1
|
Dirkx L, Van Acker SI, Nicolaes Y, Cunha JLR, Ahmad R, Hendrickx R, Caljon B, Imamura H, Ebo DG, Jeffares DC, Sterckx YGJ, Maes L, Hendrickx S, Caljon G. Long-term hematopoietic stem cells trigger quiescence in Leishmania parasites. PLoS Pathog 2024; 20:e1012181. [PMID: 38656959 PMCID: PMC11073788 DOI: 10.1371/journal.ppat.1012181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/06/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.
Collapse
Affiliation(s)
- Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara I. Van Acker
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Yasmine Nicolaes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - João Luís Reis Cunha
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Rokaya Ahmad
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore) platform, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Hideo Imamura
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore) platform, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Didier G. Ebo
- Department of Immunology–Allergology–Rheumatology, Faculty of Medicine and Health Science, Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Daniel C. Jeffares
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Bobba S, Howard NC, Das S, Ahmed M, Khan N, Marchante I, Barreiro LB, Sanz J, Divangahi M, Khader SA. Mycobacterium tuberculosis infection drives differential responses in the bone marrow hematopoietic stem and progenitor cells. Infect Immun 2023; 91:e0020123. [PMID: 37754680 PMCID: PMC10580947 DOI: 10.1128/iai.00201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) play a vital role in the host response to infection through the rapid and robust production of mature immune cells. These HSPC responses can be influenced, directly and indirectly, by pathogens as well. Infection with Mycobacterium tuberculosis (Mtb) can drive lymphopoiesis through modulation of type I interferon (IFN) signaling. We have previously found that the presence of a drug resistance (DR)-conferring mutation in Mtb drives altered host-pathogen interactions and heightened type I IFN production in vitro. But the impacts of this DR mutation on in vivo host responses to Mtb infection, particularly the hematopoietic compartment, remain unexplored. Using a mouse model, we show that, while drug-sensitive Mtb infection induces expansion of HSPC subsets and a skew toward lymphopoiesis, DR Mtb infection fails to induce an expansion of these subsets and an accumulation of mature granulocytes in the bone marrow. Using single-cell RNA sequencing, we show that the HSCs from DR Mtb-infected mice fail to upregulate pathways related to cytokine signaling across all profiled HSC subsets. Collectively, our studies report a novel finding of a chronic infection that fails to induce a potent hematopoietic response that can be further investigated to understand pathogen-host interaction at the level of hematopoiesis.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole C. Howard
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Nargis Khan
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Ignacio Marchante
- Department of Theoretical Physics, University of Zaragoza, Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
| | - Luis B. Barreiro
- Department of Medicine, Genetic Section, University of Chicago, Chicago, Illinois, USA
| | - Joaquin Sanz
- Department of Theoretical Physics, University of Zaragoza, Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Shabaana A. Khader
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
González-Escalada A, Rebollo MJ, Barrios Payan J, Hernández-Pando R, García MJ. Detection of Mycobacterial DNA in Human Bone Marrow. Microorganisms 2023; 11:1788. [PMID: 37512960 PMCID: PMC10384717 DOI: 10.3390/microorganisms11071788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Bone marrow is a cell-rich tissue of the reticuloendothelial system essential in the homeostasis and accurate functioning of hematopoiesis and of the immune system; moreover, it is also rich in lipids because it contains marrow adipocytes. This work aimed to evaluate the detection of mycobacterial DNA in human bone marrow as a tool to understand the complex pathology caused by the main pathogen Mycobacterium tuberculosis (Mtb). Formalin-fixed paraffin-embedded human bone marrow samples were studied using both conventional PCR + hybridization and in situ PCR to figure out the cell distribution of the targeted DNA. Samples were retrospectively collected from HIV+ patients with microbiologically proved mycobacterial infection and from subjects without evidence of infection. Mycobacterium avium (Mav) as well as Mtb DNA was detected in both settings, including tissues with and without granulomas. We detected DNA from both mycobacterial species, using in situ PCR, inside bone marrow macrophages. Other cell types, including adipocytes, showed positive signals only for Mtb DNA. This result suggested, for the first time, that marrow adipocytes could constitute an ideal reservoir for the persistence of Mtb, allowing the bacilli to establish long-lasting latent infection within a suitable lipid environment. This fact might differentiate pathogenic behavior of non-specialized pathogens such as Mav from that of specialized pathogens such as Mtb.
Collapse
Affiliation(s)
- Alba González-Escalada
- Facultad de Ciencias de la Salud, Area of Medical Microbiology, Rey Juan Carlos University, 28922 Alcorcon, Spain
| | - María José Rebollo
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonoma University of Madrid, 28029 Madrid, Spain
| | - Jorge Barrios Payan
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City 14080, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City 14080, Mexico
| | - María Jesús García
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonoma University of Madrid, 28029 Madrid, Spain
| |
Collapse
|
4
|
Devi A, Pahuja I, Singh SP, Verma A, Bhattacharya D, Bhaskar A, Dwivedi VP, Das G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell Mol Immunol 2023; 20:600-612. [PMID: 37173422 PMCID: PMC10176304 DOI: 10.1038/s41423-023-01028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play diverse roles ranging from regeneration and wound healing to immune signaling. Recent investigations have indicated the crucial role of these multipotent stem cells in regulating various aspects of the immune system. MSCs express unique signaling molecules and secrete various soluble factors that play critical roles in modulating and shaping immune responses, and in some other cases, MSCs can also exert direct antimicrobial effects, thereby helping with the eradication of invading organisms. Recently, it has been demonstrated that MSCs are recruited at the periphery of the granuloma containing Mycobacterium tuberculosis and exert "Janus"-like functions by harboring pathogens and mediating host protective immune responses. This leads to the establishment of a dynamic balance between the host and the pathogen. MSCs function through various immunomodulatory factors such as nitric oxide (NO), IDO, and immunosuppressive cytokines. Recently, our group has shown that M.tb uses MSCs as a niche to evade host protective immune surveillance mechanisms and establish dormancy. MSCs also express a large number of ABC efflux pumps; therefore, dormant M.tb residing in MSCs are exposed to a suboptimal dose of drugs. Therefore, it is highly likely that drug resistance is coupled with dormancy and originates within MSCs. In this review, we discussed various immunomodulatory properties of MSCs, their interactions with important immune cells, and soluble factors. We also discussed the possible roles of MSCs in the outcome of multiple infections and in shaping the immune system, which may provide insight into therapeutic approaches using these cells in different infection models.
