1
|
Hosseini SS, Tavalaee M, Seifati SM, Dehghani-Ashkezari M, Nasr-Esfahani MH. Protective effects of alpha-lipoic acid and alagebrium chloride against testicular dysfunction induced by varicocele and advanced glycation end (AGE) - Rich diet in a rat mode. Tissue Cell 2024; 90:102509. [PMID: 39098258 DOI: 10.1016/j.tice.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Heat stress from varicocele can heighten oxidative stress in the testes, impacting sperm function and male fertility. Antioxidant therapy is explored as a remedy for varicocele, while dietary factors like processed foods, sugar, and saturated fats correlate with male infertility. Advanced glycation end products (AGEs), generated through glycation processes, can provoke oxidative stress, inflammation, and adverse health consequences. Alpha-lipoic acid (ALA), a versatile antioxidant, may alleviate oxidative stress and counteract the impact of AGEs, potentially by enhancing glucose reabsorption. Alagebrium chloride (ALT711), an anti-AGE compound, exhibits promise in cardiovascular disease by disrupting AGE cross-links. This study investigates the effects of ALA and ALT-711 on testicular function in varicocele and AGEs animal models. Both AGE and varicocele were found to alter the natural trends, leading to abnormal patterns in sperm parameters, testicular functional tests, as well as the expression of CML, RAGE, and TNF-α proteins. However, the administration of ALA or ALT711 helped mitigate these effects. While ALA demonstrated a slightly greater overall benefit compared to ALT, the difference was not statistically significant.
Collapse
Affiliation(s)
- Sayedeh Sahar Hosseini
- Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyed Morteza Seifati
- Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
| | - Mahmood Dehghani-Ashkezari
- Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Biology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
| |
Collapse
|
2
|
Huang D, Tu Z, Karnoub AE, Wei W, Rezaeian AH. Busulfan Chemotherapy Downregulates TAF7/TNF-α Signaling in Male Germ Cell Dysfunction. Biomedicines 2024; 12:2220. [PMID: 39457533 PMCID: PMC11504710 DOI: 10.3390/biomedicines12102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Busulfan is an FDA-approved alkylating drug used in the chemotherapy of advanced acute myeloid leukemia. The precise mechanisms by which Busulfan kills spermatogonia stem cells (SSCs) are not yet completely understood. Methods: Using a murine model, we evaluated Busulfan-induced apoptosis and DNA damage signaling between testis and ovary tissues. We executed RT-qPCR, analyzed single-nuclei RNA sequencing data and performed in situ hybridization for the localization of the gene expression in the tissues. Results: The results indicate that, in contrast to female germ cells, haploid male germ cells undergo significant apoptosis following Busulfan chemotherapy. Moreover, a gene enrichment analysis revealed that reactive oxygen species may activate the inflammatory response in part through the TNF-α/NF-κB signaling pathway. Interestingly, in the testis, the mRNA levels of TNF-α and TAF7 (TATA box-binding protein-associated factor 7) are downregulated, and testosterone levels suppressed. Mechanistically, the promoter of TNF-α has a conserved motif for binding TAF7, which is necessary for its transcriptional activation and may require further in-depth study. We next analyzed the tumorigenic function of TAF7 and revealed that it is highly overexpressed in several types of human cancers, particularly testicular germ cell tumors, and associated with poor patient survival. Therefore, we executed in situ hybridization and single-nuclei RNA sequencing, finding that less TAF7 mRNA is present in SSCs after chemotherapy. Conclusions: Thus, our data indicate a possible function of TAF7 in the regulation of SSCs and spermatogenesis following downregulation by Busulfan. These findings may account for the therapeutic effects of Busulfan and underlie its potential impact on cancer chemotherapy prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Alhujaily M. Molecular Assessment of Methylglyoxal-Induced Toxicity and Therapeutic Approaches in Various Diseases: Exploring the Interplay with the Glyoxalase System. Life (Basel) 2024; 14:263. [PMID: 38398772 PMCID: PMC10890012 DOI: 10.3390/life14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG) and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl metabolite, takes center stage, becoming a principal player in the development of AGEs and contributing to cell and tissue dysfunction. The dual facets of GLO I-activation and inhibition-unfold as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease, and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering new possibilities in diseases associated with inflammation and multidrug resistance. The symphony of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG regulation. From natural compounds to synthetic drugs, each element contributes to a molecular orchestra, promising novel interventions and personalized approaches in the pursuit of health and wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to validate these findings and acknowledges the importance of individual variability in the complex landscape of health.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
4
|
