1
|
Liang SJ, Wang K, Mao DB, Xie LW, Zhu DJ. Inhibition of the Wnt/β‑catenin signaling pathway and SOX9 by XAV939 did not alleviate inflammation in a dextran sulfate sodium‑induced ulcerative colitis model. Exp Ther Med 2025; 29:24. [PMID: 39650775 PMCID: PMC11619566 DOI: 10.3892/etm.2024.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 12/11/2024] Open
Abstract
The Wnt/β-catenin signaling pathway has been reported to be hyperactivated during the pathogenesis of ulcerative colitis (UC). The present study aimed to explore the therapeutic efficacy of the Wnt/β-catenin signaling inhibitor XAV939 in mitigating UC symptoms. Utilizing a dextran sulfate sodium (DSS)-induced UC mouse model, the present study aimed to evaluate the impact of XAV939 on intestinal morphology through hematoxylin and eosin staining and to measure the expression levels of critical proteins in the Wnt/β-catenin signaling cascade. XAV939 did not exert a significant influence on the morphological features and inflammatory status of the intestinal epithelium. However, XAV939 was found to effectively suppress the Wnt/β-catenin signaling pathway and its downstream target SOX9. This suppression implied a reduction in the differentiation of intestinal stem cells into secretory cell progenitor cells. Additionally, XAV939 was ineffective at reversing the DSS-induced decrease in expression levels of Villin and peroxisome proliferator-activated receptor γ, which suggested that it did not facilitate the differentiation of intestinal absorptive cells. The present findings indicated that the Wnt/β-catenin signaling pathway may not be the predominant mechanism in the pathogenesis of DSS-induced UC.
Collapse
Affiliation(s)
- Shao-Jie Liang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Kun Wang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Da-Bin Mao
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Li-Wei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510075, P.R. China
| | - Da-Jian Zhu
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| |
Collapse
|
2
|
Belamkar A, Luo Q, Mahajan N, Abhyankar S, Jones BA, Sodhi RK, Pattabiraman PP, Levi M, Bhatwadekar AD. Characterization of the Ocular Phenotype in a Col4a3 Knockout Mouse Model of Alport Syndrome. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39680378 DOI: 10.1167/iovs.65.14.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Purpose Alport syndrome (AS) is a genetic condition caused by a dysfunctional collagen (IV) α3α4α5 heterotrimer, leading to basement membrane instability and, ultimately, abnormalities in the kidney, inner ear, and eyes. This study aimed to characterize ocular pathology of AS by focusing on inflammatory and fibrotic markers. Methods Col4a3tm1Dec knockout (KO) mice eyes were evaluated for the localization of collagen (IV) α3 and collagen (IV) α4, then stained for transforming growth factor-β1 (TGF-β1), TGF-β2, connective tissue growth factor (CTGF), and β-catenin. mRNA levels of the profibrotic genes S100a4, Acta2, Col1a1, Snai1, Snai2, and Twist1 were assessed using real-time reverse transcription quantitative PCR (RT-qPCR). Results Collagen (IV) α3 and collagen (IV) α4 were co-expressed in Descemet's and Bruch's membrane but not in the retina, lens, or other corneal substructures. Immunofluorescence quantitation revealed upregulation of TGF-β1 in the anterior lens and TGF-β2 in the retina of KO eyes. Conversely, CTGF and β-catenin were shown to be elevated in the corneal epithelium but not the retina or lens. RT-qPCR showed an increase in the transcription of Acta2, Col1a1, and Snai2 in the retinas and Snai2 in anterior segments of KO mice. Conclusions Col4a3 KO mice exhibited a differential inflammatory and profibrotic response in the cornea, retina, and lens, which may play a role in the ocular pathology of AS.