Collapse
Affiliation(s)
- Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Gomes AC, Sousa DM, Oliveira TC, Fonseca Ó, Pinto RJ, Silvério D, Fernandes AI, Moreira AC, Silva T, Teles MJ, Pereira L, Saraiva M, Lamghari M, Gomes MS. Serum amyloid A proteins reduce bone mass during mycobacterial infections. Front Immunol 2023; 14:1168607. [PMID: 37153579 PMCID: PMC10161249 DOI: 10.3389/fimmu.2023.1168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Osteopenia has been associated to several inflammatory conditions, including mycobacterial infections. How mycobacteria cause bone loss remains elusive, but direct bone infection may not be required. Methods Genetically engineered mice and morphometric, transcriptomic, and functional analyses were used. Additionally, inflammatory mediators and bone turnover markers were measured in the serum of healthy controls, individuals with latent tuberculosis and patients with active tuberculosis. Results and discussion We found that infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption, in an IFNγ- and TNFα-dependent manner. IFNγ produced during infection enhanced macrophage TNFα secretion, which in turn increased the production of serum amyloid A (SAA) 3. Saa3 expression was upregulated in the bone of both M. avium- and M. tuberculosis-infected mice and SAA1 and 2 proteins (that share a high homology with murine SAA3 protein) were increased in the serum of patients with active tuberculosis. Furthermore, the increased SAA levels seen in active tuberculosis patients correlated with altered serum bone turnover markers. Additionally, human SAA proteins impaired bone matrix deposition and increased osteoclastogenesis in vitro. Overall, we report a novel crosstalk between the cytokine-SAA network operating in macrophages and bone homeostasis. These findings contribute to a better understanding of the mechanisms of bone loss during infection and open the way to pharmacological intervention. Additionally, our data and disclose SAA proteins as potential biomarkers of bone loss during infection by mycobacteria.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- *Correspondence: Ana Cordeiro Gomes,
| | - Daniela Monteiro Sousa
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Óscar Fonseca
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Mestrado em Bioquímica Clínica, Universidade de Aveiro, , Aveiro, Portugal
| | - Ricardo J. Pinto
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Isabel Fernandes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana C. Moreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tânia Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria José Teles
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CHUSJ – Centro Hospitalar de São João, Porto, Portugal
- EPIUnit, ISPUP - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Luísa Pereira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Salomé Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Dirkx L, Hendrickx S, Merlot M, Bulté D, Starick M, Elst J, Bafica A, Ebo DG, Maes L, Van Weyenbergh J, Caljon G. Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Commun Biol 2022; 5:626. [PMID: 35752645 PMCID: PMC9233693 DOI: 10.1038/s42003-022-03591-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/14/2022] [Indexed: 01/20/2023] Open
Abstract
Given the discontinuation of various first-line drugs for visceral leishmaniasis (VL), large-scale in vivo drug screening, establishment of a relapse model in rodents, immunophenotyping, and transcriptomics were combined to study persistent infections and therapeutic failure. Double bioluminescent/fluorescent Leishmania infantum and L. donovani reporter lines enabled the identification of long-term hematopoietic stem cells (LT-HSC) as a niche in the bone marrow with remarkably high parasite burdens, a feature confirmed for human hematopoietic stem cells (hHSPC). LT-HSC are more tolerant to antileishmanial drug action and serve as source of relapse. A unique transcriptional ’StemLeish’ signature in these cells was defined by upregulated TNF/NF-κB and RGS1/TGF-β/SMAD/SKIL signaling, and a downregulated oxidative burst. Cross-species analyses demonstrated significant overlap with human VL and HIV co-infected blood transcriptomes. In summary, the identification of LT-HSC as a drug- and oxidative stress-resistant niche, undergoing a conserved transcriptional reprogramming underlying Leishmania persistence and treatment failure, may open therapeutic avenues for leishmaniasis. Long-term hematopoietic stem cells may act as protective niches for the Leishmania parasite, potentially contributing to treatment failure in cases of visceral leishmaniasis.
Collapse
Affiliation(s)
- Laura Dirkx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Margot Merlot
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marick Starick
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology, and Transplantation, Rega Institute of Medical Research, KU Leuven, Leuven, Belgium.,Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology Federal University of Santa Catarina, Florianopolis, Brazil
| | - Jessy Elst
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - André Bafica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology Federal University of Santa Catarina, Florianopolis, Brazil
| | - Didier G Ebo
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Weyenbergh
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology, and Transplantation, Rega Institute of Medical Research, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Wijnant GJ, Dumetz F, Dirkx L, Bulté D, Cuypers B, Van Bocxlaer K, Hendrickx S. Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.837460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a tropical infectious disease caused by the protozoan Leishmania parasite. The disease is transmitted by female sand flies and, depending on the infecting parasite species, causes either cutaneous (stigmatizing skin lesions), mucocutaneous (destruction of mucous membranes of nose, mouth and throat) or visceral disease (a potentially fatal infection of liver, spleen and bone marrow). Although more than 1 million new cases occur annually, chemotherapeutic options are limited and their efficacy is jeopardized by increasing treatment failure rates and growing drug resistance. To delay the emergence of resistance to existing and new drugs, elucidating the currently unknown causes of variable drug efficacy (related to parasite susceptibility, host immunity and drug pharmacokinetics) and improved use of genotypic and phenotypic tools to define, measure and monitor resistance in the field are critical. This review highlights recent progress in our understanding of drug action and resistance in Leishmania, ongoing challenges (including setbacks related to the COVID-19 pandemic) and provides an overview of possible strategies to tackle this public health challenge.
