1
|
Ye Y, Shetye SS, Birk DE, Soslowsky LJ. Regulatory Role of Collagen XI in the Establishment of Mechanical Properties of Tendons and Ligaments in Mice Is Tissue Dependent. J Biomech Eng 2025; 147:011003. [PMID: 39297758 PMCID: PMC11500803 DOI: 10.1115/1.4066570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Collagen XI is ubiquitous in tissues such as joint cartilage, cancellous bone, muscles, and tendons and is an important contributor during a crucial part in fibrillogenesis. The COL11A1 gene encodes one of three alpha chains of collagen XI. The present study elucidates the role of collagen XI in the establishment of mechanical properties of tendons and ligaments. We investigated the mechanical response of three tendons and one ligament tissues from wild type and a targeted mouse model null for collagen XI: Achilles tendon (ACH), the flexor digitorum longus tendon (FDL), the supraspinatus tendon (SST), and the anterior cruciate ligament (ACL). Area was substantially lower in Col11a1ΔTen/ΔTen ACH, FDL, and SST. Maximum load and maximum stress were significantly lower in Col11a1ΔTen/ΔTen ACH and FDL. Stiffness was lower in Col11a1ΔTen/ΔTen ACH, FDL, and SST. Modulus was reduced in Col11a1ΔTen/ΔTen FDL and SST (both insertion site and midsubstance). Collagen fiber distributions were more aligned under load in both wild type group and Col11a1ΔTen/ΔTen groups. Results also revealed that the effect of collagen XI knockout on collagen fiber realignment is tendon-dependent and location-dependent (insertion versus midsubstance). In summary, this study clearly shows that the regulatory role of collagen XI on tendon and ligament is tissue specific and that joint hypermobility in type II Stickler's Syndrome may in part be due to suboptimal mechanical response of the soft tissues surrounding joints.
Collapse
Affiliation(s)
- Yaping Ye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL 33647
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6081
| |
Collapse
|
2
|
Chandrasekaran P, Alanazi A, Kwok B, Li Q, Viraraghavan G, Balasubramanian S, Frank DB, Lu XL, Birk DE, Mauck RL, Dyment NA, Koyama E, Han L. Type V collagen exhibits distinct regulatory activities in TMJ articular disc versus condylar cartilage during postnatal growth and remodeling. Acta Biomater 2024; 189:192-207. [PMID: 39362448 PMCID: PMC11640222 DOI: 10.1016/j.actbio.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Understanding matrix molecular activities that regulate the postnatal growth and remodeling of the temporomandibular joint (TMJ) articular disc and condylar cartilage will enable the development of effective regenerative strategies targeting TMJ disorders. This study elucidated the distinct roles of type V collagen (collagen V) in regulating these two units. Studying the TMJ of young adult Col5a1+/- mice, we found that loss of collagen V resulted in substantial changes in the proliferation, clustering and density of progenitors in condylar cartilage, but did not have a major impact on disc cells that are more fibroblast-like. Although loss of collagen V led to thickened collagen fibrils with increased heterogeneity in the disc, there were no significant changes in local micromodulus, except for a reduction at the posterior end of the inferior side. Following the induction of aberrant occlusal loading by the unilateral anterior crossbite (UAC) procedure, both wild-type (WT) and Col5a1+/- condylar cartilage exhibited salient remodeling, and Col5a1+/- condyle developed more pronounced degeneration and tissue hypertrophy at the posterior end than the WT. In contrast, neither UAC nor collagen V deficiency induced marked changes in the morphology or biomechanical properties of the disc. Together, our findings highlight the distinct roles of collagen V in regulating these two units during postnatal growth and remodeling, emphasizing its more crucial role in condylar cartilage due to its impact on the highly mechanosensitive progenitors. These results provide the foundation for using collagen V to improve the regeneration of TMJ and the care of patients with TMJ disorders. STATEMENT OF SIGNIFICANCE: Successful regeneration of the temporomandibular joint (TMJ) articular disc and condylar cartilage remains a significant challenge due to the limited understanding of matrix molecular activities that regulate the formation and remodeling of these tissues. This study demonstrates that collagen V plays distinct and critical roles in these processes. In condylar cartilage, collagen V is essential for regulating progenitor cell fate and maintaining matrix integrity. In the disc, collagen V also regulates fibril structure and local micromechanics, but has a limited impact on cell phenotype or its remodeling response. Our findings establish collagen V as a key component in maintaining the integrity of these two units, with a more crucial role in condylar cartilage due to its impact on progenitor cell activities.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Abdulaziz Alanazi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Girish Viraraghavan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
3
|
Meissner C, Bhamla MS, Emrick T, Crosby AJ. Fabricating mesoscale polymer ribbons with tunable mechanical properties via evaporative deposition and dewetting. SOFT MATTER 2024; 20:5324-5330. [PMID: 38853612 DOI: 10.1039/d4sm00368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Synthetic replication of the precise mesoscale control found in natural systems poses substantial experimental challenges due to the need for manipulation across multiple length scales (from nano- to millimeter). We address this challenge by using a 'flow coating' method to fabricate polymer ribbons with precisely tunable dimensions and mechanical properties. Overcoming barriers that previously limited the achievable range of properties with this method, we eliminate the need for substrate patterning and post-processing etching to facilitate the production of high aspect ratio, filament-like ribbons across a range of polymers-from glassy polystyrene to elastomeric poly(butadiene), as well as poly(butadiene-block-styrene). Our method uniquely enables the preservation of chemical fidelity, composition, and dimensions of these ribbons, leveraging polymers with elastic moduli from GPa to tens of MPa to achieve multi-scale features. We demonstrate the role of the elastocapillary length (γ/E) in determining morphological outcomes, revealing the increase in curvature with lower elastic modulus. This finding underscores the intricate relationship among surface tension, elastic modulus, and resultant structural form, enabling control over the morphology of mesoscale ribbons. The soft (MPa) polybutadiene-based ribbons exemplify our method's utility, offering structures with significant extensibility, resilience, and ease of handling, thus expanding the potential for future applications. This work advances our understanding of the fundamental principles governing mesoscale structure formation and unlocks new possibilities for designing soft materials with tailored properties, mirroring the complexity and functionality observed in nature.
Collapse
Affiliation(s)
- Cornelia Meissner
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Conte Center for Polymer Research, 120 Governors Drive, Amherst, MA 01003, USA.
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Conte Center for Polymer Research, 120 Governors Drive, Amherst, MA 01003, USA.
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Conte Center for Polymer Research, 120 Governors Drive, Amherst, MA 01003, USA.
| |
Collapse
|
4
|
Carlson JA, Shetye SS, Sun M, Weiss SN, Birk DE, Soslowsky LJ. Collagen V haploinsufficiency in female murine patellar tendons results in altered matrix engagement and cellular density, demonstrating decreased healing. J Orthop Res 2024; 42:950-960. [PMID: 37975633 PMCID: PMC11009080 DOI: 10.1002/jor.25740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Collagen V (Col5) is a quantitatively minor component of collagen fibrils comprising tendon, however, plays a crucial role in regulation of development and dynamic healing processes. Clinically, patients with COL5a1 haploinsufficiency, known as classic Ehlers-Danlos Syndrome (cEDS), present with hyperextensible skin, joint instability and laxity, with females more likely to be affected. Previous studies in Col5-deficient mice indicated that reduced Col5a1 expression leads to a reduction in stiffness, fibril deposition, and altered fibril structure. Additionally, Col5-deficient male tendons demonstrated altered healing compared to wild-type tendons, however female mice have not yet been studied utilizing this model. Along with clinical differences between sexes in cEDS patient populations, differences in hormone physiology may be a factor influencing tendon health. Therefore, the objective of this study was to utilize a Col5a1+/ - female mouse model, to determine the effect of Col5 on tendon cell morphology, cell density, tissue composition, and mechanical properties throughout healing. We hypothesized that reduction in Col5 expression would result in an abnormal wound matrix post-injury, resulting in reduced mechanical properties compared to normal tendons. Following patellar tendon surgery, mice were euthanized at 1, 3, and 6-week post-injury. Col5-deficient tendons demonstrated altered and decreased healing compared to WT tendons. The lack of resolution in cellularity by 6-week post-injury in Col5-deficient tendons influenced the decreased mechanical properties. Stiffness did not increase post-injury in Col5-deficient mice, and collagen fiber realignment was delayed during mechanical loading. Therefore, increased Col5a1 expression post-injury is necessary to re-establish matrix engagement and cellularity throughout tendon healing.