Collapse
Affiliation(s)
- Ameya Belamkar
- Indiana University of School of Medicine, Indiana, United States
| | - Qianyi Luo
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Neha Mahajan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Surabhi Abhyankar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Bryce A Jones
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Rupinder Kaur Sodhi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Padmanabhan P Pattabiraman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
3
|
Wang Y, Ge H, Chen P, Wang Y. Wnt/β-catenin signaling in corneal epithelium development, homeostasis, and pathobiology. Exp Eye Res 2024; 246:110022. [PMID: 39117134 DOI: 10.1016/j.exer.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The corneal epithelium is located on the most anterior surface of the eyeball and protects against external stimuli. The development of the corneal epithelium and the maintenance of corneal homeostasis are essential for the maintenance of visual acuity. It has been discovered recently via the in-depth investigation of ocular surface illnesses that the Wnt/β-catenin signaling pathway is necessary for the growth and stratification of corneal epithelial cells as well as the control of endothelial cell stability. In addition, the Wnt/β-catenin signaling pathway is directly linked to the development of common corneal illnesses such as keratoconus, fungal keratitis, and corneal neovascularization. This review mainly summarizes the role of the Wnt/β-catenin signaling pathway in the development, homeostasis, and pathobiology of cornea, hoping to provide new insights into the study of corneal epithelium and the treatment of related diseases.
Collapse
Affiliation(s)
- Yihui Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong 266042, China.
| |
Collapse
|
4
|
Chow BJ, Lee IXY, Liu C, Liu YC. Potential therapeutic effects of peroxisome proliferator-activated receptors on corneal diseases. Exp Biol Med (Maywood) 2024; 249:10142. [PMID: 38993197 PMCID: PMC11238193 DOI: 10.3389/ebm.2024.10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is an avascular tissue in the eye that has multiple functions in the eye to maintain clear vision which can significantly impair one's vision when subjected to damage. Peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptor proteins comprising three different peroxisome proliferator-activated receptor (PPAR) isoforms, namely, PPAR alpha (α), PPAR gamma (γ), and PPAR delta (δ), have emerged as potential therapeutic targets for treating corneal diseases. In this review, we summarised the current literature on the therapeutic effects of PPAR agents on corneal diseases. We discussed the role of PPARs in the modulation of corneal wound healing, suppression of corneal inflammation, neovascularisation, fibrosis, stimulation of corneal nerve regeneration, and amelioration of dry eye by inhibiting oxidative stress within the cornea. We also discussed the underlying mechanisms of these therapeutic effects. Future clinical trials are warranted to further attest to the clinical therapeutic efficacy.
Collapse
Affiliation(s)
- Bing Jie Chow
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Isabelle Xin Yu Lee
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chang Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| |
Collapse
|
5
|
Sugioka K, Nishida T, Murakami J, Itahashi M, Yunoki M, Kusaka S. Substance P promotes transforming growth factor-β-induced collagen synthesis in human corneal fibroblasts. Am J Physiol Cell Physiol 2024; 326:C1482-C1493. [PMID: 38525537 DOI: 10.1152/ajpcell.00084.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Corneal fibroblasts maintain homeostasis of the corneal stroma by mediating the synthesis and degradation of extracellular collagen, and these actions are promoted by transforming growth factor-β (TGF-β) and interleukin-1β (IL-1β), respectively. The cornea is densely innervated with sensory nerve fibers that are not only responsible for sensation but also required for physiological processes such as tear secretion and wound healing. Loss or dysfunction of corneal nerves thus impairs corneal epithelial wound healing and can lead to neurotrophic keratopathy. The sensory neurotransmitter substance P (SP) promotes corneal epithelial wound healing by enhancing the stimulatory effects of growth factors and fibronectin. We have now investigated the role of SP in collagen metabolism mediated by human corneal fibroblasts in culture. Although SP alone had no effect on collagen synthesis or degradation by these cells, it promoted the stimulatory effect of TGF-β on collagen type I synthesis without affecting that of IL-1β on the expression of matrix metalloproteinase-1. This effect of SP on TGF-β-induced collagen synthesis was accompanied by activation of p38 mitogen-activated protein kinase (MAPK) signaling and was attenuated by pharmacological inhibition of p38 or of the neurokinin-1 receptor. Our results thus implicate SP as a modulator of TGF-β-induced collagen type I synthesis by human corneal fibroblasts, and they suggest that loss of this function may contribute to the development of neurotrophic keratopathy.NEW & NOTEWORTHY This study investigates the role of substance P (SP) in collagen metabolism mediated by human corneal fibroblasts in culture. We found that, although SP alone had no effect on collagen synthesis or degradation by corneal fibroblasts, it promoted the stimulatory effect of transforming growth factor-β on collagen type I synthesis without affecting that of interleukin-1β on the expression of matrix metalloproteinase-1.