Collapse
|
8
|
Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
|
9
|
Roy D, Ehtesham NZ, Hasnain SE. Is Mycobacterium tuberculosis carcinogenic to humans? FASEB J 2021; 35:e21853. [PMID: 34416038 DOI: 10.1096/fj.202001581rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
We highlight the ability of the tuberculosis (TB) causing bacterial pathogen, Mycobacterium tuberculosis (Mtb), to induce key characteristics that are associated with established IARC classified Group 1 and Group 2A carcinogenic agents. There is sufficient evidence from epidemiological case-control, cohort and meta-analysis studies of increased lung cancer (LC) risk in pre-existing/active/old TB cases. Similar to carcinogens and other pathogenic infectious agents, exposure to aerosol-containing Mtb sprays in mice produce malignant transformation of cells that result in squamous cell carcinoma. Convincing, mechanistic data show several characteristics shared between TB and LC which include chronic inflammation, genomic instability and replicative immortality, just to name a few cancer hallmarks. These hallmarks of cancer may serve as precursors to malignant transformation. Together, these findings form the basis of our postulate that Mtb is a complete human pulmonary carcinogen. We also discuss how Mtb may act as both an initiating agent and promoter of tumor growth. Forthcoming experimental studies will not only serve as proof-of-concept but will also pivot our understanding of how to manage/treat TB cases as well as offer solutions to clinical conundrums of TB lesions masquerading as tumors. Clinical validation of our concept may also help pave the way for next generation personalized medicine for the management of pulmonary TB/cancer particularly for cases that are not responding well to conventional chemotherapy or TB drugs.
Collapse
Affiliation(s)
- Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| |
Collapse
|
10
|
Aqdas M, Singh S, Amir M, Maurya SK, Pahari S, Agrewala JN. Cumulative Signaling Through NOD-2 and TLR-4 Eliminates the Mycobacterium Tuberculosis Concealed Inside the Mesenchymal Stem Cells. Front Cell Infect Microbiol 2021; 11:669168. [PMID: 34307192 PMCID: PMC8294323 DOI: 10.3389/fcimb.2021.669168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/21/2021] [Indexed: 01/27/2023] Open
Abstract
For a long time, tuberculosis (TB) has been inflicting mankind with the highest morbidity and mortality. Although the current treatment is extremely potent, a few bacilli can still hide inside the host mesenchymal stem cells (MSC). The functional capabilities of MSCs are known to be modulated by TLRs, NOD-2, and RIG-1 signaling. Therefore, we hypothesize that modulating the MSC activity through TLR-4 and NOD-2 can be an attractive immunotherapeutic strategy to eliminate the Mtb hiding inside these cells. In our current study, we observed that MSC stimulated through TLR-4 and NOD-2 (N2.T4) i) activated MSC and augmented the secretion of pro-inflammatory cytokines; ii) co-localized Mtb in the lysosomes; iii) induced autophagy; iv) enhanced NF-κB activity via p38 MAPK signaling pathway; and v) significantly reduced the intracellular survival of Mtb in the MSC. Overall, the results suggest that the triggering through N2.T4 can be a future method of immunotherapy to eliminate the Mtb concealed inside the MSC.
Collapse
Affiliation(s)
- Mohammad Aqdas
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammed Amir
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sudeep Kumar Maurya
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Susanta Pahari
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed Naim Agrewala
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology, Chandigarh, India.,Immunology Laboratory, Center for Biomedical Engineering, Indian Institute of Technology, Ropar, India
| |
Collapse
|
11
|
Liu M, Wang Z, Ren S, Zhao H. Exosomes derived from mycobacterium tuberculosis-infected MSCs induce a pro-inflammatory response of macrophages. Aging (Albany NY) 2021; 13:11595-11609. [PMID: 33872217 PMCID: PMC8109131 DOI: 10.18632/aging.202854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Tuberculosis (TB) is a common infectious disease caused by Mycobacterium tuberculosis (M.tb), and macrophages serve as the primary natural host of M.tb. Mesenchymal stem cells (MSCs)-derived exosomes play an essential role in inflammatory responses. This study aimed to determine the role of exosomes derived from M.tb-infected MSCs (Exo-MSCs-M.tb) on macrophages in vitro and in vivo and the underlying mechanisms. Here, we demonstrated that M.tb infection promoted the production of Exo-MSCs-M.tb, but did not influence MSCs proliferation. Exo-MSCs-M.tb were taken up by macrophages and then induced the pro-inflammatory response of macrophages through elevating the production of TNF-α, RANTES, and iNOS. Also, pro-inflammatory response induced by Exo-MSCs-M.tb displayed a time-dependent pattern in macrophages, in which the highest level of inflammatory response was observed at 72 hours post-infection of MSCs. In addition, the effect of Exo-MSCs-M.tb was mediated through TLR2/4 and MyD88 signaling pathways. Furthermore, Exo-MSCs-M.tb could induce the pro-inflammatory response in mice in vivo, and exosomes isolated from Exo-MSCs-M.tb-treated mice could also promote the pro-inflammatory response. Taken together, these results indicate that Exo-MSCs-M.tb induced the pro-inflammatory response of macrophages through TLRs signaling. This study provides new insight into the potential of MSCs-derived exosomes for the treatment of TB.
