
|
24
|
MicroRNA-Based Diagnosis and Treatment of Metastatic Human Osteosarcoma. Cancers (Basel) 2019; 11:cancers11040553. [PMID: 31003401 PMCID: PMC6521107 DOI: 10.3390/cancers11040553] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is a malignant tumor of the bones that commonly occurs in young individuals. The 5-year survival rate of osteosarcoma patients is 60-70%. Metastasis to the lungs leads to death in 30-40% of osteosarcoma patients. Therefore, the development of effective strategies for early detection and treatment of this disease are important to improve the survival of osteosarcoma patients. However, metastatic markers for osteosarcoma and molecules that might be targeted for the treatment of metastatic osteosarcoma have not been identified yet. Therefore, the mechanism of metastasis to the lungs needs to be explored from a novel viewpoint. Recently, the aberrant expression of microRNAs (miRNAs) has been reported to be involved in the carcinogenesis and cancer progression of many cancers. Furthermore, miRNAs in the blood have been reported to show an aberrant expression unique to several cancers. Therefore, miRNAs are gaining attention as potential diagnostic markers for cancers. On the other hand, normalizing the dysregulated expression of miRNAs in cancer cells has been shown to alter the phenotype of cancer cells, and thus treatment strategies targeting miRNAs are also being considered. This review summarizes the abnormality of miRNA expression associated with the metastasis of osteosarcoma and describes the present situation and issues regarding the early diagnosis and development of treatment strategies for metastatic osteosarcoma based on the current understanding of this disease.
Collapse
|
25
|
Hong X, Yu JJ. MicroRNA-150 suppresses epithelial-mesenchymal transition, invasion, and metastasis in prostate cancer through the TRPM4-mediated β-catenin signaling pathway. Am J Physiol Cell Physiol 2019; 316:C463-C480. [PMID: 30566393 DOI: 10.1152/ajpcell.00142.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prostate cancer (PCa) remains one of the leading causes of cancer-related deaths among males. The aim of the current study was to investigate the ability of microRNA-150 (miR-150) targeting transient receptor potential melastatin 4 (TRPM4) to mediate epithelial-mesenchymal transition (EMT), invasion, and metastasis through the β-catenin signaling pathway in PCa. Microarray analysis was performed to identify PCa-related differentially expressed genes, after which both the mirDIP and TargetScan databases were employed in the prediction of the miRNAs regulating TRPM4. Immunohistochemistry and RT-qPCR were conducted to determine the expression pattern of miR-150 and TRPM4 in PCa. The relationship between miR-150 and TRPM4 expression was identified. By perturbing miR-150 and TRPM4 expression in PCa cells, cell proliferation, migration, invasion, cycle, and apoptosis as well as EMT markers were determined accordingly. Finally, tumor growth and metastasis were evaluated among nude mice. Higher TRPM4 expression and lower miR-150 expression and activation of the β-catenin signaling pathway as well as EMT stimulation were detected in the PCa tissues. Our results confirmed TRPM4 as a target of miR-150. Upregulation of miR-150 resulted in inactivation of the β-catenin signaling pathway. Furthermore, the upregulation of miR-150 or knockdown of TRPM4 was observed to suppress EMT, proliferation, migration, and invasion in vitro in addition to restrained tumor growth and metastasis in vivo. The evidence provided by our study highlights the involvement of miR-150 in the translational suppression of TRPM4 and the blockade of the β-catenin signaling pathway, resulting in the inhibition of PCa progression.
Collapse
Affiliation(s)
- Xi Hong
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Jian-Jun Yu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai , China
| |
Collapse
|
26
|
Cao S, Jiang L, Shen L, Xiong Z. Role of microRNA-92a in metastasis of osteosarcoma cells in vivo and in vitro by inhibiting expression of TCF21 with the transmission of bone marrow derived mesenchymal stem cells. Cancer Cell Int 2019; 19:31. [PMID: 30804710 PMCID: PMC6373113 DOI: 10.1186/s12935-019-0741-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background This study aims to investigate the role of microRNA-92a (miR-92a) in metastasis of osteosarcoma (OS) cells in vivo and in vitro by regulatingTCF21 with the transmission of bone marrow derived mesenchymal stem cells (BMSCs). Methods BMSCs were isolated, purified and cultured from healthy adult bone marrow tissues. The successfully identified BMSCs were co-cultured with OS cells, and the effects of BMSCs on the growth metastasis of OS cells in vitro and in vivo were determined. qRT-PCR and western blot analysis was used to detect the expression of miR-92a and TCF21 in OS cells and OS cells co-cultured with BMSCs. Proliferation, invasion and migration of OS cells transfected with miR-92a mimics and miR-92a inhibitors was determined, and the tumorigenesis and metastasis of OS cells in nude mice were observed. Expression of miR-92a and TCF21 mRNA in tissue specimens as well as the relationship between the expression of miR-92a and the clinicopathological features of OS was analyzed. Results BMSCs promoted proliferation, invasion and migration of OS cells in vitro together with promoted the growth and metastasis of OS cells in vivo. Besides, high expression of miR-92a was found in OS cells co-cultured with BMSCs. Meanwhile, overexpression of miR-92a promoted proliferation, invasion and migration of OS cells in vitro as well as promoted growth and metastasis of OS cells in vivo. The expression of miR-92a increased significantly, and the expression of TCF21 mRNA and protein decreased significantly in OS tissues. Expression of miR-92a was related to Ennecking staging and distant metastasis in OS patients. Conclusion Collectively, this study demonstrates that the expression of miR-92a is high in OS and BMSCs transfers miR-92a to inhibit TCF21 and promotes growth and metastasis of OS in vitro and in vivo.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopedics, Renhe Hospital, Beijing, 102600 People's Republic of China
| | - Liangde Jiang
- Department of Orthopedics, Renhe Hospital, Beijing, 102600 People's Republic of China
| | - Lulu Shen
- Department of Orthopedics, Renhe Hospital, Beijing, 102600 People's Republic of China
| | - Zhizheng Xiong
- Department of Orthopedics, Yueyang Second People's Hospital, Yueyang, 414000 People's Republic of China
| |
Collapse
|
27
|
Handa H, Hashimoto A, Hashimoto S, Sugino H, Oikawa T, Sabe H. Epithelial-specific histone modification of the miR-96/182 locus targeting AMAP1 mRNA predisposes p53 to suppress cell invasion in epithelial cells. Cell Commun Signal 2018; 16:94. [PMID: 30509302 PMCID: PMC6278066 DOI: 10.1186/s12964-018-0302-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022] Open
Abstract