Collapse
Affiliation(s)
- Jaclyn A Carlson
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mei Sun
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Stephanie N Weiss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David E Birk
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Yuan Z, Zhu X, Dai Y, Shi L, Feng Z, Li Z, Diao N, Guo A, Yin H, Ma L. Analysis of differentially expressed genes in torn rotator cuff tendon tissues in diabetic patients through RNA-sequencing. BMC Musculoskelet Disord 2024; 25:31. [PMID: 38172847 PMCID: PMC10763306 DOI: 10.1186/s12891-023-07149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Rotator cuff tears (RCT) is a common musculoskeletal disorder in the shoulder which cause pain and functional disability. Diabetes mellitus (DM) is characterized by impaired ability of producing or responding to insulin and has been reported to act as a risk factor of the progression of rotator cuff tendinopathy and tear. Long non-coding RNAs (lncRNAs) are involved in the development of various diseases, but little is known about their potential roles involved in RCT of diabetic patients. METHODS RNA-Sequencing (RNA-Seq) was used in this study to profile differentially expressed lncRNAs and mRNAs in RCT samples between 3 diabetic and 3 nondiabetic patients. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed to annotate the function of the differentially expressed genes (DEGs). LncRNA-mRNA co-expression network and competing endogenous RNA (ceRNA) network were constructed to elucidate the potential molecular mechanisms of DM affecting RCT. RESULTS In total, 505 lncRNAs and 388 mRNAs were detected to be differentially expressed in RCT samples between diabetic and nondiabetic patients. GO functional analysis indicated that related lncRNAs and mRNAs were involved in metabolic process, immune system process and others. KEGG pathway analysis indicated that related mRNAs were involved in ferroptosis, PI3K-Akt signaling pathway, Wnt signaling pathway, JAK-STAT signaling pathway and IL-17 signaling pathway and others. LncRNA-mRNA co-expression network was constructed, and ceRNA network showed the interaction of differentially expressed RNAs, comprising 5 lncRNAs, 2 mRNAs, and 142 miRNAs. TF regulation analysis revealed that STAT affected the progression of RCT by regulating the apoptosis pathway in diabetic patients. CONCLUSIONS We preliminarily dissected the differential expression profile of lncRNAs and mRNAs in torn rotator cuff tendon between diabetic and nondiabetic patients. And the bioinformatic analysis suggested some important RNAs and signaling pathways regarding inflammation and apoptosis were involved in diabetic RCT. Our findings offer a new perspective on the association between DM and progression of RCT.
Collapse
Affiliation(s)
- Ziyang Yuan
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Xu Zhu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
- Department of Orthopaedics, Beijing Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Yike Dai
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Lin Shi
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ziyang Feng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhiyao Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Naicheng Diao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
6
|
Ouyang Z, Dong L, Yao F, Wang K, Chen Y, Li S, Zhou R, Zhao Y, Hu W. Cartilage-Related Collagens in Osteoarthritis and Rheumatoid Arthritis: From Pathogenesis to Therapeutics. Int J Mol Sci 2023; 24:9841. [PMID: 37372989 DOI: 10.3390/ijms24129841] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. The degradation of collagen can generate new biochemical markers with the ability to monitor disease progression and facilitate drug development. In addition, collagen can also be used as a biomaterial with excellent properties such as low immunogenicity, biodegradability, biocompatibility, and hydrophilicity. This review not only provides a systematic description of collagen and analyzes the structural characteristics of articular cartilage and the mechanisms of cartilage damage in disease states but also provides a detailed characterization of the biomarkers of collagen production and the role of collagen in cartilage repair, providing ideas and techniques for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| |
Collapse
|
7
|
Lipp SN, Jacobson KR, Schwaderer AL, Hains DS, Calve S. FOXD1 is required for 3D patterning of the kidney interstitial matrix. Dev Dyn 2023; 252:463-482. [PMID: 36335435 DOI: 10.1002/dvdy.545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The interstitial extracellular matrix (ECM) is comprised of proteins and glycosaminoglycans and provides structural and biochemical information during development. Our previous work revealed the presence of transient ECM-based structures in the interstitial matrix of developing kidneys. Stromal cells are the main contributors to interstitial ECM synthesis, and the transcription factor Forkhead Box D1 (Foxd1) is critical for stromal cell function. To investigate the role of Foxd1 in interstitial ECM patterning, we combined 3D imaging and proteomics to explore how the matrix changes in the murine developing kidney when Foxd1 is knocked out. RESULTS We found that COL26A1, FBN2, EMILIN1, and TNC, interstitial ECM proteins that are transiently upregulated during development, had a similar distribution perinatally but then diverged in patterning in the adult. Abnormally clustered cortical vertical fibers and fused glomeruli were observed when Foxd1 was knocked out. The changes in the interstitial ECM of Foxd1 knockout kidneys corresponded to disrupted Foxd1+ cell patterning but did not precede branching dysmorphogenesis. CONCLUSIONS The transient ECM networks affected by Foxd1 knockout may provide support for later-stage nephrogenic structures.
Collapse
Affiliation(s)
- Sarah N Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- The Indiana University Medical Scientist/Engineer Training Program, Indianapolis, Indiana, USA
| | - Kathryn R Jacobson
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, USA
| | - Andrew L Schwaderer
- Department of Pediatrics, Indiana University School of Medicine, Riley Children's Hospital, Indianapolis, Indiana, USA
| | - David S Hains
- Department of Pediatrics, Indiana University School of Medicine, Riley Children's Hospital, Indianapolis, Indiana, USA
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, USA
- Department of Mechanical Engineering, University of Colorado--Boulder, Boulder, Colorado, USA
| |
Collapse
|
8
|
Di Martino A, Cescon M, D’Agostino C, Schilardi F, Sabatelli P, Merlini L, Faldini C. Collagen VI in the Musculoskeletal System. Int J Mol Sci 2023; 24:5095. [PMID: 36982167 PMCID: PMC10049728 DOI: 10.3390/ijms24065095] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Collagen VI exerts several functions in the tissues in which it is expressed, including mechanical roles, cytoprotective functions with the inhibition of apoptosis and oxidative damage, and the promotion of tumor growth and progression by the regulation of cell differentiation and autophagic mechanisms. Mutations in the genes encoding collagen VI main chains, COL6A1, COL6A2 and COL6A3, are responsible for a spectrum of congenital muscular disorders, namely Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM), which show a variable combination of muscle wasting and weakness, joint contractures, distal laxity, and respiratory compromise. No effective therapeutic strategy is available so far for these diseases; moreover, the effects of collagen VI mutations on other tissues is poorly investigated. The aim of this review is to outline the role of collagen VI in the musculoskeletal system and to give an update about the tissue-specific functions revealed by studies on animal models and from patients' derived samples in order to fill the knowledge gap between scientists and the clinicians who daily manage patients affected by collagen VI-related myopathies.
Collapse
Affiliation(s)
- Alberto Di Martino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Claudio D’Agostino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Francesco Schilardi
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Cesare Faldini
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
9
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
10
|
Leiphart RJ, Weiss SN, DiStefano MS, Mavridis AA, Adams SA, Dyment NA, Soslowsky LJ. Collagen V deficiency during murine tendon healing results in distinct healing outcomes based on knockdown severity. J Biomech 2022; 144:111315. [PMID: 36201909 PMCID: PMC10108665 DOI: 10.1016/j.jbiomech.2022.111315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Tendon function is dependent on proper organization and maintenance of the collagen I tissue matrix. Collagen V is a critical regulator of collagen I fibrils, and while prior studies have shown a negative impact of collagen V deficiency on tendon healing outcomes, these studies are confounded by collagen V deficiency through tendon development. The specific role of collagen V in regulating healing tendon properties is therefore unknown. By using inducible Col5a1 knockdown models and analyzing gene expression, fibril and histological tendon morphology, and tendon mechanical properties, this study defines the isolated role of collagen V through tendon healing. Patellar tendon injury caused large changes in tendon gene expression, and Col5a1 knockdown resulted in dysregulated expression of several genes through tendon healing. Col5a1 knockdown also impacted collagen fibril size and shape without observable changes in scar tissue formation. Surprisingly, heterozygous Col5a1 knockdown resulted in improved stiffness of healing tendons that was not observed with homozygous Col5a1 knockdown. Together, these results present an unexpected and dynamic role of collagen V deficiency on tendon healing outcomes following injury. This work suggests a model of tendon healing in which quasi-static mechanics may be improved through titration of collagen fibril size and shape with modulation of collagen V expression and activity.
Collapse
Affiliation(s)
- R J Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S N Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M S DiStefano
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A A Mavridis
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S A Adams
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - N A Dyment
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - L J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Janvier AJ, Pendleton EG, Mortensen LJ, Green DC, Henstock JR, Canty-Laird EG. Multimodal analysis of the differential effects of cyclic strain on collagen isoform composition, fibril architecture and biomechanics of tissue engineered tendon. J Tissue Eng 2022; 13:20417314221130486. [PMID: 36339372 PMCID: PMC9629721 DOI: 10.1177/20417314221130486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022] Open
Abstract
Tendon is predominantly composed of aligned type I collagen, but additional isoforms are known to influence fibril architecture and maturation, which contribute to the tendon’s overall biomechanical performance. The role of the less well-studied collagen isoforms on fibrillogenesis in tissue engineered tendons is currently unknown, and correlating their relative abundance with biomechanical changes in response to cyclic strain is a promising method for characterising optimised bioengineered tendon grafts. In this study, human mesenchymal stem cells (MSCs) were cultured in a fibrin scaffold with 3%, 5% or 10% cyclic strain at 0.5 Hz for 3 weeks, and a comprehensive multimodal analysis comprising qPCR, western blotting, histology, mechanical testing, fluorescent probe CLSM, TEM and label-free second-harmonic imaging was performed. Molecular data indicated complex transcriptional and translational regulation of collagen isoforms I, II, III, V XI, XII and XIV in response to cyclic strain. Isoforms (XII and XIV) associated with embryonic tenogenesis were deposited in the formation of neo-tendons from hMSCs, suggesting that these engineered tendons form through some recapitulation of a developmental pathway. Tendons cultured with 3% strain had the smallest median fibril diameter but highest resistance to stress, whilst at 10% strain tendons had the highest median fibril diameter and the highest rate of stress relaxation. Second harmonic generation exposed distinct structural arrangements of collagen fibres in each strain group. Fluorescent probe images correlated increasing cyclic strain with increased fibril alignment from 40% (static strain) to 61.5% alignment (10% cyclic strain). These results indicate that cyclic strain rates stimulate differential cell responses via complex regulation of collagen isoforms which influence the structural organisation of developing fibril architectures.