Collapse
Affiliation(s)
- Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma, Japan
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Teruo Nishida
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma, Japan
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Division of Cornea and Ocular Surface, Ohshima Eye Hospital, Fukuoka, Japan
| | | | | | - Mai Yunoki
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
6
|
Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022; 10:3249. [PMID: 36552005 PMCID: PMC9775650 DOI: 10.3390/biomedicines10123249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.
Collapse
Affiliation(s)
- Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Guo L, Wang Z, Zhu C, Li J, Cui L, Dong J, Meng X, Zhu G, Li J, Wang H. MCC950 inhibits the inflammatory response and excessive proliferation of canine corneal stromal cells induced by Staphylococcus pseudintermedius. Mol Immunol 2022; 152:162-171. [DOI: 10.1016/j.molimm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
|
8
|
Jeon KI, Kumar A, Wozniak KT, Nehrke K, Huxlin KR. Defining the Role of Mitochondrial Fission in Corneal Myofibroblast Differentiation. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 35377925 PMCID: PMC8994166 DOI: 10.1167/iovs.63.4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Fibrosis caused by corneal wounding can lead to scar formation, impairing vision. Although preventing fibroblast-to-myofibroblast differentiation has therapeutic potential, effective mechanisms for doing so remain elusive. Recent work shows that mitochondria contribute to differentiation in several tissues. Here, we tested the hypothesis that mitochondrial dynamics, and specifically fission, are key for transforming growth factor (TGF)-β1-induced corneal myofibroblast differentiation. Methods Mitochondrial fission was inhibited pharmacologically in cultured primary cat corneal fibroblasts. We measured its impact on molecular markers of myofibroblast differentiation and assessed changes in mitochondrial morphology through fluorescence imaging. The phosphorylation status of established regulatory proteins, both of myofibroblast differentiation and mitochondrial fission, was assessed by Western analysis. Results Pharmacological inhibition of mitochondrial fission suppressed TGF-β1-induced increases in alpha-smooth muscle actin, collagen 1, and fibronectin expression, and prevented phosphorylation of c-Jun N-terminal kinase (JNK), but not small mothers against decapentaplegic 3, p38 mitogen-activated protein kinase (p38), extracellular signal-regulated kinase 1 (ERK1), or protein kinase B (AKT). TGF-β1 increased phosphorylation of dynamin-related protein 1 (DRP1), a mitochondrial fission regulator, and caused fragmentation of the mitochondrial network. Although inhibition of JNK, ERK1, or AKT prevented phosphorylation of DRP1, none sufficed to independently suppress TGF-β1-induced fragmentation. Conclusions Mitochondrial dynamics play a key role in early corneal fibrogenesis, acting together with profibrotic signaling. This is consistent with mitochondria's role as signaling hubs that coordinate metabolic decision-making. This suggests a feed-forward cascade through which mitochondria, at least in part through fission, reinforce noncanonical TGF-β1 signaling to attain corneal myofibroblast differentiation.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Ankita Kumar
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
| | - Kaitlin T Wozniak
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Keith Nehrke
- Department of Medicine - Nephrology Division, University of Rochester, Rochester, New York, United States
| | - Krystel R Huxlin
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
9
|
Pryimak N, Zaiachuk M, Kovalchuk O, Kovalchuk I. The Potential Use of Cannabis in Tissue Fibrosis. Front Cell Dev Biol 2021; 9:715380. [PMID: 34708034 PMCID: PMC8542845 DOI: 10.3389/fcell.2021.715380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a condition characterized by thickening or/and scarring of various tissues. Fibrosis may develop in almost all tissues and organs, and it may be one of the leading causes of morbidity and mortality. It provokes excessive scarring that excels the usual wound healing response to trauma in numerous organs. Currently, very little can be done to prevent tissue fibrosis, and it is almost impossible to reverse it. Anti-inflammatory and immunosuppressive drugs are among the few treatments that may be efficient in preventing fibrosis. Numerous publications suggest that cannabinoids and extracts of Cannabis sativa have potent anti-inflammatory and anti-fibrogenic properties. In this review, we describe the types and mechanisms of fibrosis in various tissues and discuss various strategies for prevention and dealing with tissue fibrosis. We further introduce cannabinoids and their potential for the prevention and treatment of fibrosis, and therefore for extending healthy lifespan.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