Background TP53 mutations in cancer cells often evoke cell invasiveness, whereas fibroblasts show invasiveness in the presence of intact TP53. AMAP1 (also called DDEF1 or ASAP1) is a downstream effector of ARF6 and is essential for the ARF6-driven cell-invasive phenotype. We found that AMAP1 levels are under the control of p53 (TP53 gene product) in epithelial cells but not in fibroblasts, and here addressed that molecular basis of the epithelial-specific function of p53 in suppressing invasiveness via targeting AMAP1. Methods Using MDA-MB-231 cells expressing wild-type and p53 mutants, we identified miRNAs in which their expression is controlled by normal-p53. Among them, we identified miRNAs that target AMAP1 mRNA, and analyzed their expression levels and epigenetic statuses in epithelial cells and nonepithelial cells. Results We found that normal-p53 suppresses AMAP1 mRNA in cancer cells and normal epithelial cells, and that more than 30 miRNAs are induced by normal-p53. Among them, miR-96 and miR-182 were found to target the 3′-untranslated region of AMAP1 mRNA. Fibroblasts did not express these miRNAs at detectable levels. The ENCODE dataset demonstrated that the promoter region of the miR-183-96-182 cistron is enriched with H3K27 acetylation in epithelial cells, whereas this locus is enriched with H3K27 trimethylation in fibroblasts and other non-epithelial cells. miRNAs, such as miR-423, which are under the control of p53 but not associated with AMAP1 mRNA, demonstrated similar histone modifications at their gene loci in epithelial cells and fibroblasts, and were expressed in these cells. Conclusion Histone modifications of certain miRNA loci, such as the miR-183-96-182 cistron, are different between epithelial cells and non-epithelial cells. Such epithelial-specific miRNA regulation appears to provide the molecular basis for the epithelial-specific function of p53 in suppressing ARF6-driven invasiveness. Electronic supplementary material The online version of this article (10.1186/s12964-018-0302-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haruka Handa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigeru Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hirokazu Sugino
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tsukasa Oikawa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
28
|
Shen Y, Zhang W, Liu J, He J, Cao R, Chen X, Peng X, Xu H, Zhao Q, Zhong J, Ding W, Lei X, Jiang Y, Zu X. Therapeutic activity of DCC-2036, a novel tyrosine kinase inhibitor, against triple-negative breast cancer patient-derived xenografts by targeting AXL/MET. Int J Cancer 2018; 144:651-664. [PMID: 30289981 DOI: 10.1002/ijc.31915] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/14/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is insensitive to endocrine therapies and targeted therapies to human epidermal growth factor receptor-2 (HER2), estrogen receptor (ER) and progesterone receptor (PR). New targets and new targeted therapeutic drugs for TNBC are desperately needed. Our study confirmed that DCC-2036 inhibited the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of TNBC cells as well as induced apoptosis. Moreover, the antiproliferative activity of DCC-2036 was more efficient than that of most clinical drugs. In addition, the combination of DCC-2036 and cisplatin or lapatinib had synergistic effects on TNBC cells. Mechanistically, DCC-2036 targeted AXL/MET, especially AXL, and regulated the downstream PI3K/Akt-NFκB signaling to exert its antitumor effect in TNBC. DCC-2036 also inhibited the growth and metastasis of xenografted MDA-MB-231 cells (AXL/MET-high TNBC cells) but not MDA-MB-468 cells (AXL-low TNBC cells) in NSG mice in vivo. Furthermore, DCC-2036 significantly inhibited tumor growth and invasion of AXL/MET-high TNBC PDX tumors but not AXL/MET-low TNBC PDX tumors. These results highlighted the roles of AXL/MET in cancer growth and metastasis and further verified that the critical targets of DCC-2036 are AXL and MET, especially AXL. In addition, there was no significant toxicity of DCC-2036 even at a high dosage. Therefore, DCC-2036 may be a potential compound to treat TNBC, especially for tumors with AXL/MET overexpression.
Collapse
Affiliation(s)
- Yingying Shen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wei Zhang
- Department of Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jianghua Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Spine Surgery, The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan, China
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiguang Chen
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiuda Peng
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Haifan Xu
- Department of Thyroid Breast Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wenjun Ding
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Yuyang Jiang
- Guangdong Provincial Key Laboratory of Chemical Biology, Graduate School of Tsinghua University, Shenzhen, China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
29
|
Yan H, Sun BM, Zhang YY, Li YJ, Huang CX, Feng FZ, Li C. Upregulation of miR-183-5p is responsible for the promotion of apoptosis and inhibition of the epithelial-mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin. Int J Mol Med 2018; 42:2469-2480. [PMID: 30226564 PMCID: PMC6192766 DOI: 10.3892/ijmm.2018.3853] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is a life‑threatening malignancy that affects women all over the world, and it has an increasing incidence. MicroRNAs (miRNAs/miRs) have been reported to be involved in cellular activities in endometrial cancer. The present study aimed to examine the effects of miR‑183‑5p on the epithelial‑mesenchymal transition (EMT), proliferation, invasion, migration and apoptosis of human endometrial cancer cells by targeting Ezrin. Primary endometrial cancer tissues and adjacent normal tissues were obtained for the investigation. The protein expression of Ezrin in tissues was detected by immunohistochemistry. The expression level of miR‑183‑5p and the mRNA and protein expression levels of Ezrin and EMT‑associated genes were determined by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. Endometrial cancer cells were treated with miR‑183‑5p inhibitors, small interfering RNA targeting Ezrin or miR‑183‑5p inhibitors. Cell proliferation, cell cycle, apoptosis, migration and invasion were then evaluated using an MTT assay, flow cytometry, scratch test and Transwell assay, respectively. Compared with normal adjacent tissues, the expression of miR‑183‑5p was decreased in endometrial cancer tissues, and the expression of Ezrin was significantly increased in endometrial cancer tissues. The protein expression of Ezrin was correlated with the severity and poor prognosis of endometrial cancer. Notably, the target prediction program and the luciferase reporter gene assay confirmed that miR‑183‑5p targeted and negatively regulated the expression of Ezrin. In vivo experiments revealed that the increased expression of miR‑183‑5p and decreased expression of Ezrin inhibited EMT, cell proliferation, migration and invasion, but promoted cell apoptosis in Ishikawa cells. These results suggested that the upregulated expression of miR‑183‑5p promoted apoptosis and suppressed the EMT, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin.