Collapse
Affiliation(s)
- Adam J Janvier
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Emily G Pendleton
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Luke J Mortensen
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Daniel C Green
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - James R Henstock
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK,Elizabeth G Canty-Laird, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Fung A, Sun M, Soslowsky LJ, Birk DE. Targeted conditional collagen XII deletion alters tendon function. Matrix Biol Plus 2022; 16:100123. [PMID: 36311462 PMCID: PMC9597098 DOI: 10.1016/j.mbplus.2022.100123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Collagen XII is a fibril-associated collagen with interrupted triple helices (FACIT). This non-fibrillar collagen is a homotrimer composed of three α1(XII) chains assembled into a collagenous molecule with a C terminal collagenous domain and a large N terminal non-collagenous domain. During tendon development and growth, collagen XII is broadly expressed throughout the extracellular matrix and enriched pericellularly around tenocytes. Tendons in a global Col12a1 -/- knockout model demonstrated disrupted fibril and fiber structure and disordered tenocyte organization, highlighting the critical regulatory roles of collagen XII in determining tendon structure and function. However, muscle and bone also are affected in the collagen XII knockout model. Therefore, secondary effects on tendon due to involvement of bone and muscle may occur in the global knockout. The global knockout does not allow the definition of intrinsic mechanisms involving collagen XII in tendon versus extrinsic roles involving muscle and bone. To address this limitation, we created and characterized a conditional Col12a1-null mouse model to permit the spatial and temporal manipulation of Col12a1 expression. Collagen XII knockout was targeted to tendons by breeding conditional Col12a1 flox/flox mice with Scleraxis-Cre (Scx-Cre) mice to yield a tendon-specific Col12a1-null mouse line, Col12a1 Δten/Δten . Both mRNA and protein expression in Col12a1 Δten/Δten mice decreased to near baseline levels in flexor digitorum longus tendons (FDL). Collagen XII immuno-localization revealed an absence of reactivity in the tendon proper, but there was reactivity in the cells of the surrounding peritenon. This supports a targeted knockout in tenocytes while peritenon cells from a non-tendon lineage were not targeted and retained collagen XII expression. The tendon-targeted, Col12a1 Δten/Δten mice had significantly reduced forelimb grip strength, altered gait and a significant decrease in biomechanical properties. While the observed decrease in tendon modulus suggests that differences in tendon material properties in the absence of Col12a1 expression underlie the functional deficiencies. Together, these findings suggest an intrinsic role for collagen XII critical for development of a functional tendon.
Collapse
Affiliation(s)
- Ashley Fung
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Mei Sun
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Louis J. Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - David E. Birk
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
- Corresponding author at: Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Raymond-Hayling H, Lu Y, Kadler KE, Shearer T. A fibre tracking algorithm for volumetric microstructural data - application to tendons. Acta Biomater 2022. [DOI: 10.1016/j.actbio.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
14
|
Ramos-Mucci L, Elsheikh A, Keenan C, Eliasy A, D'Aout K, Bou-Gharios G, Comerford E, Poulet B. The anterior cruciate ligament in murine post-traumatic osteoarthritis: markers and mechanics. Arthritis Res Ther 2022; 24:128. [PMID: 35637500 PMCID: PMC9150328 DOI: 10.1186/s13075-022-02798-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Knee joint injuries, common in athletes, have a high risk of developing post-traumatic osteoarthritis (PTOA). Ligaments, matrix-rich connective tissues, play important mechanical functions stabilising the knee joint, and yet their role post-trauma is not understood. Recent studies have shown that ligament extracellular matrix structure is compromised in the early stages of spontaneous osteoarthritis (OA) and PTOA, but it remains unclear how ligament matrix pathology affects ligament mechanical function. In this study, we aim to investigate both structural and mechanical changes in the anterior cruciate ligament (ACL) in a mouse model of knee trauma. Methods Knee joints were analysed following non-invasive mechanical loading in male C57BL/6 J mice (10-week-old). Knee joints were analysed for joint space mineralisation to evaluate OA progression, and the ACLs were assessed with histology and mechanical testing. Results Joints with PTOA had a 33–46% increase in joint space mineralisation, indicating OA progression. Post-trauma ACLs exhibited extracellular matrix modifications, including COL2 and proteoglycan deposition. Additional changes included cells expressing chondrogenic markers (SOX9 and RUNX2) expanding from the ACL tibial enthesis to the mid-substance. Viscoelastic and mechanical changes in the ACLs from post-trauma knee joints included a 20–21% decrease in tangent modulus at 2 MPa of stress, a decrease in strain rate sensitivity at higher strain rates and an increase in relaxation during stress-relaxation, but no changes to hysteresis and ultimate load to failure were observed. Conclusions These results demonstrate that ACL pathology and viscoelastic function are compromised in the post-trauma knee joint and reveal an important role of viscoelastic mechanical properties for ligament and potentially knee joint health. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02798-7.
Collapse
Affiliation(s)
- Lorenzo Ramos-Mucci
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Craig Keenan
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK.,Faculty of Health, Social Care and Medicine, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4QP, UK
| | - Ashkan Eliasy
- School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK
| | - Kristiaan D'Aout
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK
| | - Eithne Comerford
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK.,School of Veterinary Science, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Rd, Neston, CH64 7TE, UK
| | - Blandine Poulet
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK.
| |
Collapse
|
15
|
Rampin A, Skoufos I, Raghunath M, Tzora A, Diakakis N, Prassinos N, Zeugolis DI. Allogeneic Serum and Macromolecular Crowding Maintain Native Equine Tenocyte Function in Culture. Cells 2022; 11:1562. [PMID: 35563866 PMCID: PMC9103545 DOI: 10.3390/cells11091562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
The absence of a native extracellular matrix and the use of xenogeneic sera are often associated with rapid tenocyte function losses during in vitro culture. Herein, we assessed the influence of different sera (equine serum and foetal bovine serum) on equine tenocyte morphology, viability, metabolic activity, proliferation and protein synthesis as a function of tissue-specific extracellular matrix deposition (induced via macromolecular crowding), aging (passages 3, 6, 9) and time in culture (days 3, 5, 7). In comparison to cells at passage 3, at day 3, in foetal bovine serum and without macromolecular crowding (traditional equine tenocyte culture), the highest number of significantly decreased readouts were observed for cells in foetal bovine serum, at passage 3, at day 5 and day 7 and without macromolecular crowding. Again, in comparison to traditional equine tenocyte culture, the highest number of significantly increased readouts were observed for cells in equine serum, at passage 3 and passage 6, at day 7 and with macromolecular crowding. Our data advocate the use of an allogeneic serum and tissue-specific extracellular matrix for effective expansion of equine tenocytes.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research, School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research, School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
16
|
Machol K, Polak U, Weisz-Hubshman M, Song IW, Chen S, Jiang MM, Chen-Evenson Y, Weis MAE, Keene DR, Eyre DR, Lee BH. Molecular alterations due to Col5a1 haploinsufficiency in a mouse model of classic Ehlers-Danlos syndrome. Hum Mol Genet 2022; 31:1325-1335. [PMID: 34740257 PMCID: PMC9029232 DOI: 10.1093/hmg/ddab323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023] Open
Abstract
Type V collagen is a regulatory fibrillar collagen essential for type I collagen fibril nucleation and organization and its deficiency leads to structurally abnormal extracellular matrix (ECM). Haploinsufficiency of the Col5a1 gene encoding α(1) chain of type V collagen is the primary cause of classic Ehlers-Danlos syndrome (EDS). The mechanisms by which this initial insult leads to the spectrum of clinical presentation are not fully understood. Using transcriptome analysis of skin and Achilles tendons from Col5a1 haploinsufficient (Col5a1+/-) mice, we recognized molecular alterations associated with the tissue phenotypes. We identified dysregulation of ECM components including thrombospondin-1, lysyl oxidase, and lumican in the skin of Col5a1+/- mice when compared with control. We also identified upregulation of transforming growth factor β1 (Tgf-β) in serum and increased expression of pSmad2 in skin from Col5a1+/- mice, suggesting Tgf-β dysregulation is a contributor to abnormal wound healing and atrophic scarring seen in classic EDS. Together, these findings support altered matrix to cell signaling as a component of the pathogenesis of the tissue phenotype in classic EDS and point out potential downstream signaling pathways that may be targeted for the treatment of this disease.
