1
|
Rybova J, Sundararajan T, Kuchar L, Dlugi TA, Ruzicka P, McKillop WM, Medin JA. Hematopoietic stem cell transplantation leads to biochemical and functional correction in two mouse models of acid ceramidase deficiency. Mol Ther 2024; 32:3402-3421. [PMID: 39108096 PMCID: PMC11489543 DOI: 10.1016/j.ymthe.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare lysosomal storage disorders caused by deficient acid ceramidase (ACDase) activity. Although both conditions are caused by mutations in the ASAH1 gene, clinical presentations differ considerably. FD patients usually die in childhood, while SMA-PME patients can live until adulthood. There is no treatment for FD or SMA-PME. Hematopoietic stem cell transplantation (HSCT) and gene therapy strategies for the treatment of ACDase deficiency are being investigated. We have previously generated and characterized mouse models of both FD and SMA-PME that recapitulate the symptoms described in patients. Here, we show that HSCT improves lifespan, behavior, hematopoietic system anomalies, and plasma cytokine levels and significantly reduces histiocytic infiltration and ceramide accumulation throughout the tissues investigated, including the CNS, in both models of ACDase-deficient mice. HSCT was also successful in preventing lesion development and significant demyelination of the spinal cord seen in SMA-PME mice. Importantly, we note that only early and generally pre-symptomatic treatment was effective, and kidney impairment was not improved in either model.
Collapse
Affiliation(s)
- Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Teresa Sundararajan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Theresa A Dlugi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Petr Ruzicka
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
2
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Kumar S, Panda SP. Targeting GM2 Ganglioside Accumulation in Dementia: Current Therapeutic Approaches and Future Directions. Curr Mol Med 2024; 24:1329-1345. [PMID: 37877564 DOI: 10.2174/0115665240264547231017110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
Dementia in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB) is a progressive neurological condition affecting millions worldwide. The amphiphilic molecule GM2 gangliosides are abundant in the human brain and play important roles in neuronal development, intercellular recognition, myelin stabilization, and signal transduction. GM2 ganglioside's degradation requires hexosaminidase A (HexA), a heterodimer composed of an α subunit encoded by HEXA and a β subunit encoded by HEXB. The hydrolysis of GM2 also requires a non-enzymatic protein, the GM2 activator protein (GM2-AP), encoded by GM2A. Pathogenic mutations of HEXA, HEXB, and GM2A are responsible for autosomal recessive diseases known as GM2 gangliosidosis, caused by the excessive intralysosomal accumulation of GM2 gangliosides. In AD, PD and DLB, GM2 ganglioside accumulation is reported to facilitate Aβ and α-synuclein aggregation into toxic oligomers and plaques through activation of downstream signaling pathways, such as protein kinase C (PKC) and oxidative stress factors. This review explored the potential role of GM2 ganglioside alteration in toxic protein aggregations and its related signaling pathways leading to neurodegenerative diseases. Further review explored potential therapeutic approaches, which include synthetic and phytomolecules targeting GM2 ganglioside accumulation in the brain, holding a promise for providing new and effective management for dementia.
Collapse
Affiliation(s)
- Sanjesh Kumar
- Institute of Pharmaceutical Research, GLA University Mathura, Uttara Pradesh-281406, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University Mathura, Uttara Pradesh-281406, India
| |
Collapse
|
4
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Nagree MS, Rybova J, Kleynerman A, Ahrenhoerster CJ, Saville JT, Xu T, Bachochin M, McKillop WM, Lawlor MW, Pshezhetsky AV, Isaeva O, Budde MD, Fuller M, Medin JA. Spinal muscular atrophy-like phenotype in a mouse model of acid ceramidase deficiency. Commun Biol 2023; 6:560. [PMID: 37231125 DOI: 10.1038/s42003-023-04932-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Mutations in ASAH1 have been linked to two allegedly distinct disorders: Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). We have previously reported FD-like phenotypes in mice harboring a single amino acid substitution in acid ceramidase (ACDase), P361R, known to be pathogenic in humans (P361R-Farber). Here we describe a mouse model with an SMA-PME-like phenotype (P361R-SMA). P361R-SMA mice live 2-3-times longer than P361R-Farber mice and have different phenotypes including progressive ataxia and bladder dysfunction, which suggests neurological dysfunction. We found profound demyelination, loss of axons, and altered sphingolipid levels in P361R-SMA spinal cords; severe pathology was restricted to the white matter. Our model can serve as a tool to study the pathological effects of ACDase deficiency on the central nervous system and to evaluate potential therapies for SMA-PME.
Collapse
Affiliation(s)
- Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
| | - TianMeng Xu
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | | | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Olena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew D Budde
- Clement J. Zablocki Veteran's Affairs Medical Center, Milwaukee, WI, 53295, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
6
|
Kleynerman A, Rybova J, Faber ML, McKillop WM, Levade T, Medin JA. Acid Ceramidase Deficiency: Bridging Gaps between Clinical Presentation, Mouse Models, and Future Therapeutic Interventions. Biomolecules 2023; 13:biom13020274. [PMID: 36830643 PMCID: PMC9953133 DOI: 10.3390/biom13020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by ASAH1 gene mutations. Currently, 73 different mutations in the ASAH1 gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William M. McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse, and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-4118
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Rybova J, Kuchar L, Sikora J, McKillop WM, Medin JA. Skin inflammation and impaired adipogenesis in a mouse model of acid ceramidase deficiency. J Inherit Metab Dis 2022; 45:1175-1190. [PMID: 36083604 PMCID: PMC9826362 DOI: 10.1002/jimd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
Acid ceramidase catalyzes the degradation of ceramide into sphingosine and a free fatty acid. Acid ceramidase deficiency results in lipid accumulation in many tissues and leads to the development of Farber disease (FD). Typical manifestations of classical FD include formation of subcutaneous nodules and joint contractures as well as the development of a hoarse voice. Healthy skin depends on a unique lipid profile to form a barrier that confers protection from pathogens, prevents excessive water loss, and mediates cell-cell communication. Ceramides comprise ~50% of total epidermis lipids and regulate cutaneous homeostasis and inflammation. Abnormal skin development including visual skin lesions has been reported in FD patients, but a detailed study of FD skin has not been performed. We conducted a pathophysiological study of the skin in our mouse model of FD. We observed altered lipid composition in FD skin dominated by accumulation of all studied ceramide species and buildup of abnormal storage structures affecting mainly the dermis. A deficiency of acid ceramidase activity also led to the activation of inflammatory IL-6/JAK/signal transducer and activator of transcription 3 and noncanonical NF-κB signaling pathways. Last, we report reduced proliferation of FD mouse fibroblasts and adipose-derived stem/stromal cells (ASC) along with impaired differentiation of ASCs into mature adipocytes.
