1
|
Lima Silva ARD, Silva MLSCD, Silva JFD, Falcão E Falcão KE, Marrs JA, Cadena MRS, Cadena PG. Single essential oils and their binary mixtures protect against ethanol-induced defects in a zebrafish fetal alcohol spectrum disorder model at the same level as folic acid. Alcohol 2024:S0741-8329(24)00175-7. [PMID: 39536958 DOI: 10.1016/j.alcohol.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study evaluated protective effects of clove (SEO), thyme white (TEO), oregano (OEO), and caraway (CEO) essential oils (EOs), and their binary mixtures, in a zebrafish fetal alcohol spectrum disorder model. Furthermore, folic acid (FA) was used for comparison as it had previously shown protection against ethanol (EtOH)-induced defects. The co-exposure of zebrafish embryos to EtOH (150 mM) and FA (75 μM) or EOs and their binary mixtures (0.5-1 mg/L) was carried out during 6 or 22 hours postfertilization (hpf). Different developmental endpoints (epiboly measurement, survival rate at 24 hpf, embryonic developmental progression measurement at 24 hpf, larval development at 48-96 hpf, and hatching rate at 72-96 hpf) were evaluated at 8-96 hpf. EtOH exposure reduced epiboly. Only FA and the SEO + TEO binary mixture protected against these defects, and SEO and TEO single exposure showed partial protection. Therefore, these groups were chosen for subsequent experiments. At 24 hpf, EtOH showed developmental delay and hatching rate was delayed at 72 hpf. FA, SEO, TEO, and SEO + TEO partially protected against these defects. This study supports the conclusion that FA partially protects against EtOH-induced defects. SEO and TEO single exposure partially protect against EtOH-induced defects. However, the binary mixture of SEO + TEO was more effective, showing similar efficacy as FA.
Collapse
Affiliation(s)
- Andressa Raphaely de Lima Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brasil
| | - Maria Letícia Santos Carnaúba da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brasil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n 50780-901 Recife, Pernambuco, Brasil
| | - Jadson Freitas da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brasil
| | - Katarine Evelyn Falcão E Falcão
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brasil
| | - James A Marrs
- Department of Biology, Indiana University Indianapolis, 723 West Michigan, Indianapolis, IN 46202, USA
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brasil
| | - Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brasil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n 50780-901 Recife, Pernambuco, Brasil.
| |
Collapse
|
2
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
3
|
Edri T, Cohen D, Shabtai Y, Fainsod A. Alcohol induces neural tube defects by reducing retinoic acid signaling and promoting neural plate expansion. Front Cell Dev Biol 2023; 11:1282273. [PMID: 38116205 PMCID: PMC10728305 DOI: 10.3389/fcell.2023.1282273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: Neural tube defects (NTDs) are among the most debilitating and common developmental defects in humans. The induction of NTDs has been attributed to abnormal folic acid (vitamin B9) metabolism, Wnt and BMP signaling, excess retinoic acid (RA), dietary components, environmental factors, and many others. In the present study we show that reduced RA signaling, including alcohol exposure, induces NTDs. Methods: Xenopus embryos were exposed to pharmacological RA biosynthesis inhibitors to study the induction of NTDs. Embryos were treated with DEAB, citral, or ethanol, all of which inhibit the biosynthesis of RA, or injected to overexpress Cyp26a1 to reduce RA. NTD induction was studied using neural plate and notochord markers together with morphological analysis. Expression of the neuroectodermal regulatory network and cell proliferation were analyzed to understand the morphological malformations of the neural plate. Results: Reducing RA signaling levels using retinaldehyde dehydrogenase inhibitors (ethanol, DEAB, and citral) or Cyp26a1-driven degradation efficiently induce NTDs. These NTDs can be rescued by providing precursors of RA. We mapped this RA requirement to early gastrula stages during the induction of neural plate precursors. This reduced RA signaling results in abnormal expression of neural network genes, including the neural plate stem cell maintenance genes, geminin, and foxd4l1.1. This abnormal expression of neural network genes results in increased proliferation of neural precursors giving rise to an expanded neural plate. Conclusion: We show that RA signaling is required for neural tube closure during embryogenesis. RA signaling plays a very early role in the regulation of proliferation and differentiation of the neural plate soon after the induction of neural progenitors during gastrulation. RA signaling disruption leads to the induction of NTDs through the mis regulation of the early neuroectodermal network, leading to increased proliferation resulting in the expansion of the neural plate. Ethanol exposure induces NTDs through this mechanism involving reduced RA levels.
Collapse
Affiliation(s)
| | | | | | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Chen S, Qin Y, Ye X, Liu J, Yan X, Zhou L, Wang X, Martyniuk CJ, Yan B. Neurotoxicity of the Cu(OH) 2 Nanopesticide through Perturbing Multiple Neurotransmitter Pathways in Developing Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19407-19418. [PMID: 37988762 DOI: 10.1021/acs.est.3c06284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The copper hydroxide [Cu(OH)2] nanopesticide is an emerging agricultural chemical that can negatively impact aquatic organisms. This study evaluated the behavioral changes of zebrafish larvae exposed to the Cu(OH)2 nanopesticide and assessed its potential to induce neurotoxicity. Metabolomic and transcriptomic profiling was also conducted to uncover the molecular mechanisms related to potential neurotoxicity. The Cu(OH)2 nanopesticide at 100 μg/L induced zebrafish hypoactivity, dark avoidance, and response to the light stimulus, suggestive of neurotoxic effects. Altered neurotransmitter-related pathways (serotoninergic, dopaminergic, glutamatergic, GABAergic) and reduction of serotonin (5-HT), dopamine (DA), glutamate (GLU), γ-aminobutyric acid (GABA), and several of their precursors and metabolites were noted following metabolomic and transcriptomic analyses. Differentially expressed genes (DEGs) were associated with the synthesis, transport, receptor binding, and metabolism of 5-HT, DA, GLU, and GABA. Transcripts (or protein levels) related to neurotransmitter receptors for 5-HT, DA, GLU, and GABA and enzymes for the synthesis of GLU and GABA were downregulated. Effects on both the glutamatergic and GABAergic pathways in zebrafish were specific to the nanopesticide and differed from those in fish exposed to copper ions. Taken together, the Cu(OH)2 nanopesticide induced developmental neurotoxicity in zebrafish by inhibiting several neurotransmitter-related pathways. This study presented a model for Cu(OH)2 nanopesticide-induced neurotoxicity in developing zebrafish that can inform ecological risk assessments.
Collapse
Affiliation(s)
- Siying Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaolin Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jian Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, Florida 32611, United States
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
6
|
Hawkins MR, Wingert RA. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023; 11:biomedicines11041180. [PMID: 37189798 DOI: 10.3390/biomedicines11041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.
Collapse
Affiliation(s)
- Matthew R Hawkins
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Elf3 deficiency during zebrafish development alters extracellular matrix organization and disrupts tissue morphogenesis. PLoS One 2022; 17:e0276255. [DOI: 10.1371/journal.pone.0276255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
E26 transformation specific (ETS) family transcription factors are expressed during embryogenesis and are involved in various cellular processes such as proliferation, migration, differentiation, angiogenesis, apoptosis, and survival of cellular lineages to ensure appropriate development. Dysregulated expression of many of the ETS family members is detected in different cancers. The human ELF3, a member of the ETS family of transcription factors, plays a role in the induction and progression of human cancers is well studied. However, little is known about the role of ELF3 in early development. Here, the zebrafish elf3 was cloned, and its expression was analyzed during zebrafish development. Zebrafish elf3 is maternally deposited. At different developmental stages, elf3 expression was detected in different tissue, mainly neural tissues, endoderm-derived tissues, cartilage, heart, pronephric duct, blood vessels, and notochord. The expression levels were high at the tissue boundaries. Elf3 loss-of-function consequences were examined by using translation blocking antisense morpholino oligonucleotides, and effects were validated using CRISPR/Cas9 knockdown. Elf3-knockdown produced short and bent larvae with notochord, craniofacial cartilage, and fin defects. The extracellular matrix (ECM) in the fin and notochord was disorganized. Neural defects were also observed. Optic nerve fasciculation (bundling) and arborization in the optic tectum were defective in Elf3-morphants, and fragmentation of spinal motor neurons were evident. Dysregulation of genes encoding ECM proteins and matrix metalloprotease (MMP) and disorganization of ECM may play a role in the observed defects in Elf3 morphants. We conclude that zebrafish Elf3 is required for epidermal, mesenchymal, and neural tissue development.