Zeng Q, Yang T, Wei W, Zou D, Wei Y, Han F, He J, Huang J, Guo R. Association between GLO1 variants and gestational diabetes mellitus susceptibility in a Chinese population: a preliminary study. Front Endocrinol (Lausanne) 2023; 14:1235581. [PMID: 38027126 PMCID: PMC10656739 DOI: 10.3389/fendo.2023.1235581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Glyoxalase 1 (GLO1) plays a crucial role in defending against glycation. Single nucleotide polymorphism (SNP) variants in the GLO1 gene may affect gene expression and alter enzyme activity. However, there have been limited studies evaluating the association between GLO1 and diabetes, especially gestational diabetes mellitus (GDM). Therefore, this study is the first to explore the association of GLO1 SNPs and GDM risk. Methods The study included a total of 500 GDM patients and 502 control subjects. The SNPscan™ genotyping assay was used to genotype rs1781735, rs4746 and rs1130534. To assess the disparities in genotype, allele, and haplotype distributions and their correlation with GDM risk, the independent sample t-test, logistic regression, and chi-square test were employed during the data processing phase. Furthermore, one-way ANOVA was conducted to determine the differences in genotype and blood glucose and methylglyoxal(MG) levels. Results Significant differences were observed in prepregnancy body mass index (pre-BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP), and parity between GDM and healthy subjects (P < 0.05). After adjusting for these factors, GLO1 rs1130534 TA remained associated with an increased risk of GDM (TA vs. TT + AA: OR = 1.320; 95% CI: 1.008-1.728; P = 0.044), especially in the pre-BMI ≥ 24 subgroup (TA vs. TT + AA: OR = 2.424; 95% CI: 1.048-5.607; P = 0.039), with fasting glucose levels being significantly elevated in the TA genotype compared to the TT genotype (P < 0.05). Conversely, the GLO1 rs4746 TG was associated with a decreased risk of GDM (TG vs. TT: OR = 0.740; 95% CI: 0.548-0.999; P = 0.049; TG vs. TT + GG: OR = 0.740; 95% CI: 0.548-0.998; P = 0.048). Additionally, the haplotype T-G-T of rs1781735, rs4746 and rs1130534 was associated with a decreased risk of GDM among individuals with a pre-BMI ≥ 24 (OR = 0.423; 95% CI: 0.188-0.955; P = 0.038). Furthermore, the rs1781735 GG genotype was found to be more closely related to maternal MG accumulation and neonatal weight gain (P < 0.05). Conclusion Our findings suggested that GLO1 rs1130534 was associated with an increased susceptibility to GDM and higher blood glucose levels, but GLO1 rs4746 was associated with a decreased risk of GDM. The rs1781735 has been associated with the accumulation of maternal MG and subsequent weight gain in neonates.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Maternal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Taili Yang
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
| | - Wenfeng Wei
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Dehua Zou
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, Macao SAR, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, Guangdong, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fengqiong Han
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jieyun He
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jinzhi Huang
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Department of Gynecology, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Maternal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Manfredelli D, Pariano M, Costantini C, Graziani A, Bozza S, Romani L, Puccetti P, Talesa VN, Antognelli C. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein S1 Induces Methylglyoxal-Derived Hydroimidazolone/Receptor for Advanced Glycation End Products (MG-H1/RAGE) Activation to Promote Inflammation in Human Bronchial BEAS-2B Cells. Int J Mol Sci 2023; 24:14868. [PMID: 37834316 PMCID: PMC10573269 DOI: 10.3390/ijms241914868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The pathogenesis of coronavirus disease 2019 (COVID-19) is associated with a hyperinflammatory response. The mechanisms of SARS-CoV-2-induced inflammation are scantly known. Methylglyoxal (MG) is a glycolysis-derived byproduct endowed with a potent glycating action, leading to the formation of advanced glycation end products (AGEs), the main one being MG-H1. MG-H1 exerts strong pro-inflammatory effects, frequently mediated by the receptor for AGEs (RAGE). Here, we investigated the involvement of the MG-H1/RAGE axis as a potential novel mechanism in SARS-CoV-2-induced inflammation by resorting to human bronchial BEAS-2B and alveolar A549 epithelial cells, expressing different levels of the ACE2 receptor (R), exposed to SARS-CoV-2 spike protein 1 (S1). Interestingly, we found in BEAS-2B cells that do not express ACE2-R that S1 exerted a pro-inflammatory action through a novel MG-H1/RAGE-based pathway. MG-H1 levels, RAGE and IL-1β expression levels in nasopharyngeal swabs from SARS-CoV-2-positive and -negative individuals, as well as glyoxalase 1 expression, the major scavenging enzyme of MG, seem to support the results obtained in vitro. Altogether, our findings reveal a novel mechanism involved in the inflammation triggered by S1, paving the way for the study of the MG-H1/RAGE inflammatory axis in SARS-CoV-2 infection as a potential therapeutic target to mitigate COVID-19-associated pathogenic inflammation.
Collapse
Affiliation(s)
- Dominga Manfredelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (D.M.); (M.P.); (V.N.T.)
| | - Marilena Pariano
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (D.M.); (M.P.); (V.N.T.)
| | - Claudio Costantini
- Department of Medicine and Surgery, Pathology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (C.C.); (L.R.)
| | - Alessandro Graziani
- Department of Medicine and Surgery, Microbiology and Clinical Microbiology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (A.G.); (S.B.)
| | - Silvia Bozza
- Department of Medicine and Surgery, Microbiology and Clinical Microbiology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (A.G.); (S.B.)
| | - Luigina Romani
- Department of Medicine and Surgery, Pathology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (C.C.); (L.R.)
| | - Paolo Puccetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (D.M.); (M.P.); (V.N.T.)