10
|
Human Liver Stem Cell Derived Extracellular Vesicles Alleviate Kidney Fibrosis by Interfering with the β-Catenin Pathway through miR29b. Int J Mol Sci 2021; 22:ijms221910780. [PMID: 34639119 PMCID: PMC8509541 DOI: 10.3390/ijms221910780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Human liver stem-cell-derived extracellular vesicles (HLSC-EVs) exhibit therapeutic properties in various pre-clinical models of kidney injury. We previously reported an overall improvement in kidney function following treatment with HLSC-EVs in a model of aristolochic acid nephropathy (AAN). Here, we provide evidence that HLSC-EVs exert anti-fibrotic effects by interfering with β-catenin signalling. A mouse model of AAN and an in vitro pro-fibrotic model were used. The β-catenin mRNA and protein expression, together with the pro-fibrotic markers α-SMA and collagen 1, were evaluated in vivo and in vitro following treatment with HLSC-EVs. Expression and functional analysis of miR29b was performed in vitro following HLSC-EV treatments through loss-of-function experiments. Results showed that expression of β-catenin was amplified both in vivo and in vitro, and β-catenin gene silencing in fibroblasts prevented AA-induced up-regulation of pro-fibrotic genes, revealing that β-catenin is an important factor in fibroblast activation. Treatment with HLSC-EVs caused increased expression of miR29b, which was significantly inhibited in the presence of α-amanitin. The suppression of the miR29b function with a selective inhibitor abolished the anti-fibrotic effects of HLSC-EVs, resulting in the up-regulation of β-catenin and pro-fibrotic α-Sma and collagen type 1 genes. Together, these data suggest a novel HLSC-EV-dependent regulatory mechanism in which β-catenin is down regulated by HLSC-EVs-induced miR29b expression.
Collapse
|
11
|
Ung CY, Onoufriadis A, Parsons M, McGrath JA, Shaw TJ. Metabolic perturbations in fibrosis disease. Int J Biochem Cell Biol 2021; 139:106073. [PMID: 34461262 DOI: 10.1016/j.biocel.2021.106073] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
Metabolic changes occur in all forms of disease but their impact on fibrosis is a relatively recent area of interest. This review provides an overview of the major metabolic pathways, glycolysis, amino acid metabolism and lipid metabolism, and highlights how they influence fibrosis at a cellular and tissue level, drawing on key discoveries in dermal, renal, pulmonary and hepatic fibrosis. The emerging influence of adipose tissue-derived cytokines is discussed and brings a link between fibrosis and systemic metabolism. To close, the concept of targeting metabolism for fibrotic therapy is reviewed, drawing on lessons from the more established field of cancer metabolism, with an emphasis on important considerations for clinical translation.
Collapse
Affiliation(s)
- Chuin Ying Ung
- St John's Institute of Dermatology, King's College London, London, SE19RT, UK.
| | | | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, SE11UL, UK.
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, SE19RT, UK.
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Seidelmann N, Duarte Campos DF, Rohde M, Johnen S, Salla S, Yam GHF, Mehta JS, Walter P, Fuest M. Human platelet lysate as a replacement for fetal bovine serum in human corneal stromal keratocyte and fibroblast culture. J Cell Mol Med 2021; 25:9647-9659. [PMID: 34486211 PMCID: PMC8505853 DOI: 10.1111/jcmm.16912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
The isolation and propagation of primary human corneal stromal keratocytes (CSK) are crucial for cellular research and corneal tissue engineering. However, this delicate cell type easily transforms into stromal fibroblasts (SF) and scar inducing myofibroblasts (Myo‐SF). Current protocols mainly rely on xenogeneic fetal bovine serum (FBS). Human platelet lysate (hPL) could be a viable, potentially autologous, alternative. We found high cell survival with both supplements in CSK and SF. Cell numbers and Ki67+ ratios increased with higher fractions of hPL and FBS in CSK and SF. We detected a loss in CSK marker expression (Col8A2, ALDH3A1 and LUM) with increasing fractions of FBS and hPL in CSK and SF. The expression of the Myo‐SF marker SMA increased with higher amounts of FBS but decreased with incremental hPL substitution in both cell types, implying an antifibrotic effect of hPL. Immunohistochemistry confirmed the RT‐PCR findings. bFGF and HGF were only found in hPL and could be responsible for suppressing the Myo‐SF conversion. Considering all findings, we propose 0.5% hPL as a suitable substitution in CSK culture, as this xeno‐free component efficiently preserved CSK characteristics, with non‐inferiority in terms of cell viability, cell number and proliferation in comparison to the established 0.5% FBS protocol.
