1
|
Huang X, Wang X, Wang Y, Shen S, Chen W, Liu T, Wang P, Fan X, Liu L, Jia J, Cong M. TIMP-1 Promotes Expression of MCP-1 and Macrophage Migration by Inducing Fli-1 in Experimental Liver Fibrosis. J Clin Transl Hepatol 2024; 12:634-645. [PMID: 38993513 PMCID: PMC11233975 DOI: 10.14218/jcth.2023.00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
Background and Aims Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays a role in the excessive generation of extracellular matrix in liver fibrosis. This study aimed to explore the pathways through which TIMP-1 controls monocyte chemoattractant protein-1 (MCP-1) expression and promotes hepatic macrophage recruitment. Methods Liver fibrosis was triggered through carbon tetrachloride, and an adeno-associated virus containing small interfering RNA targeting TIMP-1 (siRNA-TIMP-1) was administered to both rats and mice. We assessed the extent of fibrosis and macrophage recruitment. The molecular mechanisms regulating macrophage recruitment by TIMP-1 were investigated through transwell migration assays, luciferase reporter assays, the use of pharmacological modulators, and an analysis of extracellular vesicles (EVs). Results siRNA-TIMP-1 alleviated carbon tetrachloride-induced liver fibrosis, reducing macrophage migration and MCP-1 expression. Co-culturing macrophages with hepatic stellate cells (HSCs) post-TIMP-1 downregulation inhibited macrophage migration. In siRNA-TIMP-1-treated HSCs, microRNA-145 (miRNA-145) expression increased, while the expression of Friend leukemia virus integration-1 (Fli-1) and MCP-1 was inhibited. Downregulation of Fli-1 led to decreased MCP-1 expression, whereas Fli-1 overexpression increased MCP-1 expression within HSCs. Transfection with miRNA-145 mimics reduced the expression of both Fli-1 and MCP-1, while miRNA-145 inhibitors elevated the expression of both Fli-1 and MCP-1 in HSCs. miRNA-145 bound directly to the 3'-UTR of Fli-1, and miRNA-145-enriched EVs secreted by HSCs after TIMP-1 downregulation influenced macrophage recruitment. Conclusions TIMP-1 induces Fli-1 expression through miRNA-145, subsequently increasing MCP-1 expression and macrophage recruitment. MiRNA-145-enriched EVs from HSCs can transmit biological information and magnify the function of TIMP-1.
Collapse
Affiliation(s)
- Xiaoli Huang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Xiaofan Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Yanhong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
- Dongying People's Hospital, Dongying, Shandong, China
| | - Shuangjun Shen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| |
Collapse
|
2
|
Chernikov IV, Staroseletz YY, Tatarnikova IS, Sen’kova AV, Savin IA, Markov AV, Logashenko EB, Chernolovskaya EL, Zenkova MA, Vlassov VV. siRNA-Mediated Timp1 Silencing Inhibited the Inflammatory Phenotype during Acute Lung Injury. Int J Mol Sci 2023; 24:ijms24021641. [PMID: 36675165 PMCID: PMC9865963 DOI: 10.3390/ijms24021641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Acute lung injury is a complex cascade process that develops in response to various damaging factors, which can lead to acute respiratory distress syndrome. Within this study, based on bioinformatics reanalysis of available full-transcriptome data of acute lung injury induced in mice and humans by various factors, we selected a set of genes that could serve as good targets for suppressing inflammation in the lung tissue, evaluated their expression in the cells of different origins during LPS-induced inflammation, and chose the tissue inhibitor of metalloproteinase Timp1 as a promising target for suppressing inflammation. We designed an effective chemically modified anti-TIMP1 siRNA and showed that Timp1 silencing correlates with a decrease in the pro-inflammatory cytokine IL6 secretion in cultured macrophage cells and reduces the severity of LPS-induced acute lung injury in a mouse model.
Collapse
|
3
|
Dong BS, Liu FQ, Yang WN, Li XD, Shi MJ, Li MR, Yan XL, Zhang H. Huangqi Decoction, a compound Chinese herbal medicine, inhibits the proliferation and activation of hepatic stellate cells by regulating the long noncoding RNA-C18orf26-1/microRNA-663a/transforming growth factor-β axis. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:47-61. [PMID: 36456413 DOI: 10.1016/j.joim.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-β/small mothers against decapentaplegic (TGF-β/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-β/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis. METHODS The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-β/Smad signaling pathway-related proteins were determined using Western blotting. RESULTS Lnc-C18orf26-1 was upregulated in TGF-β1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-β1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-β1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-β1, TGF-β type I receptor (TGF-βRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment. CONCLUSION Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-β1/TGF-βRI/p-Smad2 axis.