Collapse
|
8
|
Manikandan P, Sarmah S, Marrs JA. Ethanol Effects on Early Developmental Stages Studied Using the Zebrafish. Biomedicines 2022; 10:2555. [PMID: 36289818 PMCID: PMC9599251 DOI: 10.3390/biomedicines10102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) results from prenatal ethanol exposure. The zebrafish (Danio rerio) is an outstanding in vivo FASD model. Early development produced the three germ layers and embryonic axes patterning. A critical pluripotency transcriptional gene circuit of sox2, pou5f1 (oct4; recently renamed pou5f3), and nanog maintain potency and self-renewal. Ethanol affects sox2 expression, which functions with pou5f1 to control target gene transcription. Various genes, like elf3, may interact and regulate sox2, and elf3 knockdown affects early development. Downstream of the pluripotency transcriptional circuit, developmental signaling activities regulate morphogenetic cell movements and lineage specification. These activities are also affected by ethanol exposure. Hedgehog signaling is a critical developmental signaling pathway that controls numerous developmental events, including neural axis specification. Sonic hedgehog activities are affected by embryonic ethanol exposure. Activation of sonic hedgehog expression is controlled by TGF-ß family members, Nodal and Bmp, during dorsoventral (DV) embryonic axis establishment. Ethanol may perturb TGF-ß family receptors and signaling activities, including the sonic hedgehog pathway. Significantly, experiments show that activation of sonic hedgehog signaling rescues some embryonic ethanol exposure effects. More research is needed to understand how ethanol affects early developmental signaling and morphogenesis.
Collapse
Affiliation(s)
| | | | - James A. Marrs
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Williams AL, Bohnsack BL. Zebrafish Model of Stickler Syndrome Suggests a Role for Col2a1a in the Neural Crest during Early Eye Development. J Dev Biol 2022; 10:jdb10040042. [PMID: 36278547 PMCID: PMC9589970 DOI: 10.3390/jdb10040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Most cases of Stickler syndrome are due to autosomal-dominant COL2A1 gene mutations leading to abnormal type II collagen. Ocular findings include axial eye lengthening with vitreal degeneration and early-onset glaucoma, which can result in vision loss. Although COL2A1 is a major player in cartilage and bone formation, its specific role in eye development remains elusive. We investigated the role of Col2a1a in neural crest migration and differentiation during early zebrafish eye development. In situ hybridization, immunofluorescence, live imaging, exogenous treatments [10 μM diethylaminobenzaldehyde (DEAB), 100 nM all-trans retinoic acid (RA) and 1-3% ethanol (ETOH)] and morpholino oligonucleotide (MO) injections were used to analyze wildtype Casper (roy-/-;nacre-/-), TgBAC(col2a1a::EGFP), Tg(sox10::EGFP) and Tg(foxd3::EGFP) embryos. Col2a1a colocalized with Foxd3- and Sox10-positive cells in the anterior segment and neural crest-derived jaw. Col2a1a expression was regulated by RA and inhibited by 3% ETOH. Furthermore, MO knockdown of Col2a1a delayed jaw formation and disrupted the ocular anterior segment neural crest migration of Sox10-positive cells. Interestingly, human COL2A1 protein rescued the MO effects. Altogether, these results suggest that Col2a1a is a downstream target of RA in the cranial neural crest and is required for both craniofacial and eye development.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave., Chicago, IL 60611, USA
- Correspondence: (A.L.W.); (B.L.B.); Tel.: +1-312-503-4706 (A.L.W.); +1-312-227-6180 (B.L.B.)
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave., Chicago, IL 60611, USA
- Correspondence: (A.L.W.); (B.L.B.); Tel.: +1-312-503-4706 (A.L.W.); +1-312-227-6180 (B.L.B.)
| |
Collapse
|
10
|
Shi Z, Liang X, Zhao Y, Liu W, Martyniuk CJ. Neurotoxic effects of synthetic phenolic antioxidants on dopaminergic, serotoninergic, and GABAergic signaling in larval zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154688. [PMID: 35318061 DOI: 10.1016/j.scitotenv.2022.154688] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 05/14/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are an environmental concern because they are widely detected in aquatic ecosystems and can pose potential threats to organisms. Studies have reported developmental deficits and behavioral changes in response to SPAs, indicating possible neurotoxic effects. However, their neuroactive potency as well as their mode of action (MoA) remain unclear. As such, this study evaluated the potential neurotoxicity of three SPAs [butylated hydroxytoluene (BHT), 2,4-di-tert-butylphenol (2,4-DTBP), and 4-tert-octylphenol (4-t-OP)] at three concentrations (0.01, 0.1 and 1 μM) to zebrafish larvae. Both 2,4-DTBP and BHT decreased spontaneous tail coiling (STC) at 28 hpf (hours post fertilization) whereas 4-t-OP increased STC. Locomotor activity, based on the velocity and distance of larvae (144 hpf) travelled, was promoted by 2,4-DTBP while it decreased in larvae with exposure to 4-t-OP and BHT. In the light-dark preference assay, exposure to either 2,4-DTBP or BHT resulted in variability in the visiting frequency to the dark zone, and larvae (144 hpf) spent less time in the dark, suggesting anxiety-like behavior. Conversely, zebrafish exposed to 4-t-OP, especially at 1 μM concentration, were hypoactive and spent more time in dark, suggestive of anxiolytic-like responses. RNA-seq was conducted to discern mechanisms underlying behavioral responses. Transcriptomic analysis revealed that gene networks related to neuroactive ligand-receptor interaction as well as neurotransmitter-related pathways were altered by all three SPAs based on gene set and subnetwork enrichment analysis. Modulation of dopaminergic, serotoninergic, and/or GABAergic signaling at the transcript level was noted for each of the three SPAs, but different expression patterns were observed, indicating SPA- and dose-specific responses of the transcriptome. The present study provides novel insight into potential mechanisms associated with neurotoxicity of SPAs congeners.
Collapse
Affiliation(s)
- Ziyue Shi
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Yaqian Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wang Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Komada M, Nishimura Y. Epigenetics and Neuroinflammation Associated With Neurodevelopmental Disorders: A Microglial Perspective. Front Cell Dev Biol 2022; 10:852752. [PMID: 35646933 PMCID: PMC9133693 DOI: 10.3389/fcell.2022.852752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a cause of neurodevelopmental disorders such as autism spectrum disorders, fetal alcohol syndrome, and cerebral palsy. Converging lines of evidence from basic and clinical sciences suggest that dysregulation of the epigenetic landscape, including DNA methylation and miRNA expression, is associated with neuroinflammation. Genetic and environmental factors can affect the interaction between epigenetics and neuroinflammation, which may cause neurodevelopmental disorders. In this minireview, we focus on neuroinflammation that might be mediated by epigenetic dysregulation in microglia, and compare studies using mammals and zebrafish.