Collapse
Affiliation(s)
- Nina Seidelmann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Daniela F Duarte Campos
- Institute of Applied Medical Engineering, RWTH Aachen University Hospital, Aachen, Germany.,Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Malena Rohde
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.,Cornea Bank Aachen, RWTH Aachen University, Aachen, Germany
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Eye-Academic Clinical Program, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore.,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.,Cornea Bank Aachen, RWTH Aachen University, Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Li K, Zhao J, Wang M, Niu L, Wang Y, Li Y, Zheng Y. The Roles of Various Prostaglandins in Fibrosis: A Review. Biomolecules 2021; 11:biom11060789. [PMID: 34073892 PMCID: PMC8225152 DOI: 10.3390/biom11060789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Organ fibrosis is a common pathological result of various chronic diseases with multiple causes. Fibrosis is characterized by the excessive deposition of extracellular matrix and eventually leads to the destruction of the tissue structure and impaired organ function. Prostaglandins are produced by arachidonic acid through cyclooxygenases and various prostaglandin-specific synthases. Prostaglandins bind to homologous receptors on adjacent tissue cells in an autocrine or paracrine manner and participate in the regulation of a series of physiological or pathological processes, including fibrosis. This review summarizes the properties, synthesis, and degradation of various prostaglandins, as well as the roles of these prostaglandins and their receptors in fibrosis in multiple models to reveal the clinical significance of prostaglandins and their receptors in the treatment of fibrosis.
Collapse
|
14
|
Liu F, Kong X, Kong H. Ethylparaben induces subconjunctival fibrosis via the Wnt/β-catenin signaling pathway. Exp Ther Med 2021; 21:295. [PMID: 33717238 DOI: 10.3892/etm.2021.9726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to explore the etiology of subconjunctival fibrosis (SCF) induced by ethylparaben, the most prevalent preservative in Chinese eye drops. Ethylparaben was administered to the left eyes of male Sprague-Dawley rats in the experimental group twice daily for 1 month, whereas the control group received PBS. Experimental group rats displayed a mild promotion in density of fibroblasts and a tighter deposition of collagen in the bulbar subepithelial connective tissue compared with the control group. Furthermore, the present findings revealed that extracellular matrix expression was promoted in murine bulbar conjunctival tissues in the experimental group. In primary conjunctival fibroblasts, expression of ECM triggered by ethylparaben was suppressed by XAV-939. Furthermore, stimulation of the Wnt/β-catenin axis triggered by ethylparaben was impaired by XAV-939. In conclusion, SCF triggered by ethylparaben results from extra ECM generation of conjunctival fibroblasts via the Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Fengge Liu
- Department of Ophthalmology, Zoucheng People's Hospital, Zoucheng, Shandong 273500, P.R. China
| | - Xiangfeng Kong
- Department of Ophthalmology, Zoucheng People's Hospital, Zoucheng, Shandong 273500, P.R. China
| | - Hui Kong
- Department of Ophthalmology, Zoucheng People's Hospital, Zoucheng, Shandong 273500, P.R. China
| |
Collapse
|
15
|
Freeberg MAT, Perelas A, Rebman JK, Phipps RP, Thatcher TH, Sime PJ. Mechanical Feed-Forward Loops Contribute to Idiopathic Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:18-25. [PMID: 33031756 PMCID: PMC7768346 DOI: 10.1016/j.ajpath.2020.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis is a progressive scarring disease characterized by extracellular matrix accumulation and altered mechanical properties of lung tissue. Recent studies support the hypothesis that these compositional and mechanical changes create a progressive feed-forward loop in which enhanced matrix deposition and tissue stiffening contribute to fibroblast and myofibroblast differentiation and activation, which further perpetuates matrix production and stiffening. The biomechanical properties of tissues are sensed and responded to by mechanotransduction pathways that facilitate sensing of changes in mechanical cues by tissue resident cells and convert the mechanical signals into downstream biochemical signals. Although our understanding of mechanotransduction pathways associated with pulmonary fibrosis remains incomplete, recent progress has allowed us to begin to elucidate the specific mechanisms supporting fibrotic feed-forward loops. The mechanosensors discussed here include integrins, Piezo channels, transient receptor potential channels, and nonselective ion channels. Also discussed are downstream transcription factors, including myocardin-related transcription factor and Yes-associated protein/transcriptional coactivator with PDZ-binding motif. This review describes mechanosensors and mechanotransduction pathways associated with fibrosis progression and highlights promising therapeutic insights.