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (D.M.); (M.P.); (V.N.T.)
| |
Collapse
|
6
|
He J, Zhao Y, Zhou Z, Zhang M. Machine learning and integrative analysis identify the common pathogenesis of azoospermia complicated with COVID-19. Front Immunol 2023; 14:1114870. [PMID: 37283758 PMCID: PMC10239851 DOI: 10.3389/fimmu.2023.1114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Background Although more recent evidence has indicated COVID-19 is prone to azoospermia, the common molecular mechanism of its occurrence remains to be elucidated. The aim of the present study is to further investigate the mechanism of this complication. Methods To discover the common differentially expressed genes (DEGs) and pathways of azoospermia and COVID-19, integrated weighted co-expression network (WGCNA), multiple machine learning analyses, and single-cell RNA-sequencing (scRNA-seq) were performed. Results Therefore, we screened two key network modules in the obstructive azoospermia (OA) and non-obstructive azoospermia (NOA) samples. The differentially expressed genes were mainly related to the immune system and infectious virus diseases. We then used multiple machine learning methods to detect biomarkers that differentiated OA from NOA. Enrichment analysis showed that azoospermia patients and COVID-19 patients shared a common IL-17 signaling pathway. In addition, GLO1, GPR135, DYNLL2, and EPB41L3 were identified as significant hub genes in these two diseases. Screening of two different molecular subtypes revealed that azoospermia-related genes were associated with clinicopathological characteristics of age, hospital-free-days, ventilator-free-days, charlson score, and d-dimer of patients with COVID-19 (P < 0.05). Finally, we used the Xsum method to predict potential drugs and single-cell sequencing data to further characterize whether azoospermia-related genes could validate the biological patterns of impaired spermatogenesis in cryptozoospermia patients. Conclusion Our study performs a comprehensive and integrated bioinformatics analysis of azoospermia and COVID-19. These hub genes and common pathways may provide new insights for further mechanism research.
Collapse
Affiliation(s)
- Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR, China
| | - Yuanqiao Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR, China
| |
Collapse
|
7
|
Mancuso F, Arato I, Bellucci C, Lilli C, Eugeni E, Aglietti MC, Stabile AM, Pistilli A, Brancorsini S, Gaggia F, Calvitti M, Baroni T, Luca G. Zinc restores functionality in porcine prepubertal Sertoli cells exposed to subtoxic cadmium concentration via regulating the Nrf2 signaling pathway. Front Endocrinol (Lausanne) 2023; 14:962519. [PMID: 36843583 PMCID: PMC9950629 DOI: 10.3389/fendo.2023.962519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Among substances released into the environment by anthropogenic activities, the heavy metal cadmium (Cd) is known to induce severe testicular injury causing male subfertility/infertility. Zinc (Zn) is another heavy metal that, unlike Cd, is physiologically present in the testis, being essential for spermatogenesis. We aimed to examine the possibility that 50 µM ZnCl2 could counteract the toxic effects induced by Cd in an in vitro model of porcine prepubertal Sertoli cells (SCs) exposed to both subtoxic (5 μM) and toxic (10 μM) concentrations of CdCl2 for 48 h. MATERIALS AND METHODS Apoptosis, cell cycle, and cell functionality were assessed. The gene expression of Nrf2 and its downstream antioxidant enzymes, ERK1/2, and AKT kinase signaling pathways were evaluated. MATERIALS AND RESULTS We found that Zn, in co-treatment with subtoxic and toxic Cd concentration, increased the number of metabolically active SCs compared to Cd exposure alone but restored SC functionality only in co-treatment with subtoxic Cd concentration with respect to subtoxic Cd alone. Exposure of Cd disrupted cell cycle in SCs, and Zn co-treatment was not able to counteract this effect. Cd alone induced SC death through apoptosis and necrosis in a dose-dependent manner, and co-treatment with Zn increased the pro-apoptotic effect of Cd. Subtoxic and toxic Cd exposures activated the Nrf2 signaling pathway by increasing gene expression of Nrf2 and its downstream genes (SOD, HO-1, and GSHPx). Zn co-treatment with subtoxic Cd attenuated upregulation on the Nrf2 system, while with toxic Cd, the effect was more erratic. Studying ERK1/2 and AKT pathways as a target, we found that the phosphorylation ratio of p-ERK1/2 and p-AKT was upregulated by both subtoxic and toxic Cd exposure alone and in co-treatment with Zn. DISCUSSION Our results suggest that Zn could counteract Cd effects by increasing the number of metabolically active SCs, fully or partially restoring their functionality by modulating Nrf2, ERK1/2, and AKT pathways. Our SC model could be useful to study the effects of early Cd exposure on immature testis, evaluating the possible protective effects of Zn.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Eugeni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| | | | - Anna Maria Stabile
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Tiziano Baroni,