Collapse
Affiliation(s)
- Ben-Sheng Dong
- Traditional Chinese Medicine Epigenomics Research Center, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fu-Qun Liu
- Department of Rheumatology and Immunology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211299, Jiangsu Province, China; Department of Rheumatology and Immunology, Yangzhou University Medical College, Yangzhou 225000, Jiangsu Province, China
| | - Wen-Na Yang
- Department of Rheumatology and Immunology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211299, Jiangsu Province, China; Department of Rheumatology and Immunology, Yangzhou University Medical College, Yangzhou 225000, Jiangsu Province, China
| | - Xiao-Dong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Miao-Juan Shi
- Traditional Chinese Medicine Epigenomics Research Center, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mao-Rong Li
- Traditional Chinese Medicine Epigenomics Research Center, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiu-Li Yan
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Hui Zhang
- Traditional Chinese Medicine Epigenomics Research Center, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Zhang N, Yao H, Zhang Z, Li Z, Chen X, Zhao Y, Ju R, He J, Pan H, Liu X, Lv Y. Ongoing involvers and promising therapeutic targets of hepatic fibrosis: The hepatic immune microenvironment. Front Immunol 2023; 14:1131588. [PMID: 36875101 PMCID: PMC9978172 DOI: 10.3389/fimmu.2023.1131588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatic fibrosis is often secondary to chronic inflammatory liver injury. During the development of hepatic fibrosis, the damaged hepatocytes and activated hepatic stellate cells (HSCs) caused by the pathogenic injury could secrete a variety of cytokines and chemokines, which will chemotactic innate and adaptive immune cells of liver tissue and peripheral circulation infiltrating into the injury site, mediating the immune response against injury and promoting tissue reparation. However, the continuous release of persistent injurious stimulus-induced inflammatory cytokines will promote HSCs-mediated fibrous tissue hyperproliferation and excessive repair, which will cause hepatic fibrosis development and progression to cirrhosis even liver cancer. And the activated HSCs can secrete various cytokines and chemokines, which directly interact with immune cells and actively participate in liver disease progression. Therefore, analyzing the changes in local immune homeostasis caused by immune response under different pathological states will greatly enrich our understanding of liver diseases' reversal, chronicity, progression, and even deterioration of liver cancer. In this review, we summarized the critical components of the hepatic immune microenvironment (HIME), different sub-type immune cells, and their released cytokines, according to their effect on the development of progression of hepatic fibrosis. And we also reviewed and analyzed the specific changes and the related mechanisms of the immune microenvironment in different chronic liver diseases.Moreover, we retrospectively analyzed whether the progression of hepatic fibrosis could be alleviated by modulating the HIME.We aimed to elucidate the pathogenesis of hepatic fibrosis and provide the possibility for exploring the therapeutic targets for hepatic fibrosis.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhixuan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi He
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heli Pan
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Abstract
AIM Fibrosis is a common pathological feature of most types of chronic liver injuries. There is no specific treatment for liver fibrosis at present. The liver microenvironment, which fosters the survival and activity of liver cells, plays an important role in maintaining the normal structure and physiological function of the liver. The aim of this review is to deeply understand the role of the liver microenvironment in the dynamic and complicated development of liver fibrosis. METHODS After searching in Elsevier ScienceDirect, PubMed and Web of Science databases using 'liver fibrosis' and 'microenvironment' as keywords, studies related to microenvironment in liver fibrosis was compiled and examined. RESULTS The homeostasis of the liver microenvironment is disrupted during the development of liver fibrosis, affecting liver cell function, causing various types of cell reactions, and changing the cell-cell and cell-matrix interactions, eventually affecting fibrosis formation. CONCLUSION Liver microenvironment may be important for identifying potential therapeutic targets, and restoring microenvironment homeostasis may be an important strategy for promoting the reversal of liver fibrosis.KEY MESSAGESThe homeostasis of the liver microenvironment is disrupted in liver fibrosis;A pro-fibrotic microenvironment is formed during the development of liver fibrosis;Restoring microenvironment homeostasis may be an important strategy for promoting the reversal of liver fibrosis.
Collapse
Affiliation(s)
- Ying Meng
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tong Zhao
- Department of Orthopedics, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Zhengyi Zhang
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Wang FD, Zhou J, Chen EQ. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Front Pharmacol 2022; 13:787748. [PMID: 35222022 PMCID: PMC8874120 DOI: 10.3389/fphar.2022.787748] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is the pathological process of excessive extracellular matrix deposition after liver injury and is a precursor to cirrhosis, hepatocellular carcinoma (HCC). It is essentially a wound healing response to liver tissue damage. Numerous studies have shown that hepatic stellate cells play a critical role in this process, with various cells, cytokines, and signaling pathways engaged. Currently, the treatment targeting etiology is considered the most effective measure to prevent and treat liver fibrosis, but reversal fibrosis by elimination of the causative agent often occurs too slowly or too rarely to avoid life-threatening complications, especially in advanced fibrosis. Liver transplantation is the only treatment option in the end-stage, leaving us with an urgent need for new therapies. An in-depth understanding of the mechanisms of liver fibrosis could identify new targets for the treatment. Most of the drugs targeting critical cells and cytokines in the pathogenesis of liver fibrosis are still in pre-clinical trials and there are hardly any definitive anti-fibrotic chemical or biological drugs available for clinical use. In this review, we will summarize the pathogenesis of liver fibrosis, focusing on the role of key cells, associated mechanisms, and signaling pathways, and summarize various therapeutic measures or drugs that have been trialed in clinical practice or are in the research stage.
Collapse
|
7
|
Du JJ, Sun JC, Li N, Li XQ, Sun WY, Wei W. β-Arrestin2 deficiency attenuates oxidative stress in mouse hepatic fibrosis through modulation of NOX4. Acta Pharmacol Sin 2021; 42:1090-1100. [PMID: 33116250 PMCID: PMC8209231 DOI: 10.1038/s41401-020-00545-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a disease characterized by excessive deposition of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is responsible for most of ECM production. Oxidative stress and reactive oxygen species (ROS) may be important factors leading to liver fibrosis. NADPH oxidase 4 (NOX4) is the main source of ROS in hepatic fibrosis, but the mechanism by which NOX4 regulates oxidative stress is not fully understood. β-Arrestin2 is a multifunctional scaffold protein that regulates receptor endocytosis, signaling and trafficking. In this study, we investigated whether β-arrestin2 regulated oxidative stress in hepatic fibrosis. Both β-arrestin2 knockout (Arrb2 KO) mice and wild-type mice were intraperitoneally injected with carbon tetrachloride (CCl4) to induce hepatic fibrosis. Arrb2 KO mice showed significantly attenuated liver fibrosis, decreased ROS levels and NOX4 expression, and reduced collagen levels in their livers. In vitro, NOX4 knockdown significantly inhibited ROS production, and decreased expression of alpha-smooth muscle actin in angiotensin II-stimulated human HSC cell line LX-2. Through overexpression or depletion of β-arrestin2 in LX-2 cells, we revealed that decreased β-arrestin2 inhibited ROS levels and NOX4 expression, and reduced collagen production; it also inhibited activation of ERK and JNK signaling pathways. These results demonstrate that β-arrestin2 deficiency protects against liver fibrosis by downregulating ROS production through NOX4. This effect appears to be mediated by ERK and JNK signaling pathways. Thus, targeted inhibition of β-arrestin2 might reduce oxidative stress and inhibit the progression of liver fibrosis.