Collapse
Affiliation(s)
- Margaret A T Freeberg
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Apostolos Perelas
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jane K Rebman
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | | | - Thomas H Thatcher
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Patricia J Sime
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
16
|
Zheng H, Yang Z, Xin Z, Yang Y, Yu Y, Cui J, Liu H, Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics 2020; 10:11737-11753. [PMID: 33052244 PMCID: PMC7545984 DOI: 10.7150/thno.47717] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis exists in almost all organs/tissues of the human body, plays an important role in the occurrence and development of diseases and is also a hallmark of the aging process. However, there is no effective prevention or therapeutic method for fibrogenesis. As a serine/threonine (Ser/Thr)-protein kinase, glycogen synthase kinase-3β (GSK-3β) is a vital signaling mediator that participates in a variety of biological events and can inhibit extracellular matrix (ECM) accumulation and the epithelial-mesenchymal transition (EMT) process, thereby exerting its protective role against the fibrosis of various organs/tissues, including the heart, lung, liver, and kidney. Moreover, we further present the upstream regulators and downstream effectors of the GSK-3β pathway during fibrosis and comprehensively summarize the roles of GSK-3β in the regulation of fibrosis and provide several potential targets for research. Collectively, the information reviewed here highlights recent advances vital for experimental research and clinical development, illuminating the possibility of GSK-3β as a novel therapeutic target for the management of tissue fibrosis in the future.
Collapse
Affiliation(s)
- Hanxue Zheng
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Hongbo Liu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
17
|
Zeng X, Cai G, Liang T, Li Q, Yang Y, Zhong X, Zou X, Qin M, Mi Z. Rhubarb and Astragalus Capsule Attenuates Renal Interstitial Fibrosis in Rats with Unilateral Ureteral Obstruction by Alleviating Apoptosis through Regulating Transforming Growth Factor beta1 (TGF-β1)/p38 Mitogen-Activated Protein Kinases (p38 MAPK) Pathway. Med Sci Monit 2020; 26:e920720. [PMID: 32205836 PMCID: PMC7111584 DOI: 10.12659/msm.920720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rhubarb and astragalus capsule (RAC) has been used in the clinical treatment of chronic kidney disease for decades. However, the mechanism of RAC has not been fully elucidated. This study aimed to investigate the protective effect and mechanisms of RAC on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MATERIAL AND METHODS The main components of RAC are detected by high-performance liquid phase (HPLC). A rat model of UUO was established, and a subset of rats underwent treatment with RAC. Renal function and renal pathology were examined at 14 days and 21 days after the UUO operation. Renal cell apoptosis was detected by TUNEL staining. The levels of Bcl-2 and Bax in the kidney were examined by western blotting, and the levels of collagen I, alpha-SMA, transforming growth factor (TGF)-ß1, and p38 MAPK in the kidneys were detected by immunohistochemistry. RESULTS High-performance liquid phase chromatography showed that RAC contained 1.12 mg/g aloe-emodin, 2.25 mg/g rhein, 1.75 mg/g emodin, and 4.50 mg/g chrysophanol. Administration of RAC significantly decreased the levels of urinary N-acetyl-ß-D-glucosaminidase (NAG), serum blood urea nitrogen (BUN), and creatinine (Scr) and also reduced renal tissue damages and interstitial fibrosis induced by UUO in rats. Moreover, the increased levels of collagen I, alpha-SMA, TGF-ß1, p38 MAPK, and the Bax/Bcl-2 ratio, as well as cell apoptosis in the kidney, were induced by UUO, and were all found deceased by RAC treatment. CONCLUSIONS RAC can improve the renal interstitial fibrosis induced by UUO, and the mechanism may be related to inhibition of renal tubular cell apoptosis via TGF-ß1/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guozhen Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Taolin Liang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qingqing Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaobin Zhong
- Regenerative Medicine Research Center, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mengyuan Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhengcheng Mi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
18
|
Jeon KI, Nehrke K, Huxlin KR. Semaphorin 3A potentiates the profibrotic effects of transforming growth factor-β1 in the cornea. Biochem Biophys Res Commun 2020; 521:333-339. [PMID: 31668808 DOI: 10.1016/j.bbrc.2019.10.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 11/16/2022]
