1
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
2
|
Mazumdar R, Eberhart JK. Loss of Nicotinamide nucleotide transhydrogenase sensitizes embryos to ethanol-induced neural crest and neural apoptosis via generation of reactive oxygen species. Front Neurosci 2023; 17:1154621. [PMID: 37360166 PMCID: PMC10289183 DOI: 10.3389/fnins.2023.1154621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a continuum of birth defects caused by prenatal alcohol exposure. FASD are the most common environmentally induced birth defect and are highly variable. The genetics of an individual influence the severity of their FASD phenotype. However, the genes that sensitize an individual to ethanol-induced birth defects are largely unknown. The ethanol-sensitive mouse substrain, C57/B6J, carries several known mutations including one in Nicotinamide nucleotide transhydrogenase (Nnt). Nnt is a mitochondrial transhydrogenase thought to have an important role in detoxifying reactive oxygen species (ROS) and ROS has been implicated in ethanol teratogenesis. To directly test the role of Nnt in ethanol teratogenesis, we generated zebrafish nnt mutants via CRISPR/Cas9. Zebrafish embryos were dosed with varying concentrations of ethanol across different timepoints and assessed for craniofacial malformations. We utilized a ROS assay to determine if this could be a contributing factor of these malformations. We found that exposed and unexposed mutants had higher levels of ROS compared to their wildtype counterparts. When treated with ethanol, nnt mutants experienced elevated apoptosis in the brain and neural crest, a defect that was rescued by administration of the antioxidant, N-acetyl cysteine (NAC). NAC treatment also rescued most craniofacial malformations. Altogether this research demonstrates that ethanol-induced oxidative stress leads to craniofacial and neural defects due to apoptosis in nnt mutants. This research further supports the growing body of evidence implicating oxidative stress in ethanol teratogenesis. These findings suggest that antioxidants can be used as a potential therapeutic in the treatment of FASD.
Collapse
Affiliation(s)
- Rayna Mazumdar
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States
- Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - Johann K. Eberhart
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States
- Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Fish EW, Mendoza-Romero HN, Love CA, Dragicevich CJ, Cannizzo MD, Boschen KE, Hepperla A, Simon JM, Parnell SE. The pro-apoptotic Bax gene modifies susceptibility to craniofacial dysmorphology following gastrulation-stage alcohol exposure. Birth Defects Res 2022; 114:1229-1243. [PMID: 35396933 PMCID: PMC10103739 DOI: 10.1002/bdr2.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND During early development, alcohol exposure causes apoptotic cell death in discrete regions of the embryo which are associated with distinctive patterns of later-life abnormalities. In gastrulation, which occurs during the third week of human pregnancy, alcohol targets the ectoderm, the precursor of the eyes, face, and brain. This midline tissue loss leads to the craniofacial dysmorphologies, such as microphthalmia and a smooth philtrum, which define fetal alcohol syndrome (FAS). An important regulator of alcohol-induced cell death is the pro-apoptotic protein Bax. The current study determines if mice lacking the Bax gene are less susceptible to the pathogenic effects of gastrulation-stage alcohol exposure. METHODS Male and female Bax+/- mice mated to produce embryos with full (-/- ) or partial (+/- ) Bax deletions, or Bax+/+ wild-type controls. On Gestational Day 7 (GD 7), embryos received two alcohol (2.9 g/kg, 4 hr apart), or control exposures. A subset of embryos was collected 12 hr later and examined for the presence of apoptotic cell death, while others were examined on GD 17 for the presence of FAS-like facial features. RESULTS Full Bax deletion reduced embryonic apoptotic cell death and the incidence of fetal eye and face malformations, indicating that Bax normally facilitates the development of alcohol-induced defects. An RNA-seq analysis of GD 7 Bax+/+ and Bax-/- embryos revealed 63 differentially expressed genes, some of which may interact with the Bax deletion to further protect against apoptosis. CONCLUSIONS Overall, these experiments identify that Bax is a primary teratogenic mechanism of gastrulation-stage alcohol exposure.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Haley N Mendoza-Romero
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charlotte A Love
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Constance J Dragicevich
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael D Cannizzo
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Austin Hepperla
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Everson JL, Eberhart JK. Gene-alcohol interactions in birth defects. Curr Top Dev Biol 2022; 152:77-113. [PMID: 36707215 PMCID: PMC9897481 DOI: 10.1016/bs.ctdb.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most human birth defects are thought to result from complex interactions between combinations of genetic and environmental factors. This is true even for conditions that, at face value, may appear simple and straightforward, like fetal alcohol spectrum disorders (FASD). FASD describe the full range of structural and neurological disruptions that result from prenatal alcohol exposure. While FASD require alcohol exposure, evidence from human and animal model studies demonstrate that additional genetic and/or environmental factors can influence the embryo's susceptibility to alcohol. Only a limited number of alcohol interactions in birth defects have been identified, with many sensitizing genetic and environmental factors likely yet to be identified. Because of this, while unsatisfying, there is no definitively "safe" dose of alcohol for all pregnancies. Determining these other factors, as well as mechanistically characterizing known interactions, is critical for better understanding and preventing FASD and requires combined scrutiny of human and model organism studies.