Collapse
Affiliation(s)
- Munekazu Komada
- Mammalian Embryology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
- *Correspondence: Yuhei Nishimura,
| |
Collapse
|
12
|
Xie D, Hu J, Wu T, Cao K, Luo X. Potential Biomarkers and Drugs for Nanoparticle-Induced Cytotoxicity in the Retina: Based on Regulation of Inflammatory and Apoptotic Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095664. [PMID: 35565057 PMCID: PMC9099825 DOI: 10.3390/ijerph19095664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
The eye is a superficial organ directly exposed to the surrounding environment. Thus, the toxicity of nanoparticle (NP) pollutants to the eye may be potentially severer relative to inner organs and needs to be monitored. However, the cytotoxic mechanisms of NPs on the eyes remain rarely reported. This study was to screen crucial genes associated with NPs-induced retinal injuries. The gene expression profiles in the retina induced by NPs [GSE49371: Au20, Au100, Si20, Si100; GSE49048: presumptive therapeutic concentration (PTC) TiO2, 10PTC TiO2] and commonly used retinal cell injury models (optic nerve injury procedure: GSE55228, GSE120257 and GSE131486; hypoxia exposure: GSE173233, GSE151610, GSE135844; H2O2 exposure: GSE122270) were obtained from the Gene Expression Omnibus database. A total of 381 differentially expressed genes (including 372 mRNAs and 9 lncRNAs) were shared between NP exposure and the optic nerve injury model when they were compared with their corresponding controls. Function enrichment analysis of these overlapped genes showed that Tlr2, Crhbp, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk were involved in inflammatory- and apoptotic-related processes. Protein-protein interaction network analysis revealed eight of them (Tlr2, Ccl2, Cxcl10, Irf8, Socs3, Stat3, Casp1 and Syk) were hub genes. Moreover, Socs3 could interact with upstream Stat3 and downstream Fas/Casp1/Ccl2/Cxcl10; Irf8 could interact with upstream Tlr2, Syk and downstream Cxcl10. Competing endogenous RNAs network analysis identified Socs3, Irf8, Gdf6 and Crhbp could be regulated by lncRNAs and miRNAs (9330175E14Rik-mmu-miR-762-Socs3, 6430562O15Rik-mmu-miR-207-Irf8, Gm9866-mmu-miR-669b-5p-Gdf6, 4933406C10Rik-mmu-miR-9-5p-Crhbp). CMap-CTD database analyses indicated the expression levels of Tlr2, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk could be reversed by folic acid. Crhbp and Gdf6 were also verified to be downregulated, while Tlr2, Ccl2, Irf8, Socs3 and Stat3 were upregulated in hypoxia/H2O2-induced retinal injury models. Hereby, our findings suggest that Crhbp, Irf8, Socs3 and Gdf6 as well as their upstream mRNAs, lncRNAs and miRNAs may be potential monitoring biomarkers and therapeutic targets for NP-induced retinal injuries. Folic acid supplementation may be a preventive and therapeutic approach.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd., 3188 Xiupu Road, Pudong New Area, Shanghai 200122, China;
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Shanghai 200240, China;
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
- Correspondence: ; Tel.: +86-0512-67162531
| |
Collapse
|
13
|
Perkins EJ, To KT, St. Mary L, Laber CH, Bednar AJ, Truong L, Tanguay RL, Garcia-Reyero N. Developmental, Behavioral and Transcriptomic Changes in Zebrafish Embryos after Smoke Dye Exposure. TOXICS 2022; 10:210. [PMID: 35622624 PMCID: PMC9171585 DOI: 10.3390/toxics10050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022]
Abstract
(1) Background: Disperse Blue 14, Disperse Red 9, Solvent Red 169 and Solvent Yellow 33 have been used to color smoke; however, they have not been comprehensively assessed for their potential health hazards. (2) Methods: To assess the effects of these dyes, zebrafish embryos were exposed from 6 to 120 h post fertilization (hpf) to 10-55 µM Disperse Red 9, 1-50 µM Solvent Red 169, 7.5-13.5 µM Solvent Yellow 33 or 133-314 µM Disperse Blue 14. Embryos were monitored for adverse effects on gene expression at 48 hpf as well as for mortality, development and behavior at 120 hpf. The dyes were examined for their potential to cross the blood-brain barrier. (3) Results: Solvent Yellow 33 and Disperse Blue 14 impaired development and behavior at all concentrations. Disperse Red 9 impaired behavior at all concentrations and development at all concentrations except for 10 µM. Solvent Red 169 caused no effects. Mortality was only seen in Disperse Blue 14 at 261.5 and 314 µM. Gene expression indicated impacts on neurodevelopment and folate and retinol metabolism as potential mechanisms of toxicity. (4) Conclusions: Smoke dyes have a high potential for causing developmental changes and neurotoxicity and should be examined more closely using comprehensive approaches as used here.
Collapse
Affiliation(s)
- Edward J. Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA; (E.J.P.); (K.T.T.); (C.H.L.); (A.J.B.)
| | - Kimberly T. To
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA; (E.J.P.); (K.T.T.); (C.H.L.); (A.J.B.)
| | - Lindsey St. Mary
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.S.M.); (L.T.); (R.L.T.)
| | - Charles H. Laber
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA; (E.J.P.); (K.T.T.); (C.H.L.); (A.J.B.)
| | - Anthony J. Bednar
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA; (E.J.P.); (K.T.T.); (C.H.L.); (A.J.B.)
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.S.M.); (L.T.); (R.L.T.)
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.S.M.); (L.T.); (R.L.T.)
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA; (E.J.P.); (K.T.T.); (C.H.L.); (A.J.B.)
| |
Collapse
|
14
|
Shen C, Zhao X, He C, Zuo Z. Developmental toxicity and neurotoxicity assessment of R-, S-, and RS-propylene glycol enantiomers in zebrafish (Danio rerio) larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30537-30547. [PMID: 35000155 DOI: 10.1007/s11356-021-17538-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Propylene glycol (PG) is widely used in the foods, pharmaceuticals, oil industry, animal feed, cosmetics and other industries. Because of the existence of a chiral carbon center, PG forms R (Rectus)- and S (Sinister)-enantiomers. Currently, the toxicity study of its R-, S-enantiomers is still very scarce. In this study, we have assessed the developmental toxicity and neurotoxicity of the R-, S-, and RS-PG enantiomers in zebrafish larvae. We found that exposure to R-, S-, and RS-PG enantiomers did not significantly affect the basic developmental endpoints of embryos or larvae (i.e., embryonic movement, hatching, mortality, malformation, heartbeat, body length), indicating that R-, S-, and RS-PG exposures did not exhibit the basic developmental toxicity in zebrafish larvae. The toxicity of three enantiomers was lower than that of ethanol, and there was no significant difference between them. However, R-, S-, and RS-PG exposures with high doses could significantly change the eye diameter and locomotor activity of larval zebrafish, indicating that R-, S-, and RS-PG enantiomers of high doses could potentially exhibit the neurotoxicity and ocular developmental toxicity in zebrafish larvae. Therefore, the potential neurotoxicity and ocular developmental toxicity of R-, S-, and RS-PG enantiomers for infants and toddlers should be considered.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Xijing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
15
|
Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022; 10:844619. [PMID: 35372345 PMCID: PMC8967241 DOI: 10.3389/fcell.2022.844619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) is a central signaling molecule regulating multiple developmental decisions during embryogenesis. Excess RA induces head malformations, primarily by expansion of posterior brain structures at the expense of anterior head regions, i.e., hindbrain expansion. Despite this extensively studied RA teratogenic effect, a number of syndromes exhibiting microcephaly, such as DiGeorge, Vitamin A Deficiency, Fetal Alcohol Syndrome, and others, have been attributed to reduced RA signaling. This causative link suggests a requirement for RA signaling during normal head development in all these syndromes. To characterize this novel RA function, we studied the involvement of RA in the early events leading to head formation in Xenopus embryos. This effect was mapped to the earliest RA biosynthesis in the embryo within the gastrula Spemann-Mangold organizer. Head malformations were observed when reduced RA signaling was induced in the endogenous Spemann-Mangold organizer and in the ectopic organizer of twinned embryos. Two embryonic retinaldehyde dehydrogenases, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) are initially expressed in the organizer and subsequently mark the trunk and the migrating leading edge mesendoderm, respectively. Gene-specific knockdowns and CRISPR/Cas9 targeting show that RALDH3 is a key enzyme involved in RA production required for head formation. These observations indicate that in addition to the teratogenic effect of excess RA on head development, RA signaling also has a positive and required regulatory role in the early formation of the head during gastrula stages. These results identify a novel RA activity that concurs with its proposed reduction in syndromes exhibiting microcephaly.
