1
|
Yuan J, Wu Q, Guo Y, Tang Y, Gao S, Li T, Xuan H. Wolfberry Honey and Its Extract Alleviate Dextran Sodium Sulfate-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Reducing Oxidative Stress and Inflammation. Mol Nutr Food Res 2024:e202400726. [PMID: 39690893 DOI: 10.1002/mnfr.202400726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterized by gut inflammation causing persistent diarrhea and abdominal pain. Despite the nutritional benefits of wolfberry honey (from Lycium barbarum L.), its potential to alleviate IBD remains underexplored. This study evaluated the protective effects of wolfberry honey and its extract (wolfberry honey extract [WHE]) against dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) using in vivo and in vitro models. Mice pretreated with wolfberry honey showed significant symptom improvement in DSS-induced UC, linked to reduced expression of proinflammatory markers (Il-1β, Il-6, Tnf-α, and Mcp-1) and increased antioxidant genes (Nrf2, Sod2). Increased Occludin levels indicated improved intestinal barrier function. In vitro, WHE protected DSS-treated Caco-2 cells by lowering reactive oxygen species (ROS), stabilizing mitochondrial membrane potential, and inhibiting TLR4/NF-κB signaling. It enhanced the expression of antioxidant genes and tight junction proteins (ZO-1, Occludin, and Claudin-1). Metabolomic analysis revealed that WHE modulated glycerophospholipid metabolism, increasing phosphatidylcholine and choline levels and decreasing lysophosphatidylcholine levels. These results highlight the potential of wolfberry honey and its extract as nutraceuticals for managing UC through their effects on inflammation, oxidative stress, and intestinal barrier function. Further research is warranted to elucidate their mechanisms of action and assess their long-term therapeutic benefits in IBD management.
Collapse
Affiliation(s)
- Jie Yuan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Qian Wu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yuyang Guo
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yujing Tang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Shuangshuang Gao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Ting Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Hongzhuan Xuan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Pinanga YD, Pyo KH, Shin EA, Lee H, Lee EH, Kim W, Kim S, Kim JE, Kim S, Lee JW. Association between hepatocyte TM4SF5 expression and gut microbiome dysbiosis during non-alcoholic fatty liver disease development. Life Sci 2024; 358:123164. [PMID: 39454995 DOI: 10.1016/j.lfs.2024.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Gut microbiome dysbiosis is involved in non-alcoholic fatty liver disease (NAFLD) development. Hepatic transmembrane 4 L six family member 5 (TM4SF5) overexpression promotes NAFLD. However, how gut microbiota are associated with TM4SF5-mediated NAFLD remains unexplored. We analyzed the gut microbiome using feces from hepatocyte-specific TM4SF5-overexpressing transgenic (Alb-TGTm4sf5-Flag, TG) or Tm4sf5-/- knock-out (KO) mice fed a normal chow diet (NCD), high-fat diet (HFD) for 2 weeks (HFD2W), or methionine-choline-deficient diet (MCD) for 4 weeks to investigate associations among Tm4sf5 expression, diet, and the gut microbiome. TG-NCD mice showed a higher Firmicutes-to-Bacteroidetes (F/B) ratio, with less enrichment of Akkermansia muciniphila and Lactobacillus reuteri. NASH-related microbiomes in feces were more abundant in TG-HFD2w mice than in KO-HFD2w mice. Further, TG-MCD showed a higher F/B ratio than TG-NCD or KO mice, with decreases or increases in microbiomes beneficial or detrimental to the liver, respectively. Such effects in TG-MCD animals were correlated with functional pathways producing short-chain fatty acids (SCFAs). Furthermore, potential functional pathways of the gut microbiome were metabolically parallel to NAFLD features in TG-MCD mice. These results suggest that hepatocyte Tm4sf5 supports gut microbiome dysbiosis and metabolic activity, leading to SCFA production and hepatic inflammation during NAFLD development.