Collapse
Affiliation(s)
- Jitka Rybova
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Ladislav Kuchar
- Rare Diseases Research Unit, Department of Pediatrics and Inherited Metabolic DisordersCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Inherited Metabolic DisordersCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
- Institute of PathologyCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
| | - William M. McKillop
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Jeffrey A. Medin
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
9
|
Hussain H, Djurin T, Rodriguez J, Daneelian L, Sundi S, Fadel A, Saadoon Z. Transactivation Response DNA-Binding Protein of 43 (TDP-43) and Glial Cell Roles in Neurological Disorders. Cureus 2022; 14:e30639. [DOI: 10.7759/cureus.30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
|
10
|
Li G, Huang D, Li P, Yuan X, Yarotskyy V, Li PL. Regulation of exosome release by lysosomal acid ceramidase in coronary arterial endothelial cells: Role of TRPML1 channel. CURRENT TOPICS IN MEMBRANES 2022; 90:37-63. [PMID: 36368874 PMCID: PMC9842397 DOI: 10.1016/bs.ctm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lysosomal acid ceramidase (AC) has been reported to determine multivesicular body (MVB) fate and exosome secretion in different mammalian cells including coronary arterial endothelial cells (CAECs). However, this AC-mediated regulation of exosome release from CAECs and associated underlying mechanism remain poorly understood. In the present study, we hypothesized that AC controls lysosomal Ca2+ release through TRPML1 channel to regulate exosome release in murine CAECs. To test this hypothesis, we isolated and cultured CAECs from WT/WT and endothelial cell-specific Asah1 gene (gene encoding AC) knockout mice. Using these CAECs, we first demonstrated a remarkable increase in exosome secretion and significant reduction of lysosome-MVB interaction in CAECs lacking Asah1 gene compared to those cells from WT/WT mice. ML-SA1, a TRPML1 channel agonist, was found to enhance lysosome trafficking and increase lysosome-MVB interaction in WT/WT CAECs, but not in CAECs lacking Asah1 gene. However, sphingosine, an AC-derived sphingolipid, was able to increase lysosome movement and lysosome-MVB interaction in CAECs lacking Asah1 gene, leading to reduced exosome release from these cells. Moreover, Asah1 gene deletion was shown to substantially inhibit lysosomal Ca2+ release through suppression of TRPML1 channel activity in CAECs. Sphingosine as an AC product rescued the function of TRPML1 channel in CAECs lacking Asah1 gene. These results suggest that Asah1 gene defect and associated deficiency of AC activity may inhibit TRPML1 channel activity, thereby reducing MVB degradation by lysosome and increasing exosome release from CAECs. This enhanced exosome release from CAECs may contribute to the development of coronary arterial disease under pathological conditions.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pengyang Li
- Division of Cardiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
11
|
Zhang H, Nagree MS, Liu H, Pan X, Medin JA, Lipinski DM. rAAV-mediated over-expression of acid ceramidase prevents retinopathy in a mouse model of Farber lipogranulomatosis. Gene Ther 2022; 30:297-308. [PMID: 35902747 DOI: 10.1038/s41434-022-00359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Farber disease (FD) is a rare monogenic lysosomal storage disorder caused by mutations in ASAH1 that results in a deficiency of acid ceramidase (ACDase) activity and the abnormal systemic accumulation of ceramide species, leading to multi-system organ failure involving neurological decline and retinopathy. Here we describe the effects of rAAV-mediated ASAH1 over-expression on the progression of retinopathy in a mouse model of FD (Asah1P361R/P361R) and its littermate controls (Asah1+/+ and Asah1+/P361R). Using a combination of non-invasive multimodal imaging, electrophysiology, post-mortem histology and mass spectrometry we demonstrate that ASAH1 over-expression significantly reduces central retinal thickening, ceramide accumulation, macrophage activation and limits fundus hyper-reflectivity and auto-fluorescence in FD mice, indicating rAAV-mediated over-expression of biologically active ACDase protein is able to rescue the anatomical retinal phenotype of Farber disease. Unexpectedly, ACDase over-expression in Asah1+/+ and Asah1+/P361R control eyes was observed to induce abnormal fundus hyper-reflectivity, auto-fluorescence and retinal thickening that closely resembles a FD phenotype. This study represents the first evidence of a gene therapy for Farber disease-related retinopathy. Importantly, the described gene therapy approach could be used to preserve vision in FD patients synergistically with broader enzyme replacement strategies aimed at preserving life.
Collapse
Affiliation(s)
- Hanmeng Zhang
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics: Section of Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Haoyuan Liu
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Xiaoqing Pan
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics: Section of Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M Lipinski
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Ouro A, Correa-Paz C, Maqueda E, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Posado-Fernández A, Candamo-Lourido M, Alonso-Alonso ML, Hervella P, Iglesias-Rey R, Castillo J, Campos F, Sobrino T. Involvement of Ceramide Metabolism in Cerebral Ischemia. Front Mol Biosci 2022; 9:864618. [PMID: 35531465 PMCID: PMC9067562 DOI: 10.3389/fmolb.2022.864618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in worldwide. Although reperfusion therapies have shown efficacy in a limited number of patients with acute ischemic stroke, neuroprotective drugs and recovery strategies have been widely assessed, but none of them have been successful in clinical practice. Therefore, the search for new therapeutic approaches is still necessary. Sphingolipids consist of a family of lipidic molecules with both structural and cell signaling functions. Regulation of sphingolipid metabolism is crucial for cell fate and homeostasis in the body. Different works have emphasized the implication of its metabolism in different pathologies, such as diabetes, cancer, neurodegeneration, or atherosclerosis. Other studies have shown its implication in the risk of suffering a stroke and its progression. This review will highlight the implications of sphingolipid metabolism enzymes in acute ischemic stroke.
Collapse
Affiliation(s)
- Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elena Maqueda
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Adrián Posado-Fernández
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
13
|
Oktay EO. Bioinformatics Analysis of Functional SNPs in Human ASAH1 Gene Related to Farber Disease. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mhatre S, Muranjan M, Karande S, Balaji H. Novel manifestations of Farber disease mimicking neuronopathic Gaucher disease. BMJ Case Rep 2021; 14:14/5/e240742. [PMID: 34045195 DOI: 10.1136/bcr-2020-240742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diagnosis of rare disorders requires heightened clinical acumen. When such disorders present with atypical or novel features, it adds to the diagnostic challenge. A 9-month-old female infant who had received a diagnosis of neonatal hepatitis due to cytomegalovirus infection at 2 months of age presented to our institute with developmental delay, fever, vomiting, feeding difficulty, breathlessness and features of elevated intracranial pressure due to hydrocephalus. Key examination findings with cholestatic jaundice as an early manifestation led to suspicion of type 4 Farber disease. Observation of hydrocephalus, hypertension, bilateral pinguecula and Erlenmeyer flask deformity of the femur were unusual findings for Farber disease. The child had few features (pinguecula, Erlenmeyer flask deformity and hydrocephalus) overlapping with Gaucher disease. Alternatively, prosaposin deficiency (Farber disease type 7) was another differential diagnosis. Diagnosis of Farber disease was confirmed by detection of foamy macrophages on skin biopsy and two homozygous missense variants in ASAH1 gene.