Collapse
|
16
|
Burton DF, Boa-Amponsem OM, Dixon MS, Hopkins MJ, Herbin TA, Toney S, Tarpley M, Rodriguez BV, Fish EW, Parnell SE, Cole GJ, Williams KP. Pharmacological activation of the Sonic hedgehog pathway with a Smoothened small molecule agonist ameliorates the severity of alcohol-induced morphological and behavioral birth defects in a zebrafish model of fetal alcohol spectrum disorder. J Neurosci Res 2022; 100:1585-1601. [PMID: 35014067 PMCID: PMC9271529 DOI: 10.1002/jnr.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Ethanol exposure during the early stages of embryonic development can lead to a range of morphological and behavioral differences termed fetal alcohol spectrum disorders (FASDs). In a zebrafish model, we have shown that acute ethanol exposure at 8-10 hr postfertilization (hpf), a critical time of development, produces birth defects similar to those clinically characterized in FASD. Dysregulation of the Sonic hedgehog (Shh) pathway has been implicated as a molecular basis for many of the birth defects caused by prenatal alcohol exposure. We observed in zebrafish embryos that shh expression was significantly decreased by ethanol exposure at 8-10 hpf, while smo expression was much less affected. Treatment of zebrafish embryos with SAG or purmorphamine, small molecule Smoothened agonists that activate Shh signaling, ameliorated the severity of ethanol-induced developmental malformations including altered eye size and midline brain development. Furthermore, this rescue effect of Smo activation was dose dependent and occurred primarily when treatment was given after ethanol exposure. Markers of Shh signaling (gli1/2) and eye development (pax6a) were restored in embryos treated with SAG post-ethanol exposure. Since embryonic ethanol exposure has been shown to produce later-life neurobehavioral impairments, juvenile zebrafish were examined in the novel tank diving test. Our results further demonstrated that in zebrafish embryos exposed to ethanol, SAG treatment was able to mitigate long-term neurodevelopmental impairments related to anxiety and risk-taking behavior. Our results indicate that pharmacological activation of the Shh pathway at specific developmental timing markedly diminishes the severity of alcohol-induced birth defects.
Collapse
Affiliation(s)
- Derek F Burton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Oswald M Boa-Amponsem
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, North Carolina, USA.,Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Michael J Hopkins
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Te-Andre Herbin
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Shiquita Toney
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Blanca V Rodriguez
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA.,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
17
|
Affiliation(s)
- Vishal D Naik
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Shannon Washburn
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jayanth Ramadoss
- J. Ramadoss, Department of Obstetrics & Gynecology and Department of Physiology, 275 E Hancock St, C.S. Mott Center for Human Growth and Development, Rm 195, School of Medicine, Wayne State University, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
18
|
Fish EW, Tucker SK, Peterson RL, Eberhart JK, Parnell SE. Loss of tumor protein 53 protects against alcohol-induced facial malformations in mice and zebrafish. Alcohol Clin Exp Res 2021; 45:1965-1979. [PMID: 34581462 DOI: 10.1111/acer.14688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alcohol exposure during the gastrulation stage of development causes the craniofacial and brain malformations that define fetal alcohol syndrome. These malformations, such as a deficient philtrum, are exemplified by a loss of midline tissue and correspond, at least in part, to regionally selective cell death in the embryo. The tumor suppressor protein Tp53 is an important mechanism for cell death, but the role of Tp53 in the consequences of alcohol exposure during the gastrulation stage has yet to be examined. The current studies used mice and zebrafish to test whether genetic loss of Tp53 is a conserved mechanism to protect against the effects of early developmental stage alcohol exposure. METHODS Female mice, heterozygous for a mutation in the Tp53 gene, were mated with Tp53 heterozygous males, and the resulting embryos were exposed during gastrulation on gestational day 7 (GD 7) to alcohol (two maternal injections of 2.9 g/kg, i.p., 4 h apart) or a vehicle control. Zebrafish mutants or heterozygotes for the tp53zdf1 M214K mutation and their wild-type controls were exposed to alcohol (1.5% or 2%) beginning 6 h postfertilization (hpf), the onset of gastrulation. RESULTS Examination of GD 17 mice revealed that eye defects were the most common phenotype among alcohol-exposed fetuses, occurring in nearly 75% of the alcohol-exposed wild-type fetuses. Tp53 gene deletion reduced the incidence of eye defects in both the heterozygous and mutant fetuses (to about 35% and 20% of fetuses, respectively) and completely protected against alcohol-induced facial malformations. Zebrafish (4 days postfertilization) also demonstrated alcohol-induced reductions of eye size and trabeculae length that were less common and less severe in tp53 mutants, indicating a protective effect of tp53 deletion. CONCLUSIONS These results identify an evolutionarily conserved role of Tp53 as a pathogenic mechanism for alcohol-induced teratogenesis.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Rachel L Peterson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Pinheiro-da-Silva J, Agues-Barbosa T, Luchiari AC. Embryonic Exposure to Ethanol Increases Anxiety-Like Behavior in Fry Zebrafish. Alcohol Alcohol 2021; 55:581-590. [PMID: 32886092 DOI: 10.1093/alcalc/agaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Fetal alcohol spectrum disorder (FASD) is an umbrella term to describe the effects of ethanol (Eth) exposure during embryonic development, including several conditions from malformation to cognitive deficits. Zebrafish (Danio rerio) are a translational model popularly applied in brain disorders and drug screening studies due to its genetic and physiology homology to humans added to its transparent eggs and fast development. In this study, we investigated how early ethanol exposure affects zebrafish behavior during the initial growth phase. METHODS Fish eggs were exposed to 0.0 (control), 0.25 and 0.5% ethanol at 24 h post-fertilization. Later, fry zebrafish (10 days old) were tested in a novel tank task and an inhibitory avoidance protocol to inquire about morphology and behavioral alterations. RESULTS Analysis of variance showed that ethanol doses of 0.25 and 0.5% do not cause morphological malformations and did not impair associative learning but increased anxiety-like behavior responses and lower exploratory behavior when compared to the control. CONCLUSION Our results demonstrate that one can detect behavioral abnormalities in the zebrafish induced by embryonic ethanol as early as 10 days post-fertilization and that alcohol increases anxious behavior during young development in zebrafish.