Collapse
Affiliation(s)
- Joshua L Everson
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States; Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States.
| | - Johann K Eberhart
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, TX, United States; Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
5
|
Piorczynski TB, Lapehn S, Ringer KP, Allen SA, Johnson GA, Call K, Lucas SM, Harris C, Hansen JM. NRF2 activation inhibits valproic acid-induced neural tube defects in mice. Neurotoxicol Teratol 2021; 89:107039. [PMID: 34737154 DOI: 10.1016/j.ntt.2021.107039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 01/02/2023]
Abstract
Valproic acid (VPA) is a widely prescribed medication that has traditionally been used to treat epilepsy, yet embryonic exposure to VPA increases the risk of the fetus developing neural tube defects (NTDs). While the mechanism by which VPA causes NTDs is unknown, we hypothesize that VPA causes dysmorphogenesis through the disruption of redox-sensitive signaling pathways that are critical for proper embryonic development, and that protection from the redox disruption may decrease the prevalence of NTDs. Time-bred CD-1 mice were treated with 3H-1,2-dithiole-3-thione (D3T), an inducer of nuclear factor erythroid 2-related factor 2 (NRF2)-a transcription factor that activates the intracellular antioxidant response to prevent redox disruptions. Embryos were then collected for whole embryo culture and subsequently treated with VPA in vitro. The glutathione (GSH)/glutathione disulfide (GSSG) redox potential (Eh), a measure of the intracellular redox environment, was measured in the developing mouse embryos. Embryos treated with VPA exhibited a transiently oxidizing GSH/GSSG Eh, while those that received D3T pretreatment prior to VPA exposure showed no differences compared to controls. Moving to an in utero mouse model, time-bred C57BL/6 J dams were pretreated with or without D3T and then exposed to VPA, after which all embryos were collected for morphological analyses. The prevalence of open neural tubes in embryos treated with VPA significantly decreased with D3T pretreatment, as did the severity of the observed defects evaluated by a morphological assessment. These data show that NRF2 induction via D3T pretreatment protects against VPA-induced redox dysregulation and decreases the prevalence of NTDs in developing mouse embryos.