Collapse
Affiliation(s)
- Jia-Jia Du
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jia-Chang Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Xiu-Qin Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
8
|
Period1 mediates rhythmic metabolism of toxins by interacting with CYP2E1. Cell Death Dis 2021; 12:76. [PMID: 33436540 PMCID: PMC7804260 DOI: 10.1038/s41419-020-03343-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/14/2023]
Abstract
The biological clock is an endogenous biological timing system, which controls metabolic functions in almost all organs. Nutrient metabolism, substrate processing, and detoxification are circadian controlled in livers. However, how the clock genes respond to toxins and influence toxicity keeps unclear. We identified the clock gene Per1 was specifically elevated in mice exposed to toxins such as carbon tetrachloride (CCl4). Mice lacking Per1 slowed down the metabolic rate of toxins including CCl4, capsaicin, and acetaminophen, exhibiting relatively more residues in the plasma. Liver injury and fibrosis induced by acute and chronic CCl4 exposure were markedly alleviated in Per1-deficient mice. These processes involved the binding of PER1 protein and hepatocyte nuclear factor-1alpha (HNF-1α), which enhances the recruitment of HNF-1α to cytochrome P450 2E1 (Cyp2e1) promoter and increases Cyp2e1 expression, thereby promoting metabolism for toxins in the livers. These results indicate that PER1 mediates the metabolism of toxins and appropriate suppression of Per1 response is a potential therapeutic target for toxin-induced hepatotoxicity.
Collapse
|
9
|
Ibrahim SA, Mohamed MZ, El-Tahawy NF, Abdelrahman AM. Antifibrotic effects of bezafibrate and pioglitazone against thioacetamide-induced liver fibrosis in albino rats. Can J Physiol Pharmacol 2020; 99:313-320. [PMID: 32721217 DOI: 10.1139/cjpp-2020-0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of hepatic stellate cells is a central event in hepatic fibrogenesis that offers multiple potential sites for therapeutic interventions. Peroxisome proliferator-activated receptors are implicated in liver fibrosis. We aimed to evaluate the effect of bezafibrate and pioglitazone on a thioacetamide (TAA) rat model of liver fibrosis and to clarify the possible underlying mechanisms. Rats received intraperitoneal injections of TAA for 6 weeks. Daily oral treatments with bezafibrate or pioglitazone were started with the first day of TAA intoxication. Serum liver function tests, hepatic malondialdehyde (MDA), total nitrite and nitrate (NOx), superoxide dismutase, and hepatic histopathology were assessed to evaluate hepatic damage. Alpha smooth muscle actin (α-SMA) and tissue inhibitor metalloproteinase-1 (TIMP-1) and caspase-3 were also assessed. The TAA group experienced significant deterioration of liver functions, increased oxidative stress, and increased liver tissue NOx. Administration of bezafibrate or pioglitazone resulted in significant improvement of all liver functions and reduced oxidative stress in hepatic tissues. Only administration of bezafibrate significantly reduced NOx levels. Liver tissues from the TAA-treated group showed disrupted normal architecture. Administration of bezafibrate or pioglitazone attenuated this picture. Stronger α-SMA expression was detected in the TAA group. Treatment with bezafibrate or pioglitazone decreased the α-SMA expression.
Collapse
Affiliation(s)
- Salwa A Ibrahim
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| | - Mervat Z Mohamed
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| | - Nashwa F El-Tahawy
- Department of Histology & Cell Biology, Minia University Faculty of Medicine, Minia, Egypt
| | - Aly M Abdelrahman
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| |
Collapse
|
10
|
Chang Y, Li H. Hepatic Antifibrotic Pharmacotherapy: Are We Approaching Success? J Clin Transl Hepatol 2020; 8:222-229. [PMID: 32832403 PMCID: PMC7438353 DOI: 10.14218/jcth.2020.00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence rate and mortality of liver fibrosis caused by various etiologies are high throughout the world. Liver fibrosis, the subsequent cirrhosis and other serious related complications threaten the health of patients and represent a serious medical burden; yet, there is still a lack of approved methods to prevent or reverse liver fibrosis. Therefore, effective hepatic antifibrotic drugs are urgently needed. The activation and proliferation of hepatic stellate cells are still the mechanisms of fibrosis that remain the focus of therapeutic research. In recent years, significant progress has been made in the development and applicability of antifibrosis drugs. In this review, we summarize the effectiveness and safety of available antifibrosis drugs utilizing different targets. In addition, some characteristics of antifibrosis drugs in phase II and III trials are introduced in detail.
Collapse
Affiliation(s)
- Yue Chang
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Hai Li
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
- Correspondence to: Hai Li, Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No. 403 Xiqing Road, Xiqing District, Tianjin 300380, China. Tel: +86-22- 60578765, Fax: +86-22-24370605, E-mail:
| |
Collapse
|
11
|
Zhao Z, Lin CY, Cheng K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res 2019; 214:17-29. [PMID: 31476281 PMCID: PMC6848786 DOI: 10.1016/j.trsl.2019.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a wound-healing process induced by chronic liver injuries, such as nonalcoholic steatohepatitis, hepatitis, alcohol abuse, and metal poisoning. The accumulation of excessive extracellular matrix (ECM) in the liver is a key characteristic of liver fibrosis. Activated hepatic stellate cells (HSCs) are the major producers of ECM and therefore play irreplaceably important roles during the progression of liver fibrosis. Liver fibrogenesis is highly correlated with the activation of HSCs, which is regulated by numerous profibrotic cytokines. Using RNA interference to downregulate these cytokines in activated HSCs is a promising strategy to reverse liver fibrosis. Meanwhile, microRNAs (miRNAs) have also been exploited for the treatment of liver fibrosis. This review focuses on the current siRNA- and miRNA-based liver fibrosis treatment strategies by targeting activated HSCs in the liver.