Collapse
Affiliation(s)
- Shweta Mhatre
- Pediatrics, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Mamta Muranjan
- Pediatrics, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Sunil Karande
- Pediatrics, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Harish Balaji
- Dermatology, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Human Brain Lipidomics: Utilities of Chloride Adducts in Flow Injection Analysis. Life (Basel) 2021; 11:life11050403. [PMID: 33924945 PMCID: PMC8145723 DOI: 10.3390/life11050403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ceramides have been implicated in a number of disease processes. However, current means of evaluation with flow infusion analysis (FIA) have been limited primarily due to poor sensitivity within our high-resolution mass spectrometry lipidomics analytical platform. To circumvent this deficiency, we investigated the potential of chloride adducts as an alternative method to improve sensitivity with electrospray ionization. Chloride adducts of ceramides and ceramide subfamilies provided 2- to 50-fold increases in sensitivity both with analytical standards and biological samples. Chloride adducts of a number of other lipids with reactive hydroxy groups were also enhanced. For example, monogalactosyl diacylglycerols (MGDGs), extracted from frontal lobe cortical gray and subcortical white matter of cognitively intact subjects, were not detected as ammonium adducts but were readily detected as chloride adducts. Hydroxy lipids demonstrate a high level of specificity in that phosphoglycerols and phosphoinositols do not form chloride adducts. In the case of choline glycerophospholipids, the fatty acid substituents of these lipids could be monitored by MS2 of the chloride adducts. Monitoring the chloride adducts of a number of key lipids offers enhanced sensitivity and specificity with FIA. In the case of glycerophosphocholines, the chloride adducts also allow determination of fatty acid substituents. The chloride adducts of lipids possessing electrophilic hydrogens of hydroxyl groups provide significant increases in sensitivity. In the case of glycerophosphocholines, chloride attachment to the quaternary ammonium group generates a dominant anion, which provides the identities of the fatty acid substituents under MS2 conditions.
Collapse
|
16
|
Majovska J, Nestrasil I, Paulson A, Nascene D, Jurickova K, Hlavata A, Lund T, Orchard PJ, Vaneckova M, Zeman J, Magner M, Dusek P. White matter alteration and cerebellar atrophy are hallmarks of brain MRI in alpha-mannosidosis. Mol Genet Metab 2021; 132:189-197. [PMID: 33317989 DOI: 10.1016/j.ymgme.2020.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Despite profound neurological symptomatology there are only few MRI studies focused on the brain abnormalities in alpha-mannosidosis (AM). Our aim was to characterize brain MRI findings in a large cohort of AM patients along with clinical manifestations. METHODS Twenty-two brain MRIs acquired in 13 untreated AM patients (8 M/5F; median age 17 years) were independently assessed by three experienced readers and compared to 16 controls. RESULTS Focal and/or diffuse hyperintense signals in the cerebral white matter were present in most (85%) patients. Cerebellar atrophy was common (62%), present from the age of 5 years. Progression was observed in two out of 6 patients with follow-up scans. Cortical atrophy (62%) and corpus callosum thinning (23%) were already present in a 13-month-old child. The presence of low T2 signal intensity in basal ganglia and thalami was excluded by the normalized signal intensity profiling. The enlargement of perivascular spaces in white matter (38%), widening of perioptic CSF spaces (62%), and enlargement of cisterna magna (85%) were also observed. Diploic space thickening (100%), mucosal thickening (69%) and sinus hypoplasia (54%) were the most frequent non-CNS abnormalities. CONCLUSION White matter changes and cerebellar atrophy are proposed to be the characteristic brain MRI features of AM. The previously reported decreased T2 signal intensity in basal ganglia and thalami was not detected in this quantitative study. Rather, this relative MR appearance seems to be related to the diffuse high T2 signal in the adjacent white matter and not the gray matter iron deposition that has been hypothesized.
Collapse
Affiliation(s)
- Jitka Majovska
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Amy Paulson
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - David Nascene
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Katarina Jurickova
- Center for Inherited Metabolic Disorders, Department of Paediatrics, National Institute of Children's Diseases and Faculty of Human Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Anna Hlavata
- Center for Inherited Metabolic Disorders, Department of Paediatrics, National Institute of Children's Diseases and Faculty of Human Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Troy Lund
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Paul J Orchard
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiri Zeman
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Magner
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Department of Pediatrics, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic.
| | - Petr Dusek
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| |
Collapse
|
17
|
Li Y, Miller CA, Shea LK, Jiang X, Guzman MA, Chandler RJ, Ramakrishnan SM, Smith SN, Venditti CP, Vogler CA, Ory DS, Ley TJ, Sands MS. Enhanced Efficacy and Increased Long-Term Toxicity of CNS-Directed, AAV-Based Combination Therapy for Krabbe Disease. Mol Ther 2021; 29:691-701. [PMID: 33388420 PMCID: PMC7854295 DOI: 10.1016/j.ymthe.2020.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC) and the progressive accumulation of the toxic metabolite psychosine. We showed previously that central nervous system (CNS)-directed, adeno-associated virus (AAV)2/5-mediated gene therapy synergized with bone marrow transplantation and substrate reduction therapy (SRT) to greatly increase therapeutic efficacy in the murine model of Krabbe disease (Twitcher). However, motor deficits remained largely refractory to treatment. In the current study, we replaced AAV2/5 with an AAV2/9 vector. This single change significantly improved several endpoints primarily associated with motor function. However, nearly all (14/16) of the combination-treated Twitcher mice and all (19/19) of the combination-treated wild-type mice developed hepatocellular carcinoma (HCC). 10 out of 10 tumors analyzed had AAV integrations within the Rian locus. Several animals had additional integrations within or near genes that regulate cell growth or death, are known or potential tumor suppressors, or are associated with poor prognosis in human HCC. Finally, the substrate reduction drug L-cycloserine significantly decreased the level of the pro-apoptotic ceramide 18:0. These data demonstrate the value of AAV-based combination therapy for Krabbe disease. However, they also suggest that other therapies or co-morbidities must be taken into account before AAV-mediated gene therapy is considered for human therapeutic trials.
Collapse
Affiliation(s)
- Yedda Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren K Shea
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Miguel A Guzman
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Sai M Ramakrishnan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie N Smith
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Carole A Vogler
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Ley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Allende ML, Zhu H, Kono M, Hoachlander-Hobby LE, Huso VL, Proia RL. Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease. Cell Signal 2021; 78:109879. [PMID: 33296739 PMCID: PMC7775721 DOI: 10.1016/j.cellsig.2020.109879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Sphingolipids, which function as plasma membrane lipids and signaling molecules, are highly enriched in neuronal and myelin membranes in the nervous system. They are degraded in lysosomes by a defined sequence of enzymatic steps. In the related group of disorders, the sphingolipidoses, mutations in the genes that encode the individual degradative enzymes cause lysosomal accumulation of sphingolipids and often result in severe neurodegenerative disease. Here we review the information indicating that microglia, which actively clear sphingolipid-rich membranes in the brain during development and homeostasis, are directly affected by these mutations and promote neurodegeneration in the sphingolipidoses. We also identify parallels between the sphingolipidoses and more common forms of neurodegeneration, which both exhibit evidence of defective sphingolipid clearance in the nervous system.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongling Zhu
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mari Kono
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lila E Hoachlander-Hobby
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vienna L Huso
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard L Proia
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Vitner EB. The role of brain innate immune response in lysosomal storage disorders: fundamental process or evolutionary side effect? FEBS Lett 2020; 594:3619-3631. [PMID: 33131047 DOI: 10.1002/1873-3468.13980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 01/14/2023]
Abstract
Sphingolipidoses are diseases caused by mutations in genes responsible for sphingolipid degradation and thereby lead to sphingolipid accumulation. Most sphingolipidoses have a neurodegenerative manifestation characterized by innate immune activation in the brain. However, the role of the immune response in disease progression is ill-understood. In contrast to infectious diseases, immune activation is unable to eliminate the offending agent in sphingolipidoses resulting in ineffective, chronic inflammation. This paradox begs two fundamental questions: Why has this immune response evolved in sphingolipidoses? What role does it play in disease progression? Here, starting from the observation that sphingolipids (SLs) are elevated also in infectious diseases, I discuss the possibility that the activation of the brain immune response by SLs has evolved as a part of the immune response against pathogens and plays no major role in sphingolipidoses.