Collapse
Affiliation(s)
- Ted B Piorczynski
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelsey P Ringer
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Spencer A Allen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Garett A Johnson
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Krista Call
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - S Marc Lucas
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason M Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
6
|
Fish EW, Tucker SK, Peterson RL, Eberhart JK, Parnell SE. Loss of tumor protein 53 protects against alcohol-induced facial malformations in mice and zebrafish. Alcohol Clin Exp Res 2021; 45:1965-1979. [PMID: 34581462 DOI: 10.1111/acer.14688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alcohol exposure during the gastrulation stage of development causes the craniofacial and brain malformations that define fetal alcohol syndrome. These malformations, such as a deficient philtrum, are exemplified by a loss of midline tissue and correspond, at least in part, to regionally selective cell death in the embryo. The tumor suppressor protein Tp53 is an important mechanism for cell death, but the role of Tp53 in the consequences of alcohol exposure during the gastrulation stage has yet to be examined. The current studies used mice and zebrafish to test whether genetic loss of Tp53 is a conserved mechanism to protect against the effects of early developmental stage alcohol exposure. METHODS Female mice, heterozygous for a mutation in the Tp53 gene, were mated with Tp53 heterozygous males, and the resulting embryos were exposed during gastrulation on gestational day 7 (GD 7) to alcohol (two maternal injections of 2.9 g/kg, i.p., 4 h apart) or a vehicle control. Zebrafish mutants or heterozygotes for the tp53zdf1 M214K mutation and their wild-type controls were exposed to alcohol (1.5% or 2%) beginning 6 h postfertilization (hpf), the onset of gastrulation. RESULTS Examination of GD 17 mice revealed that eye defects were the most common phenotype among alcohol-exposed fetuses, occurring in nearly 75% of the alcohol-exposed wild-type fetuses. Tp53 gene deletion reduced the incidence of eye defects in both the heterozygous and mutant fetuses (to about 35% and 20% of fetuses, respectively) and completely protected against alcohol-induced facial malformations. Zebrafish (4 days postfertilization) also demonstrated alcohol-induced reductions of eye size and trabeculae length that were less common and less severe in tp53 mutants, indicating a protective effect of tp53 deletion. CONCLUSIONS These results identify an evolutionarily conserved role of Tp53 as a pathogenic mechanism for alcohol-induced teratogenesis.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Rachel L Peterson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Ucak T, Karakurt Y, Tasli G, Cimen FK, Icel E, Kurt N, Ahiskali I, Süleyman H. The effects of thiamine pyrophosphate on ethanol induced optic nerve damage. BMC Pharmacol Toxicol 2019; 20:40. [PMID: 31277705 PMCID: PMC6612179 DOI: 10.1186/s40360-019-0319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background We aimed to determine the protective effects of thiamine pyrophosphate on ethanol induced optic neuropathy in an experimental model. Methods The rats were assigned into 4 groups, with 6 rats in each group as follows: healthy controls (HC group), only ethanol administered group (EtOH group), ethanol + thiamine pyrophosphate (20 mg/kg) administered group (TEt-20 group), and only thiamine pyrophosphate (20 mg/kg) (TPG group) administered group. To the rats in TEt-20 and TPG groups, 20 mg/kg thiamine pyrophosphate was administered via intraperitoneal route. To the rats in HC and EtOH groups, the same volume (0.5 ml) of distilled water as solvent was applied in the same manner. To the rats in TEt-20 and EtOH groups, one hour after application of thiamine pyrophosphate or distilled water, 32% ethanol with a dose of 5 g/kg was administered via oral gavage. This procedure was repeated once a day for 6 weeks. From the blood samples and tissues obtained from the rats, Malondialdehyde (MDA), reduced glutathione (GSH), interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) levels were studied. Histopathological evaluations were performed to the optic nerve tissue. Results Serum and tissue IL-1β, TNF-α and MDA levels were the highest in EtOH group which were significantly lower in thiamine pyrophosphate administered group (TEt-20 group) (p: 0.001). Serum and tissue reduced GSH levels were the lowest in EtOH group which were also significantly higher in TEt-20 group (p:0.001). In histopathological evaluations, in EtOH group there was obvious destruction and edema with hemorrhage and dilated blood vessels which were not present in any other groups. Conclusions There was an apparent destruction in ethanol administered group in histopathological analyses with an augmented level of oxidative stress markers and all those alterations were prevented with concomitant thiamine pyrophosphate administration. These protective effects of thiamine pyrophosphate are extremely important in chronic ethanol consumption. Clinical studies are warranted to define the exact role of thiamine pyrophosphate in prevention of ethanol induced optic neuropathy.