Collapse
Affiliation(s)
- Min Liu
- Jinan People' s Hospital Affiliated to Shandong First Medical University, Laiwu, Shandong Province, China
| | - Zaiguo Wang
- Department of Critical Care Medicine, Penglai Hospital of Traditional Chinese Medicine, Penglai, Shandong Province, China
| | - Shaolei Ren
- Penglai Hospital of Traditional Chinese Medicine, Penglai, Shandong Province, China
| | - Hongli Zhao
- Department of Senile Diseases, Dongying City Shengli Hospital, Dongying, Shandong Province, China
| |
Collapse
|
12
|
Pathak L, Gayan S, Pal B, Talukdar J, Bhuyan S, Sandhya S, Yeger H, Baishya D, Das B. Coronavirus Activates an Altruistic Stem Cell-Mediated Defense Mechanism that Reactivates Dormant Tuberculosis: Implications in Coronavirus Disease 2019 Pandemic. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1255-1268. [PMID: 33887214 PMCID: PMC8054533 DOI: 10.1016/j.ajpath.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
We postulate that similar to bacteria, adult stem cells may also exhibit an altruistic defense mechanism to protect their niche against external threat. Herein, we report mesenchymal stem cell (MSC)–based altruistic defense against a mouse model of coronavirus, murine hepatitis virus-1 (MHV-1) infection of lung. MHV-1 infection led to reprogramming of CD271+ MSCs in the lung to an enhanced stemness phenotype that exhibits altruistic behavior, as per previous work in human embryonic stem cells. The reprogrammed MSCs exhibited transient expansion for 2 weeks, followed by apoptosis and expression of stemness genes. The conditioned media of the reprogrammed MSCs exhibited direct antiviral activity in an in vitro model of MHV-1–induced toxicity to type II alveolar epithelial cells by increasing their survival/proliferation and decreasing viral load. Thus, the reprogrammed MSCs can be identified as altruistic stem cells (ASCs), which exert a unique altruistic defense against MHV-1. In a mouse model of MSC-mediated Mycobacterium tuberculosis (MTB) dormancy, MHV-1 infection in the lung exhibited 20-fold lower viral loads than the MTB-free control mice on the third week of viral infection, and exhibited six-fold increase of ASCs, thereby enhancing the altruistic defense. Notably, these ASCs exhibited intracellular replication of MTB, and their extracellular release. Animals showed tuberculosis reactivation, suggesting that dormant MTB may exploit ASCs for disease reactivation.
Collapse
Affiliation(s)
- Lekhika Pathak
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Sukanya Gayan
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Bidisha Pal
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, Massachusetts
| | - Joyeeta Talukdar
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Seema Bhuyan
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Sorra Sandhya
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Herman Yeger
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Debabrat Baishya
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bikul Das
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, Massachusetts.
| |
Collapse
|
13
|
Pathak L, Das B. Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells. Front Immunol 2021; 11:594572. [PMID: 33584661 PMCID: PMC7873989 DOI: 10.3389/fimmu.2020.594572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative organism of pulmonary tuberculosis (PTB) now infects more than half of the world population. The efficient transmission strategy of the pathogen includes first remaining dormant inside the infected host, next undergoing reactivation to cause post-primary tuberculosis of the lungs (PPTBL) and then transmit via aerosol to the community. In this review, we are exploring recent findings on the role of bone marrow (BM) stem cell niche in Mtb dormancy and reactivation that may underlie the mechanisms of PPTBL development. We suggest that pathogen's interaction with the stem cell niche may be relevant in potential inflammation induced PPTBL reactivation, which need significant research attention for the future development of novel preventive and therapeutic strategies for PPTBL, especially in a post COVID-19 pandemic world. Finally, we put forward potential animal models to study the stem cell basis of Mtb dormancy and reactivation.
Collapse
Affiliation(s)
- Lekhika Pathak
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
- KaviKrishna Telemedicine Care, Sualkuchi, India
| | - Bikul Das
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
- KaviKrishna Telemedicine Care, Sualkuchi, India
- Department of Stem Cell and Infection, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
14
|
Kaur S, Angrish N, Gupta K, Tyagi AK, Khare G. Inhibition of ABCG2 efflux pumps renders the Mycobacterium tuberculosis hiding in mesenchymal stem cells responsive to antibiotic treatment. INFECTION GENETICS AND EVOLUTION 2020; 87:104662. [PMID: 33278633 DOI: 10.1016/j.meegid.2020.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
The lengthy TB chemotherapeutic regimen, resulting in the emergence of drug resistance strains, poses a serious problem in the cure of the disease. Further, one-quarter of the world's population is infected with dormant M.tb, which creates a lifetime risk of reactivation. M.tb has a remarkable tendency to escape the host immune responses by hiding in unconventional niches. Recent studies have shown that bone-marrow mesenchymal stem cells (BM-MSCs) can serve as a reservoir of the pathogen and have been suggested to keep them beyond the reach of anti-TB drugs. In this study, we have shown that M.tb infects and grows inside BM-MSCs and were unresponsive to the anti-TB drugs rifampicin and isoniazid when compared to the pathogen residing inside THP-1 macrophages. It was further shown that the ABCG2 efflux pumps of the BM-MSCs were upregulated upon exposure to rifampicin, which may be the contributing factor for the antibiotic unresponsiveness of the bacteria inside these cells. Subsequently, it was shown that inhibition of ABCG2 efflux pumps along with administration of anti-TB drugs led to an increased susceptibility and consequently an enhanced killing of the M.tb inside BM-MSCs. These findings for the first time show that the MIC99 values of anti-TB drugs increase many folds for the M.tb residing in BM-MSCs as compared to M.tb residing inside macrophages and the involvement of ABCG2 efflux pumps in this phenomenon. Our study substantiates that these BM-MSCs acts as a useful niche for M.tb wherein they can survive by escaping the antibiotic assault that can be attributed to the host ABCG2 efflux pumps. Inhibiting these efflux pumps can be an attractive adjunctive chemotherapy to eliminate the bacteria from this protective niche.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Nupur Angrish
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Kajal Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Anil K Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
15
|
Fatima S, Kamble SS, Dwivedi VP, Bhattacharya D, Kumar S, Ranganathan A, Van Kaer L, Mohanty S, Das G. Mycobacterium tuberculosis programs mesenchymal stem cells to establish dormancy and persistence. J Clin Invest 2020; 130:655-661. [PMID: 31647784 DOI: 10.1172/jci128043] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) remains a major infectious disease worldwide. TB treatment displays a biphasic bacterial clearance, in which the majority of bacteria clear within the first month of treatment, but residual bacteria remain nonresponsive to treatment and eventually may become resistant. Here, we have shown that Mycobacterium tuberculosis was taken up by mesenchymal stem cells (MSCs), where it established dormancy and became highly nonresponsive to isoniazid, a major constituent of directly observed treatment short course (DOTS). Dormant M. tuberculosis induced quiescence in MSCs and promoted their long-term survival. Unlike macrophages, where M. tuberculosis resides in early-phagosomal compartments, in MSCs the majority of bacilli were found in the cytosol, where they promoted rapid lipid synthesis, hiding within lipid droplets. Inhibition of lipid synthesis prevented dormancy and sensitized the organisms to isoniazid. Thus, we have established that M. tuberculosis gains dormancy in MSCs, which serve as a long-term natural reservoir of dormant M. tuberculosis. Interestingly, in the murine model of TB, induction of autophagy eliminated M. tuberculosis from MSCs, and consequently, the addition of rapamycin to an isoniazid treatment regimen successfully attained sterile clearance and prevented disease reactivation.