Collapse
Affiliation(s)
- Hua Yan
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Bing-Mei Sun
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Yu-Ying Zhang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Yu-Juan Li
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Cheng-Xiang Huang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Fu-Zhong Feng
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Cui Li
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| |
Collapse
|
30
|
Zhang Y, Wang G. MicroRNA-183 inhibits A375 human melanoma cell migration and invasion by targeting Ezrin and MMP-9. Oncol Lett 2018; 17:548-554. [PMID: 30655800 DOI: 10.3892/ol.2018.9603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
To assess the influence of microRNA-183 (miR-183) on the migration and invasion of A375 human melanoma cells, an A375 cell line with stable miR-183 overexpression or knockdown was constructed using lentiviral transfection. The change of miR-183 expression in these cells and in non-transfected controls was verified using reverse transcription-quantitative polymerase chain reaction. The impact of miR-183 on experimental A375 cell migration and invasion was assessed using a scratch and Transwell assay. The expression of Ezrin and matrix metalloprotease-9 (MMP-9), which are two mediator proteins that serve roles in tumor cell migration and invasion, were analyzed in each cell group via western blotting. The results of the present study indicated that miR-183 overexpression significantly inhibits A375 cell migration and invasion, which may be facilitated by miR-183 knockdown. Furthermore, Ezrin and MMP-9 protein levels were negatively associated with miR-183 expression, indicating that miR-183 may function as a tumor suppressor by inhibiting the expression of these two proteins. Additionally, miR-183 downregulation may be associated with the progression of melanoma.
Collapse
Affiliation(s)
- Yusen Zhang
- Department of Plastic Surgery, People's Hospital of Zhengzhou, Henan Agricultural University, Zhengzhou, Henan 450000, P.R. China
| | - Guoqiang Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
31
|
Hattinger CM, Patrizio MP, Tavanti E, Luppi S, Magagnoli F, Picci P, Serra M. Genetic testing for high-grade osteosarcoma: a guide for future tailored treatments? Expert Rev Mol Diagn 2018; 18:947-961. [PMID: 30324828 DOI: 10.1080/14737159.2018.1535903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Genetic characterization of osteosarcoma has evolved during the last decade, thanks to the integrated application of conventional and new candidate-driven and genome-wide technologies. Areas covered: This review provides an overview of the state of art in genetic testing applied to osteosarcoma, with particular regard to novel candidate genetic biomarkers that can be analyzed in tumor tissue and blood samples, which might be used to predict toxicity and prognosis, detect disease relapse, and improve patients' selection criteria for tailoring treatment. Expert commentary: Genetic testing based on modern technologies is expected to indicate new osteosarcoma-related prognostic markers and driver genes, which may highlight novel therapeutic targets and patients stratification biomarkers. The definition of tailored or targeted treatment approaches may improve outcome of patients with localized tumors and, even more, of those with metastatic disease, for whom progress in cure probability is highly warranted.
Collapse
Affiliation(s)
| | - Maria Pia Patrizio
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Elisa Tavanti
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Piero Picci
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
32
|
Shao CZ, Xia KP. Sevoflurane anesthesia represses neurogenesis of hippocampus neural stem cells via regulating microRNA-183-mediated NR4A2 in newborn rats. J Cell Physiol 2018; 234:3864-3873. [PMID: 30191980 DOI: 10.1002/jcp.27158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Sevoflurane has been commonly utilized in nonobstetric surgeries in pregnant women, and its impacts on fetal brain are still not completely known. Ectopic NR4A2 expression has been reported to be related with familial Parkinson disease, and through dual luciferase we found that NR4A2 is a target gene of microRNA-183 (miR-183). We proposed a hypothesis that miR-183 may participate in the process by targeting NR4A2 in neurons after sevoflurane anesthesia. To verify the effect of sevoflurane on hippocampal neural stem cells (NSCs) proliferation and differentiation, we conducted EdU assay and immunofluorescence staining. Next, for better understanding of the impact of miR-183, we altered the miR-183 expression using mimic and inhibitor. Meanwhile, the targeting relationship between miR-183 and NR4A2 was validated by a bioinformatics website and dual-luciferase reporter gene assay. Finally, expressions of miR-184, NR4A2, SRY (sex-determining region Y)-box 2 (Sox2), and brain-derived neurotrophic factor (BDNF) were determined and evaluated by reverse transcription quantitative polymerase chain reaction and western blot analysis. First, sevoflurane was determined a crucial factor in biological behaviors of hippocampal NSCs. Moreover, upregulated miR-183 expression by mimic inhibited the proliferation and differentiation of NSCs. Sevoflurane negatively regulated NR4A2 and Sox2 expressions but positively regulated miR-183 and BDNF expressions. Our findings revealed the underlying novel mechanism by which sevoflurane inhibits hippocampal NSC proliferation and differentiation through interaction with miR-183 and NR4A2. The study provides reliable reference for safe application of sevoflurane anesthesia in neonates.
Collapse
Affiliation(s)
- Chang-Zhong Shao
- Department of Anesthesiology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Kun-Peng Xia
- Department of Anesthesiology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| |
Collapse
|
33
|
Tao ZW, Zou PA. Adenovirus-mediated small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells. Biosci Rep 2018; 38:BSR20180351. [PMID: 29899165 PMCID: PMC6131204 DOI: 10.1042/bsr20180351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent years. The present study attempts to explore the effect of adenovirus-mediated siRNA targetting ezrin on the proliferation, migration, invasion, and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase (MMP) 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targetting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targetting ezrin elevated expression levels of Bax, p21, p53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2 and MMP-9. Furthermore, adenovirus-mediated siRNA targetting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targetting ezrin can induce apoptosis and inhibit the proliferation, migration, and invasion of human osteosarcoma MG-63 cells.