Collapse
Affiliation(s)
- Einat B Vitner
- Department of Infectious Diseases, Israel institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
20
|
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Irunlarrea 4, 310620 Pamplona, Spain; Navarrabiomed-Miguel Servet Research Foundation, Pamplona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
21
|
Duarte C, Akkaoui J, Yamada C, Ho A, Mao C, Movila A. Elusive Roles of the Different Ceramidases in Human Health, Pathophysiology, and Tissue Regeneration. Cells 2020; 9:cells9061379. [PMID: 32498325 PMCID: PMC7349419 DOI: 10.3390/cells9061379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Ceramide and sphingosine are important interconvertible sphingolipid metabolites which govern various signaling pathways related to different aspects of cell survival and senescence. The conversion of ceramide into sphingosine is mediated by ceramidases. Altogether, five human ceramidases—named acid ceramidase, neutral ceramidase, alkaline ceramidase 1, alkaline ceramidase 2, and alkaline ceramidase 3—have been identified as having maximal activities in acidic, neutral, and alkaline environments, respectively. All five ceramidases have received increased attention for their implications in various diseases, including cancer, Alzheimer’s disease, and Farber disease. Furthermore, the potential anti-inflammatory and anti-apoptotic effects of ceramidases in host cells exposed to pathogenic bacteria and viruses have also been demonstrated. While ceramidases have been a subject of study in recent decades, our knowledge of their pathophysiology remains limited. Thus, this review provides a critical evaluation and interpretive analysis of existing literature on the role of acid, neutral, and alkaline ceramidases in relation to human health and various diseases, including cancer, neurodegenerative diseases, and infectious diseases. In addition, the essential impact of ceramidases on tissue regeneration, as well as their usefulness in enzyme replacement therapy, is also discussed.
Collapse
Affiliation(s)
- Carolina Duarte
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| | - Juliet Akkaoui
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Chiaki Yamada
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Anny Ho
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Cungui Mao
- Department of Medicine, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA;
- Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Alexandru Movila
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| |
Collapse
|
22
|
Elsea SH, Solyom A, Martin K, Harmatz P, Mitchell J, Lampe C, Grant C, Selim L, Mungan NO, Guelbert N, Magnusson B, Sundberg E, Puri R, Kapoor S, Arslan N, DiRocco M, Zaki M, Ozen S, Mahmoud IG, Ehlert K, Hahn A, Gokcay G, Torcoletti M, Ferreira CR. ASAH1 pathogenic variants associated with acid ceramidase deficiency: Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy. Hum Mutat 2020; 41:1469-1487. [PMID: 32449975 DOI: 10.1002/humu.24056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 11/12/2022]
Abstract
Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy are a spectrum of rare lysosomal storage disorders characterized by acid ceramidase deficiency (ACD), resulting from pathogenic variants in N-acylsphingosine amidohydrolase 1 (ASAH1). Other than simple listings provided in literature reviews, a curated, comprehensive list of ASAH1 mutations associated with ACD clinical phenotypes has not yet been published. This publication includes mutations in ASAH1 collected through the Observational and Cross-Sectional Cohort Study of the Natural History and Phenotypic Spectrum of Farber Disease (NHS), ClinicalTrials.gov identifier NCT03233841, in combination with an up-to-date curated list of published mutations. The NHS is the first to collect retrospective and prospective data on living and deceased patients with ACD presenting as Farber disease, who had or had not undergone hematopoietic stem cell transplantation. Forty-five patients representing the known clinical spectrum of Farber disease (living patients aged 1-28 years) were enrolled. The curation of known ASAH1 pathogenic variants using a single reference transcript includes 10 previously unpublished from the NHS and 63 that were previously reported. The publication of ASAH1 variants will be greatly beneficial to patients undergoing genetic testing in the future by providing a significantly expanded reference list of disease-causing variants.
Collapse
Affiliation(s)
- Sarah H Elsea
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Kirt Martin
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Paul Harmatz
- Pediatric Gastroenterolgy and Nutrition, UCSF Benioff Children's Hospital Oakland, Oakland, California
| | | | | | | | - Laila Selim
- Cairo University Children's Hospital, Cairo, Egypt
| | | | | | - Bo Magnusson
- Karolinska University Hospital, Stockholm, Sweden
| | | | - Ratna Puri
- Sir Ganga Ram Hospital, New Delhi, India
| | - Seema Kapoor
- Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Nur Arslan
- Dokuz Eylul University Hospital, Izmir, Turkey
| | - Maja DiRocco
- Metabolic Diseases, Istituto Giannina Gaslini, Genoa, Italy
| | - Maha Zaki
- Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Seza Ozen
- Pediatric Rheumatology, Hacettepe University Hospital, Ankara, Turkey
| | | | | | - Andreas Hahn
- UKGM Universitätsklinikum Giessen, Giessen, Germany
| | | | | | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Kyriakou K, W. Lederer C, Kleanthous M, Drousiotou A, Malekkou A. Acid Ceramidase Depletion Impairs Neuronal Survival and Induces Morphological Defects in Neurites Associated with Altered Gene Transcription and Sphingolipid Content. Int J Mol Sci 2020; 21:E1607. [PMID: 32111095 PMCID: PMC7084529 DOI: 10.3390/ijms21051607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ASAH1 gene encodes acid ceramidase (AC), an enzyme that is implicated in the metabolism of ceramide (Cer). Mutations in the ASAH1 gene cause two different disorders, Farber disease (FD), a rare lysosomal storage disorder, and a rare form of spinal muscular atrophy combined with progressive myoclonic epilepsy (SMA-PME). In the absence of human in vitro neuronal disease models and to gain mechanistic insights into pathological effects of ASAH1 deficiency, we established and characterized a stable ASAH1 knockdown (ASAH1KD) SH-SY5Y cell line. ASAH1KD cells displayed reduced proliferation due to elevated apoptosis and G1/S cell cycle arrest. Distribution of LAMP1-positive lysosomes towards the cell periphery and significantly shortened and less branched neurites upon differentiation, implicate AC for lysosome positioning and neuronal development, respectively. Lipidomic analysis revealed changes in the intracellular levels of distinct sphingolipid species, importantly without Cer accumulation, in line with altered gene transcription within the sphingolipid pathway. Additionally, the transcript levels for Rho GTPases (RhoA, Rac1, and Cdc42), which are key regulators of axonal orientation, neurite branching and lysosome positioning were found to be dysregulated. This study shows the critical role of AC in neurons and suggests how AC depletion leads to defects seen in neuropathology of SMA-PME and FD.