Collapse
Affiliation(s)
- Samreen Fatima
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Debapriya Bhattacharya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Centre for Biotechnology, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, India
| | - Santosh Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Luc Van Kaer
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sujata Mohanty
- All India Institute of Medical Sciences, New Delhi, India
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Singh VK, Mishra A, Bark S, Mani A, Subbian S, Hunter RL, Jagannath C, Khan A. Human mesenchymal stem cell based intracellular dormancy model of Mycobacterium tuberculosis. Microbes Infect 2020; 22:423-431. [PMID: 32562667 DOI: 10.1016/j.micinf.2020.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/31/2020] [Accepted: 05/31/2020] [Indexed: 11/26/2022]
Abstract
Understanding the biology of the tuberculosis pathogen during dormant asymptomatic infection, called latent tuberculosis is crucial to decipher a resilient therapeutic strategy for the disease. Recent discoveries exhibiting presence of pathogen's DNA and bacilli in mesenchymal stem cells (MSCs) of human and mouse despite completion of antitubercular therapy, indicates that these specific cells could be one of the niches for dormant Mycobacterium tuberculosis in humans. To determine if in vitro infection of human MSCs could recapitulate the in vivo characteristics of dormant M. tuberculosis, we examined survival, phenotype, and drug susceptibility of the pathogen in MSCs. When a very low multiplicity of infection (1:1) was used, M. tuberculosis could survive in human bone marrow derived MSCs for more than 22 days without any growth. At this low level of infection, the pathogen did not cause any noticeable host cell death. During the later phase of infection, MSC-residing M. tuberculosis exhibited increased expression of HspX (a 16-kDa alpha-crystallin homolog) with a concurrent increase in tolerance to the frontline antitubercular drugs Rifampin and isoniazid. These results present a human MSC-based intracelllular model of M. tuberculosis infection to dissect the mechanisms through which the pathogen acquires and maintains dormancy in the host.
Collapse
Affiliation(s)
- Vipul K Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Steven Bark
- Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX, 77004, USA
| | - Arunmani Mani
- Department of Obstetrics, Gynecology & Reproductive Sciences, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, 77030, USA
| | - Selvakumar Subbian
- Department of Medicine, New Jersey Medical School, Public Health Research Institute, Newark, NJ, 07103, USA
| | - Robert L Hunter
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Jain N, Kalam H, Singh L, Sharma V, Kedia S, Das P, Ahuja V, Kumar D. Mesenchymal stem cells offer a drug-tolerant and immune-privileged niche to Mycobacterium tuberculosis. Nat Commun 2020; 11:3062. [PMID: 32546788 PMCID: PMC7297998 DOI: 10.1038/s41467-020-16877-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Anti-tuberculosis (TB) drugs, while being highly potent in vitro, require prolonged treatment to control Mycobacterium tuberculosis (Mtb) infections in vivo. We report here that mesenchymal stem cells (MSCs) shelter Mtb to help tolerate anti-TB drugs. MSCs readily take up Mtb and allow unabated mycobacterial growth despite having a functional innate pathway of phagosome maturation. Unlike macrophage-resident ones, MSC-resident Mtb tolerates anti-TB drugs remarkably well, a phenomenon requiring proteins ABCC1, ABCG2 and vacuolar-type H+ATPases. Additionally, the classic pro-inflammatory cytokines IFNγ and TNFα aid mycobacterial growth within MSCs. Mechanistically, evading drugs and inflammatory cytokines by MSC-resident Mtb is dependent on elevated PGE2 signaling, which we verify in vivo analyzing sorted CD45-Sca1+CD73+-MSCs from lungs of infected mice. Moreover, MSCs are observed in and around human tuberculosis granulomas, harboring Mtb bacilli. We therefore propose, targeting the unique immune-privileged niche, provided by MSCs to Mtb, can have a major impact on tuberculosis prevention and cure.
Collapse
Affiliation(s)
- Neharika Jain
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Haroon Kalam
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lakshyaveer Singh
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vartika Sharma
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110012, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110012, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110012, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
18
|
Preclinical Evidence of Nanomedicine Formulation to Target Mycobacterium tuberculosis at Its Bone Marrow Niche. Pathogens 2020; 9:pathogens9050372. [PMID: 32414000 PMCID: PMC7281663 DOI: 10.3390/pathogens9050372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
One-third of the world’s population is estimated to be latently infected with Mycobacterium tuberculosis (Mtb). Recently, we found that dormant Mtb hides in bone marrow mesenchymal stem cells (BM-MSCs) post-chemotherapy in mice model and in clinical subjects. It is known that residual Mtb post-chemotherapy may be responsible for increased relapse rates. However, strategies for Mtb clearance post-chemotherapy are lacking. In this study, we engineered and formulated novel bone-homing PEGylated liposome nanoparticles (BTL-NPs) which actively targeted the bone microenvironment leading to Mtb clearance. Targeting of BM-resident Mtb was carried out through bone-homing liposomes tagged with alendronate (Ald). BTL characterization using TEM and DLS showed that the size of bone-homing isoniazid (INH) and rifampicin (RIF) BTLs were 100 ± 16.3 nm and 84 ± 18.4 nm, respectively, with the encapsulation efficiency of 69.5% ± 4.2% and 70.6% ± 4.7%. Further characterization of BTLs, displayed by sustained in vitro release patterns, increased in vivo tissue uptake and enhanced internalization of BTLs in RAW cells and CD271+BM-MSCs. The efficacy of isoniazid (INH)- and rifampicin (RIF)-loaded BTLs were shown using a mice model where the relapse rate of the tuberculosis was decreased significantly in targeted versus non-targeted groups. Our findings suggest that BTLs may play an important role in developing a clinical strategy for the clearance of dormant Mtb post-chemotherapy in BM cells.