Collapse
Affiliation(s)
- Zhi-Wei Tao
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang 330029, P.R. China
| | - Ping-An Zou
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang 330029, P.R. China
| |
Collapse
|
34
|
Zhang J, Yang W, Zhou YB, Xiang YX, Wang LS, Hu WK, Wang WJ. Baicalein inhibits osteosarcoma cell proliferation and invasion through the miR‑183/Ezrin pathway. Mol Med Rep 2018; 18:1104-1112. [PMID: 29845278 DOI: 10.3892/mmr.2018.9036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS), a common and primary malignant bone tumor, is characterized by highly aggressive potency. Baicalein, a bioactive flavone isolated from Scutellaria baicalensis Georgi, has been shown to inhibit the progression of numerous tumors, including OS. However, the mechanisms by which baicalein protects against OS are still largely unknown. The results of the present study showed that administration of baicalein significantly inhibited the proliferation, migration and invasion and promoted apoptosis in MG‑63 and Saos‑2 cells. Ezrin was identified as a target gene of microRNA (miR)‑183. MG‑63 and Saos‑2 cells treated with baicalein exhibited increased miR‑183 levels and decreased Ezrin expression. Importantly, miR‑183 inhibition and Ezrin overexpression abolished the effects of baicalein on MG‑63 and Saos‑2 cell proliferation, migration, invasion and apoptosis. Taken together, these findings suggest that baicalein inhibits the proliferation, migration and invasion and induces apoptosis in OS cells by activating the miR‑183/Ezrin pathway, revealing a novel mechanism underlying anti‑OS effects of baicalein.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Yang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - You-Bing Zhou
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong-Xiao Xiang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lu-Shan Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wen-Kai Hu
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
35
|
Sun X, Xu Y, Zhang S, Li X, Wang Y, Zhang Y, Zhao X, Li Y, Wang Y. MicroRNA-183 suppresses the vitality, invasion and migration of human osteosarcoma cells by targeting metastasis-associated protein 1. Exp Ther Med 2018; 15:5058-5064. [PMID: 29805531 DOI: 10.3892/etm.2018.6068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-183 on vitality, invasion, metastasis and apoptosis in osteosarcoma (OS) cells, mediated by its binding to metastasis-associated protein 1 (MTA1). A dual luciferase reporter assay was performed to determine whether MTA1 was a direct target of miR-183. Cell Counting Kit-8, Transwell, scratch-wound healing, fluorescence-activated cell sorting andterminal deoxynucleotidyl transferase dUTP nick end labeling assays were also performed to investigate the effects of miR-183 expression on the proliferation, invasion, migration and apoptosis of MG63 cells. It was demonstrated that that MTA1 expression levels were significantly higher in OS tissues and MG63 cells compared with corresponding adjacent noncancerous tissues and normal cells, respectively, while miR-183 expression levels were significantly lower (both P<0.05). Furthermore, miR-183 overexpression downregulated MTA1 levels and inhibited cell proliferation (P<0.05), migration (P<0.05) and invasion (P<0.01), as well as promoting apoptosis (P<0.01) by binding to the 3'-untranslated region of MTA1. These results indicate that miR-183 inhibits the vitality, invasion, migration and apoptosis of the OS cell line MG63 by targeting MTA1. These findings may contribute to the development of novel clinical therapeutic approaches for the treatment of OS.
Collapse
Affiliation(s)
- Xiaoya Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shanfeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xinjie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yadong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuebai Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yisheng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
36
|
Segura MF, Jubierre L, Li S, Soriano A, Koetz L, Gaziel-Sovran A, Masanas M, Kleffman K, Dankert JF, Walsh MJ, Hernando E. Krüppel-like factor 4 (KLF4) regulates the miR-183~96~182 cluster under physiologic and pathologic conditions. Oncotarget 2018; 8:26298-26311. [PMID: 28412746 PMCID: PMC5432258 DOI: 10.18632/oncotarget.15459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that post-transcriptionally control the translation and stability of target mRNAs in a sequence-dependent manner. MiRNAs are essential for key cellular processes including proliferation, differentiation, cell death and metabolism, among others. Consequently, alterations of miRNA expression contribute to developmental defects and a myriad of diseases.The expression of miRNAs can be altered by several mechanisms including gene copy number alterations, aberrant DNA methylation, defects of the miRNA processing machinery or unscheduled expression of transcription factors. In this work, we sought to analyze the regulation of the miR-182 cluster, located at the 7q32 locus, which encodes three different miRNAs that are abundantly expressed in human embryonic stem cells and de-regulated in cancer. We have found that the Krüppel-like factor 4 (KLF4) directly regulates miR-182 cluster expression in human embryonic stem cells (hESCs) and in melanoma tumors, in which the miR-182 cluster is highly expressed and has a pro-metastatic role. Furthermore, higher KLF4 expression was found to be associated with metastatic progression and poor patient outcome. Loss of function experiments revealed that KLF4 is required for melanoma cell maintenance. These findings provide new insights into the regulation of the miR-182 cluster expression and new opportunities for therapeutic intervention in tumors in which the KLF4-miR-182 cluster axis is deregulated.