Collapse
Affiliation(s)
- Turgay Ucak
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, 24100, Erzincan, Turkey.
| | - Yucel Karakurt
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, 24100, Erzincan, Turkey
| | - Gamze Tasli
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, 24100, Erzincan, Turkey
| | - Ferda Keskin Cimen
- Department of Pathology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Erel Icel
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, 24100, Erzincan, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, College of Medicine, Atatürk University Hospital, Erzurum, Turkey
| | - Ibrahim Ahiskali
- Department of Ophthalmology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Halis Süleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| |
Collapse
|
8
|
Tomko RL, Jones JL, Gilmore AK, Brady KT, Back SE, Gray KM. N-acetylcysteine: A potential treatment for substance use disorders. CURRENT PSYCHIATRY 2018; 17:30-55. [PMID: 30016376 PMCID: PMC5993450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Rachel L Tomko
- Research Assistant Professor, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Jennifer L Jones
- Resident Physician, Departments of Psychiatry and Behavioral Sciences and Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Amanda K Gilmore
- Assistant Professor, National Crime Victims Research & Treatment Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Kathleen T Brady
- Distinguished University Professor, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Sudie E Back
- Professor, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin M Gray
- Professor, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
9
|
Wells PG, Bhatia S, Drake DM, Miller-Pinsler L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. ACTA ACUST UNITED AC 2017; 108:108-30. [PMID: 27345013 DOI: 10.1002/bdrc.21134] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022]
Abstract
In utero exposure of mouse progeny to alcohol (ethanol, EtOH) and methamphetamine (METH) causes substantial postnatal neurodevelopmental deficits. One emerging pathogenic mechanism underlying these deficits involves fetal brain production of reactive oxygen species (ROS) that alter signal transduction, and/or oxidatively damage cellular macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression, likely via non-mutagenic mechanisms. Even physiological levels of fetal ROS production can be pathogenic in biochemically predisposed progeny, and ROS formation can be enhanced by drugs like EtOH and METH, via activation/induction of ROS-producing NADPH oxidases (NOX), drug bioactivation to free radical intermediates by prostaglandin H synthases (PHS), and other mechanisms. Antioxidative enzymes, like catalase in the fetal brain, while low, provide critical protection. Oxidatively damaged DNA is normally rapidly repaired, and fetal deficiencies in several DNA repair proteins, including oxoguanine glycosylase 1 (OGG1) and breast cancer protein 1 (BRCA1), enhance the risk of drug-initiated postnatal neurodevelopmental deficits, and in some cases deficits in untreated progeny, the latter of which may be relevant to conditions like autism spectrum disorders (ASD). Risk is further regulated by fetal nuclear factor erythroid 2-related factor 2 (Nrf2), a ROS-sensing protein that upregulates an array of proteins, including antioxidative enzymes and DNA repair proteins. Imbalances between conceptal pathways for ROS formation, versus those for ROS detoxification and DNA repair, are important determinants of risk. Birth Defects Research (Part C) 108:108-130, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter G Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Danielle M Drake
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Lutfiya Miller-Pinsler
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Muralidharan P, Connors CT, Mohammed AS, Sarmah S, Marrs K, Marrs JA, Chism GW. Turmeric Extract Rescues Ethanol-Induced Developmental Defect in the Zebrafish Model for Fetal Alcohol Spectrum Disorder (FASD). J Food Sci 2017; 82:2221-2225. [PMID: 28796310 DOI: 10.1111/1750-3841.13830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/03/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
Abstract
Prenatal ethanol exposure causes the most frequent preventable birth disorder, fetal alcohol spectrum disorder (FASD). The effect of turmeric extracts in rescuing an ethanol-induced developmental defect using zebrafish as a model was determined. Ethanol-induced oxidative stress is one of the major mechanisms underlying FASD. We hypothesize that antioxidant inducing properties of turmeric may alleviate ethanol-induced defects. Curcuminoid content of the turmeric powder extract (5 mg/mL turmeric in ethanol) was determined by UPLC and found to contain Curcumin (124.1 ± 0.2 μg/mL), Desmethoxycurcumin (43.4 ± 0.1 μg/mL), and Bisdemethoxycurcumin (36.6 ± 0.1 μg/mL). Zebrafish embryos were treated with 100 mM (0.6% v/v) ethanol during gastrulation through organogenesis (2 to 48 h postfertilization (hpf)) and supplemented with turmeric extract to obtain total curcuminoid concentrations of 0, 1.16, 1.72, or 2.32 μM. Turmeric supplementation showed significant rescue of the body length at 72 hpf compared to ethanol-treated embryos. The mechanism underlying the rescue remains to be determined.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Craig T Connors