Collapse
Affiliation(s)
- Keren Machol
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Urszula Polak
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen-Evenson
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Mary Ann E Weis
- Department of Orthopedics and Sports Medicine, University of Washington Seattle, WA 98195, USA
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR 97239, USA
| | - David R Eyre
- Department of Orthopedics and Sports Medicine, University of Washington Seattle, WA 98195, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
18
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
19
|
Chandrasekaran P, Kwok B, Han B, Adams SM, Wang C, Chery DR, Mauck RL, Dyment NA, Lu XL, Frank DB, Koyama E, Birk DE, Han L. Type V Collagen Regulates the Structure and Biomechanics of TMJ Condylar Cartilage: A Fibrous-Hyaline Hybrid. Matrix Biol 2021; 102:1-19. [PMID: 34314838 DOI: 10.1016/j.matbio.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
This study queried the role of type V collagen in the post-natal growth of temporomandibular joint (TMJ) condylar cartilage, a hybrid tissue with a fibrocartilage layer covering a secondary hyaline cartilage layer. Integrating outcomes from histology, immunofluorescence imaging, electron microscopy and atomic force microscopy-based nanomechanical tests, we elucidated the impact of type V collagen reduction on TMJ condylar cartilage growth in the type V collagen haploinsufficiency and inducible knockout mice. Reduction of type V collagen led to significantly thickened collagen fibrils, decreased tissue modulus, reduced cell density and aberrant cell clustering in both the fibrous and hyaline layers. Post-natal growth of condylar cartilage involves the chondrogenesis of progenitor cells residing in the fibrous layer, which gives rise to the secondary hyaline layer. Loss of type V collagen resulted in reduced proliferation of these cells, suggesting a possible role of type V collagen in mediating the progenitor cell niche. When the knockout of type V collagen was induced in post-weaning mice after the start of physiologic TMJ loading, the hyaline layer exhibited pronounced thinning, supporting an interplay between type V collagen and occlusal loading in condylar cartilage growth. The phenotype in hyaline layer can thus be attributed to the impact of type V collagen on the mechanically regulated progenitor cell activities. In contrast, knee cartilage does not contain the progenitor cell population at post-natal stages, and develops normal structure and biomechanical properties with the loss of type V collagen. Therefore, in the TMJ, in addition to its established role in regulating the assembly of collagen I fibrils, type V collagen also impacts the mechanoregulation of progenitor cell activities in the fibrous layer. We expect such knowledge to establish a foundation for understanding condylar cartilage matrix development and regeneration, and to yield new insights into the TMJ symptoms in patients with classic Ehlers-Danlos syndrome, a genetic disease due to autosomal mutation of type V collagen.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
20
|
A microstructural model of tendon failure. J Mech Behav Biomed Mater 2021; 122:104665. [PMID: 34311323 DOI: 10.1016/j.jmbbm.2021.104665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Collagen fibrils are the most important structural component of tendons. Their crimped structure and parallel arrangement within the tendon lead to a distinctive non-linear stress-strain curve when a tendon is stretched. Microstructural models can be used to relate microscale collagen fibril mechanics to macroscale tendon mechanics, allowing us to identify the mechanisms behind each feature present in the stress-strain curve. Most models in the literature focus on the elastic behaviour of the tendon, and there are few which model beyond the elastic limit without introducing phenomenological parameters. We develop a model, built upon a collagen recruitment approach, that only contains microstructural parameters. We split the stress in the fibrils into elastic and plastic parts, and assume that the fibril yield stretch and rupture stretch are each described by a distribution function, rather than being single-valued. By changing the shapes of the distributions and their regions of overlap, we can produce macroscale tendon stress-strain curves that generate the full range of features observed experimentally, including those that could not be explained using existing models. These features include second linear regions occurring after the tendon has yielded, and step-like failure behaviour present after the stress has peaked. When we compare with an existing model, we find that our model reduces the average root mean squared error from 4.53MPa to 2.29MPa, and the resulting parameter values are closer to those found experimentally. Since our model contains only parameters that have a direct physical interpretation, it can be used to predict how processes such as ageing, disease, and injury affect the mechanical behaviour of tendons, provided we can quantify the effects of these processes on the microstructure.
Collapse
|
21
|
Li H, Liu S, Wu S, Li L, Ge R, Cheng CY. Bioactive fragments of laminin and collagen chains: lesson from the testis. Reproduction 2021; 159:R111-R123. [PMID: 31581125 DOI: 10.1530/rep-19-0288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that the testis is producing several biologically active peptides, namely the F5- and the NC1-peptides from laminin-γ3 and collagen α3 (IV) chain, respectively, that promotes blood-testis barrier (BTB) remodeling and also elongated spermatid release at spermiation. Also the LG3/4/5 peptide from laminin-α2 chain promotes BTB integrity which is likely being used for the assembly of a 'new' BTB behind preleptotene spermatocytes under transport at the immunological barrier. These findings thus provide a new opportunity for investigators to better understand the biology of spermatogenesis. Herein, we briefly summarize the recent findings and provide a critical update. We also present a hypothetical model which could serve as the framework for studies in the years to come.
Collapse
Affiliation(s)
- Huitao Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Shiwen Liu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
22
|
Pain-related behaviors and abnormal cutaneous innervation in a murine model of classical Ehlers-Danlos syndrome. Pain 2021; 161:2274-2283. [PMID: 32483055 DOI: 10.1097/j.pain.0000000000001935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Classical Ehlers-Danlos syndrome (cEDS) is a connective tissue disorder caused by heterozygous mutations in one of the type V collagen-encoding genes, COL5A1 or COL5A2. cEDS is characterized by generalized joint hypermobility and instability, hyperextensible, fragile skin, and delayed wound healing. Chronic pain is a major problem in cEDS patients, but the underlying mechanisms are largely unknown, and studies in animal models are lacking. Therefore, we assessed pain-related behaviors in haploinsufficient Col5a1 mice, which clinically mimic human cEDS. Compared to wild-type (WT) littermates, 15 to 20-week-old Col5a1 mice of both sexes showed significant hypersensitivity to mechanical stimuli in the hind paws and the abdominal area, but responses to thermal stimuli were unaltered. Spontaneous behaviors, including distance travelled and rearing, were grossly normal in male Col5a1 mice, whereas female Col5a1 mice showed altered climbing behavior. Finally, male and female Col5a1 mice vocalized more than WT littermates when scruffed. Decreased grip strength was also noted. In view of the observed pain phenotype, Col5a1 mice were crossed with NaV1.8-tdTomato reporter mice, enabling visualization of nociceptors in the glabrous skin of the footpad. We observed a significant decrease in intraepidermal nerve fiber density, with fewer nerves crossing the epidermis, and a decreased total nerve length of Col5a1 mice compared to WT. In summary, male and female Col5a1 mice show hypersensitivity to mechanical stimuli, indicative of generalized sensitization of the nervous system, in conjunction with an aberrant organization of cutaneous nociceptors. Therefore, Col5a1 mice will provide a useful tool to study mechanisms of pain associated with cEDS.
Collapse
|
23
|
Gensemer C, Burks R, Kautz S, Judge DP, Lavallee M, Norris RA. Hypermobile Ehlers-Danlos syndromes: Complex phenotypes, challenging diagnoses, and poorly understood causes. Dev Dyn 2021; 250:318-344. [PMID: 32629534 PMCID: PMC7785693 DOI: 10.1002/dvdy.220] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of heritable, connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. There is phenotypic and genetic variation among the 13 subtypes. The initial genetic findings on EDS were related to alterations in fibrillar collagen, but the elucidation of the molecular basis of many of the subtypes revealed several genes not involved in collagen biosynthesis or structure. However, the genetic basis of the hypermobile type of EDS (hEDS) is still unknown. hEDS is the most common type of EDS and involves generalized joint hypermobility, musculoskeletal manifestations, and mild skin involvement along with the presence of several comorbid conditions. Variability in the spectrum and severity of symptoms and progression of patient phenotype likely depend on age, gender, lifestyle, and expression domains of the EDS genes during development and postnatal life. In this review, we summarize the current molecular, genetic, epidemiologic, and pathogenetic findings related to EDS with a focus on the hypermobile type.