Collapse
Affiliation(s)
- Kalia Kyriakou
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Carsten W. Lederer
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Marina Kleanthous
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Anthi Drousiotou
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Anna Malekkou
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
24
|
van Kruining D, Luo Q, van Echten-Deckert G, Mielke MM, Bowman A, Ellis S, Oliveira TG, Martinez-Martinez P. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv Drug Deliv Rev 2020; 159:232-244. [PMID: 32360155 PMCID: PMC7665829 DOI: 10.1016/j.addr.2020.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in neurodegeneration, neuroinflammation, and psychiatric disorders and an imbalance in sphingolipid levels is associated with disease. Although early diagnosis and intervention of these disorders would clearly have favorable long-term outcomes, no diagnostic tests currently exist that can accurately identify people at risk. Reliable prognostic biomarkers that are easily accessible would be beneficial to determine therapy and treatment response in clinical trials. Recent advances in lipidomic investigation methods have greatly progressed the knowledge of sphingolipids in neurodegenerative and psychiatric disorders over the past decades although more longitudinal studies are needed to understand its exact role in these disorders to be used as potential tools in the clinic. In this review, we give an overview of the current knowledge of sphingolipids in neurodegenerative and psychiatric disorders and explore recent advances in investigation methods. Finally, the potential of sphingolipid metabolism products and signaling molecules as potential biomarkers for diagnosis, prognostic, or surrogate markers of treatment response is discussed.
Collapse
Affiliation(s)
- Daan van Kruining
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Qian Luo
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gerhild van Echten-Deckert
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, Bonn, Germany
| | - Michelle M Mielke
- Department of Health Sciences Research and Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Andrew Bowman
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Shane Ellis
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), ICVS/3B's, School of Medicine, University of Minho, Braga, Portugal
| | - Pilar Martinez-Martinez
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
25
|
Li Y, Xu Y, Benitez BA, Nagree MS, Dearborn JT, Jiang X, Guzman MA, Woloszynek JC, Giaramita A, Yip BK, Elsbernd J, Babcock MC, Lo M, Fowler SC, Wozniak DF, Vogler CA, Medin JA, Crawford BE, Sands MS. Genetic ablation of acid ceramidase in Krabbe disease confirms the psychosine hypothesis and identifies a new therapeutic target. Proc Natl Acad Sci U S A 2019; 116:20097-20103. [PMID: 31527255 PMCID: PMC6778236 DOI: 10.1073/pnas.1912108116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a fatal demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramidase (GALC). GALC deficiency leads to the accumulation of the cytotoxic glycolipid, galactosylsphingosine (psychosine). Complementary evidence suggested that psychosine is synthesized via an anabolic pathway. Here, we show instead that psychosine is generated catabolically through the deacylation of galactosylceramide by acid ceramidase (ACDase). This reaction uncouples GALC deficiency from psychosine accumulation, allowing us to test the long-standing "psychosine hypothesis." We demonstrate that genetic loss of ACDase activity (Farber disease) in the GALC-deficient mouse model of human GLD (twitcher) eliminates psychosine accumulation and cures GLD. These data suggest that ACDase could be a target for substrate reduction therapy (SRT) in Krabbe patients. We show that pharmacological inhibition of ACDase activity with carmofur significantly decreases psychosine accumulation in cells from a Krabbe patient and prolongs the life span of the twitcher (Twi) mouse. Previous SRT experiments in the Twi mouse utilized l-cycloserine, which inhibits an enzyme several steps upstream of psychosine synthesis, thus altering the balance of other important lipids. Drugs that directly inhibit ACDase may have a more acceptable safety profile due to their mechanistic proximity to psychosine biogenesis. In total, these data clarify our understanding of psychosine synthesis, confirm the long-held psychosine hypothesis, and provide the impetus to discover safe and effective inhibitors of ACDase to treat Krabbe disease.
Collapse
Affiliation(s)
- Yedda Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yue Xu
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Bruno A Benitez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Miguel A Guzman
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Josh C Woloszynek
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Alex Giaramita
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Bryan K Yip
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Joseph Elsbernd
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Michael C Babcock
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Melanie Lo
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Stephen C Fowler
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Carole A Vogler
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
- Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brett E Crawford
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
26
|
Yu FPS, Molino S, Sikora J, Rasmussen S, Rybova J, Tate E, Geurts AM, Turner PV, Mckillop WM, Medin JA. Hepatic pathology and altered gene transcription in a murine model of acid ceramidase deficiency. J Transl Med 2019; 99:1572-1592. [PMID: 31186526 DOI: 10.1038/s41374-019-0271-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Farber disease (FD) is a rare lysosomal storage disorder (LSD) characterized by systemic ceramide accumulation caused by a deficiency in acid ceramidase (ACDase). In its classic form, FD manifests with painful lipogranulomatous nodules in extremities and joints, respiratory complications, and neurological involvement. Hepatosplenomegaly is commonly reported, and severe cases of FD cite liver failure as a cause of early death. Mice homozygous for an orthologous patient mutation in the ACDase gene (Asah1P361R/P361R) recapitulate the classical form of human FD. In this study, we demonstrate impaired liver function and elevation of various liver injury markers in Asah1P361R/P361R mice as early as 5 weeks of age. Histopathology analyses demonstrated significant formation and recruitment of foamy macrophages, invasion of neutrophils, progressive tissue fibrosis, increased cell proliferation and death, and significant storage pathology within various liver cell types. Lipidomic analyses revealed alterations to various lipid concentrations in both serum and liver tissue. A significant accumulation of ceramide and other sphingolipids in both liver and hepatocytes was noted. Sphingolipid acyl chains were also altered, with an increase in long acyl chain sphingolipids coinciding with a decrease in ultra-long acyl chains. Hepatocyte transcriptome analyses revealed significantly altered gene transcription. Molecular pathways related to inflammation were found activated, and molecular pathways involved in lipid metabolism were found deactivated. Altered gene transcription within the sphingolipid pathway itself was also observed. The data presented herein demonstrates that deficiency in ACDase results in liver pathology as well as sphingolipid and gene transcription profile changes that lead to impaired liver function.
Collapse
Affiliation(s)
- Fabian P S Yu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Salvatore Molino
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic.,Institute of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Shauna Rasmussen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Everett Tate
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - William M Mckillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.,University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Inherited monogenic defects of ceramide metabolism: Molecular bases and diagnoses. Clin Chim Acta 2019; 495:457-466. [PMID: 31128082 DOI: 10.1016/j.cca.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Ceramides are membrane lipids implicated in the regulation of numerous biological functions. Recent evidence suggests that specific subsets of molecular species of ceramide may play distinct physiological roles. The importance of this family of molecules in vertebrates is witnessed by the deleterious consequences of genetic alterations in ceramide metabolism. This brief review summarizes the clinical presentation of human disorders due to the deficiency of enzymes involved either in the biosynthesis or the degradation of ceramides. Information on the possible underlying pathophysiological mechanisms is also provided, based on knowledge gathered from animal models of these inherited rare conditions. When appropriate, tools for chemical and molecular diagnosis of these disorders and therapeutic options are also presented.