Abstract
Corneal scarring is a major cause of blindness worldwide with few effective therapeutic options. Finding a treatment would be of tremendous public health benefit, but requires a thorough understanding of the complex interactions that underlie this phenomenon. Here, we tested the hypothesis that the large increase in expression of Semaphorin 3A (SEMA3A) in corneal wounds contributes to the development of stromal fibrosis. We first verified this increased expression in vivo, in a cat model of photorefractive keratectomy-induced corneal wounding. We then examined the impact of adding exogenous SEMA3A to cultured corneal fibroblasts, and assessed how this affected the ability of transforming growth factor-beta1 (TGF-β1) to induce their differentiation into myofibroblasts. Finally, we examined how siRNA knockdown of endogenous SEMA3A affected these same phenomena. We found exogenous SEMA3A to significantly potentiate TGF-β1's profibrotic effects, with only a minimal contribution from cell-intrinsic SEMA3A. Our results suggest a previously unrecognized interaction between SEMA3A and TGF-β1 in the wounded cornea, and a possible contribution of SEMA3A to the regulation of tissue fibrosis and remodeling in this transparent organ.
Collapse
Affiliation(s)
| | - Keith Nehrke
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
19
|
Dasatinib ameliorates chronic pancreatitis induced by caerulein via anti-fibrotic and anti-inflammatory mechanism. Pharmacol Res 2019; 147:104357. [DOI: 10.1016/j.phrs.2019.104357] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
|
20
|
Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1908416. [PMID: 30915142 PMCID: PMC6402207 DOI: 10.1155/2019/1908416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Cryptotanshinone (CTS) was reported to repress a variety of systemic inflammation and alleviate cardiac fibrosis, but it is still unclear whether CTS could prevent radiation-induced lung injury (RILI). Here, we investigated the effects and underlying mechanisms of CTS on a RILI rat model. Our data revealed that CTS could efficiently preserve pulmonary function in RILI rats and reduce early pulmonary inflammation infiltration elicited, along with marked decreased levels of IL-6 and IL-10. Moreover, we found that CTS is superior to prednisone in attenuating collagen deposition and pulmonary fibrosis, in parallel with a marked drop of HYP (a collagen indicator) and α-SMA (a myofibroblast marker). Mechanistically, CTS inhibited profibrotic signals TGF-β1 and NOX-4 expressions, while enhancing the levels of antifibrotic enzyme MMP-1 in lung tissues. It is noteworthy that CTS treatment, in consistent with trichrome staining analysis, exhibited a clear advantage over PND in enhancing MMP-1 levels. However, CTS exhibited little effect on CTGF activation and on COX-2 suppression. Finally, CTS treatment significantly mitigated the radiation-induced activation of CCL3 and its receptor CCR1. In summary, CTS treatment could attenuate RILI, especially pulmonary fibrosis, in rats. The regulation on production and release of inflammatory or fibrotic factors IL-6, IL-10, TGF-β1, NOX-4, and MMP-1, especially MMP-1 and inhibition on CCL3/CCR1 activation, may partly attribute to its attenuating RILI effect.
Collapse
|
21
|
Lithium interacts with cardiac remodeling: the fundamental value in the pharmacotherapy of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:208-214. [PMID: 30053574 DOI: 10.1016/j.pnpbp.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Patients with bipolar disorder (BD) have an increased risk of cardiovascular morbidity and mortality during the course of their illness. For over half a century, lithium has been the gold-standard medication used to treat the mood burdens of BD. In addition, lithium possesses several biological effects that may modulate cardiovascular risk in patients with BD. In this review, we update the current knowledge of cellular and molecular mechanisms underlying the possible cardiac actions of lithium. The mechanistic insights suggest that lithium at therapeutic levels potentially exerts cardioprotective effects on ischemic hearts by modulating structural and electrical remodeling. The possible cardioprotective actions of lithium may involve an extensive range of signaling pathways, including the Wnt/glycogen synthase kinase-3β, phosphatidylinositol-3-kinase/protein kinase B, phosphoinositide/protein kinase C, and mitogen-activated protein kinase/extracellular signal-regulated kinase cascades. Accordingly, understanding the cardioprotective effects of lithium may lead to the development of a potential strategy for reducing cardiovascular morbidity in patients with BD.