Collapse
Affiliation(s)
- Miguel F Segura
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group, New York University Perlmutter Cancer Institute, NYU School of Medicine, New York, NY, USA.,Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Luz Jubierre
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - SiDe Li
- Departments of Structural and Chemical Biology, Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aroa Soriano
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Lisa Koetz
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group, New York University Perlmutter Cancer Institute, NYU School of Medicine, New York, NY, USA
| | - Avital Gaziel-Sovran
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group, New York University Perlmutter Cancer Institute, NYU School of Medicine, New York, NY, USA
| | - Marc Masanas
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Kevin Kleffman
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group, New York University Perlmutter Cancer Institute, NYU School of Medicine, New York, NY, USA
| | - John F Dankert
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group, New York University Perlmutter Cancer Institute, NYU School of Medicine, New York, NY, USA
| | - Martin J Walsh
- Departments of Structural and Chemical Biology, Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group, New York University Perlmutter Cancer Institute, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, Yoshida A, Uehara T, Omori T, Sugiu K, Komatsubara T, Takeda K, Kunisada T, Kawamura M, Kawai A, Ochiya T, Ozaki T. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget 2018; 8:33375-33392. [PMID: 28380419 PMCID: PMC5464875 DOI: 10.18632/oncotarget.16498] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel diagnostic and prognostic significance for patients with malignant diseases. The lack of useful biomarkers is a crucial problem of bone and soft tissue sarcomas; therefore, we investigated the circulating miRNA signature and its clinical relevance in osteosarcoma. Methods Global miRNA profiling was performed using patient serum collected from a discovery cohort of osteosarcoma patients and controls and cell culture media. The secretion of the detected miRNAs from osteosarcoma cells and clinical relevance of serum miRNA levels were evaluated using in vitro and in vivo models and a validation patient cohort. Results Discovery screening identified 236 serum miRNAs that were highly expressed in osteosarcoma patients compared with controls, and eight among these were also identified in the cell culture media. Upregulated expression levels of miR-17-5p and miR-25-3p were identified in osteosarcoma cells, and these were abundantly secreted into the culture media in tumor-derived exosomes. Serum miR-25-3p levels were significantly higher in osteosarcoma patients than in control individuals in the validation cohort, with favorable sensitivity and specificity compared with serum alkaline phosphatase. Furthermore, serum miR-25-3p levels at diagnosis were correlated with patient prognosis and reflected tumor burden in both in vivo models and patients; these associations were more sensitive than those of serum alkaline phosphatase. Conclusions Serum-based circulating miR-25-3p may serve as a non-invasive blood-based biomarker for tumor monitoring and prognostic prediction in osteosarcoma patients.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Center of Innovative Medicine, Okayama University Hospital, Okayama, Japan.,Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Uotani
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Morita
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yutaka Nezu
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takenori Uehara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshinori Omori
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhisa Sugiu
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Komatsubara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Takeda
- Department of Intelligent Orthopaedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
38
|
Yang X, Wang L, Wang Q, Li L, Fu Y, Sun J. MiR-183 inhibits osteosarcoma cell growth and invasion by regulating LRP6-Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2018; 496:1197-1203. [DOI: 10.1016/j.bbrc.2018.01.170] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 01/28/2018] [Indexed: 12/28/2022]
|
39
|
Ma Y, Liang AJ, Fan YP, Huang YR, Zhao XM, Sun Y, Chen XF. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget 2018; 7:42805-42825. [PMID: 27081087 PMCID: PMC5173173 DOI: 10.18632/oncotarget.8715] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have reported aberrant expression of the miR-183-96-182 cluster in a variety of tumors, which indicates its' diagnostic or prognostic value. However, a key characteristic of the miR-183-96-182 cluster is its varied expression levels, and pleomorphic functional roles in different tumors or under different conditions. In most tumor types, the cluster is highly expressed and promotes tumorigenesis, cancer progression and metastasis; yet tumor suppressive effects have also been reported in some tumors. In the present study, we discuss the upstream regulators and the downstream target genes of miR-183-96-182 cluster, and highlight the dysregulation and functional roles of this cluster in various tumor cells. Newer insights summarized in this review will help readers understand the different facets of the miR-183-96-182 cluster in cancer development and progression.
Collapse
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - A-Juan Liang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yu-Ping Fan
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Ran Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Ming Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Tan W, Liu B, Qu S, Liang G, Luo W, Gong C. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett 2017; 15:2735-2742. [PMID: 29434998 DOI: 10.3892/ol.2017.7638] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNA molecule that performs an important role in post-transcriptional gene regulation. Since miRNAs were first identified in 1993, a number of studies have demonstrated that they act as tumor suppressors or oncogenes in human cancer, including colorectal, lung, brain, breast and liver cancer, and leukemia. Large high-throughput studies have previously revealed that miRNA profiling is critical for the diagnosis and prognosis of patients with cancer, while certain miRNAs possess the potential to be used as diagnostic and prognostic biomarkers or therapeutic targets in cancer. The present study reviews the studies and examines the roles of miRNAs in cancer diagnosis, prognosis and treatment, and discusses the potential therapeutic modality of exploiting miRNAs.
Collapse
Affiliation(s)
- Weige Tan
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 51000, P.R. China
| | - Bodu Liu
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shaohua Qu
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Gehao Liang
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Luo
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chang Gong
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
41
|
Liu YJ, Li W, Chang F, Liu JN, Lin JX, Chen DX. MicroRNA-505 is downregulated in human osteosarcoma and regulates cell proliferation, migration and invasion. Oncol Rep 2017; 39:491-500. [PMID: 29251324 PMCID: PMC5783616 DOI: 10.3892/or.2017.6142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/23/2017] [Indexed: 02/05/2023] Open
Abstract
Recent studies have demonstrated that microRNAs (miRNAs/miRs) are involved in osteosarcoma tumorigenesis, progression, invasion and metastasis. For example, miR-505 plays important roles in human carcinogenesis; however, its exact function in osteosarcoma remains unclear. MicroRNA profiles of osteosarcoma and normal tissues were obtained by miRNA microarray assays, which were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Then, high-mobility group box 1 (HMGB1) expression was evaluated by qRT-PCR and western blot analysis. The correlation between miR-505 and HMGB1 was analyzed by Pearson correlation. In vitro, the biological functions of miR-505 were examined by wound healing, MTT and Transwell assays and western blot analysis in MG63 cells transfected with miRNA mimics or empty vector. Luciferase assay was utilized to assess whether HMGB1 is a target of miR-505. miRNA microarrays revealed 26 aberrant miRNAs in osteosarcoma tissues; miR-505 showed the most pronounced decrease (P<0.01), which was significantly associated with TNM stage and metastasis status (P<0.05). In addition, HMGB1 was highly expressed in osteosarcoma tissues (P<0.01), with a significantly negative correlation with miR-505 (r=−0.6679, P<0.001). Furthermore, miR-505 inhibited proliferation, migration and invasion abilities of MG63 cells (P<0.01). Moreover, luciferase activity of the HMGB1-3′-UTR plasmid was suppressed following miR-505 binding (P<0.01). Finally, HMGB1 overexpression partly reversed the effects of miR-505 on MG63 cells. In conclusion, miR-505 levels are decreased in osteosarcoma tissues, and reduced miR-505 expression is significantly associated with poorer clinical prognosis in patients with osteosarcomas. miR-505 inhibits osteosarcoma cell proliferation, migration and invasion by regulating HMGB1.