Collapse
Affiliation(s)
- Yangie Dwi Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Motiño O, Lambertucci F, Joseph A, Durand S, Anagnostopoulos G, Li S, Carbonnier V, Nogueira-Recalde U, Montégut L, Chen H, Aprahamian F, Nirmalathasan N, Maiuri MC, Pietrocola F, Valla D, Laouénan C, Gautier JF, Castera L, Martins I, Kroemer G. ACBP/DBI neutralization for the experimental treatment of fatty liver disease. Cell Death Differ 2024:10.1038/s41418-024-01410-6. [PMID: 39550516 DOI: 10.1038/s41418-024-01410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024] Open
Abstract
Acyl-CoA binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular checkpoint of autophagy. Here, we report that patients with histologically confirmed metabolic-associated steatohepatitis (MASH) or liver fibrosis exhibit elevated levels of circulating ACBP/DBI protein as compared to non-affected controls. Plasma ACBP/DBI strongly correlated with the NAFLD and FIB4 scores in patients, and these correlations were independent of age and body mass index. We studied the capacity of a monoclonal antibody (mAb) neutralizing mouse ACBP/DBI to combat active liver disease in several mouse models, in which steatohepatitis had been induced by four different protocols, namely, (i) methionine/choline-deficient diet, (ii) Western style diet (WD) alone, (iii) WD combined with the hepatotoxic agent CCl4, and (iv) a combination of CCl4 injections and oral ethanol challenge. Injections of anti-ACBP/DBI mAb attenuated histological, enzymological, metabolomic and transcriptomic signs of liver damage in these four models, hence halting or reducing the progression of non-alcoholic and alcoholic liver disease. Steatosis, inflammation, ballooning and fibrosis responded to ACBP/DBI inhibition at the preclinical level. Altogether, these findings support a causal role of ACBP/DBI in MASH and liver fibrosis, as well as the possibility to therapeutically target ACBP/DBI.
Collapse
Affiliation(s)
- Omar Motiño
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain.
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Profesor Novoa Santos, A Coruña, Spain
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Naples, Italy
| | - Federico Pietrocola
- Department of Bioscience and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Dominique Valla
- Université Paris Cité, UMR1149 (CRI), Inserm, Paris, France
- Service hépatologie, AP-HP, Hôpital Beaujon, Clichy, France
| | - Cédric Laouénan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm U1137, Laboratory "Infection, Antimicrobials, Modelling, Evolution" (IAME), Paris, France
- Département d'Epidémiologie Biostatistique et Recherche Clinique, AP-HP.Nord, Hôpital Bichat, Paris, France
| | - Jean-François Gautier
- Institut Necker Enfants Malades, Inserm U1151, CNRS UMR 8253, IMMEDIAB Laboratory, Paris, France
- Centre Universitaire de Diabétologie et de ses Complications, AP-HP, Hôpital Lariboisiére, Paris, France
| | - Laurent Castera
- Université Paris Cité, UMR1149 (CRI), Inserm, Paris, France
- Service hépatologie, AP-HP, Hôpital Beaujon, Clichy, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Institut Universitaire de France, Paris, France.
| |
Collapse
|
4
|
Drenckpohl DC, Christifano DN, Carlson SE. Is choline deficiency an unrecognized factor in necrotizing enterocolitis of preterm infants? Pediatr Res 2024; 96:875-883. [PMID: 38658665 DOI: 10.1038/s41390-024-03212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
We undertook this review to determine if it is plausible that choline or phosphatidylcholine (PC) deficiency is a factor in necrotizing enterocolitis (NEC) after two clinical trials found a dramatic and unexpected reduction in NEC in an experimental group provided higher PC compared to a control group. Sources and amounts of choline/PC for preterm infants are compared to the choline status of preterm infants at birth and following conventional nutritional management. The roles of choline/PC in intestinal structure, mucus, mesenteric blood flow, and the cholinergic anti-inflammatory system are summarized. Low choline/PC status is linked to prematurity/immaturity, parenteral and enteral feeding, microbial dysbiosis and hypoxia/ischemia, factors long associated with the risk of developing NEC. We conclude that low choline status exists in preterm infants provided conventional parenteral and enteral nutritional management, and that it is plausible low choline/PC status adversely affects intestinal function to set up the vicious cycle of inflammation, loss of intestinal barrier function and worsening tissue hypoxia that occurs with NEC. In conclusion, this review supports the need for randomized clinical trials to test the hypothesis that additional choline or PC provided parenterally or enterally can reduce the incidence of NEC in preterm infants. IMPACT STATEMENT: Low choline status in preterm infants who are managed by conventional nutrition is plausibly linked to the risk of developing necrotizing enterocolitis.
Collapse
Affiliation(s)
- Douglas C Drenckpohl
- Department of Food & Nutrition, OSF Healthcare Saint Francis Medical Center, Peoria, IL, 61637, USA
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Danielle N Christifano
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA.