Collapse
|
28
|
Beckmann N, Kadow S, Schumacher F, Göthert JR, Kesper S, Draeger A, Schulz-Schaeffer WJ, Wang J, Becker JU, Kramer M, Kühn C, Kleuser B, Becker KA, Gulbins E, Carpinteiro A. Pathological manifestations of Farber disease in a new mouse model. Biol Chem 2019; 399:1183-1202. [PMID: 29908121 DOI: 10.1515/hsz-2018-0170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1tmEx1 mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.
Collapse
Affiliation(s)
- Nadine Beckmann
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Joachim R Göthert
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Stefanie Kesper
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Annette Draeger
- Institute of Anatomy, University of Bern, Baltzerstr. 2, CH-3012 Bern, Switzerland
| | - Walter J Schulz-Schaeffer
- Insitute of Neuropathology, University of the Saarland, Kirrberger Str. 100, D-66421 Homburg, Germany
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, UC Health University Hospital, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - Jan U Becker
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Melanie Kramer
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Claudine Kühn
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| |
Collapse
|
29
|
Goudie C, Alayoubi AM, Tibout P, Duval M, Maranda B, Mitchell D, Mitchell JJ. Hematopoietic stem cell transplant does not prevent neurological deterioration in infants with Farber disease: Case report and literature review. JIMD Rep 2019; 46:46-51. [PMID: 31240154 PMCID: PMC6498832 DOI: 10.1002/jmd2.12008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022] Open
Abstract
Farber disease (FD) is an inherited autosomal recessive disorder of lipid metabolism. The hallmark of the disease is systemic accumulation of ceramide due to lysosomal acid ceramidase deficiency. The involvement of the central nervous system is critical in this disorder leading to rapid deterioration and death within a few years after birth. Efforts to treat patients by hematopoietic stem cell transplant (HSCT) have resulted in favorable results in the absence of neurological manifestations. We report the outcomes of HSCT in two patients with FD who received early HSCT and had neurological deterioration posttransplant. We also present a new understanding of the limitations of HSCT in FD management based on our observations of the clinical course of the two patients after therapy.
Collapse
Affiliation(s)
- Catherine Goudie
- Division of Hematology‐Oncology, Department of PediatricsMcGill University Health CenterMontrealQuebecCanada
| | - Abdulfatah M. Alayoubi
- Division of Medical Genetics, Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah UniversityMadinahSaudi Arabia
| | - Pauline Tibout
- Department of PediatricsCHU de Québec—Université LavalQuebecQuébecCanada
| | - Michel Duval
- Division of Hematology‐Oncology, Department of PediatricsCHU Sainte‐Justine, University of MontrealMontrealQuebecCanada
| | - Bruno Maranda
- Division of Genetics, Department of PediatricsUniversité de SherbrookeSherbrookeQuebecCanada
| | - David Mitchell
- Division of Hematology‐Oncology, Department of PediatricsMcGill University Health CenterMontrealQuebecCanada
| | - John J. Mitchell
- Division of Medical Genetics, Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- Department of PediatricsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
30
|
Luberto C, Haley JD, Del Poeta M. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem Phys Lipids 2019; 219:1-14. [PMID: 30641043 DOI: 10.1016/j.chemphyslip.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States.
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States; Veterans Administrations Medical Center, Northport, NY, United States
| |
Collapse
|
31
|
The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2019; 56:5436-5455. [PMID: 30612333 PMCID: PMC6614129 DOI: 10.1007/s12035-018-1448-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Bioactive sphingolipids-ceramide, sphingosine, and their respective 1-phosphates (C1P and S1P)-are signaling molecules serving as intracellular second messengers. Moreover, S1P acts through G protein-coupled receptors in the plasma membrane. Accumulating evidence points to sphingolipids' engagement in brain aging and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. Metabolic alterations observed in the course of neurodegeneration favor ceramide-dependent pro-apoptotic signaling, while the levels of the neuroprotective S1P are reduced. These trends are observed early in the diseases' development, suggesting causal relationship. Mechanistic evidence has shown links between altered ceramide/S1P rheostat and the production, secretion, and aggregation of amyloid β/α-synuclein as well as signaling pathways of critical importance for the pathomechanism of protein conformation diseases. Sphingolipids influence multiple aspects of Akt/protein kinase B signaling, a pathway that regulates metabolism, stress response, and Bcl-2 family proteins. The cross-talk between sphingolipids and transcription factors including NF-κB, FOXOs, and AP-1 may be also important for immune regulation and cell survival/death. Sphingolipids regulate exosomes and other secretion mechanisms that can contribute to either the spread of neurotoxic proteins between brain cells, or their clearance. Recent discoveries also suggest the importance of intracellular and exosomal pools of small regulatory RNAs in the creation of disturbed signaling environment in the diseased brain. The identified interactions of bioactive sphingolipids urge for their evaluation as potential therapeutic targets. Moreover, the early disturbances in sphingolipid metabolism may deliver easily accessible biomarkers of neurodegenerative disorders.
Collapse
|
32
|
Yu FPS, Sajdak BS, Sikora J, Salmon AE, Nagree MS, Gurka J, Kassem IS, Lipinski DM, Carroll J, Medin JA. Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:320-338. [PMID: 30472209 DOI: 10.1016/j.ajpath.2018.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023]
Abstract
Farber disease (FD) is a debilitating lysosomal storage disorder characterized by severe inflammation and neurodegeneration. FD is caused by mutations in the ASAH1 gene, resulting in deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency exhibit a broad clinical spectrum. In classic cases, patients develop hepatosplenomegaly, nervous system involvement, and childhood mortality. Ocular manifestations include decreased vision, a grayish appearance to the retina with a cherry red spot, and nystagmus. That said, the full effect of ACDase deficiency on the visual system has not been studied in detail. We previously developed a mouse model that is orthologous for a known patient mutation in Asah1 that recapitulates human FD. Herein, we report evidence of a severe ocular pathology in Asah1P361R/P361R mice. Asah1P361R/P361R mice exhibit progressive retinal and optic nerve pathology. Through noninvasive ocular imaging and histopathological analyses of these Asah1P361R/P361R animals, we revealed progressive inflammation, the presence of retinal dysplasia, and significant storage pathology in various cell types in both the retina and optic nerves. Lipidomic analyses of retinal tissues revealed an abnormal accumulation of ceramides and other sphingolipids. Electroretinograms and behavioral tests showed decreased retinal and visual responses. Taken together, these data suggest that ACDase deficiency leads to sphingolipid imbalance, inflammation, dysmorphic retinal and optic nerve pathology, and severe visual impairment.