Collapse
Affiliation(s)
- Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri.
| |
Collapse
|
12
|
Makled MN, Sharawy MH, El-Awady MS. The dual PPAR-α/γ agonist saroglitazar ameliorates thioacetamide-induced liver fibrosis in rats through regulating leptin. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1569-1576. [DOI: 10.1007/s00210-019-01703-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
|
13
|
Chen W, Wu X, Yan X, Xu A, Yang A, You H. Multitranscriptome analyses reveal prioritized genes specifically associated with liver fibrosis progression independent of etiology. Am J Physiol Gastrointest Liver Physiol 2019; 316:G744-G754. [PMID: 30920297 DOI: 10.1152/ajpgi.00339.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elimination or suppression of causative factors can raise the possibility of liver fibrosis regression. However, different injurious stimuli will give fibrosis from somewhat different etiologies, which, in turn, may hamper the discovery of liver fibrosis-specific therapeutic drugs. Therefore, the analogical cellular and molecular events shared by various etiology-evoked liver fibrosis should be clarified. Our present study systematically integrated five publicly available transcriptomic data sets regarding liver fibrosis with different etiologies from the Gene Expression Omnibus database and performed a series of bioinformatics analyses and experimental verifications. A total of 111 significantly upregulated and 16 downregulated genes were identified specific to liver fibrosis independent of any etiology. These genes were predominately enriched in some Kyoto Encyclopedia of Genes and Genomes pathways, including the "PI3K-AKT signaling pathway," "Focal adhesion," and "ECM-receptor interaction." Subsequently, five prioritized liver fibrosis-specific genes, including COL4A2, THBS2, ITGAV, LAMB1, and PDGFRA, were screened. These genes were positively associated with each other and liver fibrosis progression. In addition, they could robustly separate all stages of samples in both training and validation data sets with diverse etiologies when they were regarded as observed variables applied to principal component analysis plots. Expressions of all five genes were confirmed in activated primary mouse hepatic stellate cells (HSCs) and transforming growth factor β1-treated LX-2 cells. Moreover, THBS2 protein was enhanced in liver fibrosis rodent models, which could promote HSC activation and proliferation and facilitate NOTCH1/JAG1 expression in HSCs. Overall, our current study may provide potential targets for liver fibrosis therapy and aid to a deeper understanding of the molecular underpinnings of liver fibrosis. NEW & NOTEWORTHY Prioritized liver fibrosis-specific genes THBS2, COL4A2, ITGAV, LAMB1, and PDGFRA were identified and significantly associated with liver fibrosis progression and could be combined to discriminate liver fibrosis stages regardless of any etiology. Among the identified prioritized liver fibrosis-specific targets, THBS2 protein was confirmed to be enhanced in liver fibrosis rodent models, which could promote hepatic stellate cell (HSC) activation and proliferation and facilitate NOTCH1/JAG1 expression in HSCs.
Collapse
Affiliation(s)
- Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| | - Xuzhen Yan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Hong You
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| |
Collapse
|
14
|
George J, Tsuchishima M, Tsutsumi M. Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Dis 2019; 10:18. [PMID: 30622238 PMCID: PMC6325159 DOI: 10.1038/s41419-018-1272-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Hepatic fibrosis is marked by excessive synthesis and deposition of connective tissue proteins, especially interstitial collagens in the extracellular matrix of the liver. It is a result of an abnormal wound healing in response to chronic liver injury from various causes such as ethanol, viruses, toxins, drugs, or cholestasis. The chronic stimuli involved in the initiation of fibrosis leads to oxidative stress and generation of reactive oxygen species that serve as mediators of molecular events involved in the pathogenesis of hepatic fibrosis. These processes lead to cellular injury and initiate inflammatory responses releasing a variety of cytokines and growth factors that trigger activation and transformation of resting hepatic stellate cells into myofibroblast like cells, which in turn start excessive synthesis of connective tissue proteins, especially collagens. Uncontrolled and extensive fibrosis results in distortion of lobular architecture of the liver leading to nodular formation and cirrhosis. The perpetual injury and regeneration process could also results in genomic aberrations and mutations that lead to the development of hepatocellular carcinoma. This review covers most aspects of the molecular mechanisms involved in the pathogenesis of hepatic fibrosis with special emphasize on N-Nitrosodimethylamine (NDMA; Dimethylnitorsmaine, DMN) as the inducing agent.
Collapse
Affiliation(s)
- Joseph George
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
15
|
Mu M, Zuo S, Wu RM, Deng KS, Lu S, Zhu JJ, Zou GL, Yang J, Cheng ML, Zhao XK. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4107-4115. [PMID: 30584275 PMCID: PMC6284527 DOI: 10.2147/dddt.s186726] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose Liver fibrosis is a worldwide health issue. Development of effective new drugs for treatment of this disease is of great importance. This study investigated the therapeutic effects of ferulic acid on liver fibrosis in vitro and in vivo. Materials and methods Human hepatic stellate cell line (HSC) LX-2 was used for in vitro assays. Transforming growth factor β1 (TGF-β1) was used to induce hepatic fibrosis in LX-2 cells. Western blot was used to detect protein levels of collagen I, fibronectin, α-smooth muscle actin (SMA), p-Smad2, p-Smad3, p-p38, and p-JNK. Gene expression was measured by RT-qPCR. Fluorescence staining was used to determine localization of Smad4. CCl4-induced hepatic fibrosis in SD rats was used as an in vivo model. Histological features were detected by hematoxylin and eosin staining. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hexadecenoic acid (HA), and hydroxyproline (Hyp) were measured by ELISA. Results TGF-β1 treatment significantly increased levels of collagen I, fibronectin, α-SMA, p-Smad2, p-Smad3, and Smad4 in LX-2 cells. Ferulic acid improved TGF-β1-induced hepatic fibrosis via regulation of the TGF-β1/Smad pathway. Consistent with in vitro data, CCl4 caused severe hepatic fibrosis in SD rats, as determined by ALT, AST, HA, and Hyp upregulation. Protein levels of p-Smad2 and p-Smad3 in liver tissues were significantly increased following treatment with CCl4. All CCL4-induced changes were markedly attenuated by ferulic acid treatment. Conclusion Ferulic acid potently improved hepatic fibrosis via inhibition of the TGF-β1/Smad pathway in vitro and in vivo. These findings provided evidence for potential use of ferulic acid to treat or prevent liver fibrosis.