| |
Collapse
|
5
|
Pallozzi M, De Gaetano V, Di Tommaso N, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Role of Gut Microbial Metabolites in the Pathogenesis of Primary Liver Cancers. Nutrients 2024; 16:2372. [PMID: 39064815 PMCID: PMC11280141 DOI: 10.3390/nu16142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatobiliary malignancies, which include hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are the sixth most common cancers and the third leading cause of cancer-related death worldwide. Hepatic carcinogenesis is highly stimulated by chronic inflammation, defined as fibrosis deposition, and an aberrant imbalance between liver necrosis and nodular regeneration. In this context, the gut-liver axis and gut microbiota have demonstrated a critical role in the pathogenesis of HCC, as dysbiosis and altered intestinal permeability promote bacterial translocation, leading to chronic liver inflammation and tumorigenesis through several pathways. A few data exist on the role of the gut microbiota or bacteria resident in the biliary tract in the pathogenesis of CCA, and some microbial metabolites, such as choline and bile acids, seem to show an association. In this review, we analyze the impact of the gut microbiota and its metabolites on HCC and CCA development and the role of gut dysbiosis as a biomarker of hepatobiliary cancer risk and of response during anti-tumor therapy. We also discuss the future application of gut microbiota in hepatobiliary cancer management.
Collapse
Affiliation(s)
- Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Valeria De Gaetano
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Natalia Di Tommaso
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Kanmani P, Villena J, Lim SK, Song EJ, Nam YD, Kim H. Immunobiotic Bacteria Attenuate Hepatic Fibrosis through the Modulation of Gut Microbiota and the Activation of Aryl-Hydrocarbon Receptors Pathway in Non-Alcoholic Steatohepatitis Mice. Mol Nutr Food Res 2024; 68:e2400227. [PMID: 39031898 DOI: 10.1002/mnfr.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 07/22/2024]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease worldwide that can progress to liver fibrosis (LF). Probiotics have beneficial roles in reducing intestinal inflammation and gut-associated diseases, but their effects and mechanisms beyond the gut in attenuating the progression of LF are remained unclear. METHODS AND RESULTS In a mouse model of NASH/LF induced by a methionine-choline deficient (MCD) diet, immunobiotics are administered to investigate their therapeutic effects. Results show that the MCD diet leads to liver inflammation, steatosis, and fibrosis, which are alleviated by immunobiotics. Immunobiotics reduces serum endotoxin and inflammatory markers while increasing regulatory cytokines and liver weight. They also suppress Th17 cells, known for producing inflammatory cytokines. Furthermore, immunobiotics mitigate collagen deposition and fibrogenic signaling in the liver, while restoring gut-barrier integrity and microbiota composition. Additionally, immunobiotics enhance the activation of the aryl hydrocarbon receptor (AhR) pathway in both colonic and liver tissues. CONCLUSIONS Overall, these results demonstrate a novel insight into the mechanisms through which immunobiotic administration improves the gut health which in turn increases the AhR pathway and inhibits HSCs activation and fibrosis progression beyond the gut in the liver tissue of NASH/LF mice.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, 4000, Argentina
| | - Soo-Kyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 245, Wanju-gun, 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 245, Wanju-gun, 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, 55365, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| |
Collapse
|
7
|
Zhang W, Cheng W, Li J, Huang Z, Lin H, Zhang W. New aspects characterizing non-obese NAFLD by the analysis of the intestinal flora and metabolites using a mouse model. mSystems 2024; 9:e0102723. [PMID: 38421203 PMCID: PMC10949483 DOI: 10.1128/msystems.01027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem due to the high incidence affecting approximately one-third of the world's population. NAFLD is usually linked to obesity and excessive weight. A subset of patients with NAFLD expresses normal or low body mass index; thus, the condition is called non-obese NAFLD or lean NAFLD. However, patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. Furthermore, preclinical results from non-obese animal models with NAFLD are unclear. Gut microbiota and their metabolites in non-obese/lean-NAFLD patients differ from those in obese NAFLD patients. Therefore, we analyzed the biochemical indices, intestinal flora, and intestinal metabolites in a non-obese NAFLD mouse model established using a methionine-choline-deficient (MCD) diet. The significantly lean MCD mice had a remarkable fatty liver with lower serum triglyceride and free fatty acid levels, as well as higher alanine transaminase and aspartate transaminase levels than normal mice. 16S RNA sequencing of fecal DNA showed that the overall richness and diversity of the intestinal flora decreased in MCD mice, whereas the Firmicutes:Bacteroidota ratio was increased. g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium were the predominant species in non-obese NAFLD mice. Fecal metabolomics using liquid chromatography-tandem mass spectrometry revealed the potential biomarkers for the prognosis and diagnosis of non-obese NAFLD, including high levels of tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, and low levels of 3-carbamoyl-2-phenylpropionaldehyde, N-succinyl-L,L-2,6-diaminopimelate, 4-methyl-5-thiazoleethanol, homogentisic acid, and estriol. Our findings could be useful to identify and develop drugs to treat non-obese NAFLD and lean NAFLD. IMPORTANCE Patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. In fact, about 40% of people with NAFLD worldwide are non-obese, and nearly one-fifth are lean. Lean NAFLD unfortunately may be unnoticed for years and remains undetected until hepatic damage is advanced and the prognosis is compromised. This study focused on the lean NAFLD, screened therapeutic agents, and biomarkers for the prognosis and diagnosis using MCD-induced male C57BL/6J mice. The metabolites tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, together with the predominant flora including g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium, were specific in non-obese NAFLD mice and might be used as targets for non-obese NAFLD drug exploration. This study is particularly significant for non-obese NAFLDs that need to be more actively noticed and vigilant.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering and Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - JingHui Li
- Ningbo Psychiatric Hospital, Ningbo, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering and Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Jung IR, Ahima RS, Kim SF. Time-Restricted Feeding Ameliorates Methionine-Choline Deficient Diet-Induced Steatohepatitis in Mice. Int J Mol Sci 2024; 25:1390. [PMID: 38338668 PMCID: PMC10855189 DOI: 10.3390/ijms25031390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.