Collapse
Affiliation(s)
- Fabian P S Yu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin S Sajdak
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic; Institute of Pathology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alexander E Salmon
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Murtaza S Nagree
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jiří Gurka
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Iris S Kassem
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin; Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin; University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Horodyska J, Wimmers K, Reyer H, Trakooljul N, Mullen AM, Lawlor PG, Hamill RM. RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism. BMC Genomics 2018; 19:791. [PMID: 30384851 PMCID: PMC6211475 DOI: 10.1186/s12864-018-5175-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Feed efficiency (FE) is an indicator of efficiency in converting energy and nutrients from feed into a tissue that is of major environmental and economic significance. The molecular mechanisms contributing to differences in FE are not fully elucidated, therefore the objective of this study was to profile the porcine Longissimus thoracis et lumborum (LTL) muscle transcriptome, examine the product quality from pigs divergent in FE and investigate the functional networks underpinning the potential relationship between product quality and FE. RESULTS RNA-Seq (n = 16) and product quality (n = 40) analysis were carried out in the LTL of pigs differing in FE status. A total of 272 annotated genes were differentially expressed with a P < 0.01. Functional annotation revealed a number of biological events related to immune response, growth, carbohydrate & lipid metabolism and connective tissue indicating that these might be the key mechanisms governing differences in FE. Five most significant bio-functions altered in FE groups were 'haematological system development & function', 'lymphoid tissue structure & development', 'tissue morphology', 'cellular movement' and 'immune cell trafficking'. Top significant canonical pathways represented among the differentially expressed genes included 'IL-8 signalling', 'leukocyte extravasation signalling, 'sphingosine-1-phosphate signalling', 'PKCθ signalling in T lymphocytes' and 'fMLP signalling in neutrophils'. A minor impairment in the quality of meat, in relation to texture and water-holding capacity, produced by high-FE pigs was observed. High-FE pigs also had reduced intramuscular fat content and improved nutritional profile in terms of fatty acid composition. CONCLUSIONS Ontology analysis revealed enhanced activity of adaptive immunity and phagocytes in high-FE pigs suggesting more efficient conserving of resources, which can be utilised for other important biological processes. Shifts in carbohydrate conversion into glucose in FE-divergent muscle may underpin the divergent evolution of pH profile in meat from the FE-groups. Moreover, altered amino acid metabolism and increased mobilisation & flux of calcium may influence growth in FE-divergent muscle. Furthermore, decreased degradation of fibroblasts in FE-divergent muscle could impact on collagen turnover and alter tenderness of meat, whilst enhanced lipid degradation in high-FE pigs may potentially underlie a more efficient fat metabolism in these animals.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | - Peadar G Lawlor
- Teagasc, Pig Development Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ruth M Hamill
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.
| |
Collapse
|
34
|
Stable Isotope Labeling Highlights Enhanced Fatty Acid and Lipid Metabolism in Human Acute Myeloid Leukemia. Int J Mol Sci 2018; 19:ijms19113325. [PMID: 30366412 PMCID: PMC6274868 DOI: 10.3390/ijms19113325] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background: In Acute Myeloid Leukemia (AML), a complete response to chemotherapy is usually obtained after conventional chemotherapy but overall patient survival is poor due to highly frequent relapses. As opposed to chronic myeloid leukemia, B lymphoma or multiple myeloma, AML is one of the rare malignant hemopathies the therapy of which has not significantly improved during the past 30 years despite intense research efforts. One promising approach is to determine metabolic dependencies in AML cells. Moreover, two key metabolic enzymes, isocitrate dehydrogenases (IDH1/2), are mutated in more than 15% of AML patient, reinforcing the interest in studying metabolic reprogramming, in particular in this subgroup of patients. Methods: Using a multi-omics approach combining proteomics, lipidomics, and isotopic profiling of [U-13C] glucose and [U-13C] glutamine cultures with more classical biochemical analyses, we studied the impact of the IDH1 R132H mutation in AML cells on lipid biosynthesis. Results: Global proteomic and lipidomic approaches showed a dysregulation of lipid metabolism, especially an increase of phosphatidylinositol, sphingolipids (especially few species of ceramide, sphingosine, and sphinganine), free cholesterol and monounsaturated fatty acids in IDH1 mutant cells. Isotopic profiling of fatty acids revealed that higher lipid anabolism in IDH1 mutant cells corroborated with an increase in lipogenesis fluxes. Conclusions: This integrative approach was efficient to gain insight into metabolism and dynamics of lipid species in leukemic cells. Therefore, we have determined that lipid anabolism is strongly reprogrammed in IDH1 mutant AML cells with a crucial dysregulation of fatty acid metabolism and fluxes, both being mediated by 2-HG (2-Hydroxyglutarate) production.
Collapse
|
35
|
Tobias F, Olson MT, Cologna SM. Mass spectrometry imaging of lipids: untargeted consensus spectra reveal spatial distributions in Niemann-Pick disease type C1. J Lipid Res 2018; 59:2446-2455. [PMID: 30266834 DOI: 10.1194/jlr.d086090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry imaging (MSI) is a tool to rapidly map the spatial location of analytes without the need for tagging or a reporter system. Niemann-Pick disease type C1 (NPC1) is a neurodegenerative, lysosomal storage disorder characterized by accumulation of unesterified cholesterol and sphingolipids in the endo-lysosomal system. Here, we use MSI to visualize lipids including cholesterol in cerebellar brain tissue from the NPC1 symptomatic mouse model and unaffected controls. To complement the imaging studies, a data-processing pipeline was developed to generate consensus mass spectra, thereby using both technical and biological image replicates to assess differences. The consensus spectra are used to determine true differences in lipid relative abundance; lipid distributions can be determined in an unbiased fashion without prior knowledge of location. We show the cerebellar distribution of gangliosides GM1, GM2, and GM3, including variants of lipid chain length. We also performed MALDI-MSI of cholesterol. Further analysis of lobules IV/V and X of the cerebellum gangliosides indicates regional differences. The specificity achieved highlights the power of MSI, and this new workflow demonstrates a universal approach for addressing reproducibility in imaging experiments applied to NPC1.
Collapse
Affiliation(s)
- Fernando Tobias
- Department of Chemistry University of Illinois at Chicago, Chicago, IL 60607
| | - Matthew T Olson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224
| | - Stephanie M Cologna
- Department of Chemistry University of Illinois at Chicago, Chicago, IL 60607 .,Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
36
|
Dilillo M, Heijs B, McDonnell LA. Mass spectrometry imaging: How will it affect clinical research in the future? Expert Rev Proteomics 2018; 15:709-716. [PMID: 30203995 DOI: 10.1080/14789450.2018.1521278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) is a label free, multiplex imaging technology able to simultaneously record the distributions of 100's to 1000's of species, and which may be configured to study metabolites, lipids, glycans, peptides, and proteins simply by changing the tissue preparation protocol. Areas covered: The capability of MSI to complement established histopathological practice through the identification of biomarkers for differential diagnosis, patient prognosis, and response to therapy; the capability of MSI to annotate tissues on the basis of each pixel's mass spectral signature; the development of reproducible MSI through multicenter studies. Expert commentary: We discuss how MSI can be combined with microsampling/microdissection technologies in order to investigate, with more depth of coverage, the molecular changes uncovered by MSI.