Collapse
|
19
|
Lérias JR, de Sousa E, Paraschoudi G, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Maia A, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Trained Immunity for Personalized Cancer Immunotherapy: Current Knowledge and Future Opportunities. Front Microbiol 2020; 10:2924. [PMID: 31998254 PMCID: PMC6967396 DOI: 10.3389/fmicb.2019.02924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Memory formation, guided by microbial ligands, has been reported for innate immune cells. Epigenetic imprinting plays an important role herein, involving histone modification after pathogen-/danger-associated molecular patterns (PAMPs/DAMPs) recognition by pattern recognition receptors (PRRs). Such "trained immunity" affects not only the nominal target pathogen, yet also non-related targets that may be encountered later in life. The concept of trained innate immunity warrants further exploration in cancer and how these insights can be implemented in immunotherapeutic approaches. In this review, we discuss our current understanding of innate immune memory and we reference new findings in this field, highlighting the observations of trained immunity in monocytic and natural killer cells. We also provide a brief overview of trained immunity in non-immune cells, such as stromal cells and fibroblasts. Finally, we present possible strategies based on trained innate immunity that may help to devise host-directed immunotherapies focusing on cancer, with possible extension to infectious diseases.
Collapse
Affiliation(s)
- Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Ernest Dodoo
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Antonio Beltrán
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, UCL Hospitals, NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
20
|
Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine 2020; 87:31-36. [DOI: 10.1016/j.jbspin.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
|
21
|
Mayito J, Andia I, Belay M, Jolliffe DA, Kateete DP, Reece ST, Martineau AR. Anatomic and Cellular Niches for Mycobacterium tuberculosis in Latent Tuberculosis Infection. J Infect Dis 2019; 219:685-694. [PMID: 30376080 PMCID: PMC6376907 DOI: 10.1093/infdis/jiy579] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/25/2018] [Indexed: 12/25/2022] Open
Abstract
Latent tuberculosis has been recognized for over a century, but discovery of new niches, where Mycobacterium tuberculosis resides, continues. We evaluated literature on M.tuberculosis locations during latency, highlighting that mesenchymal and hematopoietic stem cells harbor organisms in sensitized asymptomatic individuals.
Collapse
Affiliation(s)
- Jonathan Mayito
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda.,Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Irene Andia
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mulugeta Belay
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - David A Jolliffe
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - David P Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Stephen T Reece
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Adrian R Martineau
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
22
|
Reece ST, Vogelzang A, Tornack J, Bauer W, Zedler U, Schommer-Leitner S, Stingl G, Melchers F, Kaufmann SHE. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice. J Infect Dis 2019; 217:1667-1671. [PMID: 29471332 PMCID: PMC5913604 DOI: 10.1093/infdis/jiy041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/20/2018] [Indexed: 11/23/2022] Open
Abstract
Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective.
Collapse
Affiliation(s)
- Stephen T Reece
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alexis Vogelzang
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Julia Tornack
- Senior Group on Lymphocyte Development, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Austria
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Austria
| | - Fritz Melchers
- Senior Group on Lymphocyte Development, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
23
|
Sousa J, Saraiva M. Paradigm changing evidence that alter tuberculosis perception and detection: Focus on latency. INFECTION GENETICS AND EVOLUTION 2018; 72:78-85. [PMID: 30576838 DOI: 10.1016/j.meegid.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Tuberculosis remains a devastating disease to Mankind, ranking as the ninth cause of death worldwide. Eliminating tuberculosis as proven much more difficult than once anticipated. In addition to the delay in diagnosis and drug resistance problems that compromise the efficacy of treatment, the enormous reservoir of latently infected individuals continuously feeds the epidemics. However, targeting latency with prophylactic antibiotic administration is not possible at the populational level. Together, these issues call for a better understanding of latency, as well as for a more precise identification of individuals at high risk of reactivation. For this, recent paradigm changing evidence need to be taken into account, most notably, the existence of a tuberculosis spectrum; the genetic diversity of both humans and tuberculosis-causing bacteria; and the changes in the human population that interfere with tuberculosis. Here we discuss latency in the light of these variables and how that understanding can move forward tuberculosis research and elimination.
Collapse
Affiliation(s)
- Jeremy Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
24
|
Bhagyaraj E, Tiwari D, Ahuja N, Nanduri R, Saini A, Kalra R, Kumar S, Janmeja AK, Gupta P. A human xenobiotic nuclear receptor contributes to nonresponsiveness of Mycobacterium tuberculosis to the antituberculosis drug rifampicin. J Biol Chem 2018; 293:3747-3757. [PMID: 29358328 DOI: 10.1074/jbc.m117.818377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB). It acquires phenotypic drug resistance inside macrophages, and this resistance mainly arises from host-induced stress. However, whether cellular drug-efflux mechanisms in macrophages contribute to nonresponsiveness of M. tuberculosis to anti-TB drugs is unclear. Here, we report that xenobiotic nuclear receptors mediate TB drug nonresponsiveness by modulating drug-efflux transporters in macrophages. This was evident from expression analysis of drug-efflux transporters in macrophages isolated from TB patients. Among patients harboring rifampicin-susceptible M. tuberculosis, we observed increased intracellular survival of M. tuberculosis upon rifampicin treatment of macrophages isolated from patients not responding to anti-TB drugs compared with macrophages from patients who did respond. Of note, M. tuberculosis infection and rifampicin exposure synergistically modulated macrophage drug-efflux transporters in vitro We also found that the xenobiotic nuclear receptor pregnane X receptor (PXR) modulates macrophage drug-efflux transporter expression and activity, which compromised the anti-TB efficacy of rifampicin. We further validated this finding in a TB mouse model in which use of the PXR antagonist ketoconazole rescued rifampicin anti-TB activity. We conclude that PXR activation in macrophages compromises the efficacy of the anti-TB drug rifampicin. Alternative therapeutic strategies, such as use of the rifampicin derivatives rifapentine and rifabutin, which do not activate PXR, or of a PXR antagonist, may be effective for tackling drug nonresponsiveness of M. tuberculosis that arises from drug-efflux systems of the host.