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Alhujaily M, Mir MM, Mir R, Alghamdi MAA, Wani JI, Sabah ZU, Elfaki I, Alnour TMS, Jeelani M, Abomughaid MM, Alharbi SA. Clinical Implications of Glyoxalase1 Gene Polymorphism and Elevated Levels of the Reactive Metabolite Methylglyoxal in the Susceptibility of Type 2 Diabetes Mellitus in the Patients from Asir and Tabuk Regions of Saudi Arabia. J Pers Med 2022; 12:jpm12040639. [PMID: 35455754 PMCID: PMC9030104 DOI: 10.3390/jpm12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus constitutes a big challenge to the global health care system due to its socioeconomic impacts and very serious complications. The incidence and the prevalence rate are increased in the Gulf region including the KSA. Type 2 diabetes mellitus (T2DM) is caused by diverse risk factors including obesity, unhealthy dietary habits, physical inactivity, smoking and genetic factors. The molecular genetic studies have helped in the detection of many single nucleotide polymorphisms (SNP) with different diseases including cancers, cardiovascular diseases and T2DM. The glyoxalase 1 (GLO1) is a detoxifying enzyme and catalyzes the elimination of the cytotoxic product methylglyoxal (MG) by converting it to D-lactate, which is not toxic to tissues. MG accumulation is associated with the pathogenesis of different diseases including T2DM. In this study, we have investigated the association of the glyoxalase 1 SNPs (rs2736654) rs4746 C>A and rs1130534 T>A with T2DM using the amplification refractory mutation system PCR. We also measured the concentration of MG by ELISA in T2DM patients and matched heathy controls. Results show that the CA genotype of the GLO rs4647 A>C was associated with T2DM with OR = 2.57, p-value 0.0008 and the C allele was also associated with increased risk to T2DM with OR = 2.24, p-value = 0.0001. It was also observed that AT genotype of the rs1130534 was associated with decreased susceptibility to T2DM with OR = 0.3, p-value = 0.02. The A allele of rs1130534 was also associated with reduced risk to T2DM with PR = 0.27 = 0.006. In addition, our ELISA results demonstrate significantly increased MG concentrations in serum of the T2DM patients. We conclude that the GLO1 SNP may be associated with decreased enzyme activity and a resultant susceptibility to T2DM. Further well-designed studies in different and large patient populations are recommended to verify these findings.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia; (M.A.); (M.M.A.)
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
- Correspondence:
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (T.M.S.A.)
| | | | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.u.S.)
| | - Zia ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.u.S.)
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Tarig Mohammad Saad Alnour
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (T.M.S.A.)
| | - Mohammed Jeelani
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Mosleh Mohammad Abomughaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia; (M.A.); (M.M.A.)
| | - Samir Abdulkarim Alharbi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| |
Collapse
|
9
|
Mancuso F, Arato I, Di Michele A, Antognelli C, Angelini L, Bellucci C, Lilli C, Boncompagni S, Fusella A, Bartolini D, Russo C, Moretti M, Nocchetti M, Gambelunghe A, Muzi G, Baroni T, Giovagnoli S, Luca G. Effects of Titanium Dioxide Nanoparticles on Porcine Prepubertal Sertoli Cells: An " In Vitro" Study. Front Endocrinol (Lausanne) 2022; 12:751915. [PMID: 35046890 PMCID: PMC8762334 DOI: 10.3389/fendo.2021.751915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The increasing use of nanomaterials in a variety of industrial, commercial, medical products, and their environmental spreading has raised concerns regarding their potential toxicity on human health. Titanium dioxide nanoparticles (TiO2 NPs) represent one of the most commonly used nanoparticles. Emerging evidence suggested that exposure to TiO2 NPs induced reproductive toxicity in male animals. In this in vitro study, porcine prepubertal Sertoli cells (SCs) have undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposures at both subtoxic (5 µg/ml) and toxic (100 µg/ml) doses of TiO2 NPs. After performing synthesis and characterization of nanoparticles, we focused on SCs morphological/ultrastructural analysis, apoptosis, and functionality (AMH, inhibin B), ROS production and oxidative DNA damage, gene expression of antioxidant enzymes, proinflammatory/immunomodulatory cytokines, and MAPK kinase signaling pathway. We found that 5 µg/ml TiO2 NPs did not induce substantial morphological changes overtime, but ultrastructural alterations appeared at the third week. Conversely, SCs exposed to 100 µg/ml TiO2 NPs throughout the whole experiment showed morphological and ultrastructural modifications. TiO2 NPs exposure, at each concentration, induced the activation of caspase-3 at the first and second week. AMH and inhibin B gene expression significantly decreased up to the third week at both concentrations of nanoparticles. The toxic dose of TiO2 NPs induced a marked increase of intracellular ROS and DNA damage at all exposure times. At both concentrations, the increased gene expression of antioxidant enzymes such as SOD and HO-1 was observed whereas, at the toxic dose, a clear proinflammatory stress was evaluated along with the steady increase in the gene expression of IL-1α and IL-6. At both concentrations, an increased phosphorylation ratio of p-ERK1/2 was observed up to the second week followed by the increased phosphorylation ratio of p-NF-kB in the chronic exposure. Although in vitro, this pilot study highlights the adverse effects even of subtoxic dose of TiO2 NPs on porcine prepubertal SCs functionality and viability and, more importantly, set the basis for further in vivo studies, especially in chronic exposure at subtoxic dose of TiO2 NPs, a condition closer to the human exposure to this nanoagent.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Angelini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technology (CAST) and Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Aurora Fusella