Collapse
Affiliation(s)
| | - Thais Agues-Barbosa
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| |
Collapse
|
20
|
Hsiao TH, Lee GH, Chang YS, Chen BH, Fu TF. The Incoherent Fluctuation of Folate Pools and Differential Regulation of Folate Enzymes Prioritize Nucleotide Supply in the Zebrafish Model Displaying Folate Deficiency-Induced Microphthalmia and Visual Defects. Front Cell Dev Biol 2021; 9:702969. [PMID: 34268314 PMCID: PMC8277299 DOI: 10.3389/fcell.2021.702969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Congenital eye diseases are multi-factorial and usually cannot be cured. Therefore, proper preventive strategy and understanding the pathomechanism underlying these diseases become important. Deficiency in folate, a water-soluble vitamin B, has been associated with microphthalmia, a congenital eye disease characterized by abnormally small and malformed eyes. However, the causal-link and the underlying mechanism between folate and microphthalmia remain incompletely understood. Methods We examined the eye size, optomotor response, intracellular folate distribution, and the expression of folate-requiring enzymes in zebrafish larvae displaying folate deficiency (FD) and ocular defects. Results FD caused microphthalmia and impeded visual ability in zebrafish larvae, which were rescued by folate and dNTP supplementation. Cell cycle analysis revealed cell accumulation at S-phase and sub-G1 phase. Decreased cell proliferation and increased apoptosis were found in FD larvae during embryogenesis in a developmental timing-specific manner. Lowered methylenetetrahydrofolate reductase (mthfr) expression and up-regulated methylenetetrahydrofolate dehydrogenase (NADP+-dependent)-1-like (mthfd1L) expression were found in FD larvae. Knocking-down mthfd1L expression worsened FD-induced ocular anomalies; whereas increasing mthfd1L expression provided a protective effect. 5-CH3-THF is the most sensitive folate pool, whose levels were the most significantly reduced in response to FD; whereas 10-CHO-THF levels were less affected. 5-CHO-THF is the most effective folate adduct for rescuing FD-induced microphthalmia and defective visual ability. Conclusion FD impeded nucleotides formation, impaired cell proliferation and differentiation, caused apoptosis and interfered active vitamin A production, contributing to ocular defects. The developmental timing-specific and incoherent fluctuation among folate adducts and increased expression of mthfd1L in response to FD reflect the context-dependent regulation of folate-mediated one-carbon metabolism, endowing the larvae to prioritize the essential biochemical pathways for supporting the continuous growth in response to folate depletion.
Collapse
Affiliation(s)
- Tsun-Hsien Hsiao
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gang-Hui Lee
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Sheng Chang
- Department of Ophthalmology, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tzu-Fun Fu
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Pinheiro‐da‐Silva J, Luchiari AC. Embryonic ethanol exposure on zebrafish early development. Brain Behav 2021; 11:e02062. [PMID: 33939334 PMCID: PMC8213935 DOI: 10.1002/brb3.2062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Embryonic exposure to ethanol leads to a condition of physical, behavioral, and cognitive deficiencies named fetal alcohol spectrum disorders (FASD). The most severe variations are in fetal alcohol syndrome (FAS), which is easier to diagnose and not studied in animal models. On the other side, the pFAS (partial fetal alcohol syndrome) includes cases of alcohol-related congenital disabilities and neurodevelopmental disorder with an inconclusive diagnosis. In recent years, the zebrafish has become a valuable model to study FASD and its variations. METHODS This study characterizes the zebrafish embryonic and larval development after low and moderate ethanol concentration exposure. Fish eggs were exposed to 0.0%, 0.25%, 0.5%, and 1.0% ethanol at 24 hr postfertilization, and embryonic development was observed every 8 hr up to 120 hpf. It evaluated movements, phenotypic abnormalities, hatching, cardiac function and heartbeat frequency, larvae length at 120 hpf, and the apoptotic cells' fluorescence stained with acridine orange. RESULTS Embryonic exposure to 0.5% and 1% ethanol presented reduced body size, decreased heartbeat rate, higher numbers of apoptotic cells, and hatching time differences. CONCLUSIONS Our results suggest any ethanol exposure during embryogenesis can be harmful and reinforces zebrafish as a suitable model for fetal alcohol spectrum disorders (FASD).
Collapse
Affiliation(s)
| | - Ana Carolina Luchiari
- Physiology and Behavior DepartmentFederal University of Rio Grande do NorteNatalBrazil
| |
Collapse
|
22
|
Pinheiro-da-Silva J, Araujo-Silva H, Luchiari AC. Does early ethanol exposure increase seeking-like behavior in zebrafish? Int J Dev Neurosci 2021; 81:416-427. [PMID: 33837569 DOI: 10.1002/jdn.10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 01/22/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common cause of birth defects. The severe variations are in fetal alcohol syndrome (FAS) but the most frequent cases are alcohol-related neurodevelopmental disorder (ARND), which is of a difficult diagnosis. ARND characteristics include impaired social behavior, anxiety and depression prevalence, cognitive deficits, and an increased chance for drug addiction. Here, we aimed to test whether early alcohol exposure leads to later alcohol preference. We hypothesize that early alcohol exposure increases the reinforcing effects on later experiences, raising the chance of addiction in adult life. Lately, the zebrafish has been a valuable model on alcohol research, allowing embryonic exposure and the study of the ontogenetic effects. For this, embryos were exposed to three different alcohol treatments: 0.0%, 0.25% and 0.5%, for 2 hr, at 24-hr post-fertilization. Then we evaluated the effects of embryonic alcohol exposure on conditioned place preference in two developmental stage: fry (10 days post-fertilization (dpf)) and young (90 dpf) zebrafish. Results show that control fish presented alcohol associative learning, which means, changes in place preference due to alcohol exposure, at both ontogenetic phases. However, zebrafish exposed to 0.25 and 0.5% alcohol during embryogenesis did not show conditioning response at any evaluated stage. These results suggest perception and cognitive deficits due to embryonic alcohol exposure that can alter alcohol responsiveness throughout a lifetime. Although low alcohol doses do not provoke malformation, it has been shown to induce several neurological and behavioral changes that are termed as Alcohol-Related Neurodevelopmental Disorders. These results may contribute to future investigations on how embryonic exposure affects the neurocircuitry related to perception and associative learning processing.
Collapse
Affiliation(s)
| | - Heloysa Araujo-Silva
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
23
|
Ford SM, Pedersen CJ, Ford MR, Kim JW, Karunamuni GH, McPheeters MT, Jawaid S, Jenkins MW, Rollins AM, Watanabe M. Folic acid prevents functional and structural heart defects induced by prenatal ethanol exposure. Am J Physiol Heart Circ Physiol 2021. [DOI: 10.1152/ajpheart.00817.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
State-of-the-art biophotonic tools captured blood flow and endocardial cushion volumes in tiny beating quail embryo hearts, an accessible model for studying four-chambered heart development. Both hemodynamic flow and endocardial cushion volumes were altered with ethanol exposure but normalized when folic acid was introduced with ethanol. Folic acid supplementation preserved hemodynamic function that is intimately involved in sculpting the heart from the earliest stages of heart development.
Collapse
Affiliation(s)
- Stephanie M. Ford
- Division of Neonatology, Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Cameron J. Pedersen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Matthew R. Ford
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland Ohio
| | - Jun W. Kim
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ganga H. Karunamuni
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Matthew T. McPheeters
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Safdar Jawaid
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michael W. Jenkins
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michiko Watanabe
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
24
|
Sales Cadena MR, Cadena PG, Watson MR, Sarmah S, Boehm Ii SL, Marrs JA. Zebrafish (Danio rerio) larvae show behavioral and embryonic development defects when exposed to opioids at embryo stage. Neurotoxicol Teratol 2021; 85:106964. [PMID: 33621603 DOI: 10.1016/j.ntt.2021.106964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Opioid abuse continues to plague society, and in recent years, there has been an epidemic, leading to increased addiction and death. It is poorly understood how prenatal opioid use affects the lives of children. The aim of this work was to evaluate the effect of early embryonic codeine or morphine exposure in zebrafish (Danio rerio), examining gastrulation progression (epiboly), teratogenic effects, mortality and locomotor behavior response to light/dark cycles. Zebrafish embryos were exposed to codeine or morphine (designated C or M) at 1, 5 or 10 mg/L (designated 01, 05 or 10, respectively) from 3 to 24 h postfertilization (hpf) or from 3 to 48 hpf (designated -24 or - 48 for 1 or 2 days of exposure, respectively). The C10-24, C01-48, C05-48 and C10-48 groups showed significantly smaller eyes than control larvae at 7 days postfertilization (dpf). Locomotor behavior of control larvae in light/dark cycles showed greater swimming time and distance in dark cycles. Two-day codeine exposure produced strong effects, showing no significant response due to light/dark cycles in distance moved. Morphine exposed groups showed similar effects as observed in 2-day codeine exposed groups, showing less large movement activity and also no significant difference between inactive duration in response to light/dark cycles. In conclusion, we observed low teratogenic effects and mortality effects. Animals exposed to high levels and higher exposure times of opioids were hypoactive, relative to controls, in the dark period. Future studies will be needed to understand the neural defects producing behavior changes.