Collapse
Affiliation(s)
- Ella Bhagyaraj
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Drishti Tiwari
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Nancy Ahuja
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Ravikanth Nanduri
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Ankita Saini
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Rashi Kalra
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Sumit Kumar
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | | | - Pawan Gupta
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| |
Collapse
|
25
|
Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, Benelli G, Arulselvan P, Rajan M, Kumar Subbiah S. Genomic plasticity between human and mycobacterial DNA: A review. Tuberculosis (Edinb) 2017; 107:38-47. [DOI: 10.1016/j.tube.2017.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 01/04/2023]
|
26
|
Khan A, Mann L, Papanna R, Lyu MA, Singh CR, Olson S, Eissa NT, Cirillo J, Das G, Hunter RL, Jagannath C. Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci Rep 2017; 7:15010. [PMID: 29118429 PMCID: PMC5678154 DOI: 10.1038/s41598-017-15290-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) express scavenger receptors that internalize lipids, including oxidized low-density lipoprotein (oxLDL). We report that MSCs phagocytose Mycobacterium tuberculosis (Mtb) through two types of scavenger receptors (SRs; MARCO and SR-B1), as blockade of the receptors with antibodies or siRNA knockdown decreased the uptake of Mtb. MSCs also expressed mannose receptor (MR) that was found to endocytose rhodamine-labeled mannosylated BSA (rMBSA), though the receptor was not involved in the uptake of Mtb. Dil-oxLDL and rMBSA taken up into MSC endosomes colocalized with Mtb phagosomes, thus suggesting that the latter were fusion competent. Phagocytosed Mtb did not replicate within MSCs, thus suggesting an intrinsic control of bacterial growth. Indeed, MSCs exhibited intrinsic autophagy, which was up-regulated after activation with rapamycin. SiRNA knockdown of autophagy initiator beclin-1 enhanced Mtb survival, whereas rapamycin-induced autophagy increased intracellular killing of Mtb. In addition, MSCs secreted nitric oxide after Mtb infection, and inhibition of NO by N(G)-monomethyl-L-arginine enhanced intracellular survival of Mtb. MSCs can be grown in large numbers in vitro, and autologous MSCs transfused into tuberculosis patients have been found to be safe and improve lung immunity. Thus, MSCs are novel phagocytic cells with a potential for immunotherapy in treating multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Arshad Khan
- Dept. of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA
| | - Lovepreet Mann
- Dept. of Obstetrics, Gynecology and Reproductive Sciences, UTHSC-, Houston, USA
| | - Ramesha Papanna
- Dept. of Obstetrics, Gynecology and Reproductive Sciences, UTHSC-, Houston, USA
| | - Mi-Ae Lyu
- Dept. of Obstetrics, Gynecology and Reproductive Sciences, UTHSC-, Houston, USA
| | - Christopher R Singh
- Dept. of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA
| | - Scott Olson
- Dept. of Pediatric Surgery, UTHSC-, Houston, USA
| | - N Tony Eissa
- Dept. of Pulmonary Medicine, Baylor college of Medicine, Houston, TX, USA
| | - Jeffrey Cirillo
- Dept. of Microbial Pathogenesis and Immunology, Center for Airborne Pathogens Research and Imaging, Texas A&M Health Science Center, College of Medicine, Bryan, USA
| | - Gobardhan Das
- Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Robert L Hunter
- Dept. of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA
| | - Chinnaswamy Jagannath
- Dept. of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov 2017; 17:35-56. [PMID: 28935918 PMCID: PMC7097079 DOI: 10.1038/nrd.2017.162] [Citation(s) in RCA: 431] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host-directed therapy (HDT) is a novel approach in the field of anti-infectives for overcoming antimicrobial resistance. HDT aims to interfere with host cell factors that are required by a pathogen for replication or persistence, to enhance protective immune responses against a pathogen, to reduce exacerbated inflammation and to balance immune reactivity at sites of pathology. HDTs encompassing the 'shock and kill' strategy or the delivery of recombinant interferons are possible approaches to treat HIV infections. HDTs that suppress the cytokine storm that is induced by some acute viral infections represent a promising concept. In tuberculosis, HDT aims to enhance the antimicrobial activities of phagocytes through phagosomal maturation, autophagy and antimicrobial peptides. HDTs also curtail inflammation through interference with soluble (such as eicosanoids or cytokines) or cellular (co-stimulatory molecules) factors and modulate granulomas to allow the access of antimicrobials or to restrict tissue damage. Numerous parallels between the immunological abnormalities that occur in sepsis and cancer indicate that the HDTs that are effective in oncology may also hold promise in sepsis. Advances in immune phenotyping, genetic screening and biosignatures will help to guide drug therapy to optimize the host response. Combinations of canonical pathogen-directed drugs and novel HDTs will become indispensable in treating emerging infections and diseases caused by drug-resistant pathogens.