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Arooj S Mohammed
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Swapnalee Sarmah
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Kathleen Marrs
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - James A Marrs
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Grady W Chism
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| |
Collapse
|
11
|
Hong M, Krauss RS. Ethanol itself is a holoprosencephaly-inducing teratogen. PLoS One 2017; 12:e0176440. [PMID: 28441416 PMCID: PMC5404885 DOI: 10.1371/journal.pone.0176440] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
Ethanol is a teratogen, inducing a variety of structural defects in developing humans and animals that are exposed in utero. Mechanisms of ethanol teratogenicity in specific defects are not well understood. Oxidative metabolism of ethanol by alcohol dehydrogenase or cytochrome P450 2E1 has been implicated in some of ethanol's teratogenic effects, either via production of acetaldehyde or competitive inhibition of retinoic acid synthesis. Generalized oxidative stress in response to ethanol may also play a role in its teratogenicity. Among the developmental defects that ethanol has been implicated in is holoprosencephaly, a failure to define the midline of the forebrain and midface that is associated with a deficiency in Sonic hedgehog pathway function. Etiologically, holoprosencephaly is thought to arise from a complex combination of genetic and environmental factors. We have developed a gene-environment interaction model of holoprosencephaly in mice, in which mutation of the Sonic hedgehog coreceptor, Cdon, synergizes with transient in utero exposure to ethanol. This system was used to address whether oxidative metabolism is required for ethanol's teratogenic activity in holoprosencephaly. We report here that t-butyl alcohol, which is neither a substrate nor an inhibitor of alcohol dehydrogenases or Cyp2E1, is a potent inducer of holoprosencephaly in Cdon mutant mice. Additionally, antioxidant treatment did not prevent ethanol- or t-butyl alcohol-induced HPE in these mice. These findings are consistent with the conclusion that ethanol itself, rather than a consequence of its metabolism, is a holoprosencephaly-inducing teratogen.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
12
|
Bauer AK, Fitzgerald M, Ladzinski AT, Lenhart Sherman S, Maddock BH, Norr ZM, Miller RR. Dual behavior ofN-acetylcysteine during ethanol-induced oxidative stress in embryonic chick brains. Nutr Neurosci 2016; 20:478-488. [DOI: 10.1080/1028415x.2016.1185261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alison K. Bauer
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Mary Fitzgerald
- Michigan State University College of Human Medicine, East Lansing, USA
| | - Adam T. Ladzinski
- Midwestern University College of Osteopathic Medicine, Downers Grove, IL 60515, USA
| | | | | | - Zoe M. Norr
- Biology Department, Hillsdale College, MI 49242, USA
| | | |
Collapse
|
13
|
Eberhart JK, Parnell SE. The Genetics of Fetal Alcohol Spectrum Disorders. Alcohol Clin Exp Res 2016; 40:1154-65. [PMID: 27122355 DOI: 10.1111/acer.13066] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
The term "fetal alcohol spectrum disorders" (FASD) defines the full range of ethanol (EtOH)-induced birth defects. Numerous variables influence the phenotypic outcomes of embryonic EtOH exposure. Among these variables, genetics appears to play an important role, yet our understanding of the genetic predisposition to FASD is still in its infancy. We review the current literature that relates to the genetics of FASD susceptibility and gene-EtOH interactions. Where possible, we comment on potential mechanisms of reported gene-EtOH interactions. Early indications of genetic sensitivity to FASD came from human and animal studies using twins or inbred strains, respectively. These analyses prompted searches for susceptibility loci involved in EtOH metabolism and analyses of candidate loci, based on phenotypes observed in FASD. More recently, genetic screens in animal models have provided an additional insight into the genetics of FASD. Understanding FASD requires that we understand the many factors influencing phenotypic outcome following embryonic EtOH exposure. We are gaining ground on understanding some of the genetics behind FASD, yet much work remains to be carried out. Coordinated analyses using human patients and animal models are likely to be highly fruitful in uncovering the genetics behind FASD.