Collapse
Affiliation(s)
- Marilia R Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil.
| | - Pabyton G Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Meredith R Watson
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Stephen L Boehm Ii
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
25
|
Craenen K, Verslegers M, Callaerts-Vegh Z, Craeghs L, Buset J, Govaerts K, Neefs M, Gsell W, Baatout S, D'Hooge R, Himmelreich U, Moons L, Benotmane MA. Folic Acid Fortification Prevents Morphological and Behavioral Consequences of X-Ray Exposure During Neurulation. Front Behav Neurosci 2021; 14:609660. [PMID: 33488367 PMCID: PMC7820780 DOI: 10.3389/fnbeh.2020.609660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies suggested a causal link between pre-natal exposure to ionizing radiation and birth defects such as microphthalmos and exencephaly. In mice, these defects arise primarily after high-dose X-irradiation during early neurulation. However, the impact of sublethal (low) X-ray doses during this early developmental time window on adult behavior and morphology of central nervous system structures is not known. In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects and persistent radiation-induced anomalies has remained unexplored. To assess the efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented radiation-induced (1.0 Gy) anophthalmos, exencephaly and gastroschisis at E18, and reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted radiation-induced impairments in vision and olfaction, which were evidenced after exposure to doses ≥0.1 Gy. These findings coincided with the observation of a reduction in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial length of the eye following exposure to 0.5 Gy. Finally, MRI studies revealed a volumetric decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5 Gy irradiation, which could be partially ameliorated after FA food fortification. Altogether, our study is the first to offer detailed insights into the long-term consequences of X-ray exposure during neurulation, and supports the use of FA as a radioprotectant and antiteratogen to counter the detrimental effects of X-ray exposure during this crucial period of gestation.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Livine Craeghs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Kristof Govaerts
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Neefs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Willy Gsell
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lieve Moons
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| |
Collapse
|
26
|
Raterman ST, Metz JR, Wagener FADTG, Von den Hoff JW. Zebrafish Models of Craniofacial Malformations: Interactions of Environmental Factors. Front Cell Dev Biol 2020; 8:600926. [PMID: 33304906 PMCID: PMC7701217 DOI: 10.3389/fcell.2020.600926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
The zebrafish is an appealing model organism for investigating the genetic (G) and environmental (E) factors, as well as their interactions (GxE), which contribute to craniofacial malformations. Here, we review zebrafish studies on environmental factors involved in the etiology of craniofacial malformations in humans including maternal smoking, alcohol consumption, nutrition and drug use. As an example, we focus on the (cleft) palate, for which the zebrafish ethmoid plate is a good model. This review highlights the importance of investigating ExE interactions and discusses the variable effects of exposure to environmental factors on craniofacial development depending on dosage, exposure time and developmental stage. Zebrafish also promise to be a good tool to study novel craniofacial teratogens and toxin mixtures. Lastly, we discuss the handful of studies on gene–alcohol interactions using mutant sensitivity screens and reverse genetic techniques. We expect that studies addressing complex interactions (ExE and GxE) in craniofacial malformations will increase in the coming years. These are likely to uncover currently unknown mechanisms with implications for the prevention of craniofacial malformations. The zebrafish appears to be an excellent complementary model with high translational value to study these complex interactions.
Collapse
Affiliation(s)
- S T Raterman
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes W Von den Hoff
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
27
|
Garland MA, Reynolds K, Zhou CJ. Environmental mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1660-1698. [PMID: 33125192 PMCID: PMC7902093 DOI: 10.1002/bdr2.1830] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Orofacial clefts (OFCs) are among the most common birth defects and impart a significant burden on afflicted individuals and their families. It is increasingly understood that many nonsyndromic OFCs are a consequence of extrinsic factors, genetic susceptibilities, and interactions of the two. Therefore, understanding the environmental mechanisms of OFCs is important in the prevention of future cases. This review examines the molecular mechanisms associated with environmental factors that either protect against or increase the risk of OFCs. We focus on essential metabolic pathways, environmental signaling mechanisms, detoxification pathways, behavioral risk factors, and biological hazards that may disrupt orofacial development.
Collapse
Affiliation(s)
- Michael A. Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
28
|
Cadena PG, Sales Cadena MR, Sarmah S, Marrs JA. Protective effects of quercetin, polydatin, and folic acid and their mixtures in a zebrafish (Danio rerio) fetal alcohol spectrum disorder model. Neurotoxicol Teratol 2020; 82:106928. [PMID: 32861842 PMCID: PMC7669573 DOI: 10.1016/j.ntt.2020.106928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
Protective effects of quercetin (QUE), polydatin (POL), and folic acid (FA) and their mixtures were tested using zebrafish to model fetal alcohol spectrum disorder in this study. Zebrafish embryos were exposed to 150 mM ethanol for 6 or 22 h and co-treated with QUE, POL, FA, and their mixtures (37.5-100.0 μM). Epiboly progression, teratogenic effects, and behavior were evaluated. Ethanol exposure reduced epiboly, and FA and QUE protected against these ethanol-induced defects. POL did not reduce epiboly defects. The mixture QUE + FA showed a possible antagonistic effect. The observed teratogenic effects were similar in all ethanol exposed groups. QUE, FA and QUE + POL reduced the percentage of affected animals, but treatments did not eliminate teratogenic effects. Behavioral measurements were divided into small (between 4 and 8 mm/s) and high swimming activity (>8 mm/s). All experimental groups displayed a reduction in small swimming activity as compared to control and ethanol groups when exposed to bright light. Additionally, larvae exposed to ethanol were more inhibited than control, not showing a habituation period (after 60 min of experiment) in high swimming activity. Chemical treatments like QUE and POL reduced behavioral defects induced by ethanol exposure. In conclusion, this study presents new evidence that QUE, POL, FA and their mixtures partially protected epiboly, teratogenic, and behavioral defects induced by ethanol exposure. QUE, FA and QUE + POL were more effective in reducing these defects than the other studied compounds and mixtures.
Collapse
Affiliation(s)
- Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, PE, Brazil; Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA.