Host-directed therapy (HDT) aims to interfere with host cell factors that are required by a pathogen for replication or persistence. In this Review, Kaufmannet al. describe recent progress in the development of HDTs for the treatment of viral and bacterial infections and the challenges in bringing these approaches to the clinic. Despite the recent increase in the development of antivirals and antibiotics, antimicrobial resistance and the lack of broad-spectrum virus-targeting drugs are still important issues and additional alternative approaches to treat infectious diseases are urgently needed. Host-directed therapy (HDT) is an emerging approach in the field of anti-infectives. The strategy behind HDT is to interfere with host cell factors that are required by a pathogen for replication or persistence, to enhance protective immune responses against a pathogen, to reduce exacerbated inflammation and to balance immune reactivity at sites of pathology. Although HDTs encompassing interferons are well established for the treatment of chronic viral hepatitis, novel strategies aimed at the functional cure of persistent viral infections and the development of broad-spectrum antivirals against emerging viruses seem to be crucial. In chronic bacterial infections, such as tuberculosis, HDT strategies aim to enhance the antimicrobial activities of phagocytes and to curtail inflammation through interference with soluble factors (such as eicosanoids and cytokines) or cellular factors (such as co-stimulatory molecules). This Review describes current progress in the development of HDTs for viral and bacterial infections, including sepsis, and the challenges in bringing these new approaches to the clinic.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Richard S Hotchkiss
- Departments of Anesthesiology, Medicine, and Surgery, Washington University School of Medicine, St Louis, 660 S. Euclid, St Louis, Missouri 63110, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
29
|
Emerging role of mesenchymal stem cells during tuberculosis: The fifth element in cell mediated immunity. Tuberculosis (Edinb) 2016; 101S:S45-S52. [DOI: 10.1016/j.tube.2016.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Lopes CS, Daifalla N, Das B, Dias da Silva V, Campos-Neto A. CD271+ Mesenchymal Stem Cells as a Possible Infectious Niche for Leishmania infantum. PLoS One 2016; 11:e0162927. [PMID: 27622907 PMCID: PMC5021359 DOI: 10.1371/journal.pone.0162927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/28/2016] [Indexed: 12/18/2022] Open
Abstract
Visceral leishmaniasis (VL) is a serious and fatal disease. Therapeutic drugs are toxic and non-sterilizing. The etiological agents Leishmania infantum and Leishmania donovani cause active and asymptomatic diseases. Effective drugs to treat VL exist but unfortunately, post-treatment relapses are common. Little is known why drugs are non-sterilizing or how these intracellular pathogens can escape treatment. Here, using a murine model of VL we found that CD271+/Sca1+ bone marrow mesenchymal stem cells (BM-MSCs) are readily infected in vitro and in vivo by L. infantum. Because BM-MSCs express potent drug efflux pumps, e.g., ABCG2 it is possible that this unique intracellular infectious niche could allow L. infantum to escape anti-parasite drugs.
Collapse
Affiliation(s)
- Carolina S. Lopes
- The Forsyth Institute, Cambridge Massachusetts, United States of America
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University, Uberaba, MG, Brazil
| | - Nada Daifalla
- The Forsyth Institute, Cambridge Massachusetts, United States of America
| | - Bikul Das
- The Forsyth Institute, Cambridge Massachusetts, United States of America
| | - Valdo Dias da Silva
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University, Uberaba, MG, Brazil
| | | |
Collapse
|
31
|
Yang K, Wu Y, Xie H, Li M, Ming S, Li L, Li M, Wu M, Gong S, Huang X. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production. Sci Rep 2016; 6:27326. [PMID: 27251437 PMCID: PMC4890015 DOI: 10.1038/srep27326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/12/2016] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is a hard-to-eradicate intracellular microbe, which escapes host immune attack during latent infection. Recent studies reveal that mesenchymal stem cells (MSCs) provide a protective niche for MTB to maintain latency. However, the regulation of mycobacterial residency in MSCs in the infectious microenvironment remains largely unknown. Here, we found that macrophage-mediated inflammatory response during MTB infection facilitated the clearance of bacilli residing in mouse MSCs. Higher inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production were observed in mouse MSCs under macrophage-mediated inflammatory circumstance. Blocking NO production in MSCs increased the survival of intracellular mycobacteria, indicating NO-mediated antimycobacterial activity. Moreover, both nuclear factor κB (NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways were involved in iNOS expression and NO production in inflammatory microenvironment. Furthermore, pro-inflammatory cytokine interleukin-1β could trigger NO production in MSCs and exert anti-mycobacterial activity via NF-κB signaling pathway. Neutralization of interleukin-1β in macrophage-mediated inflammatory microenvironment dampened the ability of mouse MSCs to produce NO. Together, our findings demonstrated that macrophage-mediated inflammatory response during mycobacterial infection promotes the clearance of bacilli in mouse MSCs by increasing NO production, which may provide a better understanding of latent MTB infection.
Collapse
Affiliation(s)
- Kun Yang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yongjian Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Miao Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Siqi Ming
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Liyan Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Meiyu Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Minhao Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Sitang Gong
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
32
|
Garhyan J, Bhuyan S, Pulu I, Kalita D, Das B, Bhatnagar R. Preclinical and Clinical Evidence of Mycobacterium tuberculosis Persistence in the Hypoxic Niche of Bone Marrow Mesenchymal Stem Cells after Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1924-34. [PMID: 26066709 DOI: 10.1016/j.ajpath.2015.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 01/23/2023]
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of pulmonary tuberculosis, is difficult to eliminate by antibiotic therapy. We recently identified CD271(+) bone marrow-mesenchymal stem cells (BM-MSCs) as a potential site of MTB persistence after therapy. Herein, we have characterized the potential hypoxic localization of the post-therapy MTB-infected CD271(+) BM-MSCs in both mice and human subjects. We first demonstrate that in a Cornell model of MTB persistence in mice, green fluorescent protein-labeled virulent MTB-strain H37Rv was localized to pimonidazole (an in vivo hypoxia marker) positive CD271(+) BM-MSCs after 90 days of isoniazid and pyrazinamide therapy that rendered animal's lung noninfectious. The recovered CD271(+) BM-MSCs from post-therapy mice, when injected into healthy mice, caused active tuberculosis infection in the animal's lung. Moreover, MTB infection significantly increased the hypoxic phenotype of CD271(+) BM-MSCs. Next, in human subjects, previously treated for pulmonary tuberculosis, the MTB-containing CD271(+) BM-MSCs exhibited high expression of hypoxia-inducible factor 1α and low expression of CD146, a hypoxia down-regulated cell surface marker of human BM-MSCs. These data collectively demonstrate the potential localization of MTB harboring CD271(+) BM-MSCs in the hypoxic niche, a critical microenvironmental factor that is well known to induce the MTB dormancy phenotype.
Collapse
Affiliation(s)
- Jaishree Garhyan
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seema Bhuyan
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Ista Pulu
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Deepjyoti Kalita
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Immunity and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts.
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|