Collapse
Affiliation(s)
- Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Randall Burks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel P. Judge
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | - Mark Lavallee
- Department of Family Medicine, Wellspan Health, York, Pennsylvania
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
24
|
Izu Y, Adams SM, Connizzo BK, Beason DP, Soslowsky LJ, Koch M, Birk DE. Collagen XII mediated cellular and extracellular mechanisms regulate establishment of tendon structure and function. Matrix Biol 2021; 95:52-67. [PMID: 33096204 PMCID: PMC7870578 DOI: 10.1016/j.matbio.2020.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022]
Abstract
Tendons have a uniaxially aligned structure with a hierarchical organization of collagen fibrils crucial for tendon function. Collagen XII is expressed in tendons and has been implicated in the regulation of fibrillogenesis. It is a non-fibrillar collagen belonging to the Fibril-Associated Collagens with Interrupted Triple Helices (FACIT) family. Mutations in COL12A1 cause myopathic Ehlers Danlos Syndrome with a clinical phenotype involving both joints and tendons supporting critical role(s) for collagen XII in tendon development and function. Here we demonstrate the molecular function of collagen XII during tendon development using a Col12a1 null mouse model. Col12a1 deficiency altered tenocyte shape, formation of interacting cell processes, and organization resulting in impaired cell-cell communication and disruption of hierarchal structure as well as decreased tissue stiffness. Immuno-localization revealed that collagen XII accumulated on the tenocyte surface and connected adjacent tenocytes by building matrix bridges between the cells, suggesting that collagen XII regulates intercellular communication. In addition, there was a decrease in fibrillar collagen I in collagen XII deficient tenocyte cultures compared with controls suggesting collagen XII signaling specifically alters tenocyte biosynthesis. This suggests that collagen XII provides feedback to tenocytes regulating extracellular collagen I. Together, the data indicate dual roles for collagen XII in determination of tendon structure and function. Through association with fibrils it functions in fibril packing, fiber assembly and stability. In addition, collagen XII influences tenocyte organization required for assembly of higher order structure; intercellular communication necessary to coordinate long range order and feedback on tenocytes influencing collagen synthesis. Integration of both regulatory roles is required for the acquisition of hierarchal structure and mechanical properties.
Collapse
Affiliation(s)
- Yayoi Izu
- College of Medicine, University of South Florida, Morsani, Tampa, FL, United States; Okayama University of Science, Ehime, Japan.
| | - Sheila M Adams
- College of Medicine, University of South Florida, Morsani, Tampa, FL, United States
| | - Brianne K Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, United States
| | - David P Beason
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, United States
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, United States
| | - Manuel Koch
- Institute for Oral and Musculoskeletal Biology, Center for Biochemistry, Department of Dermatology, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - David E Birk
- College of Medicine, University of South Florida, Morsani, Tampa, FL, United States
| |
Collapse
|
25
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
26
|
Sun M, Luo EY, Adams SM, Adams T, Ye Y, Shetye SS, Soslowsky LJ, Birk DE. Collagen XI regulates the acquisition of collagen fibril structure, organization and functional properties in tendon. Matrix Biol 2020; 94:77-94. [PMID: 32950601 PMCID: PMC7722227 DOI: 10.1016/j.matbio.2020.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Collagen XI is a fibril-forming collagen that regulates collagen fibrillogenesis. Collagen XI is normally associated with collagen II-containing tissues such as cartilage, but it also is expressed broadly during development in collagen I-containing tissues, including tendons. The goals of this study are to define the roles of collagen XI in regulation of tendon fibrillar structure and the relationship to function. A conditional Col11a1-null mouse model was created to permit the spatial and temporal manipulation of Col11a1 expression. We hypothesize that collagen XI functions to regulate fibril assembly, organization and, therefore, tendon function. Previous work using cho mice with ablated Col11a1 alleles supported roles for collagen XI in tendon fibril assembly. Homozygous cho/cho mice have a perinatal lethal phenotype that limited the studies. To circumvent this, a conditional Col11a1flox/flox mouse model was created where exon 3 was flanked with loxP sites. Breeding with Scleraxis-Cre (Scx-Cre) mice yielded a tendon-specific Col11a1-null mouse line, Col11a1Δten/Δten. Col11a1flox/flox mice had no phenotype compared to wild type C57BL/6 mice and other control mice, e.g., Col11a1flox/flox and Scx-Cre. Col11a1flox/flox mice expressed Col11a1 mRNA at levels comparable to wild type and Scx-Cre mice. In contrast, in Col11a1Δten/Δten mice, Col11a1 mRNA expression decreased to baseline in flexor digitorum longus tendons (FDL). Collagen XI protein expression was absent in Col11a1Δten/Δten FDLs, and at ~50% in Col11a1+/Δten compared to controls. Phenotypically, Col11a1Δten/Δten mice had significantly decreased body weights (p < 0.001), grip strengths (p < 0.001), and with age developed gait impairment becoming hypomobile. In the absence of Col11a1, the tendon collagen fibrillar matrix was abnormal when analyzed using transmission electron microscopy. Reducing Col11a1 and, therefore collagen XI content, resulted in abnormal fibril structure, loss of normal fibril diameter control with a significant shift to small diameters and disrupted parallel alignment of fibrils. These alterations in matrix structure were observed in developing (day 4), maturing (day 30) and mature (day 60) mice. Altering the time of knockdown using inducible I-Col11a1−/− mice indicated that the primary regulatory foci for collagen XI was in development. In mature Col11a1Δten/Δten FDLs a significant decrease in the biomechanical properties was observed. The decrease in maximum stress and modulus suggest that fundamental differences in the material properties in the absence of Col11a1 expression underlie the mechanical deficiencies. These data demonstrate an essential role for collagen XI in regulation of tendon fibril assembly and organization occurring primarily during development.
Collapse
Affiliation(s)
- Mei Sun
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Eric Y Luo
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Sheila M Adams
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Thomas Adams
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Yaping Ye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Snehal S Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA; McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA.
| |
Collapse
|
27
|
Tendon Extracellular Matrix Remodeling and Defective Cell Polarization in the Presence of Collagen VI Mutations. Cells 2020; 9:cells9020409. [PMID: 32053901 PMCID: PMC7072441 DOI: 10.3390/cells9020409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/31/2023] Open
Abstract
Mutations in collagen VI genes cause two major clinical myopathies, Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), and the rarer myosclerosis myopathy. In addition to congenital muscle weakness, patients affected by collagen VI-related myopathies show axial and proximal joint contractures, and distal joint hypermobility, which suggest the involvement of tendon function. To gain further insight into the role of collagen VI in human tendon structure and function, we performed ultrastructural, biochemical, and RT-PCR analysis on tendon biopsies and on cell cultures derived from two patients affected with BM and UCMD. In vitro studies revealed striking alterations in the collagen VI network, associated with disruption of the collagen VI-NG2 (Collagen VI-neural/glial antigen 2) axis and defects in cell polarization and migration. The organization of extracellular matrix (ECM) components, as regards collagens I and XII, was also affected, along with an increase in the active form of metalloproteinase 2 (MMP2). In agreement with the in vitro alterations, tendon biopsies from collagen VI-related myopathy patients displayed striking changes in collagen fibril morphology and cell death. These data point to a critical role of collagen VI in tendon matrix organization and cell behavior. The remodeling of the tendon matrix may contribute to the muscle dysfunction observed in BM and UCMD patients.
Collapse
|
28
|
Wunderli SL, Blache U, Snedeker JG. Tendon explant models for physiologically relevant invitro study of tissue biology - a perspective. Connect Tissue Res 2020; 61:262-277. [PMID: 31931633 DOI: 10.1080/03008207.2019.1700962] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: Tendon disorders increasingly afflict our aging society but we lack the scientific understanding to clinically address them. Clinically relevant models of tendon disease are urgently needed as established small animal models of tendinopathy fail to capture essential aspects of the disease. Two-dimensional and three-dimensional cell and tissue culture models are similarly limited, lacking many physiological extracellular matrix cues required to maintain tissue homeostasis or guide matrix remodeling. These cues reflect the biochemical and biomechanical status of the tissue, and encode information regarding the mechanical and metabolic competence of the tissue. Tendon explants overcome some of these limitations and have thus emerged as a valuable tool for the discovery and study of mechanisms associated with tendon homeostasis and pathophysiology. Tendon explants retain native cell-cell and cell-matrix connections, while allowing highly reproducible experimental control over extrinsic factors like mechanical loading and nutritional availability. In this sense tendon explant models can deliver insights that are otherwise impossible to obtain from in vivo animal or in vitro cell culture models. Purpose: In this review, we aimed to provide an overview of tissue explant models used in tendon research, with a specific focus on the value of explant culture systems for the controlled study of the tendon core tissue. We discuss their advantages, limitations and potential future utility. We include suggestions and technical recommendations for the successful use of tendon explant cultures and conclude with an outlook on how explant models may be leveraged with state-of-the-art biotechnologies to propel our understanding of tendon physiology and pathology.
Collapse
Affiliation(s)
- Stefania L Wunderli
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ulrich Blache
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Taye N, Karoulias SZ, Hubmacher D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res 2020; 38:23-35. [PMID: 31410892 PMCID: PMC6917864 DOI: 10.1002/jor.24440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Extracellular matrix (ECM) determines the physiological function of all tissues, including musculoskeletal tissues. In tendon, ECM provides overall tissue architecture, which is tailored to match the biomechanical requirements of their physiological function, that is, force transmission from muscle to bone. Tendon ECM also constitutes the microenvironment that allows tendon-resident cells to maintain their phenotype and that transmits biomechanical forces from the macro-level to the micro-level. The structure and function of adult tendons is largely determined by the hierarchical organization of collagen type I fibrils. However, non-collagenous ECM proteins such as small leucine-rich proteoglycans (SLRPs), ADAMTS proteases, and cross-linking enzymes play critical roles in collagen fibrillogenesis and guide the hierarchical bundling of collagen fibrils into tendon fascicles. Other non-collagenous ECM proteins such as the less abundant collagens, fibrillins, or elastin, contribute to tendon formation or determine some of their biomechanical properties. The interfascicular matrix or endotenon and the outer layer of tendons, the epi- and paratenon, includes collagens and non-collagenous ECM proteins, but their function is less well understood. The ECM proteins in the epi- and paratenon may provide the appropriate microenvironment to maintain the identity of distinct tendon cell populations that are thought to play a role during repair processes after injury. The aim of this review is to provide an overview of the role of non-collagenous ECM proteins and less abundant collagens in tendon development and homeostasis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:23-35, 2020.