Collapse
Affiliation(s)
| | - Rexford S. Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Sangwon F. Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA;
| |
Collapse
|
9
|
Gong L, Mahmood T, Mercier Y, Xu H, Zhang X, Zhao Y, Luo Y, Guo Y. Dietary methionine sources and levels modulate the intestinal health status of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:242-255. [PMID: 38033606 PMCID: PMC10684994 DOI: 10.1016/j.aninu.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 12/02/2023]
Abstract
Given the key role of methionine in biological processes, adequate methionine should be provided to meet the nutritional requirements. DL-2-hydroxy-4-(methylthio)-butanoic acid (DL-HMTBA) has been considered as an important source of methionine. However, the effects of different sources and levels of methionine on the intestinal health status have not been clarified yet. An experiment was carried out to investigate the effects of different dietary sources and levels of methionine on the intestinal epithelial barrier, inflammatory cytokines expression, ileal morphology, microbiota composition, and cecal short chain fatty acids (SCFA) profiles. For this purpose, 720 male Arbor Acre broiler chicks at 1 d old were randomly assigned to a 2 × 3 factorial arrangement with 2 methionine sources (DL-methionine and DL-HMTBA) and 3 total sulfur amino acids (TSAA) levels (80%, 100%, and 120% of Arbor Acre recommendation). The results showed that DL-HMTBA supplementation promoted intestinal physical barrier at both gene expression level of claudin-1 and serum diamine oxidase level (P < 0.05), and the inflammatory cytokine IL-6 mRNA expression was down-regulated by dietary DL-HMTBA supplementation compared with the DL-methionine group (P < 0.05). Meanwhile, an upregulated gene expression of claudin-1 and zonula occluden-1 (ZO-1) were observed in the low-TSAA treatment on d 14 (P < 0.05), whereas this treatment increased the expression of IL-1β and IL-6 (P < 0.05). Villus height to crypt depth ratio was high (P < 0.05) in the middle-level TSAA group. Furthermore, DL-HMTBA supplementation optimized the microbiota of the ileum especially the relative abundance of Lactobacillus, where the digestion and absorption were completed, and elevated the concentrations of SCFA (acetate, propionate, and butyrate) in the cecal content on d 21 (P < 0.01). In conclusion, dietary DL-HMTBA supplementation improved the intestinal barrier function, immune homeostasis and optimized the microbiota to promote intestinal health status in broiler chickens.
Collapse
Affiliation(s)
- Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | - Huiping Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yimeng Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Chai C, Chen L, Deng MG, Liang Y, Liu F, Nie JQ. Dietary choline intake and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2017-2018. Eur J Clin Nutr 2023; 77:1160-1166. [PMID: 37634048 DOI: 10.1038/s41430-023-01336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Whether there is an association between dietary choline intake and non-alcoholic fatty liver disease (NAFLD) in American adults remains unclear. METHODS Data came from the National Health and Nutrition Examination Survey 2017-2018. Choline intake was defined by the mean amounts of two 24 h dietary recalls, and choline intake was categorized into three groups according to the quartiles: inadequate ( P75). Hepatic steatosis was assessed with FibroScan®, in which VCTE was employed with controlled attenuation to derive the controlled attenuation parameter (CAP), and NAFLD was defined as a CAP score ≥285 dB/m. Multivariable linear regression was performed to assess the linear relationship between choline intake and CAP. Multivariable logistics regression models were conducted to assess the association between choline intake status and NAFLD in the final sample and subgroup analysis was then performed in men and women. RESULTS The amount of dietary choline was inversely associated with CAP score (β = -0.262, 95% CI: -0.280, -0.245). Compared to inadequate choline intake, optimal choline intake was related to a lower risk of NAFLD (OR: 0.705, 95% CI: 0.704-0.706) in the final sample. Subgroup analysis by gender revealed that the highest choline intake status was associated with a lower risk of NAFLD both in females (OR: 0.764, 95% CI: 0.762-0.766), and males (OR: 0.955, 95% CI: 0.953-0.958) when compared to the lowest choline intake. CONCLUSIONS With the latest NHANES data, we found that higher dietary choline was associated with a lower risk of NAFLD in American adults, and such a relationship exists in both females and males.