Collapse
Affiliation(s)
- Mao Mu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rong-Min Wu
- Department of Ultrasonography, The Maternity Hospital of Guizhou, Guiyang, Guizhou, China
| | - Kai-Sheng Deng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Shuang Lu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Juan-Juan Zhu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Gao-Liang Zou
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Jing Yang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Ming-Liang Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| | - Xue-Ke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, ;
| |
Collapse
|
16
|
Zhao W, Yang A, Chen W, Wang P, Liu T, Cong M, Xu A, Yan X, Jia J, You H. Inhibition of lysyl oxidase-like 1 (LOXL1) expression arrests liver fibrosis progression in cirrhosis by reducing elastin crosslinking. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1129-1137. [DOI: 10.1016/j.bbadis.2018.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
|
17
|
Vega-Magaña N, Delgado-Rizo V, García-Benavides L, Del Toro-Arreola S, Segura-Ortega J, Morales ASMZ, Zepeda-Nuño JS, Escarra-Senmarti M, Gutiérrez-Franco J, Haramati J, Bueno-Topete MR. Bacterial Translocation Is Linked to Increased Intestinal IFN-γ, IL-4, IL-17, and mucin-2 in Cholestatic Rats. Ann Hepatol 2018; 17:318-329. [PMID: 29469038 DOI: 10.5604/01.3001.0010.8662] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Background and rationale for the study. Bacterial translocation is an important triggering factor of infection and mortality in cirrhosis. In a rat model using bile duct ligation (BDL), bacterial translocation appears within 24 h after ligation. The dynamic between TH1/TH2/TH17 cytokines and the integrity of the colonic mucosa in the context of cirrhosis is little known. This study aims to determine the link between bacterial translocation and intestinal inflammation in a cholestasis model. Additionally, alterations of the colonic mucus layer and the bacterial load were also addressed. RESULTS Bacterial translocation detected by microbiological cultures and MALDI-TOF showed that Escherichia coli predominates in mesenteric lymph nodes of BDL rats. Intestinal bacterial load analyzed by qPCR indicates a dramatic Escherichia/Shigella overgrowth at 8 and 30 days post-BDL. IFN-γ, IL-4, and IL-17 evaluated by Western blotting were increased at 8 and 30 days in the small intestine. In the colon, in contrast, only IFN-γ was significantly increased. The colonic mucus layer and mucin-2 expression determined by Alcian blue staining and immunohistochemistry surprisingly showed an increase in the mucus layer thickness related to increased mucin-2 expression during the entire process of liver damage. Hepatic enzymes, as well as collagen I, collagen III, TNF-α, and IL-6 liver gene expression were increased. In conclusion, bacterial overgrowth associated with bacterial translocation is linked to the over-expression of IFN-γ, IL-4, IL-17 and mucin-2. These molecules might facilitate the intestinal permeability through exacerbating the inflammatory process and disturbing tight junctions, leading to the perpetuation of the liver damage.
Collapse
Affiliation(s)
- Natali Vega-Magaña
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Vidal Delgado-Rizo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Laboratorio de Inmunología, Departamento de Fisiología
| | - Leonel García-Benavides
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología
| | - Susana Del Toro-Arreola
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jorge Segura-Ortega
- OPD Hospital Civil de Guadalajara "Juan I. Menchaca". Guadalajara, Jalisco, México. Servicio de Gastroenterología
| | - Adelaida Sara M Zepeda Morales
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - José Sergio Zepeda-Nuño
- Centro Universitario de Ciencias de la Salud. Laboratorio de Patología, Departamento de Microbiología y Patología
| | - Marta Escarra-Senmarti
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jorge Gutiérrez-Franco
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jesse Haramati
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, México. Laboratorio de Inmunología, Departamento de Biología Celular y Molecular
| | - Miriam R Bueno-Topete
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| |
Collapse
|
18
|
Herbal compound 861 prevents hepatic fibrosis by inhibiting the TGF-β1/Smad/SnoN pathway in bile duct-ligated rats. Altern Ther Health Med 2018; 18:52. [PMID: 29402324 PMCID: PMC5800072 DOI: 10.1186/s12906-018-2119-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/29/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND This study was to evaluate the effects of herbal compound 861 (Cpd861) on ski-related novel protein N (SnoN) and transforming growth factor-β1 (TGF-β1) /Smad signaling in rats with bile duct ligation (BDL)-induced hepatic fibrosis, and to explore the mechanisms of Cpd861 on hepatic fibrosis. METHODS Thirty Wistar male rats were randomly divided into three groups: sham operation, BDL, and Cpd861. To induce hepatic fibrosis, BDL and Cpd861 group rats underwent bile duct ligation. Cpd861 at 9 g/kg/d or an equal volume of normal saline was administered intragastrically for 28 days. Liver injury was assessed biochemically and histologically. Protein and mRNA changes for SnoN and TGF-β1/Smad signaling (TGF-β1, Smad2, phosphorylated Smad2 [p-Smad2], phosphorylated Smad3 [p-Smad3], fibronectin, and collagen III) were determined by Western blotting and quantitative real-time PCR. RESULTS BDL rats treated with Cpd861 had significantly alleviated hepatic fibrosis compared to BDL rats not receiving Cpd861 treatment. Moreover, Cpd861 decreased the expression of fibrosis-associated proteins fibronectin and collagen III in liver tissue. Cpd861 administration increased the expression of SnoN protein, did not change SnoN mRNA level, and decreased TGF-β1, p-Smad2, and p-Smad3 protein expression compared to BDL without Cpd861 treatment. CONCLUSIONS Cpd861 attenuates hepatic fibrosis by increasing SnoN protein expression and inhibiting the TGF-β1/Smad signaling pathway.
Collapse
|
19
|
Maepa MB, Ely A, Arbuthnot P. How successful has targeted RNA interference for hepatic fibrosis been? Expert Opin Biol Ther 2017; 18:381-388. [PMID: 29265946 DOI: 10.1080/14712598.2018.1420775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Exposure to toxins from the portal circulation, viral infection and by-products of metabolic activity make liver tissue prone to injury. When sustained, associated inflammation leads to activation of hepatic stellate cells (HSCs), deposition of extracellular matrix (ECM) proteins and complicating hepatic fibrosis. AREAS COVERED In this article, the authors discuss utility of therapeutic gene silencing to disable key steps of hepatic fibrogenesis. Strategies aimed at inhibiting HSC activation and silencing primary causes of fibrogenesis, such as viruses that cause chronic hepatitis, are reviewed. Both synthetic and expressed artificial intermediates of the RNAi pathway have potential to treat hepatic fibrosis, and each type of gene silencer has advantages for clinical translation. Silencing expression cassettes comprising DNA templates are compatible with efficient hepatotropic viral vectors, which may effect sustained gene silencing. By contrast, synthetic short interfering RNAs are amenable to chemical modification, incorporation into non-viral formulations, more precise dose control and large scale preparation. EXPERT OPINION Clinical translation of RNAi-based technology for treatment of hepatic fibrosis is now a realistic goal. However, achieving this aim will require safe, efficient delivery of artificial RNAi intermediates to target cells, economic large scale production of candidate drugs and specificity of action.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Abdullah Ely
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Patrick Arbuthnot
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
20
|
Xu A, Li Y, Zhao W, Hou F, Li X, Sun L, Chen W, Yang A, Wu S, Zhang B, Yao J, Wang H, Huang J. PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. J Mol Med (Berl) 2017; 96:119-133. [PMID: 29098317 DOI: 10.1007/s00109-017-1605-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. KEY MESSAGES PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF-β1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.