Collapse
Affiliation(s)
- Yu-Jiang Liu
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Wei Li
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Feng Chang
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Jian-Na Liu
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Jun-Xin Lin
- Department of Orthopedics, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong 266000, P.R. China
| | - De-Xi Chen
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
42
|
Liang F, Wang Y, Shi L, Zhang J. Association of Ezrin expression with the progression and prognosis of gastrointestinal cancer: a meta-analysis. Oncotarget 2017; 8:93186-93195. [PMID: 29190988 PMCID: PMC5696254 DOI: 10.18632/oncotarget.21473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/21/2017] [Indexed: 01/30/2023] Open
Abstract
Background Ezrin, a cytoskeletal protein, is involved in cell adhesion. Several studies have been performed to explore the association between Ezrin and gastrointestinal cancers, but the results are inconclusive. This meta-analysis aims to assess the prognostic value of Ezrin. Materials and Methods/Findings PubMed and EMBASE were searched. Pooled hazard ratio (HR), odds ratio (OR) and 95% confidence intervals (CI) were utilized to evaluate the association between Ezrin expression and various clinical parameters. 2701 patients from 19 studies were included in the meta-analysis. For gastric cancer, Ezrin expression was associated with tumor grade (OR 2.32, 95% CI 1.53-3.52), TNM stage (OR 4.69, 95% CI 1.38-15.89), lymph node involvement (OR 3.96, 95% CI 1.47-10.70) and overall survival (HR 1.88, 95% CI 1.33-2.66). In colorectal cancer, Ezrin expression was associated with tumor grade (OR 3.94, 95% CI 2.10-3.78), TNM stage (OR 5.66, 95% CI 1.41-22.67), lymph node metastasis (OR 9.52, 95% CI 3.93-23.02), distant metastasis (OR 3.06, 95% CI 1.77-5.31), disease free survival (HR 2.48, 95% CI 1.44-4.28). For esophageal cancer, Ezrin expression was associated with lymph node metastasis (OR 2.07, 95% CI 1.00-4.28) and overall survival (HR 1.49, 95% CI 1.17-1.89). Conclusions Ezrin expression is significantly associated with tumor grade, TNM stage, and lymph node metastasis in gastric and colorectal cancers. For gastric cancers, Ezrin is useful in predicting distant metastasis. Survival data showed that high Ezrin expression is associated with poor prognosis in gastric, colorectal and esophageal cancers. Our findings suggest that Ezrin might be a potential biomarker in several gastrointestinal cancers.
Collapse
Affiliation(s)
- Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, ZheJiang University, HangZhou, ZheJiang 310009, China
| | - Yangxin Wang
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, ZheJiang University, HangZhou, ZheJiang 310009, China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, ZheJiang University, HangZhou, ZheJiang 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, ZheJiang University, HangZhou, ZheJiang 310009, China
| |
Collapse
|
43
|
Di Domenico A, Wiedmer T, Marinoni I, Perren A. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 2017; 24:R315-R334. [PMID: 28710117 DOI: 10.1530/erc-17-0012] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022]
Abstract
Neuroendocrine tumours (NET) of the gastrointestinal tract and the lung are a rare and heterogeneous group of tumours. The molecular characterization and the clinical classification of these tumours have been evolving slowly and show differences according to organs of origin. Novel technologies such as next-generation sequencing revealed new molecular aspects of NET over the last years. Notably, whole-exome/genome sequencing (WES/WGS) approaches underlined the very low mutation rate of well-differentiated NET of all organs compared to other malignancies, while the engagement of epigenetic changes in driving NET evolution is emerging. Indeed, mutations in genes encoding for proteins directly involved in chromatin remodelling, such as DAXX and ATRX are a frequent event in NET. Epigenetic changes are reversible and targetable; therefore, an attractive target for treatment. The discovery of the mechanisms underlying the epigenetic changes and the implication on gene and miRNA expression in the different subgroups of NET may represent a crucial change in the diagnosis of this disease, reveal new therapy targets and identify predictive markers. Molecular profiles derived from omics data including DNA mutation, methylation, gene and miRNA expression have already shown promising results in distinguishing clinically and molecularly different subtypes of NET. In this review, we recapitulate the major genetic and epigenetic characteristics of pancreatic, lung and small intestinal NET and the affected pathways. We also discuss potential epigenetic mechanisms leading to NET development.
Collapse
Affiliation(s)
- Annunziata Di Domenico
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | - Tabea Wiedmer
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | | | - Aurel Perren
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Liu Y, Cheng Z, Pan F, Yan W. MicroRNA-373 Promotes Growth and Cellular Invasion in Osteosarcoma Cells by Activation of the PI3K/AKT-Rac1-JNK Pathway: The Potential Role in Spinal Osteosarcoma. Oncol Res 2017; 25:989-999. [PMID: 28244849 PMCID: PMC7841136 DOI: 10.3727/096504016x14813867762123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Spinal osteosarcoma (OS) has been proven to be more difficult to treat owing to potently malignant metastasis. The present study aimed to explore the functional role of microRNA (miR)-373 in cell growth and invasion of OS cells, as well as its underlying mechanism. The expression of miR-373 was analyzed in spinal OS tissues and cell lines. MG-63 cells were transfected with the miR-373 mimic or inhibitor and/or treated with the phosphoinositide 3-kinase (PI3K) (LY294002) inhibitor or Ras-related C3 botulinum toxin substrate 1 (Rac) guanosine triphosphate (GTPase) (NSC23766) inhibitor, and then the impact of miR-373 aberrant expression on cell growth and invasion was measured, along with the impact of overexpressing miR-373 on the expression of p53 and PI3K/AKT pathway-related proteins. We found that miR-373 was specifically upregulated in spinal OS tissues (p < 0.01) and OS cell lines (p < 0.01 or p < 0.001). Moreover, miR-373 expression was significantly associated with TNM stage (p = 0.035) and tumor size (p = 0.002). Overexpression of miR-373 promoted MG-63 cell viability, migration, invasion, and colony formation (all p < 0.05), while silencing of miR-373 and LY294002 exerted the opposite effects. Additionally, miR-373 overexpression downregulated p53 as well as its downstream targeted genes and orderly activated the PI3K/AKT-Rac1-JNK signaling pathway. In conclusion, miR-373 promotes growth and cellular invasion in OS cells by activating the PI3K/AKT-Rac1-JNK pathway. Therefore, miR-373 might be a candidate for molecular targeted therapy of spinal OS.