Collapse
Affiliation(s)
- Johann K Eberhart
- Department of Molecular Biosciences, Institute for Cell and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Gilbert MT, Sulik KK, Fish EW, Baker LK, Dehart DB, Parnell SE. Dose-dependent teratogenicity of the synthetic cannabinoid CP-55,940 in mice. Neurotoxicol Teratol 2015; 58:15-22. [PMID: 26708672 DOI: 10.1016/j.ntt.2015.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Potent synthetic cannabinoids (SCBs) are illegally distributed drugs of abuse that are frequently consumed in spite of their adverse consequences. This study was designed to determine if the toxicity observed in adults also extends to the prenatal period by examining the developmental toxicity/teratogenicity of one of these SCBs, CP-55,940, in a mammalian model. First, immunohistochemistry was employed for cannabinoid receptor 1 (CB1) localization within gestational day (GD) 8 mouse embryos; this receptor was identified in the cranial neural plate, suggesting that the endogenous cannabinoid system may be involved in normal development. Based on this information and on previous avian teratogenicity studies, the current investigation focused on cannabinoid exposure during neurulation. The treatment paradigm involved acute i.p. administration of vehicle, 0.0625, 0.125, 0.25, 0.5, 1.0, or 2.0mg/kg CP-55,940 to time-mated C57Bl/6J mice on their 8th day of pregnancy (n>10 litters per treatment group). On GD 17, litters were harvested and examined for numbers of live, dead, or resorbed fetuses, as well as for fetal weight, length, and gross morphological abnormalities. No effect on litter size, fetal weight, or crown rump length was seen at any of the CP-55,940 dosages tested. Major malformations involving the craniofacies and/or eyes were noted in all drug-treated groups. Selected fetuses with craniofacial malformations were histologically sectioned and stained, allowing investigation of brain anomalies. Observed craniofacial, ocular, and brain abnormalities in drug-treated fetuses included lateral and median facial clefts, cleft palate, microphthalmia, iridial coloboma, anophthalmia, exencephaly, holoprosencephaly, and cortical dysplasia. With the most commonly observed defects involving the eyes, the incidence and severity of readily identifiable ocular malformations were utilized as a basis for dose-response analyses. Ocular malformation ratings revealed dose-dependent CP-55,940 teratogenicity within the full range of dosages tested. While examination of additional critical periods and in depth mechanistic studies is warranted, the results of this investigation clearly show the dose-dependent teratogenicity of this SCB.
Collapse
Affiliation(s)
- Marcoita T Gilbert
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States
| | - Kathleen K Sulik
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599-7255, United States; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, United States
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States
| | - Lorinda K Baker
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States
| | - Deborah B Dehart
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599-7255, United States; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, United States.
| |
Collapse
|
15
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
16
|
Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Treviño-Villarreal JH, Mejia P, Ozaki CK, Wang R, Gladyshev VN, Madeo F, Mair WB, Mitchell JR. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 2015; 160:132-44. [PMID: 25542313 PMCID: PMC4297538 DOI: 10.1016/j.cell.2014.11.048] [Citation(s) in RCA: 398] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/12/2014] [Accepted: 11/18/2014] [Indexed: 01/25/2023]
Abstract
Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK:
Collapse
Affiliation(s)
- Christopher Hine
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eylul Harputlugil
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yue Zhang
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ruckenstuhl
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz 8010, Austria
| | - Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lear Brace
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jose H Treviño-Villarreal
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Mejia
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frank Madeo
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz 8010, Austria; BioTechMed Graz, Humboldtstrasse 50, Graz 8010, Austria