Collapse
Affiliation(s)
- Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China. .,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenshan Zhao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Hou
- Department of Infection Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lan Sun
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Aiting Yang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shanna Wu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingyi Yao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huan Wang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China. .,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Zhang C, Tian X, Zhang K, Li GY, Wang HY, Wang JH. Protective effects of Foeniculum vulgare root bark extract against carbon tetrachloride-induced hepatic fibrosis in mice. World J Gastroenterol 2017; 23:5722-5731. [PMID: 28883697 PMCID: PMC5569286 DOI: 10.3748/wjg.v23.i31.5722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/14/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the protective effects of Foeniculum vulgare root bark (FVRB), a traditional Uyghur medicine, against carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice.
METHODS Mice were randomly divided into eight groups (n = 20 each). Except for the normal control group, mice in the rest groups were intraperitoneally injected (i.p.) with 0.1% CCl4-olive oil mixture at 10 mL/kg twice a week to induce liver fibrosis. After 4 wk, mice were treated concurrently with the 70% ethanol extract of FVRB (88, 176, 352 and 704 mg/kg, respectively) daily by oral gavage for 4 wk to evaluate its protective effects. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), hexadecenoic acid (HA), laminin (LN), glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) in liver tissues were measured. Hematoxylin-eosin (H and E) staining and Masson trichrome (MT) staining were performed to assess histopathological changes in the liver. The expression of transforming growth factor β1 (TGF-β1), matrix metalloprotein 9 (MMP-9) and metallopeptidase inhibitor 1 (TIMP-1) was detected by immunohistochemical analysis. Additionally, TGF-β1 and alpha-smooth muscle actin (α-SMA) protein expression was measured by Western blot.
RESULTS A significant reduction in serum levels of AST, ALT, TG, HA and LN was observed in the FVRB-treated groups, suggesting that FVRB displayed hepatoprotective effects. Also, the depletion of GSH, SOD, and MDA accumulation in liver tissues was suppressed by FVRB. The expression of TGF-β1, MMP-9 and TIMP-1 determined by immunohistochemistry was markedly reduced in a dose-dependent manner by FVRB treatment. Furthermore, protective effects of FVRB against CCl4-induced liver injury were confirmed by histopathological studies. Protein expression of TGF-β1 and α-SMA detected by Western blot was decreased by FVRB treatment.
CONCLUSION Our results indicate that FVRB may be a promising agent against hepatic fibrosis and its possible mechanisms are inhibiting lipid peroxidation and reducing collagen formation in liver tissue of liver fibrosis mice.
Collapse
Affiliation(s)
- Cai Zhang
- School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Xing Tian
- School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Ke Zhang
- School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Guo-Yu Li
- School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Hang-Yu Wang
- School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Jin-Hui Wang
- School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
22
|
Jiang Y, Liu T. Effect of operating room care combined with home care for the postoperative rehabilitation and prognosis of gastric cancer patients with low PTEN gene expression. Oncol Lett 2017; 14:2119-2124. [PMID: 28781652 PMCID: PMC5530181 DOI: 10.3892/ol.2017.6401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to analyze the effect of operating room (OR) care combined with home care on postoperative rehabilitation and prognosis of gastric cancer patients with low PTEN gene expression. Ninety-six gastric cancer patients with low PTEN gene expression, who underwent surgical treatment in our hospital were recruited. PTEN expression was measured by semi-quantitative polymerase chain reaction. Participants were randomized into the observation and control groups, with 48 cases each. Participants in the two groups received the same preoperative examination, gastric cancer surgery, postoperative drug therapy, and general care, while observation group participants were provided more comprehensive OR care combined with home care. After 1 year of home care, the self-rating anxiety scale (SAS) and Hamilton anxiety scale (HAMA) scores, rehabilitation status, overall quality of life, and Family Adaptability and Cohesion Scale were applied to compare postoperative rehabilitation and prognosis status in both groups. Data were statistically analyzed. Patients were followed up for 3 years, and survival time was analyzed. The operative time and bleeding volume between the two groups were not significantly different (p>0.05). The time of extubation and postoperative recovery time in the observation group were shorter than in the control group (p<0.01). The postoperative SAS and HAMA scores in both groups were significantly decreased compared with those preoperatively (p<0.01). Additionally, these scores were significantly lower in the observation than in the control group (p<0.01). The rehabilitation status of body function in the observation group was better than in the control group (p<0.01). Regarding the overall quality of life score and family adaptability and cohesion score, the observation group was better than the control group (p<0.01). In conclusion, OR care combined with home care was effective for the care of gastric cancer patients with low PTEN expression. Improving patient mood and mental state played a positive role in postoperative rehabilitation and prognosis.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Ting Liu
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
23
|
Abstract
Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28–30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation.