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil; Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2020; 49:438-454. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Xenobiotics make their way into organisms from diverse sources including diet, medication, and pollution. Our understanding of ocular toxicities from xenobiotics in humans, livestock, and wildlife is growing thanks to laboratory animal models. Anatomy and physiology are conserved among vertebrate eyes, and studies with common mammalian preclinical species (rodent, dog) can predict human ocular toxicity. However, since the eye is susceptible to toxicities that may not involve a histological correlate, and these species rely heavily on smell and hearing to navigate their world, discovering visual deficits can be challenging with traditional animal models. Alternative models capable of identifying functional impacts on vision and requiring minimal amounts of chemical are valuable assets to toxicology. Human and zebrafish eyes are anatomically and functionally similar, and it has been reported that several common human ocular toxicants cause comparable toxicity in zebrafish. Vision develops rapidly in zebrafish; the tiny larvae rely on visual cues as early as 4 days, and behavioral responses to those cues can be monitored in high-throughput fashion. This article describes the comparative anatomy of the zebrafish eye, the notable differences from the mammalian eye, and presents practical applications of this underutilized model for assessment of ocular toxicity.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | - Christina Dunn
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | | |
Collapse
|
30
|
Everson JL, Batchu R, Eberhart JK. Multifactorial Genetic and Environmental Hedgehog Pathway Disruption Sensitizes Embryos to Alcohol-Induced Craniofacial Defects. Alcohol Clin Exp Res 2020; 44:1988-1996. [PMID: 32767777 PMCID: PMC7692922 DOI: 10.1111/acer.14427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is perhaps the most common environmental cause of human birth defects. These exposures cause a range of structural and neurological defects, including facial dysmorphologies, collectively known as fetal alcohol spectrum disorders (FASD). While PAE causes FASD, phenotypic outcomes vary widely. It is thought that multifactorial genetic and environmental interactions modify the effects of PAE. However, little is known of the nature of these modifiers. Disruption of the Hedgehog (Hh) signaling pathway has been suggested as a modifier of ethanol teratogenicity. In addition to regulating the morphogenesis of craniofacial tissues commonly disrupted in FASD, a core member of the Hh pathway, Smoothened, is susceptible to modulation by structurally diverse chemicals. These include environmentally prevalent teratogens like piperonyl butoxide (PBO), a synergist found in thousands of pesticide formulations. METHODS Here, we characterize multifactorial genetic and environmental interactions using a zebrafish model of craniofacial development. RESULTS We show that loss of a single allele of shha sensitized embryos to both alcohol- and PBO-induced facial defects. Co-exposure of PBO and alcohol synergized to cause more frequent and severe defects. The effects of this co-exposure were even more profound in the genetically susceptible shha heterozygotes. CONCLUSIONS Together, these findings shed light on the multifactorial basis of alcohol-induced craniofacial defects. In addition to further implicating genetic disruption of the Hh pathway in alcohol teratogenicity, our findings suggest that co-exposure to environmental chemicals that perturb Hh signaling may be important variables in FASD and related craniofacial disorders.
Collapse
Affiliation(s)
- Joshua L. Everson
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| | - Rithik Batchu
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Johann K. Eberhart
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
31
|
van der Ven LTM, Schoonen WG, Groot RM, den Ouden F, Heusinkveld HJ, Zwart EP, Hodemaekers HM, Rorije E, de Knecht J. The effects of aliphatic alcohols and related acid metabolites in zebrafish embryos - correlations with rat developmental toxicity and with effects in advanced life stages in fish. Toxicol Appl Pharmacol 2020; 407:115249. [PMID: 32979392 DOI: 10.1016/j.taap.2020.115249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
The zebrafish embryo toxicity test (ZFET) is a simple medium-throughput test to inform about (sub)acute lethal effects in embryos. Enhanced analysis through morphological and teratological scoring, and through gene expression analysis, detects developmental effects and the underlying toxicological pathways. Altogether, the ZFET may inform about hazard of chemical exposure for embryonal development in humans, as well as for lethal effects in juvenile and adult fish. In this study, we compared the effects within a series of 12 aliphatic alcohols and related carboxylic acid derivatives (ethanol, acetic acid, 2-methoxyethanol, 2-methoxyacetic acid, 2-butoxyethanol, 2-butoxyacetic acid, 2-hydroxyacetic acid, 2-ethylhexan-1-ol, 2-ethylhexanoic acid, valproic acid, 2-aminoethanol, 2-(2-hydroxyethylamino)ethanol) in ZFET and early life stage (ELS, 28d) exposures, and compared ZFET results with existing results of rat developmental studies and LC50s in adult fish. High correlation scores were observed between compound potencies in ZFET with either ELS, LC50 in fish and developmental toxicity in rats, indicating similar potency ranking among the models. Compounds could be mapped to specific pathways in an adverse outcome pathway (AOP) network through morphological scoring and gene expression analysis in ZFET. Similarity of morphological effects and gene expression profiles in pairs of alcohols with their acid metabolites suggested metabolic activation of the parent alcohols, although with additional, metabolite-independent activity independent for ethanol and 2-ethylhexanol. Overall, phenotypical and gene expression analysis with these compounds indicates that the ZFET can potentially contribute to the AOP for developmental effects in rodents, and to predict toxicity of acute and chronic exposure in advanced life stages in fish.
Collapse
Affiliation(s)
- Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Willem G Schoonen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Renate M Groot
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Fatima den Ouden
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hennie M Hodemaekers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joop de Knecht
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
32
|
Cadena PG, Cadena MRS, Sarmah S, Marrs JA. Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD). Reprod Toxicol 2020; 96:249-257. [PMID: 32763456 PMCID: PMC7858698 DOI: 10.1016/j.reprotox.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
The objective of this work was to determine whether folic acid (FA) reduces the embryonic ethanol (EtOH) exposure induced behavioral and morphological defects in our zebrafish fetal alcohol spectrum disorder (FASD) model. Teratogenic effects, mortality, the excitatory light-dark locomotion (ELD), sleep (SL), thigmotaxis (TH), touch sensitivity (TS), and optomotor response (OMR) tests were evaluated in larvae (6-7 days post-fertilization) using four treatment conditions: Untreated, FA, EtOH and EtOH + FA. FA reduced morphological defects on heart, eyes and swim bladder inflation seen in EtOH exposed fish. The larvae were more active in the dark than in light conditions, and EtOH reduced the swimming activity in the ELD test. EtOH affected the sleep pattern, inducing several arousal periods and increasing inactivity in zebrafish. FA reduces these toxic effects and produced more consistent inactivity during the night, reducing the arousal periods. FA also prevented the EtOH-induced defects in thigmotaxis and optomotor response of the larvae. We conclude that in this FASD model, EtOH exposure produced several teratogenic and behavioral defects, FA reduced, but did not totally prevent, these defects. Understanding of EtOH-induced behavioral defects could help to identify new therapeutic or prevention strategies for FASD.
Collapse
Affiliation(s)
- Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brazil; Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA.
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brazil; Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
Marijuana and Opioid Use during Pregnancy: Using Zebrafish to Gain Understanding of Congenital Anomalies Caused by Drug Exposure during Development. Biomedicines 2020; 8:biomedicines8080279. [PMID: 32784457 PMCID: PMC7460517 DOI: 10.3390/biomedicines8080279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
Marijuana and opioid addictions have increased alarmingly in recent decades, especially in the United States, posing threats to society. When the drug user is a pregnant mother, there is a serious risk to the developing baby. Congenital anomalies are associated with prenatal exposure to marijuana and opioids. Here, we summarize the current data on the prevalence of marijuana and opioid use among the people of the United States, particularly pregnant mothers. We also summarize the current zebrafish studies used to model and understand the effects of these drug exposures during development and to understand the behavioral changes after exposure. Zebrafish experiments recapitulate the drug effects seen in human addicts and the birth defects seen in human babies prenatally exposed to marijuana and opioids. Zebrafish show great potential as an easy and inexpensive model for screening compounds for their ability to mitigate the drug effects, which could lead to new therapeutics.
Collapse
|
34
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
35
|
Lovely CB. Animal models of gene-alcohol interactions. Birth Defects Res 2019; 112:367-379. [PMID: 31774246 DOI: 10.1002/bdr2.1623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022]
Abstract
Most birth defects arise from complex interactions between multiple genetic and environmental factors. However, our current understanding of how these interactions and their contributions affect birth defects remains incomplete. Human studies are limited in their ability to identify the fundamental causes of birth defects due to ethical and practical limitations. Animal models provide a great number of resources not available to human studies and they have been critical in advancing our understanding of birth defects and the complex interactions that underlie them. In this review, we discuss the use of animal models in the context of gene-environment interactions that underlie birth defects. We focus on alcohol which is the most common environmental factor associated with birth defects. Prenatal alcohol exposure leads to a wide range of cognitive impairments and structural deficits broadly termed fetal alcohol spectrum disorders (FASD). We discuss the broad impact of prenatal alcohol exposure on the developing embryo and elaborate on the current state of gene-alcohol interactions. Additionally, we discuss how animal models have informed our understanding of the genetics of FASD. Ultimately, these topics will provide insight into the use of animal models in understanding gene-environment interactions and their subsequent impact on birth defects.
