1
|
Zeng C, Liu X, Zhu S, Xiong D, Zhu L, Hou X, Zou K, Bai T. Resolvin D1 ameliorates hepatic steatosis by remodeling the gut microbiota and restoring the intestinal barrier integrity in DSS-induced chronic colitis. Int Immunopharmacol 2022; 103:108500. [PMID: 34974401 DOI: 10.1016/j.intimp.2021.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The maintenance of intestinalmucosalbarrier function plays an important role in hepatic steatosis. Increasing evidence has shown that resolvin D1 (RVD1) exerts a potential effect on hepatic steatosis. The aims of this study were to explore the mechanisms of RVD1 on hepatic steatosis based on the gut-liver axis and intestinal barrier function. EXPERIMENTAL APPROACH We established a DSS-induced chronic colitis model to evaluate hepatic steatosis. RVD1 was administered i.p. during the last 4 weeks. The colon and liver samples were stained with hematoxylin and eosin for histopathological analysis. The expression levels of intestinal tight junction genes and inflammatory genes were determined by quantitative PCR. The serum levels of glucose, cholesterol, triglycerides and LPS were measured, and the gut microbiota was analyzed by 16S rRNA gene sequencing. KEY RESULTS RVD1 prevented weight loss, histopathological changes, and elevated levels of inflammatory cytokines. Moreover, RVD1 administration attenuated DSS-induced hepatic steatosis and inflammatory responses in mice. In addition, RVD1 improved intestinal barrier function by increasing levels of tight junction molecules and decreasing the plasma LPS levels. The RVD1-treated mice also showed a different gut microbiota composition compared with found in the mice belonging to the DSS group but similar to that in normal chow diet-fed mice. CONCLUSIONS AND IMPLICATIONS RVD1 treatment ameliorates DSS-induced hepatic steatosis by ameliorating gut inflammation, improving intestinal barrier function and modulating intestinal dysbiosis.
Collapse
Affiliation(s)
- Cui Zeng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinghuang Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siran Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danping Xiong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaifang Zou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Wang YJ, Su J, Yu JJ, Yan MQ, Shi ML, Huang QD, Li B, Wu WY, Xia RS, Li SF, Chen SH, Lv GY. Buddleoside-Rich Chrysanthemum indicum L. Extract has a Beneficial Effect on Metabolic Hypertensive Rats by Inhibiting the Enteric-Origin LPS/TLR4 Pathway. Front Pharmacol 2021; 12:755140. [PMID: 34690786 PMCID: PMC8532163 DOI: 10.3389/fphar.2021.755140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
As the number of patients with metabolic hypertension (MH) is increasing, there is an essential require for global measures to prevent and treat MH. Flavonoids such as buddleoside (BUD) from Chrysanthemum indicum L. are the main pharmacological components of cardiovascular activities. Previous studies have suggested that the buddleoside-rich Chrysanthemum indicum L. extract (BUDE) can reduce blood pressure in spontaneously hypertensive rats (SHR). However, its effect on MH and how it works remains to be researched. In this study, it was observed that BUDE could lower blood pressure, improve dyslipidemia, and decrease the level of plasma LPS in MH rats. Moreover, BUDE improved intestinal flora and increased the expression of occludin and claudin-1 in the colon, and improved the pathological injury of the colon. Western bolt and qRT-PCR experiments showed that BUDE could down-regulate TLR4 and MyD88 protein and mRNA expression and inhibit phosphorylation of IKKβ, IκBα and NF-κB p65 in vessels of MH rats. These results showed that BUDE could regulate intestinal flora, improve intestinal barrier function, reduce the production and penetration of LPS, thereby inhibiting the vascular TLR4/MyD88 pathway, improving vascular endothelial function, and ultimately lowering blood pressure in MH rats. This study provides a new mechanism of BUDE against MH by inhibiting the enteric-origin LPS/TLR4 pathway.
Collapse
Affiliation(s)
- Ya-Jun Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Jing Yu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mei-Qiu Yan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Lin Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Di Huang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Wen-Yan Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong-Shuang Xia
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Si-Fan Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Gui-Yuan Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Li X, Tan CP, Liu YF, Xu YJ. Interactions between Food Hazards and Intestinal Barrier: Impact on Foodborne Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14728-14738. [PMID: 33289375 DOI: 10.1021/acs.jafc.0c07378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The intestine is an important digestive organ of the human body, and its barrier is the guardian of the body from the external environment. The impairment of the intestinal barrier is believed to be an important determinant in various foodborne diseases. Food hazards can lead to the occurrence of many foodborne diseases represented by inflammation. Therefore, understanding the mechanisms of the impact of the food hazards on intestinal barriers is essential for promoting human health. This review examined the relationship between food hazards and the intestinal barrier in three aspects: apoptosis, imbalance of gut microbiota, and pro-inflammatory cytokines. The mechanism of dysfunctional gut microbiota caused by food hazards was also discussed. This review discusses the interaction among food hazards, intestinal barrier, and foodborne diseases and, thus, offers a new thought to deal with foodborne disease.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor 410500, Malaysia
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
4
|
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu Rev Nutr 2016; 36:301-36. [PMID: 27215587 PMCID: PMC5479634 DOI: 10.1146/annurev-nutr-071715-050711] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review.
Collapse
MESH Headings
- Animals
- Biological Transport
- Biomarkers/blood
- Cell Communication
- Diet
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- MicroRNAs/blood
- MicroRNAs/metabolism
- Models, Biological
- RNA, Bacterial/blood
- RNA, Bacterial/metabolism
- RNA, Plant/blood
- RNA, Plant/metabolism
- RNA, Ribosomal/blood
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/blood
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/blood
- RNA, Small Untranslated/metabolism
- RNA, Transfer/blood
- RNA, Transfer/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anubrata Ghosal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - David Galas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| |
Collapse
|