Collapse
Affiliation(s)
- Nandaraj Taye
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Stylianos Z. Karoulias
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| |
Collapse
|
30
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
31
|
Reiter AJ, Kivitz GJ, Castile RM, Cannon PC, Lakes EH, Jacobs BY, Allen KD, Chamberlain AM, Lake SP. Functional Measures of Grip Strength and Gait Remain Altered Long-term in a Rat Model of Post-traumatic Elbow Contracture. J Biomech Eng 2019; 141:2730666. [PMID: 30958506 PMCID: PMC6611348 DOI: 10.1115/1.4043433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Post-traumatic joint contracture (PTJC) is a debilitating condition, particularly in the elbow. Previously, we established an animal model of elbow PTJC quantifying passive post-mortem joint mechanics and histological changes temporally. These results showed persistent motion loss similar to what is experienced in humans. Functional assessment of PTJC in our model was not previously considered; however, these measures would provide a clinically relevant measure and would further validate our model by demonstrating persistently altered joint function. To this end, a custom bilateral grip strength device was developed, and a recently established open-source gait analysis system was used to quantify forelimb function in our unilateral injury model. In vivo joint function was shown to be altered long-term and never fully recover. Specifically, forelimb strength in the injured limbs showed persistent deficits at all time points; additionally, gait patterns remained imbalanced and asymmetric throughout the study (although a few gait parameters did return to near normal levels). A quantitative understanding of these longitudinal, functional disabilities further strengthens the clinical relevance of our rat PTJC model enabling assessment of the effectiveness of future interventions aimed at reducing or preventing PTJC.
Collapse
Affiliation(s)
- Alex J. Reiter
- Department of Mechanical Engineering
and Materials Science,
Washington University in St. Louis,
St. Louis, MO 63130
| | - Griffin J. Kivitz
- Department of Mechanical Engineering
and Materials Science,
Washington University in St. Louis,
St. Louis, MO 63130
| | - Ryan M. Castile
- Department of Mechanical Engineering
and Materials Science,
Washington University in St. Louis,
St. Louis, MO 63130
| | - Paul C. Cannon
- Seed Production Innovation,
Bayer Crop Science,
St. Louis, MO 63146
| | - Emily H. Lakes
- J. Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
Gainesville, FL 32610
| | - Brittany Y. Jacobs
- J. Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
Gainesville, FL 32610
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
Gainesville, FL 32610
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery,
Washington University in St. Louis,
St. Louis, MO 63130
| | - Spencer P. Lake
- Department of Mechanical Engineeringand Materials Science,
Department of Orthopaedic Surgery,Department of Biomedical Engineering,Washington University in St. Louis,
St. Louis, MO 63130
e-mail:
| |
Collapse
|
32
|
Nguyen PK, Pan XS, Li J, Kuo CK. Roadmap of molecular, compositional, and functional markers during embryonic tendon development. Connect Tissue Res 2018; 59:495-508. [PMID: 30231651 PMCID: PMC6669275 DOI: 10.1080/03008207.2018.1511710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendon is a specialized connective tissue that connects muscle to bone, thereby enabling musculoskeletal movement. Tendon injury leads to formation of tissue with aberrant functional properties. Current approaches to treat tendon injuries, including surgical repair and tissue engineering, have not achieved normal tendon. A roadmap of markers could help with identifying when mis-steps occur during aberrant tendon formation and providing instructions for normal tendon formation. We propose this roadmap should be based on the embryo-the perfect model of tissue formation. Our prior studies have shown that adult mesenchymal stem cells mimic tendon progenitor cell behavior when treated with tendon developmental cues. Although transcription factors and extracellular matrix molecules are commonly used to assess tendon development, we have shown that these markers do not reliably reflect functional property elaboration. Thus, evaluating tendon formation on the basis of a combination of these molecular, compositional, and functional markers is important. In this review, we highlight various tendon markers with focus on their temporal profiles and roles in tendon development to outline a roadmap that may be useful for informing tendon healing and tissue engineering strategies.
Collapse
Affiliation(s)
- Phong K. Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester NY, USA.,Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester NY, USA
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering, University of Rochester, Rochester NY, USA.,Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester NY, USA
| | - Jiewen Li
- Department of Biomedical Engineering, University of Rochester, Rochester NY, USA.,Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester NY, USA
| | - Catherine K. Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester NY, USA.,Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine, Rochester NY, USA.,Genetics, Development, and Stem Cells Program, University of Rochester School of Medicine, Rochester NY, USA.,Materials Science Graduate Program, University of Rochester, Rochester NY, USA
| |
Collapse
|
33
|
Delgado Caceres M, Pfeifer CG, Docheva D. Understanding Tendons: Lessons from Transgenic Mouse Models. Stem Cells Dev 2018; 27:1161-1174. [PMID: 29978741 PMCID: PMC6121181 DOI: 10.1089/scd.2018.0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tendons and ligaments are connective tissues that have been comparatively less studied than muscle and cartilage/bone, even though they are crucial for proper function of the musculoskeletal system. In tendon biology, considerable progress has been made in identifying tendon-specific genes (Scleraxis, Mohawk, and Tenomodulin) in the past decade. However, besides tendon function and the knowledge of a small number of important players in tendon biology, neither the ontogeny of the tenogenic lineage nor signaling cascades have been fully understood. This results in major drawbacks in treatment and repair options following tendon degeneration. In this review, we have systematically evaluated publications describing tendon-related genes, which were studied in depth and characterized by using knockout technologies and the subsequently generated transgenic mouse models (Tg) (knockout mice, KO). We report in a tabular manner, that from a total of 24 tendon-related genes, in 22 of the respective knockout mouse models, phenotypic changes were detected. Additionally, in some of the models it was described at which developmental stages these changes appeared and progressed. To summarize, only loss of Scleraxis and TGFβ signaling led to severe tendon developmental phenotypes, while mice deficient for various proteoglycans, Mohawk, EGR1 and 2, and Tenomodulin presented mild phenotypes. These data suggest that the tendon developmental system is well organized, orchestrated, and backed up; this is even more evident among the members of the proteoglycan family, where the compensatory effects are much clearer. In future, it will be of great importance to discover additional master tendon transcription factors and the genes that play crucial roles in tendon development. This would improve our understanding of the genetic makeup of tendons, and will increase the chances of generating tendon-specific drugs to advance overall treatment strategies.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G. Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
34
|
Ueda K, Kawai T, Senoo H, Shimizu A, Ishiko A, Nagata M. Histopathological and electron microscopic study in dogs with patellar luxation and skin hyperextensibility. J Vet Med Sci 2018; 80:1309-1316. [PMID: 29984735 PMCID: PMC6115261 DOI: 10.1292/jvms.18-0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Patellar luxation is abnormal displacement of the patella from the femoral trochlear
groove. It is seen primarily in small breed dogs and causes pain and limited mobility of
the stifle joint. This study aimed to investigate the relationship among patellar
luxation, skin extension, and skin collagen fibril diameter. Nine dogs with patellar
luxation and five clinically normal dogs were enrolled in the study. We measured the skin
extension and investigated the ultrastructure of the skin and patellofemoral ligament by
histopathology and transmission electron microscopy. The mean skin extension in dogs with
patellar luxation was 18.5 ± 5.5% which is greater than the reference value (14.5%). Mean
skin extension in controls was 8.8 ± 1.7% and was within the normal range. In dogs with
patellar luxation, histopathology of the skin and patellofemoral ligament showed sparse
and unevenly distributed collagen fibers. Transmission electron microscopy identified
poorly organized, irregularly shaped, thin collagen fibrils. Collagen fibril thickness in
dogs with patellar luxation was significantly less than fibril thickness in controls
(P<0.001). There was a significant negative correlation (ρ= −0.863;
P<0.001) between skin collagen fibril diameter and skin extension.
Skin extension was correlated with patellar luxation and disease severity. Dogs with
patellar luxation, joint dysplasia, and hyperextensible skin appear to be pathologically
related. This might represent a phenotype of the Ehlers–Danlos syndrome, a hereditary
connective tissue disorder in humans.