- Center for Advanced Studies and Technology (CAST) and Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Angela Gambelunghe
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giacomo Muzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| |
Collapse
|
10
|
Antognelli C, Marinucci L, Frosini R, Macchioni L, Talesa VN. Metastatic Prostate Cancer Cells Secrete Methylglyoxal-Derived MG-H1 to Reprogram Human Osteoblasts into a Dedifferentiated, Malignant-like Phenotype: A Possible Novel Player in Prostate Cancer Bone Metastases. Int J Mol Sci 2021; 22:ijms221910191. [PMID: 34638532 PMCID: PMC8508123 DOI: 10.3390/ijms221910191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Bone metastases from prostate cancer (PCa) result from a complex cross-talk between PCa cells and osteoblasts (OB). Thus, targeting this interplay has become an attractive strategy to interfere with PCa bone dissemination. The agents currently used in clinical trials have proved ineffective, boosting research to identify additional mechanisms that may be involved in this two-directional talk. Here, we investigated whether and how 5-hydro-5-methylimidazolone (MG-H1), a specific methylglyoxal (MG)-derived advanced glycation end product (AGE), was a novel player in the dialogue between PCa and OB to drive PCa bone metastases. Conditioned medium from osteotropic PC3 PCa cells, pre-treated or not with a specific MG scavenger, was administrated to human primary OB and cell morphology, mesenchymal trans-differentiation, pro-osteogenic determinants, PCa-specific molecules, and migration/invasion were studied by phase-contrast microscopy, real-time PCR, western blot and specific assays, respectively. We found that PC3 cells were able to release MG-H1 that, by binding to the receptor for AGEs (RAGE) on OB, reprogrammed them into a less-differentiate phenotype, endowed with some PCa-specific molecular features and malignant properties, in a mechanism involving reactive oxidative species (ROS) production and NF-kB pathway activation. These findings provide novel insights into the mechanisms of PCa osteoblastic metastases and foster in vivo research toward new therapeutic strategies interfering with PCa/OB cross-talk.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
- Correspondence: ; Tel.: +39-075-585-8354
| | - Lorella Marinucci
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| | - Roberta Frosini
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| | - Lara Macchioni
- Department of Medicine and Surgery, Biochemistry and Physiology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| |
Collapse
|
11
|
Role of Advanced Glycation End-Products and Other Ligands for AGE Receptors in Thyroid Cancer Progression. J Clin Med 2021; 10:jcm10184084. [PMID: 34575195 PMCID: PMC8470575 DOI: 10.3390/jcm10184084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
To date, thyroid cancers (TCs) remain a clinical challenge owing to their heterogeneous nature. The etiopathology of TCs is associated not only with genetic mutations or chromosomal rearrangements, but also non-genetic factors, such as oxidative-, nitrosative-, and carbonyl stress-related alterations in tumor environment. These factors, through leading to the activation of intracellular signaling pathways, induce tumor tissue proliferation. Interestingly, the incidence of TCs is often coexistent with various simultaneous mutations. Advanced glycation end-products (AGEs), their precursors and receptors (RAGEs), and other ligands for RAGEs are reported to have significant influence on carcinogenesis and TCs progression, inducing gene mutations, disturbances in histone methylation, and disorders in important carcinogenesis-related pathways, such as PI3K/AKT/NF-kB, p21/MEK/MPAK, or JAK/STAT, RAS/ERK/p53, which induce synthesis of interleukins, growth factors, and cytokines, thus influencing metastasis, angiogenesis, and cancer proliferation. Precursors of AGE (such as methylglyoxal (MG)) and selected ligands for RAGEs: AS1004, AS1008, and HMGB1 may, in the future, become potential targets for TCs treatment, as low MG concentration is associated with less aggressive anaplastic thyroid cancer, whereas the administration of anti-RAGE antibodies inhibits the progression of papillary thyroid cancer and anaplastic thyroid cancer. This review is aimed at collecting the information on the role of compounds, engaged in glycation process, in the pathogenesis of TCs. Moreover, the utility of these compounds in the diagnosis and treatment of TCs is thoroughly discussed. Understanding the mechanism of action of these compounds on TCs pathogenesis and progression may potentially be the grounds for the development of new treatment strategies, aiming at quality-of-life improvements.