Collapse
Affiliation(s)
- Chen Chai
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Lin Chen
- Emergency Department, Xiantao First People's Hospital Affiliated to Changjiang University, Xiantao, China
| | - Ming-Gang Deng
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yuehui Liang
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fang Liu
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jia-Qi Nie
- School of Public Health, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
11
|
Lail H, Mabb AM, Parent MB, Pinheiro F, Wanders D. Effects of Dietary Methionine Restriction on Cognition in Mice. Nutrients 2023; 15:4950. [PMID: 38068808 PMCID: PMC10707861 DOI: 10.3390/nu15234950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dietary restriction of the essential amino acid, methionine, has been shown to induce unique metabolic protection. The peripheral benefits of methionine restriction (MR) are well established and include improvements in metabolic, energy, inflammatory, and lifespan parameters in preclinical models. These benefits all occur despite MR increasing energy intake, making MR an attractive dietary intervention for the prevention or reversal of many metabolic and chronic conditions. New and emerging evidence suggests that MR also benefits the brain and promotes cognitive health. Despite widespread interest in MR over the past few decades, many findings are limited in scope, and gaps remain in our understanding of its comprehensive effects on the brain and cognition. This review details the current literature investigating the impact of MR on cognition in various mouse models, highlights some of the key mechanisms responsible for its cognitive benefits, and identifies gaps that should be addressed in MR research moving forward. Overall findings indicate that in animal models, MR is associated with protection against obesity-, age-, and Alzheimer's disease-induced impairments in learning and memory that depend on different brain regions, including the prefrontal cortex, amygdala, and hippocampus. These benefits are likely mediated by increases in fibroblast growth factor 21, alterations in methionine metabolism pathways, reductions in neuroinflammation and central oxidative stress, and potentially alterations in the gut microbiome, mitochondrial function, and synaptic plasticity.
Collapse
Affiliation(s)
- Hannah Lail
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
- Department of Chemistry, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA; (A.M.M.); (M.B.P.)
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302, USA
| | - Marise B. Parent
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA; (A.M.M.); (M.B.P.)
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA
| | - Filipe Pinheiro
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
| |
Collapse
|
12
|
Rodríguez-Lara A, Rueda-Robles A, Sáez-Lara MJ, Plaza-Diaz J, Álvarez-Mercado AI. From Non-Alcoholic Fatty Liver Disease to Liver Cancer: Microbiota and Inflammation as Key Players. Pathogens 2023; 12:940. [PMID: 37513787 PMCID: PMC10385788 DOI: 10.3390/pathogens12070940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
It is estimated that 25% of the world's population has non-alcoholic fatty liver disease. This disease can advance to a more severe form, non-alcoholic steatohepatitis (NASH), a disease with a greater probability of progression to cirrhosis and hepatocellular carcinoma (HCC). NASH could be characterized as a necro-inflammatory complication of chronic hepatic steatosis. The combination of factors that lead to NASH and its progression to HCC in the setting of inflammation is not clearly understood. The portal vein is the main route of communication between the intestine and the liver. This allows the transfer of products derived from the intestine to the liver and the hepatic response pathway of bile and antibody secretion to the intestine. The intestinal microbiota performs a fundamental role in the regulation of immune function, but it can undergo changes that alter its functionality. These changes can also contribute to cancer by disrupting the immune system and causing chronic inflammation and immune dysfunction, both of which are implicated in cancer development. In this article, we address the link between inflammation, microbiota and HCC. We also review the different in vitro models, as well as recent clinical trials addressing liver cancer and microbiota.