Collapse
Affiliation(s)
- Kazunori Ueda
- Yokohama Yamate Dog & Cat Medical Center, 27-4 Kashiwaba, Naka, Yokohama, Kanagawa 231-0866, Japan
| | - Tomoyuki Kawai
- Yokohama Yamate Dog & Cat Medical Center, 27-4 Kashiwaba, Naka, Yokohama, Kanagawa 231-0866, Japan
| | - Haruki Senoo
- Department of Cell Biology and Histology, Akita University School of Medicine, 1-1-1 Hondo Akita, Akita 010-8543, Japan
| | - Atsushi Shimizu
- Shimizu Animal Hospital, 1747-1 Kaisuka, Kamogawa-shi, Chiba 296-0004, Japan.,Department of Dermatology, School of Medicine, Faculty of Medicine, Toho University, 6-11-1 Ohmori-Nishi, Ohta, Tokyo 143-8541, Japan
| | - Akira Ishiko
- Department of Dermatology, School of Medicine, Faculty of Medicine, Toho University, 6-11-1 Ohmori-Nishi, Ohta, Tokyo 143-8541, Japan
| | - Masahiko Nagata
- Synergy Animal General Hospital, 815 Ishigami Kawaguchi, Saitama 333-0823, Japan
| |
Collapse
|
35
|
Baghdadi MB, Castel D, Machado L, Fukada SI, Birk DE, Relaix F, Tajbakhsh S, Mourikis P. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 2018; 557:714-718. [PMID: 29795344 PMCID: PMC5985950 DOI: 10.1038/s41586-018-0144-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
The microenvironment is critical for stem cell maintenance and can be of cellular and non-cellular composition, including secreted growth factors and extracellular matrix (ECM)1–3. Although Notch and other signalling pathways have been reported to regulate quiescence4–9, the composition and source of niche molecules remain largely unknown. Here, we show that adult muscle satellite (stem) cells produce ECM collagens to maintain quiescence cell-autonomously. By ChIP-sequencing we identified NOTCH/RBPJ-bound regulatory elements adjacent to specific collagen genes, whose expression is deregulated in Notch mutant mice. Moreover, we show that satellite cell produced collagen V (COLV) is a critical component of the quiescent niche, as conditional deletion of Col5a1 leads to anomalous cell cycle entry and gradual diminution of the stem cell pool. Notably, the interaction of COLV with satellite cells is mediated by CALCR, for which COLV acts as a surrogate local ligand. Strikingly, systemic administration of a calcitonin derivative is sufficient to rescue the quiescence and self-renewal defects scored in COLV null satellite cells. This study unveils a Notch/COLV/CALCR signalling cascade that cell-autonomously maintains the satellite cell quiescent state and raises the possibility of a similar reciprocal mechanism acting in diverse stem cell populations.
Collapse
Affiliation(s)
- Meryem B Baghdadi
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Institut Pasteur, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, Paris, France
| | - David Castel
- UMR8203, CNRS, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.,Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Léo Machado
- INSERM IMRB U955-E10, UPEC, ENVA, EFS, Créteil, France
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France. .,CNRS UMR 3738, Institut Pasteur, Paris, France.
| | | |
Collapse
|
36
|
Yin H, Yan Z, Bauer RJ, Peng J, Schieker M, Nerlich M, Docheva D. Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering. ACTA ACUST UNITED AC 2018; 13:034107. [PMID: 29417934 DOI: 10.1088/1748-605x/aaadd1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermosensitive hydrogels have been studied for potential application as promising alternative cell carriers in cell-based regenerative therapies. In this study, a thermosensitive butane diisocyanate (BDI)-collagen hydrogel (BC hydrogel) was designed as an injectable cell delivery carrier of tendon stem/progenitor cells (TSPCs) for tendon tissue engineering. We functionalized the BDI hydrogel with the addition of 20% (v/v) collagen I gel to obtain the thermosensitive BC hydrogel, which was then seeded with TSPCs derived from human Achilles tendons. The BC hydrogel compatibility and TSPC behavior and molecular response to the 3D hydrogel were investigated. Collagen (COL) I gel served as a control group. Our findings demonstrated that the BC hydrogel was thermosensitive, and hardened above 25 °C. It supported TSPC survival, proliferation, and metabolic activity with satisfactory dimension stability and biocompatibility, as revealed by gel contraction assay, live/dead staining, DNA quantification, and resazurin metabolic assay. Phalloidin-based visualization of F-actin demonstrated that the TSPCs were stretched within COL I gel with classical spindle cell shapes; similar cell morphologies were also found in the BC hydrogel. The gene expression profile of TSPCs in the BC hydrogel was comparable with that in COL I gel. Moreover, the BC hydrogel supported capillary-like structure formation by human umbilical vein endothelial cells (HUVECs) in the hydrogel matrix. Taken together, these results suggest that the thermosensitive BC hydrogel holds great potential as an injectable cell delivery carrier of TSPCs for tendon tissue engineering.
Collapse
Affiliation(s)
- Heyong Yin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany. Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany. Institute of Orthopaedics, Key Laboratries of Regenerative Medicine in Orthopaedics and Musculoskeletal Trauma & War Injuries, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Ren W, Zhang Y, Zhang L, Lin Q, Zhang J, Xu G. Overexpression of collagen type V α1 chain in human breast invasive ductal carcinoma is mediated by TGF-β1. Int J Oncol 2018; 52:1694-1704. [PMID: 29568948 DOI: 10.3892/ijo.2018.4317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/13/2018] [Indexed: 11/06/2022] Open
Abstract
Collagen type V α1 chain (COL5A1) is a minor fibrillar collagen in mammals that co-polymerizes with type I collagen to adjust the diameter of collagen molecules. However, the function of COL5A1 in invasive ductal carcinoma (IDC) of the human breast remains unknown. In the present study, our group examined the expression of COL5A1 in IDC compared with its adjacent normal tissue and fibroadenoma of the breast. COL5A1 was revealed to be overexpressed in IDC compared with benign tumor and adjacent normal control tissues, and was associated with the expression of estrogen receptor and progesterone receptor. No association between COL5A1 expression and tumor size, lymph node metastasis, clinical stage, age, or Her2 expression was identified. High expression of COL5A1 mRNA was associated with distant metastasis free survival in patients with breast cancer. Knockdown of COL5A1 led to a decrease of cell viability, as detected by the WST-1 assay, and an inhibition of migration and invasion, as detected by wound healing and Transwell assays, respectively, in the breast cancer cell line MCF-7. The expression of COL5A1 in MCF-7 cells was downregulated by transforming growth factor (TGF)‑β1, which was abolished in the presence of SB-431542, an inhibitor of TGF-β type I receptor. In conclusion, these data indicated that COL5A1 is overexpressed in IDC and regulated by TGF-β1, suggesting that an increase of COL5A1 reflects tumor progression and may serve as a novel biomarker and therapeutic target for the treatment of breast IDC.
Collapse
Affiliation(s)
- Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Youyuan Zhang
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Lingyun Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Qunbo Lin
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jinguo Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
38
|
Johnston JM, Connizzo BK, Shetye SS, Robinson KA, Huegel J, Rodriguez AB, Sun M, Adams SM, Birk DE, Soslowsky LJ. Collagen V haploinsufficiency in a murine model of classic Ehlers-Danlos syndrome is associated with deficient structural and mechanical healing in tendons. J Orthop Res 2017; 35:2707-2715. [PMID: 28387435 PMCID: PMC5632109 DOI: 10.1002/jor.23571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
Classic Ehlers-Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1+/- mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1+/- ) with wild-type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1+/- tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild-type tendons, which recovered their pre-injury values by 6 weeks post injury. Additionally, the Col5a1+/- tendons demonstrated altered fibril morphology and diameter distributions compared to the wild-type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707-2715, 2017.
Collapse
Affiliation(s)
- Jessica M. Johnston
- University Laboratory Animal Resources, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brianne K. Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelsey A. Robinson
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julianne Huegel
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashley B. Rodriguez
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mei Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Sheila M. Adams
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - David E. Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Mao D, Mu Z, Yang Y, Cao L, Xu Q, Du J, Zhang J. Novel COL5A1 mutation in a Chinese family with classic type of Ehlers-Danlos syndrome. J Dermatol 2017; 45:370-371. [PMID: 28714197 DOI: 10.1111/1346-8138.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Dandan Mao
- Departments of Dermatology, Peking University People's Hospital, Beijing, China
| | - Zhanglei Mu
- Departments of Dermatology, Peking University People's Hospital, Beijing, China
| | - Yue Yang
- Rheumatology, Peking University People's Hospital, Beijing, China
| | - Leqing Cao
- Rheumatology, Peking University People's Hospital, Beijing, China
| | - Qianxi Xu
- Departments of Dermatology, Peking University People's Hospital, Beijing, China
| | - Juan Du
- Departments of Dermatology, Peking University People's Hospital, Beijing, China
| | - Jianzhong Zhang
- Departments of Dermatology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
40
|
Connizzo BK, Adams SM, Adams TH, Birk DE, Soslowsky LJ. Collagen V expression is crucial in regional development of the supraspinatus tendon. J Orthop Res 2016; 34:2154-2161. [PMID: 28005290 PMCID: PMC5189919 DOI: 10.1002/jor.23246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue-dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site-specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament-specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross-link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region-specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154-2161, 2016.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Sheila M. Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Thomas H. Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104-6081
| |
Collapse
|
41
|
Sardone F, Traina F, Bondi A, Merlini L, Santi S, Maraldi NM, Faldini C, Sabatelli P. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy. Front Aging Neurosci 2016; 8:131. [PMID: 27375477 PMCID: PMC4896961 DOI: 10.3389/fnagi.2016.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies.