Collapse
|
12
|
Akbarian F, Rahmani M, Tavalaee M, Abedpoor N, Taki M, Ghaedi K, Nasr-Esfahani MH. Effect of Different High-Fat and Advanced Glycation End-Products Diets in Obesity and Diabetes-Prone C57BL/6 Mice on Sperm Function. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:226-233. [PMID: 34155870 PMCID: PMC8233922 DOI: 10.22074/ijfs.2021.137231.1022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Background: We aimed to compare the effects of using high-fat (HF) and advanced glycation end-products (AGEs)
containing diets to induce obesity and diabetes on sperm function in mice. Materials and Methods: In this experimental study, twenty-five 4-week old C57BL/6 mice were divided into 5
groups and were fed with control, 45% HF, 60% HF, 45% AGEs-HF, or 60% AGEs-HF diet. After 28 weeks, fast
blood sugar, glucose intolerance, insulin concentration, homeostatic model assessments (HOMA) for insulin resistance (IR) and HOMA for beta cells (HOMA beta) from systematic blood were assessed. In addition, body weight,
morphometric characteristics of testes, sperm parameters, DNA damage (AO), protamine deficiency (CMAA3), and
sperm membrane (DCFH-DA) and intracellular (BODIPY) lipid peroxidation were measured. Results: Body mass and fasting blood sugar increased significantly in all experimental groups compared to the control
group. Insulin concentration, glucose intolerance, HOMA IR, and HOMA beta were also increased significantly with
higher levels of fat and AGEs in all four diets (P<0.05). The changes in the 60% HF-AGEs group, however, were more
significant (P<0.001). Morphometric characteristics of the testis, sperm concentration, and sperm morphology in the
diet groups did not significantly differ from the control group, while sperm motility and DNA damage in the 45%HF
were significantly low. Although for protamine deficiency, both 60% HF-AGEs and 45% HF showed a significant
increase compared to the control, the mean of sperm lipid in the 45% HF group and intracellular peroxidation in the
60% HF-AGEs group had the highest and the lowest increases, respectively. Conclusion: Our results, interestingly, showed that is the negative effects of a diet containing AGEs on examined parameters are less than those in HF diets. One possible reason is detoxification through the activation of the protective
glyoxalase pathway as the result of the chronic AGEs increase in the body.
Collapse
Affiliation(s)
- Fahimeh Akbarian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Navid Abedpoor
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mozhdeh Taki
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
13
|
Methylglyoxal-Dependent Glycative Stress Is Prevented by the Natural Antioxidant Oleuropein in Human Dental Pulp Stem Cells through Nrf2/Glo1 Pathway. Antioxidants (Basel) 2021; 10:antiox10050716. [PMID: 34062923 PMCID: PMC8147383 DOI: 10.3390/antiox10050716] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a potent precursor of glycative stress (abnormal accumulation of advanced glycation end products, AGEs), a relevant condition underpinning the etiology of several diseases, including those of the oral cave. At present, synthetic agents able to trap MG are known; however, they have never been approved for clinical use because of their severe side effects. Hence, the search of bioactive natural scavengers remains a sector of strong research interest. Here, we investigated whether and how oleuropein (OP), the major bioactive component of olive leaf, was able to prevent MG-dependent glycative stress in human dental pulp stem cells (DPSCs). The cells were exposed to OP at 50 µM for 24 h prior to the administration of MG at 300 µM for additional 24 h. We found that OP prevented MG-induced glycative stress and DPSCs impairment by restoring the activity of Glyoxalase 1 (Glo1), the major detoxifying enzyme of MG, in a mechanism involving the redox-sensitive transcription factor Nrf2. Our results suggest that OP holds great promise for the development of preventive strategies for MG-derived AGEs-associated oral diseases and open new paths in research concerning additional studies on the protective potential of this secoiridoid.
Collapse
|
14
|
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, Diao Q, Zheng Z, Liu D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother 2020; 131:110663. [DOI: 10.1016/j.biopha.2020.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
|
15
|
Yoo HJ, Hong CO, Ha SK, Lee KW. Chebulic Acid Prevents Methylglyoxal-Induced Mitochondrial Dysfunction in INS-1 Pancreatic β-Cells. Antioxidants (Basel) 2020; 9:antiox9090771. [PMID: 32825285 PMCID: PMC7554990 DOI: 10.3390/antiox9090771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
To investigate the anti-diabetic properties of chebulic acid (CA) associated with the prevention of methyl glyoxal (MG)-induced mitochondrial dysfunction in INS-1 pancreatic β-cells, INS-1 cells were pre-treated with CA (0.5, 1.0, and 2.0 μM) for 48 h and then treated with 2 mM MG for 8 h. The effects of CA and MG on INS-1 cells were evaluated using the following: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; glyoxalase 1 (Glo-1) expression via Western blot and enzyme activity assays; Nrf-2, nuclear factor erythroid 2-related factor 2 protein expression via Western blot assay; reactive oxygen species (ROS) production assay; mRNA expression of mitochondrial dysfunction related components (UCP2, uncoupling protein 2; VDAC1, voltage-dependent anion-selective channel-1; cyt c, cytochrome c via quantitative reverse transcriptase-PCR; mitochondrial membrane potential (MMP); adenosine triphosphate (ATP) synthesis; glucose-stimulated insulin secretion (GSIS) assay. The viability of INS-1 cells was maintained upon pre-treating with CA before exposure to MG. CA upregulated Glo-1 protein expression and enzyme activity in INS-1 cells and prevented MG-induced ROS production. Mitochondrial dysfunction was alleviated by CA pretreatment; this occurred via the downregulation of UCP2, VDAC1, and cyt c mRNA expression and the increase of MMP and ATP synthesis. Further, CA pre-treatment promoted the recovery from MG-induced decrease in GSIS. These results indicated that CA could be employed as a therapeutic agent in diabetes due to its ability to prevent MG-induced development of insulin sensitivity and oxidative stress-induced dysfunction of β-cells.