Collapse
|
24
|
Sangüesa G, Baena M, Hutter N, Montañés JC, Sánchez RM, Roglans N, Laguna JC, Alegret M. The Addition of Liquid Fructose to a Western-Type Diet in LDL-R -/- Mice Induces Liver Inflammation and Fibrogenesis Markers without Disrupting Insulin Receptor Signalling after an Insulin Challenge. Nutrients 2017; 9:nu9030278. [PMID: 28294959 PMCID: PMC5372941 DOI: 10.3390/nu9030278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 01/17/2023] Open
Abstract
A high consumption of fat and simple sugars, especially fructose, has been related to the development of insulin resistance, but the mechanisms involved in the effects of these nutrients are not fully understood. This study investigates the effects of a Western-type diet and liquid fructose supplementation, alone and combined, on insulin signalling and inflammation in low-density lipoprotein (LDL) receptor-deficient mice (LDL-R−/−). LDL-R−/− mice were fed chow or Western diet ±15% fructose solution for 12 weeks. Plasma glucose and insulin, and the expression of genes related to inflammation in the liver and visceral white adipose tissue (vWAT), were analysed. V-akt murine thymoma viral oncogene homolog-2 (Akt) activation was measured in the liver of the mice after a single injection of saline or insulin. None of the dietary interventions caused inflammation in vWAT, whereas the Western diet induced hepatic inflammation, which was further enhanced by liquid fructose, leading also to a significant increase in fibrogenesis markers. However, there was no change in plasma glucose or insulin, or insulin-induced Akt phosphorylation. In conclusion, hepatic inflammation and fibrogenesis markers induced by a Western diet supplemented with liquid fructose in LDL-R−/− mice are not associated with a significant impairment of hepatic insulin signalling.
Collapse
Affiliation(s)
- Gemma Sangüesa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
| | - Miguel Baena
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
| | - Natalia Hutter
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - José Carlos Montañés
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Rosa María Sánchez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
25
|
Wen SL, Feng S, Tang SH, Gao JH, Zhang LH, Tong H, Yan ZP, Fang DZ. Collapsed Reticular Network and its Possible Mechanism during the Initiation and/or Progression of Hepatic Fibrosis. Sci Rep 2016; 6:35426. [PMID: 27739503 PMCID: PMC5064391 DOI: 10.1038/srep35426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023] Open
Abstract
Among the researches on hepatic fibrosis, great attention was paid to both hepatocytes and extracellular matrix (ECM). However, little focus was drawn on reticular fibrous network, which is important for demarcation and support of hepatocytes. The aim of this study was to investigate the change pattern of reticular fibers in hepatic fibrosis/cirrhosis and its underlying mechanism. In this study, thioacetamide (TAA) and bile duct ligation (BDL) were utilized to induce rat hepatic fibrosis respectively, and Human liver cirrhotic microassay was analyzed with IHC to confirm the results in animal experiment and to detect the metalloproteinases (MMPs) expressions. As a result, the reticular fibers decreased markedly after 1 week in TAA and 1 day in BDL treated rats. Multiple representative regulators of MMPs and MMPs increased significantly in their expressions and activities. Further more, in human liver cirrhotic microassay, MMPs expressions also showed similar patterns as that of animal experiment. In Conclusions: Degradation or collapse of reticular fibers in hepatic sinusoid can be considered as a pathological feature during the initiation and/or progression of hepatic fibrosis. Moreover, such degradation is associated with and probably caused by the over/dysregulated expression of MMPs.
Collapse
Affiliation(s)
- Shi-Lei Wen
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, PR China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shi Feng
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jin-Hang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
- Department of Peptides Related to Human Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lin-hao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Zhao-Ping Yan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, PR China
| |
Collapse
|
26
|
Liu XY, Liu RX, Hou F, Cui LJ, Li CY, Chi C, Yi E, Wen Y, Yin CH. Fibronectin expression is critical for liver fibrogenesis in vivo and in vitro. Mol Med Rep 2016; 14:3669-75. [PMID: 27572112 PMCID: PMC5042748 DOI: 10.3892/mmr.2016.5673] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/02/2016] [Indexed: 01/07/2023] Open
Abstract
Increased fibronectin (FN) expression has an important role during liver fibrosis. The present study examined FN expression in rats subjected to carbon tetrachloride (CCl4)‑induced liver fibrosis. In addition, the potential mechanisms underlying fibrogenesis were investigated by exposing hepatic stellate cells (HSCs) to transforming growth factor‑β (TGF‑β), which is a known inducer of myofibroblastic transformation of HSCs. Briefly, a rat model of liver fibrosis was created by administering intraperitoneal injections of CCl4. Furthermore, HSC‑T6 cells were stimulated with increasing doses of recombinant TGF‑β over 24 h. Hepatic fibrosis gradually increased following CCl4 administration in vivo. Western blotting and immunohistochemistry demonstrated that fibronectin (FN), TGF‑β and α‑smooth muscle actin (SMA) expression was increased following CCl4 injection, and the maximum expression levels were observed at 8 weeks. Once CCl4 treatment had been terminated, the expression levels of FN, TGF‑β and α‑SMA progressively declined to near baseline levels. Western blotting and quantitative polymerase chain reaction demonstrated that FN expression was gradually increased in response to TGF‑β‑stimulation of HSCs; maximum expression was achieved 12 h post‑treatment (P<0.01 vs. the baseline). In conclusion, these findings indicated that FN expression is an early and progressive event that occurs during liver fibrogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Rui-Xia Liu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Fei Hou
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Li-Jian Cui
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Chun-Yun Li
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Cheng Chi
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Entong Yi
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Yan Wen
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Cheng-Hong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
- Correspondence to: Professor Cheng-Hong Yin, Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251 Yaojiayuan Road, Chaoyang, Beijing 100026, P.R. China, E-mail:
| |
Collapse
|
27
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
28
|
TGF-β1 Induces the Dual Regulation of Hepatic Progenitor Cells with Both Anti- and Proliver Fibrosis. Stem Cells Int 2015; 2016:1492694. [PMID: 26839553 PMCID: PMC4709730 DOI: 10.1155/2016/1492694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) plays a central role in hepatic progenitor cells- (HPCs-) mediated liver repair and fibrosis. However, different effects of TGF-β1 on progenitor cells have not been described. In this study, both in vitro (HPCs cocultured with hepatic stellate cells (HSCs) in transwells) and in vivo (CCl4-injured liver fibrosis rat) systems were used to evaluate the impacts. We found that HPCs pretreated with TGF-β1 for 12 hours inhibited the activation of HSCs, while sensitization for 48 hours increased the activation of HSCs. Consistent with these in vitro results, the in vivo fibrosis rat model showed the same time-dependent dual effect of TGF-β1. Regression of liver fibrosis as well as normalization of serum aminotransferase and albumin levels was detected in the rats transplanted with HPCs pretreated with TGF-β1 for 12 hours. In contrast, severe liver fibrosis and elevated collagen-1 levels were detected in the rats transplanted with HPCs pretreated with TGF-β1 for 48 hours. Furthermore, the TGF-β1-pretreated HPCs were shown to deactivate HSCs via enhancing SERPINE1 expression. Inhibition of SERPINE1 reversed the deactivation response in a dose-dependent manner.