Collapse
Affiliation(s)
- Avilene Rodríguez-Lara
- Center of Biomedical Research, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain
| | - Ascensión Rueda-Robles
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada,18071 Granada, Spain
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology I, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Julio Plaza-Diaz
- Children's Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Ana I Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
13
|
Van Campenhout R, Caufriez A, Tabernilla A, Maerten A, De Boever S, Sanz-Serrano J, Kadam P, Vinken M. Pannexin1 channels in the liver: an open enemy. Front Cell Dev Biol 2023; 11:1220405. [PMID: 37492223 PMCID: PMC10363690 DOI: 10.3389/fcell.2023.1220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Pannexin1 proteins form communication channels at the cell plasma membrane surface, which allow the transfer of small molecules and ions between the intracellular compartment and extracellular environment. In this way, pannexin1 channels play an important role in various cellular processes and diseases. Indeed, a plethora of human pathologies is associated with the activation of pannexin1 channels. The present paper reviews and summarizes the structure, life cycle, regulation and (patho)physiological roles of pannexin1 channels, with a particular focus on the relevance of pannexin1 channels in liver diseases.
Collapse
|
14
|
Guo M, Liu D, Jiang Y, Chen W, Zhao L, Bao D, Li Y, Distler JHW, Zhu H. Serum metabolomic profiling reveals potential biomarkers in systemic sclerosis. Metabolism 2023; 144:155587. [PMID: 37156409 DOI: 10.1016/j.metabol.2023.155587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a chronic and systemic autoimmune disease marked by the skin and visceral fibrosis. Metabolic alterations have been found in SSc patients; however, serum metabolomic profiling has not been thoroughly conducted. Our study aimed to identify alterations in the metabolic profile in both SSc patients before and during treatment, as well as in mouse models of fibrosis. Furthermore, the associations between metabolites and clinical parameters and disease progression were explored. METHODS High-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS)/MS was performed in the serum of 326 human samples and 33 mouse samples. Human samples were collected from 142 healthy controls (HC), 127 newly diagnosed SSc patients without treatment (SSc baseline), and 57 treated SSc patients (SSc treatment). Mouse serum samples were collected from 11 control mice (NaCl), 11 mice with bleomycin (BLM)-induced fibrosis and 11 mice with hypochlorous acid (HOCl)-induced fibrosis. Both univariate analysis and multivariate analysis (orthogonal partial least-squares discriminate analysis (OPLS-DA)) were conducted to unravel differently expressed metabolites. KEGG pathway enrichment analysis was performed to characterize the dysregulated metabolic pathways in SSc. Associations between metabolites and clinical parameters of SSc patients were identified by Pearson's or Spearman's correlation analysis. Machine learning (ML) algorithms were applied to identify the important metabolites that have the potential to predict the progression of skin fibrosis. RESULTS The newly diagnosed SSc patients without treatment showed a unique serum metabolic profile compared to HC. Treatment partially corrected the metabolic changes in SSc. Some metabolites (phloretin 2'-O-glucuronide, retinoyl b-glucuronide, all-trans-retinoic acid, and betaine) and metabolic pathways (starch and sucrose metabolism, proline metabolism, androgen and estrogen metabolism, and tryptophan metabolism) were dysregulated in new-onset SSc, but restored upon treatment. Some metabolic changes were associated with treatment response in SSc patients. Metabolic changes observed in SSc patients were mimicked in murine models of SSc, indicating that they may reflect general metabolic changes associated with fibrotic tissue remodeling. Several metabolic changes were associated with SSc clinical parameters. The levels of allysine and all-trans-retinoic acid were negatively correlated, while D-glucuronic acid and hexanoyl carnitine were positively correlated with modified Rodnan skin score (mRSS). In addition, a panel of metabolites including proline betaine, phloretin 2'-O-glucuronide, gamma-linolenic acid and L-cystathionine were associated with the presence of interstitial lung disease (ILD) in SSc. Specific metabolites identified by ML algorithms, such as medicagenic acid 3-O-b-D-glucuronide, 4'-O-methyl-(-)-epicatechin-3'-O-beta-glucuronide, valproic acid glucuronide, have the potential to predict the progression of skin fibrosis. CONCLUSIONS Serum of SSc patients demonstrates profound metabolic changes. Treatment partially restored the metabolic changes in SSc. Moreover, certain metabolic changes were associated with clinical manifestations such as skin fibrosis and ILD, and could predict the progression of skin fibrosis.