Collapse
Affiliation(s)
- Hyun-jung Yoo
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
| | - Chung-Oui Hong
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
| | - Sang Keun Ha
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
- Correspondence: ; Tel.: +82-2-3290-3473; Fax: +82-2-927-1970
| |
Collapse
|
16
|
Gambelunghe A, Giovagnoli S, Di Michele A, Boncompagni S, Dell’Omo M, Leopold K, Iavicoli I, Talesa VN, Antognelli C. Redox-Sensitive Glyoxalase 1 Up-Regulation Is Crucial for Protecting Human Lung Cells from Gold Nanoparticles Toxicity. Antioxidants (Basel) 2020; 9:antiox9080697. [PMID: 32756399 PMCID: PMC7463694 DOI: 10.3390/antiox9080697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are considered nontoxic upon acute exposure, at least when they are equal or above 5 nm size. However, the safeguard mechanisms contributing to maintain cell viability are scarcely explored so far. Here, we investigated the cyto-protective role of Glyoxalase 1 (Glo1), a key enzyme involved in the control of deleterious dicarbonyl stress, in two human cell types of the respiratory tract, after an acute exposure to AuNPs with a main size of 5 nm. We found that the redox sensitive Nrf-2-mediated up-regulation of Glo1 was crucial to protect cells from AuNPs-induced toxicity. However, cells challenged with a pro-inflammatory/pro-oxidative insult become susceptible to the pro-apoptotic effect of AuNPs. Notably, the surviving cells undergo epigenetic changes associated with the onset of a partial epithelial to mesenchymal transition (EMT) process (metastable phenotype), driven by the increase in dicarbonyl stress, consequent to Glo1 inactivation. As a physiological respiratory epithelium is required for the normal respiratory function, the knowledge of the protective mechanisms avoiding or (when challenged) promoting its modification/damage might provide insight into the genesis, and, most importantly, prevention of potential health effects that might occur in subjects exposed to AuNPs, through targeted surveillance programs, at least under specific influencing factors.
Collapse
Affiliation(s)
- Angela Gambelunghe
- Department of Medicine, University of Perugia, 06123 Perugia, Italy; (A.G.); (M.D.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | | | - Simona Boncompagni
- Department of Neuroscience, University G. d’ Annunzio of Chieti, Imaging and Clinical Sciences (DNICS) & Center for Advanced Studies and Technologies (CAST), 66100 Chieti, Italy;
| | - Marco Dell’Omo
- Department of Medicine, University of Perugia, 06123 Perugia, Italy; (A.G.); (M.D.)
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, 89081 Ulm, Germany;
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | | | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy;
- Correspondence: ; Tel.: +39-075-585-8354
| |
Collapse
|
17
|
El-Hoseny R, Neamatallah M, Alghobary M, Zalata A, Comhaire F, El-Beah SM. The possible role of NF-κB1 Rs28362491 polymorphism in male fertility of Egyptian population. Andrologia 2020; 52:e13659. [PMID: 32441399 DOI: 10.1111/and.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022] Open
Abstract
Male reproductive impairment is responsible for at least 50% of cases of couple infertility. Nuclear factor-kappa B (NF-κB) has been functionally linked to germ cell apoptosis, which may affect human fertility. The aim of this study was to determine the association between the rs28362491 SNP of the NF-κB1 gene and infertility in Egyptian men. In this case-control study, semen and blood samples of 247 infertile men, constituting the case group, and of 113 fertile healthy men as the control group were analysed. All study participants were genotyped for polymorphism of the NF-κB1 gene (rs28362491) by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Heterozygous I/D genotype of the NF-κB1 rs28362491 polymorphism was associated with a significantly lower risk of poor semen quality, including asthenozoospermia, astheno-teratozoospermia, and oligo-astheno-teratozoospermia, when compared to I/I genotype (odds ratio = 0.25, 0.26, 0.18, p < .0005, <.0005, <.0005) respectively. Overall, the presence of the D allele was associated with a significantly decreased risk of poor sperm quality as compared to the I allele (odds ratio = 0.56, 0.64, 0.49, p = .050, .038, .001). In conclusion, these results suggest that heterozygosity of the NF-κB1 gene may play a protecting role against male infertility in Egyptians.