Collapse
Affiliation(s)
- Yufeng Liu
- *Spinal Surgery Dept1, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, P.R. China
| | - Zhengliang Cheng
- †The First Department of Orthopedics, Ankang Hospital of Traditional Chinese Medicine, Ankang, P.R. China
| | - Feng Pan
- ‡Department of Acupuncture and Physiotherapy, Maternal and Child Health Care of Zaozhuang, Zaozhuang, P.R. China
| | - Weigang Yan
- §Spinal Surgery Dept4, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, P.R. China
| |
Collapse
|
45
|
Lin X, Zheng L, Song H, Xiao J, Pan B, Chen H, Jin X, Yu H. Effects of microRNA-183 on epithelial-mesenchymal transition, proliferation, migration, invasion and apoptosis in human pancreatic cancer SW1900 cells by targeting MTA1. Exp Mol Pathol 2017; 102:522-532. [PMID: 28506766 DOI: 10.1016/j.yexmp.2017.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aims to explore effects of miR-183 on epithelial-mesenchymal transition (EMT) and invasion by targeting MTA1 in human pancreatic cancer (PC) cells. METHODS Totally, 108 PC patients admitted in Wenzhou Central Hospital and Wenzhou People's Hospital, The Dingli Clinical Institute of Wenzhou Medical University from March 2010 to March 2014 were enrolled. qRT-PCR and immunohistochemistry were applied to examine expression of MTA1 mRNA and protein. Samples were divided into 6 groups: blank, NC, miR-183 mimics, miR-183 inhibitors, MTA1-siRNA and miR-183 inhibitors +MTA1-siRNA groups. CCK8 method was employed for determining cell proliferation rate, flow cytometry for cell apoptosis rate, scratch test for cell migration and Transwell assay for cell invasion. qRT-PCR and Western blotting were used to determine expression of MTA1, E-cadherin and Vimentin mRNA and protein. RESULTS Positive expression rate of MTA1 was upregulated in PC tissues, and expression of miR-183 and MTA1 was associated with differentiation, migration, tumor size, TNM. The miR-183 mimics and MTA1-siRNA groups showed a decrease in proliferation, migration and invasion, whereas increased apoptosis, in comparison with blank and NC groups, as expression of MTA1 and Vimentin mRNA and protein were reduced, expression of E-cadherin mRNA and protein was elevated. Compared to blank and NC groups, the miR-183 inhibitors group exhibited enhanced proliferation, migration and invasion and inhibited apoptosis; increased expressions of MTA1 and Vimentin mRNA and protein and decreased expressions of E-cadherin mRNA and protein. CONCLUSION Our study supported that miR-183 could repress EMT and invasion of human PC cells through inhibition of MTA1 expression.
Collapse
Affiliation(s)
- Xizhou Lin
- Department of Digestive Diseases, Wenzhou People's Hospital, The Third Clinical College of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Zheng
- Department of Digestive Diseases, Wenzhou People's Hospital, The Third Clinical College of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hongliang Song
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jun Xiao
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Bujian Pan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haichuan Chen
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaodan Jin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haibo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
46
|
PmRunt regulated by Pm-miR-183 participates in nacre formation possibly through promoting the expression of collagen VI-like and Nacrein in pearl oyster Pinctada martensii. PLoS One 2017; 12:e0178561. [PMID: 28570710 PMCID: PMC5453546 DOI: 10.1371/journal.pone.0178561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/15/2017] [Indexed: 01/21/2023] Open
Abstract
Heterodimeric PEBP2/CBFs are key regulators in diverse biological processes, such as haematopoietic stem-cell generation, bone formation and cancers. In this work, we cloned runt-like transcriptional factor (designated as PmRunt) and CBF β (designated as PmCBF) gene, which comprise the heterodimeric transcriptional factor in Pinctada martensii. PmRunt was identified with an open reading frame that encodes 545 amino acids and has typical Runt domain. Phylogenetic analysis results speculated that runt-like transcriptional factors (RDs) in vertebrates and invertebrates are separated into two branches. In molluscs, PmRunt and other RDs are clustered in one of these branches. Direct interaction between PmRunt and PmCBF was evidenced by yeast two-hybrid assay results. Gene repression by RNA interference decreased the expression level of PmRunt, and subsequent observation of the inner surface of the nacre by scanning electron microscopy demonstrated disordered growth. The luciferase activities of reporters that contain promoter regions of Collagen VI-like (PmColVI) and PmNacrein were enhanced by PmRunt. Meanwhile, Pm-miR-183 apparently inhibited the relative luciferase activity of reporters containing the 3′-UTR of PmRunt. The expression level of PmRunt was repressed after Pm-miR-183 was overexpressed in the mantle tissue. Therefore, we proposed that PmRunt could be targeted by Pm-miR-183 and regulate the transcription of PmColVI and PmNacrein by increasing their transcriptional activity, thereby governing nacre formation.
Collapse
|
47
|
Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Buurman R, Skawran B, Lehmann U. hsa-mir-183 is frequently methylated and related to poor survival in human hepatocellular carcinoma. World J Gastroenterol 2017; 23:1568-1575. [PMID: 28321157 PMCID: PMC5340808 DOI: 10.3748/wjg.v23.i9.1568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/13/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To screen clinically relevant microRNAs (miRNAs) silenced by DNA methylation in human hepatocellular carcinoma (HCC).