Collapse
|
22
|
Feng G, Zha Z, Huang Y, Li J, Wang Y, Ke W, Chen H, Liu L, Song Y, Ge Z. Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis. Adv Healthc Mater 2018; 7:e1800623. [PMID: 30296017 DOI: 10.1002/adhm.201800623] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/09/2018] [Indexed: 02/05/2023]
Abstract
Intervertebral disc degeneration (IDD) is frequently caused by gradual pathological changes inside intervertebral discs (IVDs) and progressive fibrosis. MicroRNA-29 (miR-29) family possesses potent fibrosis suppression capability, but their application for treatment of chronic IDD is limited due to lack of suitable local delivery systems. In this report, given various overexpressed matrix metalloproteinases (MMPs) during IDD, injectable MMP-degradable hydrogels encapsulating MMP-responsive polyplex micelles are developed for sustained and bioresponsive delivery of miR-29a into nucleus pulposus cells via a two-stage process. Cationic block copolymers are designed to complex miR-29a, and subsequently mixed with the poly(ethylene glycol) (PEG) gelation precursors and MMP-cleavable peptide cross-linkers for in situ formation of polyplex micelle-encapsulated hydrogels in the diseased IVDs. In the presence of MMPs, the polyplex micelles are first released by MMP cleavage of the hydrogels, and subsequently, MMPs-responsive detachment of PEG shells from polyplex micelles contributes to efficient cellular uptake and endosomal escape. MiR-29a is demonstrated to effectively silence the expression of MMP-2, inhibit the fibrosis process, and reverse IDD in animal models through blocking the β-catenin translocation pathway from the cytoplasm to the nucleus. This two-stage bioresponsive local miRNA delivery system represents a novel and promising strategy for the treatment of chronic IDD.
Collapse
Affiliation(s)
- Ganjun Feng
- Department of Orthopedic Surgery; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| | - Yong Huang
- Department of Orthopedic Surgery; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| | - Hongying Chen
- Technology Center for Public Research; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Limin Liu
- Department of Orthopedic Surgery; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Yueming Song
- Department of Orthopedic Surgery; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| |
Collapse
|
23
|
Corneal myofibroblasts inhibit regenerating nerves during wound healing. Sci Rep 2018; 8:12945. [PMID: 30154512 PMCID: PMC6113331 DOI: 10.1038/s41598-018-30964-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Abnormal nerve regeneration often follows corneal injury, predisposing patients to pain, dry eye and vision loss. Yet, we lack a mechanistic understanding of this process. A key event in corneal wounds is the differentiation of keratocytes into fibroblasts and scar-forming myofibroblasts. Here, we show for the first time that regenerating nerves avoid corneal regions populated by myofibroblasts in vivo. Recreating this interaction in vitro, we find neurite outgrowth delayed when myofibroblasts but not fibroblasts, are co-cultured with sensory neurons. After neurites elongated sufficiently, contact inhibition was observed with myofibroblasts, but not fibroblasts. Reduced neurite outgrowth in vitro appeared mediated by transforming growth factor beta 1 (TGF-β1) secreted by myofibroblasts, which increased phosphorylation of collapsin response mediating protein 2 (CRMP2) in neurons. The significance of this mechanism was further tested by applying Mitomycin C after photorefractive keratectomy to decrease myofibroblast differentiation. This generated earlier repopulation of the ablation zone by intra-epithelial and sub-basal nerves. Our findings suggest that attaining proper, rapid corneal nerve regeneration after injury may require blocking myofibroblast differentiation and/or TGF-β during wound healing. They also highlight hitherto undefined myofibroblast-neuron signaling processes capable of restricting neurite outgrowth in the cornea and other tissues where scars and nerves co-exist.
Collapse
|