Collapse
|
29
|
Lv P, Meng Q, Liu J, Wang C. Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-β1. Yonsei Med J 2015; 56:1572-81. [PMID: 26446639 PMCID: PMC4630045 DOI: 10.3349/ymj.2015.56.6.1572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/08/2014] [Accepted: 12/15/2014] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. MATERIALS AND METHODS Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl₄) three times weekly for 8 weeks. Then CCl₄ was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-smooth muscle actin (α-SMA) protein in the liver, transforming growth factor β1 (TGF-β1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-β1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. RESULTS Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-β1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. CONCLUSION Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-β1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats.
Collapse
Affiliation(s)
- Peng Lv
- Department of Gastroenterology, Jining First People's Hospital, Jining, China.
| | - Qingshun Meng
- Department of Gastroenterology, Jining First People's Hospital, Jining, China
| | - Jie Liu
- Department of Gastroenterology, Jining First People's Hospital, Jining, China
| | - Chuanfang Wang
- Department of Gastroenterology, Jining First People's Hospital, Jining, China
| |
Collapse
|
30
|
Shi F, Sheng Q, Xu X, Huang W, Kang YJ. Zinc supplementation suppresses the progression of bile duct ligation-induced liver fibrosis in mice. Exp Biol Med (Maywood) 2014; 240:1197-204. [PMID: 25432983 DOI: 10.1177/1535370214558026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/27/2014] [Indexed: 02/05/2023] Open
Abstract
Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model, in which the activation of collagenases is involved in the regression of liver fibrosis. MT plays a critical role in zinc sequestration in the liver suggesting its therapeutic effect would be mediated by zinc. The present study was undertaken to test the hypothesis that zinc supplementation suppresses liver fibrosis. Male Kunming mice subjected to bile duct ligation (BDL) resulted in liver fibrosis as assessed by increased α-smooth muscle actin (α-SMA) and collagen I production/deposition in the liver. Zinc supplementation was introduced 4 weeks after BDL surgery via intragastric administration once daily for 2 weeks resulting in a significant reduction in the collagen deposition in the liver and an increase in the survival rate. Furthermore, zinc suppressed gene expression of α-SMA and collagen I and enhanced the capacity of collagen degradation, as determined by the increased activity of total collagenases and elevated mRNA and protein levels of MMP13. Therefore, the results demonstrate that zinc supplementation suppresses BDL-induced liver fibrosis through both inhibiting collagen production and enhancing collagen degradation.
Collapse
Affiliation(s)
- Fang Shi
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Sheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinhua Xu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Huang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Han Y, Onori P, Meng F, DeMorrow S, Venter J, Francis H, Franchitto A, Ray D, Kennedy L, Greene J, Renzi A, Mancinelli R, Gaudio E, Glaser S, Alpini G. Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G894-904. [PMID: 25214401 PMCID: PMC4216989 DOI: 10.1152/ajpgi.00288.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary hyperplasia and liver fibrosis are common features in cholestatic liver disease. Melatonin is synthesized by the pineal gland as well as the liver. Melatonin inhibits biliary hyperplasia of bile duct-ligated (BDL) rats. Since melatonin synthesis (by the enzyme serotonin N-acetyltransferase, AANAT) from the pineal gland increases after dark exposure, we hypothesized that biliary hyperplasia and liver fibrosis are diminished by continuous darkness via increased melatonin synthesis from the pineal gland. Normal or BDL rats (immediately after surgery) were housed with light-dark cycles or complete dark for 1 wk before evaluation of 1) the expression of AANAT in the pineal gland and melatonin levels in pineal gland tissue supernatants and serum; 2) biliary proliferation and intrahepatic bile duct mass, liver histology, and serum chemistry; 3) secretin-stimulated ductal secretion (functional index of biliary growth); 4) collagen deposition, liver fibrosis markers in liver sections, total liver, and cholangiocytes; and 5) expression of clock genes in cholangiocytes. In BDL rats exposed to dark there was 1) enhanced AANAT expression/melatonin secretion in pineal gland and melatonin serum levels; 2) improved liver morphology, serum chemistry and decreased biliary proliferation and secretin-stimulated choleresis; and 4) decreased fibrosis and expression of fibrosis markers in liver sections, total liver and cholangiocytes and reduced biliary expression of the clock genes PER1, BMAL1, CLOCK, and Cry1. Thus prolonged dark exposure may be a beneficial noninvasive therapeutic approach for the management of biliary disorders.
Collapse
Affiliation(s)
- Yuyan Han
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Paolo Onori
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Fanyin Meng
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Sharon DeMorrow
- 2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Julie Venter
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Heather Francis
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Antonio Franchitto
- 5Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy; ,7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Debolina Ray
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Lindsey Kennedy
- 1Research, Central Texas Veterans Health Care System, Temple, Texas;
| | - John Greene
- 6Pathology, Baylor Scott & White, Temple, Texas; and
| | - Anastasia Renzi
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Romina Mancinelli
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Eugenio Gaudio
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Shannon Glaser
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| |
Collapse
|
32
|
Yang JJ, Tao H, Huang C, Li J. Nuclear erythroid 2-related factor 2: a novel potential therapeutic target for liver fibrosis. Food Chem Toxicol 2013; 59:421-7. [PMID: 23793039 DOI: 10.1016/j.fct.2013.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022]
Abstract
Hepatic stellate cells (HSC) are the key fibrogenic cells of the liver. HSC activation is a process of cellular transdifferentiation that occurs upon liver injury, but the mechanisms underlying liver fibrosis are unknown. Nuclear erythroid 2-related factor 2 (Nrf2) is an oxidative stress-mediated transcription factor with a variety of downstream targets aimed at cytoprotection. However, Nrf2 has recently been implicated as a new therapeutic target for the treatment of liver fibrosis. This review focuses on the transcriptional repressors that either control liver injury or regulate specific fibrogenic functions of liver fibrosis. We also show that Nrf2 may reveal significant gene expression changes, suggesting that Nrf2 activation may ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Jing-Jing Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | | | | | | |
Collapse
|