METHODS Knockdown of DNA methyltransferases (DNMTs) using siRNAs and miRNA profiling in HCC cell lines were performed to identify DNA hypermethylation-mediated miRNA downregulation. Confirmation using individual quantitative real-time PCR (qRT-PCR) assays was then performed followed by DNA methylation quantification at the promoter of the miRNA genes. Quantification of DNA methylation and miRNA expression was then performed in primary HCC tumor samples and related with clinicopathological variables.
RESULTS miRNA profiling after DNMT knockdown in HCC cell lines revealed upregulation of miR-23, miR-25 and miR-183. After qRT-PCR confirmation and CpG island methylation quantification of these miRNAs in cell lines, further analysis in primary HCC specimens showed that hsa-miR-183 is hypermethylated in 30% of HCC (n = 40). Expression of mature miR-183 showed an inverse correlation with DNA methylation levels. In HCC cells, DNMT knockdown and 5-aza-2'-deoxycytidine treatment reduced methylation and stimulated expression of miR-183. In HCC patients, hypermethylation at hsa-miR-183 promoter significantly correlates with poor survival (log-rank test P = 0.03). DNA methylation analysis in healthy liver, benign liver tumors (hepatocellular adenoma and focal nodular hyperplasia) and their corresponding adjacent tissues showed absence of hypermethylation supporting the notion that aberrant methylation at hsa-miR-183 is specific for the malignant transformation of hepatocytes.
CONCLUSION Our data indicate that hypermethylation of hsa-miR-183 is a frequent event in HCC and potentially useful as a novel surrogate diagnostic and prognostic marker.
Collapse
|
48
|
Shigemura M, Lecuona E, Sznajder JI. Effects of hypercapnia on the lung. J Physiol 2017; 595:2431-2437. [PMID: 28044311 DOI: 10.1113/jp273781] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 01/22/2023] Open
Abstract
Gases are sensed by lung cells and can activate specific intracellular signalling pathways, and thus have physiological and pathophysiological effects. Carbon dioxide (CO2 ), a primary product of oxidative metabolism, can be sensed by eukaryotic cells eliciting specific responses via recently identified signalling pathways. However, the physiological and pathophysiological effects of high CO2 (hypercapnia) on the lungs and specific lung cells, which are the primary site of CO2 elimination, are incompletely understood. In this review, we provide a physiological and mechanistic perspective on the effects of hypercapnia on the lungs and discuss the recent understanding of CO2 modulation of the alveolar epithelial function (lung oedema clearance), epithelial cell repair, innate immunity and airway function.
Collapse
Affiliation(s)
- Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
49
|
Wang J, Wang B, Chen LQ, Yang J, Gong ZQ, Zhao XL, Zhang CQ, Du KL. miR-10b promotes invasion by targeting KLF4 in osteosarcoma cells. Biomed Pharmacother 2016; 84:947-953. [PMID: 27764757 DOI: 10.1016/j.biopha.2016.09.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Osteosarcoma is a common malignancy with high rate of metastasis. miR-10b has been reported to be expressed in many types of tumors abnormally and be associated with cancer carcinogenesis and progression. But the function of miR-10b in osteosarcoma is still unknown. So this study was aimed to investigate the role of miR-10b in osteosarcoma development. METHODS miR-10b expression in osteosarcoma tissues and osteosarcoma cells were detected using real time PCR. The effects of miR-10b on osteosarcoma cells proliferation, apoptosis, migration and invasion were detected using CCK-8 assay, flow cytometry, wound-healing assay and transwell assay, respectively. The relationship between miR-10b and KLF4 was evaluated using dual-luciferase assay, correlation analysis. RESULTS miR-10b was highly expressed in osteosarcoma tissues and osteosarcoma cells. Furthermore, inhibition of miR-10b in osteosarcoma cells depressed the cells proliferation, migration and invasion but promoted cells apoptosis. In addition, KLF4 was down-regulated by miR-10b and miR-10b expression was negatively related to KLF4 expression in osteosarcoma tissue, miR-10b participated in the process of osteosarcoma cells invasion by regulating KLF4 expression. CONCLUSION miR-10b is overexpressed in osteosarcoma and KLF4 is the direct target gene of miR-10b. Furthermore, miR-10b promotes osteosarcoma cells progression by downregulating KLF4 expression. These results suggest that miR-10b functions as an oncomiR and play an important role in osteosarcoma cellular processes at least partially through regulating KLF4; miR-10b may be a therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Ling-Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| | - Jin Yang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Zhi-Qiang Gong
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xue-Ling Zhao
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chun-Qiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kai-Li Du
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
50
|
Fenger JM, Roberts RD, Iwenofu OH, Bear MD, Zhang X, Couto JI, Modiano JF, Kisseberth WC, London CA. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines. BMC Cancer 2016; 16:784. [PMID: 27724924 PMCID: PMC5057229 DOI: 10.1186/s12885-016-2837-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/05/2016] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. Methods We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. Results We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified alterations in numerous genes, including upregulation of GSN, an actin filament-severing protein involved in cytoskeletal remodeling. Lastly, stable downregulation of miR-9 in OS cell lines reduced GSN expression with a concomitant decrease in cell invasion and migration; concordantly, cells transduced with GSN shRNA demonstrated decreased invasive properties. Conclusions Our findings demonstrate that miR-9 promotes a metastatic phenotype in normal canine osteoblasts and malignant OS cell lines, and that this is mediated in part by enhanced GSN expression. As such, miR-9 represents a novel target for therapeutic intervention in OS. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2837-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joelle M Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA. .,, 444 Veterinary Medical Academic Building, 1600 Coffey Road, Columbus, OH, 43210, USA.
| | - Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - O Hans Iwenofu
- Department of Pathology, College of Medicine, The Ohio State University, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, USA
| | - Misty D Bear
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Drive, Columbus, OH, USA
| | - Jason I Couto
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, 420 Delaware Street, SE, MMC 806, Minneapolis, MN, USA
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Cheryl A London
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA
| |
Collapse
|