Collapse
Affiliation(s)
- Reham El-Hoseny
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mustafa Neamatallah
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Moheiddin Alghobary
- Department of Dermatology, Andrology & STI, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Zalata
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Frank Comhaire
- Emeritus Professor of Andrology, Ghent University Hospital, Ghent, Belgium
| | - Shimaa M El-Beah
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Zhu JL, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Sci 2020; 255:117830. [PMID: 32450172 DOI: 10.1016/j.lfs.2020.117830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
Advanced glycation end products (AGEs) are heterogeneous products of the non-enzymatic interaction between proteins and reducing sugars. Numerous studies have shown that AGEs are associated with senescence, diabetes, vascular disease, aging and kidney disease. Infertility has been affected approximately 10 to15% of couples of reproductive ages. AGEs accumulation has been shown to play a crucial role in pathogenesis of infertility-related diseases. The present review provides the generation process, mechanism and pathological significance of AGEs and the novel treatment targeting AGEs for infertility.
Collapse
Affiliation(s)
- Jing-Ling Zhu
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China; Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ya-Qin Cai
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang-Lian Long
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China
| | - Zhuo Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China.
| | - Zhong-Cheng Mo
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
19
|
Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020; 9:antiox9020124. [PMID: 32024152 PMCID: PMC7071005 DOI: 10.3390/antiox9020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.
Collapse
|
20
|
Oleuropein-Induced Apoptosis Is Mediated by Mitochondrial Glyoxalase 2 in NSCLC A549 Cells: A Mechanistic Inside and a Possible Novel Nonenzymatic Role for an Ancient Enzyme. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8576961. [PMID: 31428230 PMCID: PMC6679873 DOI: 10.1155/2019/8576961] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023]
Abstract
Oleuropein (OP) is a bioactive compound derived from plants of the genus Oleaceae exhibiting antitumor properties in several human cancers, including non-small-cell lung cancer (NSCLC). Recent evidence suggests that OP has proapoptotic effects on NSCLC cells via the mitochondrial apoptotic pathway. However, the exact molecular mechanisms behind the apoptogenic action of OP in NSCLC are still largely unknown. Glyoxalase 2 (Glo2) is an ancient enzyme belonging to the glyoxalase system involved in the detoxification of glycolysis-derived methylglyoxal. However, emerging evidence suggests that Glo2 may have also nonenzymatic roles in some malignant cells. In the present study, we evaluated whether and how Glo2 participated in the proapoptotic effects of OP in NSCLC A549 cells. Our results indicate that OP is able to induce apoptosis in A549 cells through the upregulation of mitochondrial Glo2 (mGlo2), mediated by the superoxide anion and Akt signaling pathway. Moreover, our data shows that the proapoptotic role of mGlo2, observed following OP exposure, occurs via the interaction of mGlo2 with the proapoptotic Bax protein. Conversely, OP does not alter the behavior of nonmalignant human BEAS-2B cells or mGlo2 expression, thus suggesting a specific anticancer role for this bioactive compound in NSCLC. Our data identify a novel pathway through which OP exerts a proapoptotic effect in NSCLC and suggest, for the first time, a novel, nonenzymatic antiapoptotic role for this ancient enzyme in NSCLC.
Collapse
|
21
|
Antognelli C, Moretti S, Frosini R, Puxeddu E, Sidoni A, Talesa VN. Methylglyoxal Acts as a Tumor-Promoting Factor in Anaplastic Thyroid Cancer. Cells 2019; 8:cells8060547. [PMID: 31174324 PMCID: PMC6627963 DOI: 10.3390/cells8060547] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Methylglyoxal (MG) is a potent inducer of advanced glycation end products (AGEs). MG, long considered a highly cytotoxic molecule with potential anticancer value, is now being re-evaluated to a protumorigenic agent in some malignancies. Anaplastic thyroid cancer (ATC) is an extremely aggressive and highly lethal cancer for which conventional therapies have proved ineffective. Successful therapeutic intervention in ATC is undermined by our poor understanding of its molecular etiology. In the attempt to understand the role of MG in ATC aggressiveness, we used immunohistochemistry to examine the level of MG protein adducts in ATC and slow-growing papillary thyroid cancer (PTC). We detected a high level of MG adducts in ATC compared to PTC ones, suggesting a protumor role for MG-mediated dicarbonyl stress in ATC. Accordingly, MG adduct accumulation in ATC cells in vitro was associated with a marked mesenchymal phenotype and increased migration/invasion, which were both reversed by aminoguanidine (AG)—a scavenger of MG—and resveratrol—an activator of Glyoxalase 1 (Glo1), the key metabolizing enzyme of MG. Our study represents the first demonstration that MG, via AGEs, acts as a tumor-promoting factor in ATC and suggests that MG scavengers and/or Glo1 activators merit investigations as potential therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Roberta Frosini
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Efisio Puxeddu
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Angelo Sidoni
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|