Collapse
Affiliation(s)
- Muyao Guo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Weilin Chen
- Department of Nephrology and Rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijuan Zhao
- Department of Nephrology and Rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ding Bao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yisha Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jörg H W Distler
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, 40225 Düsseldorf, Germany; Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Li H, Guo X, Aquino E, Wu C. Mini review: STING activation during non-alcoholic fatty liver disease. Front Nutr 2023; 10:1139339. [PMID: 36937350 PMCID: PMC10014842 DOI: 10.3389/fnut.2023.1139339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic diseases serving as a major threat to human health. While the pathogenesis of NAFLD is multi-factorial, inflammation is considered a critical factor driving the development and progression of NAFLD phenotype, including liver fibrosis. As an essential mediator of innate immunity, stimulator of interferon genes (STING) functions to promote anti-viral immunity. Accumulating evidence also indicates that STING functions to promote the proinflammatory activation of several types of liver cells, especially macrophages/Kupffer cells, in a manner independent of interferon production. Over the past several years, a significant body of literature has validated a detrimental role for STING in regulating the pathogenesis of hepatic steatosis and inflammation. In particular, the STING in macrophages/Kupffer cells has attracted much attention due to its importance in not only enhancing macrophage proinflammatory activation, but also generating macrophage-derived mediators to increase hepatocyte fat deposition and proinflammatory responses, and to activate hepatic stellate cell fibrogenic activation. Both intracellular and extracellular signals are participating in STING activation in macrophages, thereby critically contributing to NAFLD phenotype. This mini review summarizes recent advances on how STING is activated in macrophages in the context of NAFLD pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| |
Collapse
|
16
|
Akbari G, Mard SA, Savari F, Barati B, Sameri MJ. Characterization of diet based nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in rodent models: Histological and biochemical outcomes. Histol Histopathol 2022; 37:813-824. [PMID: 35475465 DOI: 10.14670/hh-18-462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), as the most common chronic liver disease, is rapidly increasing worldwide. This complex disorder can include simple liver steatosis to more serious stages of nonalcoholic fibrosis and steatohepatitis (NASH). One of the critical concerns in NASH research is selecting and confiding in relying on preclinical animal models and experimental methods that can accurately reflect the situation in human NASH. Recently, creating nutritional models of NASH with a closer dietary pattern in human has been providing reliable, simple, and reproducible tools that hope to create a better landscape for showing the recapitulation of disease pathophysiology. This review focuses on recent research on rodent models (mice, rats, and hamsters) in the induction of the dietary model of NAFLD /NASH. This research tries to compile the different dietary compositions of NASH, time frames required for disease development, and their impact on liver histological features as well as metabolic parameters.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medical Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyyed Ali Mard
- Clinical Sciences Research Institute, Alimentary Tract Research Center, Department of Physiology, The school of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Feryal Savari
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Barat Barati
- Department of Radiologic Technology, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Maryam J Sameri
- Department of Physiology, The School of Medicine, Ahvaz Jundishpur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, The School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
17
|
Zhu B, Li H, Lu B, Guo X, Wu C, Wang F, Li Q, Xie L, Glaser S, Francis H, Alpini G, Wu C. Indole supplementation ameliorates MCD-induced NASH in mice. J Nutr Biochem 2022; 107:109041. [PMID: 35568098 DOI: 10.1016/j.jnutbio.2022.109041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/27/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Indole is a microbiota metabolite that functions to protect against obesity-associated non-alcoholic fatty liver disease. The present study examined the extent to which indole supplementation alleviates the severity of non-alcoholic steatohepatitis (NASH), which is the advanced form of non-alcoholic fatty liver disease. In C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in significant weight loss, overt hepatic steatosis, and massive aggregations of macrophages in the liver compared with control diet-fed mice. Upon indole supplementation, the severity of MCD-induced hepatic steatosis and inflammation, as well as liver fibrosis, was significantly decreased compared with that of MCD-fed and control-treated mice. In vitro, indole treatment caused significant decreases in lipopolysaccharide-induced proinflammatory responses in hepatocytes incubated with either basal or MCD-mimicking media. However, indole treatment only significantly decreased lipopolysaccharide-induced proinflammatory responses in bone marrow-derived macrophages incubated with basal, but not MCD-mimicking media. These differential effects suggest that, relative to the responses of macrophages to indole, the responses of hepatocytes to indole appeared to make a greater contribution to indole alleviation of NASH, in particular liver inflammation. While indole supplementation decreased liver expression of desmin in MCD-fed mice, treatment of LX2 cells (a line of hepatic stellate cells) with indole also decreased the expression of various markers of hepatic stellate cell fibrogenic activation. Lastly, indole supplementation decreased intestinal inflammation in MCD-fed mice, suggesting that decreased intestinal inflammation also was involved in indole alleviation of NASH. Collectively, these results demonstrate that indole supplementation alleviates MCD-induced NASH, which is attributable to, in large part, indole suppression of hepatocyte proinflammatory responses and hepatic stellate cell fibrogenic activation, as well as intestinal proinflammatory responses.