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Sulik KK. Fetal alcohol spectrum disorder: pathogenesis and mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:463-75. [PMID: 25307590 DOI: 10.1016/b978-0-444-62619-6.00026-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter provides an overview of animal model-based studies that have generated information critical to our understanding of the pathogenesis and mechanisms underlying alcohol-induced birth defects, in particular those involving the brain. Focus is placed on the developing organism itself, rather than the mother, placenta, or other extraembryonic tissues. Components of the cascades of alcohol-induced damage that are considered herein are excessive cell death, changes in the cell cycle and proliferation, cell migration, cell morphogenesis, and gene expression as well as free radical damage and interference with cell signaling. The roles played by one or more of these various factors in the genesis of structural and functional birth defects are dependent upon alcohol exposure patterns and dosage, the involved tissue, and the prenatal stage(s) at the time of exposure. Technologic advances and rapidly increasing knowledge in the fields of genetics, cell, developmental, and neurobiology are critical to accurately piecing together experimental evidence in refining our understanding of the genesis of alcohol-induced birth defects, to the planning and execution of future studies, and to applying the knowledge gained to diminish the severity or occurrence of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Kathleen K Sulik
- Department of Cell Biology and Physiology and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Muralidharan P, Sarmah S, Zhou FC, Marrs JA. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets. Brain Sci 2013; 3:964-91. [PMID: 24961433 PMCID: PMC4061856 DOI: 10.3390/brainsci3020964] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 02/02/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
19
|
McCarty MF. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med Hypotheses 2013; 80:456-62. [PMID: 23380360 DOI: 10.1016/j.mehy.2012.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022]
Abstract
Rodent studies reveal that oxidative stress, much of it generated via induction/activation of NADPH oxidase, is a key mediator of a number of the pathogenic effects of chronic ethanol overconsumption. The highly reactive ethanol metabolite acetaldehyde is a key driver of this oxidative stress, and doubtless works in other ways to promote alcohol-induced pathology. Effective antioxidant measure may therefore be useful for mitigating the adverse health consequences of alcohol consumption; spirulina may have particular utility in this regard, as its chief phycochemical phycocyanobilin has recently been shown to function as an inhibitor of certain NADPH oxidase complexes, mimicking the physiological role of its chemical relatives biliverdin/bilirubin in this respect. Moreover, certain nutraceuticals, including taurine, pantethine, and lipoic acid, may have the potential to boost the activity of the mitochondrial isoform of aldehyde dehydrogenase, ALDH-2, accelerating conversion of acetaldehyde to acetate (which arguably has protective health effects). Little noticed clinical studies conducted nearly three decades ago reported that pre-ingestion of either taurine or pantethine could blunt the rise in blood acetaldehyde following ethanol consumption. Other evidence suggests that lipoic acid may function within mitochondria to maintain aldehyde dehydrogenase in a reduced active conformation; the impact of this agent on ethanol metabolism has however received little or no study. Studies evaluating the impact of nutracetical strategies on prevention of hangovers - which likely are mediated by acetaldehyde - may represent a quick, low-cost way to identify nutraceutical regimens that merit further attention for their potential impact on alcohol-induced pathology. Measures which boost or preserve ALDH-2 activity may also have important antioxidant potential, as this enzyme functions physiologically to protect cells from toxic aldehydes generated by oxidant stress.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
20
|
Hashimoto K, Pinkas G, Evans L, Liu H, Al-Hasan Y, Thompson LP. Protective effect of N-acetylcysteine on liver damage during chronic intrauterine hypoxia in fetal guinea pig. Reprod Sci 2012; 19:1001-9. [PMID: 22534333 DOI: 10.1177/1933719112440052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic exposure to hypoxia during pregnancy generates a stressed intrauterine environment that may lead to fetal organ damage. The objectives of the study are (1) to quantify the effect of chronic hypoxia in the generation of oxidative stress in fetal guinea pig liver and (2) to test the protective effect of antioxidant treatment in hypoxic fetal liver injury. Pregnant guinea pigs were exposed to either normoxia (NMX) or 10.5% O(2) (HPX, 14 days) prior to term (65 days) and orally administered N-acetylcysteine ([NAC] 10 days). Near-term anesthetized fetuses were excised and livers examined by histology and assayed for malondialdehyde (MDA) and DNA fragmentation. Chronic HPX increased erythroid precursors, MDA (NMX vs HPX; 1.26 ± 0.07 vs 1.78 ± 0.07 nmol/mg protein; P < .001, mean ± standard error of the mean [SEM]) and DNA fragmentation levels in fetal livers (0.069 ± 0.01 vs 0.11 ± 0.005 OD/mg protein; P < .01). N-acetylcysteine inhibited erythroid aggregation and reduced (P < .05) both MDA and DNA fragmentation of fetal HPX livers. Thus, chronic intrauterine hypoxia generates cell and nuclear damage in the fetal guinea pig liver. Maternal NAC inhibited the adverse effects of fetal liver damage suggestive of oxidative stress. The suppressive effect of maternal NAC may implicate the protective role of antioxidants in the prevention of liver injury in the hypoxic fetus.