Collapse
Affiliation(s)
- Francesca Sardone
- Department of Biomedical Sciences, University of PadovaPadova, Italy; National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy
| | - Francesco Traina
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Alice Bondi
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Luciano Merlini
- Muscle Clinic, Villa Erbosa Hospital, Gruppo San Donato Bologna, Italy
| | - Spartaco Santi
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| | - Nadir Mario Maraldi
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| | - Cesare Faldini
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Patrizia Sabatelli
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| |
Collapse
|
42
|
Liu R, Liu Q, Wang K, Dang X, Zhang F. Comparative analysis of gene expression profiles in normal hip human cartilage and cartilage from patients with necrosis of the femoral head. Arthritis Res Ther 2016; 18:98. [PMID: 27146865 PMCID: PMC4857375 DOI: 10.1186/s13075-016-0991-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/07/2016] [Indexed: 12/02/2022] Open
Abstract
Background The pathogenesis of necrosis of the femoral head (NFH) remains elusive. Limited studies were conducted to investigate the molecular mechanism of hip articular cartilage damage in NFH. We conducted genome-wide gene expression profiling of hip articular cartilage with NFH. Methods Hip articular cartilage specimens were collected from 18 NFH patients and 18 healthy controls. Gene expression profiling of NFH articular cartilage was carried out by Agilent Human 4x44K Gene Expression Microarray chip. Differently expressed genes were identified using the significance analysis of microarrays (SAM) software. Gene Ontology (GO) enrichment analysis of differently expressed genes was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Significantly differently expressed genes in the microarray experiment were selected for quantitative real-time PCR (qRT-PCR) and immunohistochemical validation. Results SAM identified 27 differently expressed genes in NFH articular cartilage, functionally involved in extracellular matrix, cytokines, growth factors, cell cycle and apoptosis. The expression patterns of the nine validation genes in qRT-PCR were consistent with that in proteinaceous extracellular matrix (false discovery rate (FDR) = 3.22 × 10-5), extracellular matrix (FDR = 5.78 × 10-5), extracellular region part (FDR = 1.28 × 10-4), collagen (FDR = 3.22 × 10-4), extracellular region (FDR = 4.78 × 10-4) and platelet-derived growth factor binding (FDR = 5.23 × 10-4). Conclusions This study identified a set of differently expressed genes, implicated in articular cartilage damage in NFH. Our study results may provide novel insight into the pathogenesis and rationale of therapies for NFH. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0991-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.
| | - Qi Liu
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Kunzheng Wang
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xiaoqian Dang
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
43
|
Connizzo BK, Han L, Birk DE, Soslowsky LJ. Collagen V-heterozygous and -null supraspinatus tendons exhibit altered dynamic mechanical behaviour at multiple hierarchical scales. Interface Focus 2016; 6:20150043. [PMID: 26855746 DOI: 10.1098/rsfs.2015.0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tendons function using a unique set of mechanical properties governed by the extracellular matrix and its ability to respond to varied multi-axial loads. Reduction of collagen V expression, such as in classic Ehlers-Danlos syndrome, results in altered fibril morphology and altered macroscale mechanical function in both clinical and animal studies, yet the mechanism by which changes at the fibril level lead to macroscale functional changes has not yet been investigated. This study addresses this by defining the multiscale mechanical response of wild-type, collagen V-heterozygous and -null supraspinatus tendons. Tendons were subjected to mechanical testing and analysed for macroscale properties, as well as microscale (fibre re-alignment) and nanoscale (fibril deformation and sliding) responses. In many macroscale parameters, results showed a dose-dependent response with severely decreased properties in the null group. In addition, both heterozygous and null groups responded to load faster than in wild-type tendons via earlier fibre re-alignment and fibril stretch. However, the heterozygous group exhibited increased fibril sliding, while the null group exhibited no fibril sliding. These studies demonstrate that dynamic responses play an important role in determining overall function and that collagen V is a critical regulator in the development of these relationships.
Collapse
Affiliation(s)
- Brianne K Connizzo
- McKay Orthopaedic Research Laboratory , University of Pennsylvania , 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081 , USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street, Philadelphia, PA 19104 , USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology , Morsani College of Medicine, University of South Florida , Tampa, FL 33612 , USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory , University of Pennsylvania , 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081 , USA
| |
Collapse
|
44
|
DeNigris J, Yao Q, Birk EK, Birk DE. Altered dermal fibroblast behavior in a collagen V haploinsufficient murine model of classic Ehlers-Danlos syndrome. Connect Tissue Res 2016; 57:1-9. [PMID: 26713685 PMCID: PMC4849881 DOI: 10.3109/03008207.2015.1081901] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutations in collagen V are associated with classic Ehlers-Danlos syndrome (EDS). A significant percentage of these mutations result in haploinsufficiency for collagen V. The purpose of this work was to determine if changes in collagen V expression are associated with altered dermal fibroblast behavior contributing to the poor wound healing response. A haploinsufficient Col5a1(+/-) mouse model of EDS was utilized. In vivo wound healing studies demonstrated that mutant mice healed significantly slower than Col5a1(+/+) mice. The basis for this difference was examined in vitro using dermal fibroblast strains isolated from Col5a1(+/-) and Col5a1(+/+) mice. Fibroblast proliferation was determined for each strain by counting cells at different time points after seeding as well as using the proliferation marker Ki-67. Fibroblast attachment to collagens I and III and fibronectin also was analyzed. In addition, in vitro scratch wounds were used to analyze fibroblast wound closure. Significantly decreased fibroblast proliferation was observed in Col5a1(+/-) compared to Col5a1(+/+) fibroblasts. Our data indicate that the decreased fibroblast number was not due to apoptosis. Wildtype Col5a1(+/+) fibroblasts attached significantly better to components of the wound matrix (collagens I and III and fibronectin) than Col5a1(+/-) fibroblasts. A significant difference in in vitro scratch wound closure rates also was observed. Col5a1(+/+) fibroblasts closed wounds in 22 h, while Col5a1(+/-) fibroblasts demonstrated ~80% closure. There were significant differences in closure at all time points analyzed. Our data suggest that decreased fibroblast proliferation, extracellular matrix attachment, and migration contribute to the decreased wound healing response in classic EDS.
Collapse
Affiliation(s)
| | | | | | - David E. Birk
- Corresponding Author: David E. Birk, Ph.D., Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL 33612-4799, Tel# 813 974-8598, Fax# 813 974-3079,
| |
Collapse
|
45
|
Connizzo BK, Freedman BR, Fried JH, Sun M, Birk DE, Soslowsky LJ. Regulatory role of collagen V in establishing mechanical properties of tendons and ligaments is tissue dependent. J Orthop Res 2015; 33:882-8. [PMID: 25876927 PMCID: PMC4417070 DOI: 10.1002/jor.22893] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/10/2015] [Indexed: 02/04/2023]
Abstract
Patients with classic (type I) Ehlers-Danlos syndrome (EDS), characterized by heterozygous mutations in the Col5a1 and Col5a2 genes, exhibit connective tissue hyperelasticity and recurrent joint dislocations, indicating a potential regulatory role for collagen V in joint stabilizing soft tissues. This study asked whether the contribution of collagen V to the establishment of mechanical properties is tissue dependent. We mechanically tested four different tissues from wild type and targeted collagen V-null mice: the flexor digitorum longus (FDL) tendon, Achilles tendon (ACH), the anterior cruciate ligament (ACL), and the supraspinatus tendon (SST). Area was significantly reduced in the Col5a1(ΔTen/ΔTen) group in the FDL, ACH, and SST. Maximum load and stiffness were reduced in the Col5a1(ΔTen/ΔTen) group for all tissues. However, insertion site and midsubstance modulus were reduced only for the ACL and SST. This study provides evidence that the regulatory role of collagen V in extracellular matrix assembly is tissue dependent and that joint instability in classic EDS may be caused in part by insufficient mechanical properties of the tendons and ligaments surrounding each joint.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Benjamin R. Freedman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Joanna H. Fried
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Mei Sun
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081,Correspondence to: Louis J. Soslowsky, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081, T:215-898-8653, F:215-573-2133,
| |
Collapse
|
46
|
Freedman BR, Bade ND, Riggin CN, Zhang S, Haines PG, Ong KL, Janmey PA. The (dys)functional extracellular matrix. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3153-64. [PMID: 25930943 DOI: 10.1016/j.bbamcr.2015.04.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
The extracellular matrix (ECM) is a major component of the biomechanical environment with which cells interact, and it plays important roles in both normal development and disease progression. Mechanical and biochemical factors alter the biomechanical properties of tissues by driving cellular remodeling of the ECM. This review provides an overview of the structural, compositional, and mechanical properties of the ECM that instruct cell behaviors. Case studies are reviewed that highlight mechanotransduction in the context of two distinct tissues: tendons and the heart. Although these two tissues demonstrate differences in relative cell-ECM composition and mechanical environment, they share similar mechanisms underlying ECM dysfunction and cell mechanotransduction. Together, these topics provide a framework for a fundamental understanding of the ECM and how it may vary across normal and diseased tissues in response to mechanical and biochemical cues. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Benjamin R Freedman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan D Bade
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Corinne N Riggin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip G Haines
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katy L Ong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Janmey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|