Collapse
Affiliation(s)
- Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Bangchao Lu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Xinlei Guo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Chiashan Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Shannon Glaser
- Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
18
|
The Role of Diet in Regulation of Macrophages Functioning. Biomedicines 2022; 10:biomedicines10092087. [PMID: 36140188 PMCID: PMC9495355 DOI: 10.3390/biomedicines10092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The great importance of diet for health and high life-expectancy is established. The impact of nutrients on immune system is a point of growing research interest. Recent studies have found pro- and anti-inflammatory properties of some diet patterns and nutrients that can be used from the bench to the bedside for chronic low-grade inflammatory status correction. In this regard, the assessment of potential effects of nutrition on macrophage differentiation, proliferation, and functioning in health and disease is highly demanded. In this review, we present current data on the effects of nutrients on the macrophage functioning.
Collapse
|
19
|
Yang AM, Lin CY, Liu SH, Syu GD, Sun HJ, Lee KC, Lin HC, Hou MC. Saccharomyces Boulardii Ameliorates Non-alcoholic Steatohepatitis in Mice Induced by a Methionine-Choline-Deficient Diet Through Gut-Liver Axis. Front Microbiol 2022; 13:887728. [PMID: 35814685 PMCID: PMC9260146 DOI: 10.3389/fmicb.2022.887728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is affecting people worldwide. Changes in the intestinal microbiome are crucial to NASH. A previous study showed that eradicating intestinal fungi ameliorates NASH; however, the role of intestinal fungi in the development of NASH remains unclear. Saccharomyces boulardii (SB), a dietary supplement yeast, has been reported to restore the integrity of the intestine. Here, we tested the effect of SB in the treatment of NASH. For this study, we fed eight-week-old C57/BL6 male mice either a methionine-choline deficient (MCD) diet or a normal chow diet (NCD) for eight weeks. Half of the MCD diet-fed mice were gavaged with SB (5 mg/day) once daily. The remainder of the NCD–fed mice were gavaged with normal saline as a control. The MCD diet-fed mice on SB supplement showed better liver function, less hepatic steatosis, and decreased inflammation. Both hepatic inflammatory gene expression and fibrogenic gene expression were suppressed in mice with SB gavage. Intestinal damage caused by the MCD diet was tampered with, intestine inflammation decreased, and gut permeability improved in mice that had been given the SB supplement. Deep sequencing of the fecal microbiome showed a potentially increased beneficial gut microbiota and increased microbiota diversity in the SB-supplemented mice. The SB supplement maintains gut integrity, increases microbial diversity, and increases the number of potentially beneficial gut microbiota. Thus, the SB supplement attenuates gut leakage and exerts a protective effect against NASH. Our results provide new insight into the prevention of NASH.
Collapse
Affiliation(s)
- An-Ming Yang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- *Correspondence: An-Ming Yang,
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Hao Liu
- Division of Pathology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Jhe Sun
- Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei City, Taiwan
| | - Kuei-Chuan Lee
- Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei City, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
- Kuei-Chuan Lee,
| | - Han-Chieh Lin
- Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei City, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei City, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| |
Collapse
|
20
|
May T, de la Haye B, Nord G, Klatt K, Stephenson K, Adams S, Bollinger L, Hanchard N, Arning E, Bottiglieri T, Maleta K, Manary M, Jahoor F. One-carbon metabolism in children with marasmus and kwashiorkor. EBioMedicine 2022; 75:103791. [PMID: 35030356 PMCID: PMC8761690 DOI: 10.1016/j.ebiom.2021.103791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants remain uncertain despite nine decades of study. Remarkably, kwashiorkor's disturbances resemble the effects of experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may represent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from a cross-sectional exploration of serum one-carbon metabolites in Malawian children. METHODS Blood was collected from children aged 12-60 months before nutritional rehabilitation: kwashiorkor (N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls (N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then compared across participant groups. FINDINGS Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Measured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in marasmic-kwashiorkor (median µmol/L (± SD): 0·549 (± 0·217) P = 0·00045 & 90 (± 40) P < 0·0001, respectively) and kwashiorkor (0·557 (± 0·195) P < 0·0001 & 115 (± 50) P < 0·0001), relative to marasmus (0·698 (± 0·212) & 153 (± 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor. INTERPRETATION Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated in the syndrome's pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation. FUNDING The Hickey Family Foundation, the American College of Gastroenterology, the NICHD, and the USDA/ARS.
Collapse
Affiliation(s)
- Thaddaeus May
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA.
| | | | | | - Kevin Klatt
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,Center for Precision Environmental Health, Baylor College of Medicine
| | | | | | - Lucy Bollinger
- Washington University in St. Louis School of Medicine, USA
| | - Neil Hanchard
- National Institutes of Health, USA,National Human Genome Research Institute, Nationl Institutes of Health
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | | | - Mark Manary
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,The University of Malawi College of Medicine, Malawi,Washington University in St. Louis School of Medicine, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA
| |
Collapse
|