Collapse
Affiliation(s)
| | - Bram Heijs
- b Center for Proteomics and Metabolomics , Leiden University Medical Center , Leiden , The Netherlands
| | - Liam A McDonnell
- a Fondazione Pisana per la Scienza ONLUS , Pisa , Italy.,b Center for Proteomics and Metabolomics , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
37
|
Yu FPS, Amintas S, Levade T, Medin JA. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J Rare Dis 2018; 13:121. [PMID: 30029679 PMCID: PMC6053731 DOI: 10.1186/s13023-018-0845-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Acid ceramidase (ACDase) deficiency is a spectrum of disorders that includes a rare lysosomal storage disorder called Farber disease (FD) and a rare epileptic disorder called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). Both disorders are caused by mutations in the ASAH1 gene that encodes the lysosomal hydrolase that breaks down the bioactive lipid ceramide. To date, there have been fewer than 200 reported cases of FD and SMA-PME in the literature. Typical textbook manifestations of classical FD include the formation of subcutaneous nodules, accumulation of joint contractures, and development of a hoarse voice. In reality, however, the clinical presentation is much broader. Patients may develop severe pathologies leading to death in infancy or may develop attenuated forms of the disorder wherein they are often misdiagnosed or not diagnosed until adulthood. A clinical variability also exists for SMA-PME, in which patients develop progressive muscle weakness and seizures. Currently, there is no known cure for FD or for SMA-PME. The main treatment is symptom management. In rare cases, treatment may include surgery or hematopoietic stem cell transplantation. Research using disease models has provided insights into the pathology as well as the role of ACDase in the development of these conditions. Recent studies have highlighted possible biomarkers for an effective diagnosis of ACDase deficiency. Ongoing work is being conducted to evaluate the use of recombinant human ACDase (rhACDase) for the treatment of FD. Finally, gene therapy strategies for the treatment of ACDase deficiency are actively being pursued. This review highlights the broad clinical definition and outlines key studies that have improved our understanding of inherited ACDase deficiency-related conditions.
Collapse
Affiliation(s)
- Fabian P. S. Yu
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Samuel Amintas
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
- INSERM UMR1037 CRCT, Université de Toulouse, Toulouse, France
| | - Jeffrey A. Medin
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
38
|
Yu FPS, Islam D, Sikora J, Dworski S, Gurka J, López-Vásquez L, Liu M, Kuebler WM, Levade T, Zhang H, Medin JA. Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am J Physiol Lung Cell Mol Physiol 2018; 314:L406-L420. [PMID: 29167126 PMCID: PMC5900354 DOI: 10.1152/ajplung.00223.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022] Open
Abstract
Farber disease (FD) is a debilitating lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (ACDase) activity due to mutations in the gene ASAH1. Patients with ACDase deficiency may develop a spectrum of clinical phenotypes. Severe cases of FD are frequently associated with neurological involvement, failure to thrive, and respiratory complications. Mice homozygous ( Asah1P361R/P361R) for an orthologous patient mutation in Asah1 recapitulate human FD. In this study, we show significant impairment in lung function, including low compliance and increased airway resistance in a mouse model of ACDase deficiency. Impaired lung mechanics in Farber mice resulted in decreased blood oxygenation and increased red blood cell production. Inflammatory cells were recruited to both perivascular and peribronchial areas of the lung. We observed large vacuolated foamy histiocytes that were full of storage material. An increase in vascular permeability led to protein leakage, edema, and impacted surfactant homeostasis in the lungs of Asah1P361R/P361R mice. Bronchial alveolar lavage fluid (BALF) extraction and analysis revealed accumulation of a highly turbid lipoprotein-like substance that was composed in part of surfactants, phospholipids, and ceramides. The phospholipid composition of BALF from Asah1P361R/P361R mice was severely altered, with an increase in both phosphatidylethanolamine (PE) and sphingomyelin (SM). Ceramides were also found at significantly higher levels in both BALF and lung tissue from Asah1P361R/P361R mice when compared with levels from wild-type animals. We demonstrate that a deficiency in ACDase leads to sphingolipid and phospholipid imbalance, chronic lung injury caused by significant inflammation, and increased vascular permeability, leading to impaired lung function.
Collapse
Affiliation(s)
- Fabian P S Yu
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Diana Islam
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Jakub Sikora
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, Charles University, First Faculty of Medicine , Prague , Czech Republic
- Institute of Pathology, Charles University, First Faculty of Medicine and General University Hospital , Prague , Czech Republic
| | - Shaalee Dworski
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Jiří Gurka
- Department of Cardiology, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Lucía López-Vásquez
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Mingyao Liu
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- University Health Network , Toronto, Ontario , Canada
| | - Wolfgang M Kuebler
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto, Ontario , Canada
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, and INSERM UMR1037 CRCT, Université de Toulouse , Toulouse , France
| | - Haibo Zhang
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto, Ontario , Canada
- Department of Anesthesia, University of Toronto , Toronto, Ontario , Canada
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- University Health Network , Toronto, Ontario , Canada
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
39
|
Deletion of MCP-1 Impedes Pathogenesis of Acid Ceramidase Deficiency. Sci Rep 2018; 8:1808. [PMID: 29379059 PMCID: PMC5789088 DOI: 10.1038/s41598-018-20052-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
Farber Disease (FD) is an ultra-rare Lysosomal Storage Disorder caused by deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency manifest a spectrum of symptoms including formation of nodules, painful joints, and a hoarse voice. Classic FD patients will develop histiocytes in organs and die in childhood. Monocyte chemotactic protein (MCP-1; CCL2) is significantly elevated in both FD patients and a mouse model we previously generated. Here, to further study MCP-1 in FD, we created an ACDase;MCP-1 double mutant mouse. We show that deletion of MCP-1 reduced leukocytosis, delayed weight loss, and improved lifespan. Reduced inflammation and fibrosis were observed in livers from double mutant animals. Bronchial alveolar lavage fluid analyses revealed a reduction in cellular infiltrates and protein accumulation. Furthermore, reduced sphingolipid accumulation was observed in the lung and liver but not in the brain. The neurological and hematopoietic defects observed in FD mice were maintained. A compensatory cytokine response was found in the double mutants, however, that may contribute to continued signs of inflammation and injury. Taken together, targeting a reduction of MCP-1 opens the door to a better understanding of the mechanistic consequences of ceramide accumulation and may even delay the progression of FD in some organ systems.
Collapse
|
40
|
Molino S, Tate E, McKillop WM, Medin JA. Sphingolipid pathway enzymes modulate cell fate and immune responses. Immunotherapy 2017; 9:1185-1198. [DOI: 10.2217/imt-2017-0089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingolipids (SLs) are a class of essential, bioactive lipids. The SL family includes over 4000 distinct molecules, characterized by their sphingoid base (long-chain aliphatic amine) backbone. SLs are key components of cell membranes, yet their roles go well beyond structure. SLs are involved in many cellular processes including cell differentiation, apoptosis, growth arrest and senescence. As cancer cells routinely display increased growth properties and escape from cell death, it has been suggested that enzymes involved in SL synthesis or catabolism may be altered in cancer cells. In this review, we discuss the role of SL pathway enzymes in cancer, and in acquired resistance to therapy. The use of inhibitors and gene silencing approaches targeting these SL pathways is also explored. Finally, we elaborate on the role of SL pathway enzymes in the tumor microenvironment and their effect on immune cell function.
Collapse
Affiliation(s)
- S Molino
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - E Tate
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - WM McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - JA Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medical Biophysics & the Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Schuchman EH, Mitchell J, Solyom A. Morbidity and mortality associated with Farber disease and prospects for therapy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1359086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Edward H. Schuchman
- Genetic Disease Foundation-Francis Crick Professor, Department of Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - John Mitchell
- Division of Pediatric Endocrinology, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Alex Solyom
- Clinical Research & Patient Affairs, Enzyvant, Basel, Switzerland
| |
Collapse
|