Collapse
Affiliation(s)
- Kazumasa Hashimoto
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
21
|
Harris C, Hansen JM. Nrf2-mediated resistance to oxidant-induced redox disruption in embryos. ACTA ACUST UNITED AC 2012; 95:213-8. [PMID: 22495766 DOI: 10.1002/bdrb.21005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
Abstract
Events that control developmental changes occur during specific windows of gestation and if disrupted, can lead to dysmorphogenesis or embryolethality. One largely understudied aspect of developmental control is redox regulation, where the untimely disruption of intracellular redox potentials (E(h) ) may alter development, suggesting that tight control of developmental-stage-specific redox states is necessary to support normal development. In this study, mouse gestational day 8.5 embryos in whole embryo culture were treated with 10 μM dithiole-3-thione (D3T), an inducer of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). After 14 hr, D3T-treated and -untreated conceptuses were challenged with 200 μM hydrogen peroxide (H₂O₂) to induce oxidant-induced change to intracellular E(h) s. Redox potentials of glutathione (GSH), thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2 (Trx2) were then measured over a 2-hr rebounding period following H₂O₂ treatment. D3T treatment increased embryonic expression of known Nrf2-regulated genes, including those responsible for redox regulation of major intracellular redox couples. Exposure to H₂O₂ without prior D3T treatment produced significant oxidation of GSH, Trx1, and Trx2, based on E(h) values, where GSH and Trx2 E(h) recovered, reaching to pre-H₂O₂ E(h) ranges, but Trx1 E(h) remained oxidized. Following H₂O₂ addition in culture to embryos that received D3T pretreatments, GSH, Trx1, and Trx2 were insulated from significant oxidation. These data show that Nrf2 activation may serve as a means to protect the embryo from chemically induced oxidative stress through the preservation of intracellular redox states during development, allowing normal morphogenesis to ensue.
Collapse
Affiliation(s)
- Craig Harris
- Developmental Toxicology Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
22
|
Feasibility of Medaka (Oryzias latipes) as an Animal Model to Study Fetal Alcohol Spectrum Disorder. ADVANCES IN MOLECULAR TOXICOLOGY VOLUME 6 2012. [DOI: 10.1016/b978-0-444-59389-4.00003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Kodituwakku PW, Kodituwakku EL. From research to practice: an integrative framework for the development of interventions for children with fetal alcohol spectrum disorders. Neuropsychol Rev 2011; 21:204-23. [PMID: 21544706 DOI: 10.1007/s11065-011-9170-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/24/2011] [Indexed: 01/06/2023]
Abstract
Since fetal alcohol syndrome was first described over 35 years ago, considerable progress has been made in the delineation of the neurocognitive profile in children with prenatal alcohol exposure. Preclinical investigators have made impressive strides in elucidating the mechanisms of alcohol teratogenesis and in testing the effectiveness of pharmacological agents and dietary supplementation in the amelioration of alcohol-induced deficits. Despite these advances, only limited progress has been made in the development of evidence-based comprehensive interventions for functional impairment in alcohol-exposed children. Having performed a search in PubMed and PsycINFO using key words, interventions, treatment, fetal alcohol syndrome, prenatal alcohol exposure, and fetal alcohol spectrum disorders, we found only 12 papers on empirically-based interventions. Only two of these interventions had been replicated and none met the criteria of "well-established," as defined by Chambless and Hollon (Journal of Consulting and Clinical Psychology 66(1):7-18, 1998). There has been only limited cross-fertilization of ideas between preclinical and clinical research with regard to the development of interventions. Therefore, we propose a framework that allows integrating data from preclinical and clinical investigations to develop comprehensive intervention programs for children with fetal alcohol spectrum disorders. This framework underscores the importance of multi-level evaluations and interventions.
Collapse
|