Collapse
Affiliation(s)
- Charles Benjamin Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
36
|
Williams AL, Bohnsack BL. What's retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development. Genesis 2019; 57:e23308. [PMID: 31157952 DOI: 10.1002/dvg.23308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate-specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA-mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest-derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
37
|
Kim J, Kim CY, Oh H, Ryu B, Kim U, Lee JM, Jung CR, Park JH. Trimethyltin chloride induces reactive oxygen species-mediated apoptosis in retinal cells during zebrafish eye development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:36-44. [PMID: 30399559 DOI: 10.1016/j.scitotenv.2018.10.317] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Trimethyltin chloride (TMT), one of the most widely used organotin compounds in industrial and agricultural fields, is widespread in soil, aquatic systems, foodstuffs and household items. TMT reportedly has toxic effects on the nervous system; however, there is limited information about its effects on eye development and no clear associated mechanisms have been identified. Therefore, in the present study, we investigated eye morphology, vison-related behavior, reactive oxygen species (ROS) production, apoptosis, histopathology, and gene expression to evaluate the toxicity of TMT during ocular development in zebrafish embryos. Exposure to TMT decreased the axial length and surface area of the eye and impaired the ability of zebrafish to recognize light. 2',7'-dichlorofluorescein diacetate and acridine orange assays revealed dose-dependent increases in ROS formation and apoptosis in the eye. Furthermore, pyknosis of retinal cells was confirmed through histopathological analysis. Antioxidative enzyme-related genes were downregulated and apoptosis-inducing genes were upregulated in TMT-treated zebrafish compared to expression in controls. Retinal cell-specific gene expression was suppressed mainly in retinal ganglion cells, bipolar cells, and photoreceptor cells, whereas amacrine cell-, horizontal cell-, and Müller cell-specific gene expression was enhanced. Our results demonstrate for the first time the toxicity of TMT during eye development, which occurs through the induction of ROS-mediated apoptosis in retinal cells during ocular formation.
Collapse
Affiliation(s)
- Jin Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - C-Yoon Kim
- Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hanseul Oh
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bokyeong Ryu
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ukjin Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
39
|
Berenguer M, Darnaudery M, Claverol S, Bonneu M, Lacombe D, Rooryck C. Prenatal retinoic acid exposure reveals candidate genes for craniofacial disorders. Sci Rep 2018; 8:17492. [PMID: 30504818 PMCID: PMC6269437 DOI: 10.1038/s41598-018-35681-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Syndromes that display craniofacial anomalies comprise a major class of birth defects. Both genetic and environmental factors, including prenatal retinoic acid (RA) exposure, have been associated with these syndromes. While next generation sequencing has allowed the discovery of new genes implicated in these syndromes, some are still poorly characterized such as Oculo-Auriculo-Vertebral Spectrum (OAVS). Due to the lack of clear diagnosis for patients, developing new strategies to identify novel genes involved in these syndromes is warranted. Thus, our study aimed to explore the link between genetic and environmental factors. Owing to a similar phenotype of OAVS reported after gestational RA exposures in humans and animals, we explored RA targets in a craniofacial developmental context to reveal new candidate genes for these related disorders. Using a proteomics approach, we detected 553 dysregulated proteins in the head region of mouse embryos following their exposure to prenatal RA treatment. This novel proteomic approach implicates changes in proteins that are critical for cell survival/apoptosis and cellular metabolism which could ultimately lead to the observed phenotype. We also identified potential molecular links between three major environmental factors known to contribute to craniofacial defects including maternal diabetes, prenatal hypoxia and RA exposure. Understanding these links could help reveal common key pathogenic mechanisms leading to craniofacial disorders. Using both in vitro and in vivo approaches, this work identified two new RA targets, Gnai3 and Eftud2, proteins known to be involved in craniofacial disorders, highlighting the power of this proteomic approach to uncover new genes whose dysregulation leads to craniofacial defects.
Collapse
Affiliation(s)
- Marie Berenguer
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000, Bordeaux, France
| | - Muriel Darnaudery
- Université de Bordeaux, Nutrition et neurobiologie intégrée (NUTRINEURO), UMR 1286, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France - Inra, Nutrition et neurobiologie intégrée (NUTRINEURO), UMR 1286, F-33076, Bordeaux, France
| | - Stéphane Claverol
- Center of Functional Genomics, Bordeaux University, Bordeaux, France
| | - Marc Bonneu
- Center of Functional Genomics, Bordeaux University, Bordeaux, France
| | - Didier Lacombe
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000, Bordeaux, France
- CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33000, Bordeaux, France
| | - Caroline Rooryck
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000, Bordeaux, France.
- CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33000, Bordeaux, France.
| |
Collapse
|
40
|
Muralidharan P, Sarmah S, Marrs JA. Retinal Wnt signaling defect in a zebrafish fetal alcohol spectrum disorder model. PLoS One 2018; 13:e0201659. [PMID: 30067812 PMCID: PMC6070267 DOI: 10.1371/journal.pone.0201659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Fetal alcohol spectrum disorder caused by prenatal alcohol exposure includes ocular abnormalities (microphthalmia, photoreceptor dysfunction, cataracts). Zebrafish embryos exposed to ethanol from gastrulation through somitogenesis show severe ocular defects, including microphthalmia and photoreceptor differentiation defects. Ethanol-treated zebrafish had an enlarged ciliary marginal zone (CMZ) relative to the retina size and reduced Müller glial cells (MGCs). Ethanol exposure produced immature photoreceptors with increased proliferation, indicating cell cycle exit failure. Signaling mechanisms in the CMZ were affected by embryonic ethanol exposure, including Wnt signaling in the CMZ, Notch signaling and neurod gene expression. Retinoic acid or folic acid co-supplementation with ethanol rescued Wnt signaling and retinal differentiation. Activating Wnt signaling using GSK3 inhibitor (LSN 2105786; Eli Lilly and Co.) restored retinal cell differentiation pathways. Ethanol exposed embryos were treated with Wnt agonist, which rescued Wnt-active cells in the CMZ, Notch-active cells in the retina, proliferation, and photoreceptor terminal differentiation. Our results illustrate the critical role of Wnt signaling in ethanol-induced retinal defects.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
41
|
Shabtai Y, Fainsod A. Competition between ethanol clearance and retinoic acid biosynthesis in the induction of fetal alcohol syndrome. Biochem Cell Biol 2018; 96:148-160. [DOI: 10.1139/bcb-2017-0132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Several models have been proposed to explain the neurodevelopmental syndrome induced by exposure of human embryos to alcohol, which is known as fetal alcohol spectrum disorder (FASD). One of the proposed models suggests a competition for the enzymes required for the biosynthesis of retinoic acid. The outcome of such competition is development under conditions of reduced retinoic acid signaling. Retinoic acid is one of the biologically active metabolites of vitamin A (retinol), and regulates numerous embryonic and differentiation processes. The developmental malformations characteristic of FASD resemble those observed in vitamin A deficiency syndrome as well as from inhibition of retinoic acid biosynthesis or signaling in experimental models. There is extensive biochemical and enzymatic overlap between ethanol clearance and retinoic acid biosynthesis. Several lines of evidence suggest that in the embryo, the competition takes place between acetaldehyde and retinaldehyde for the aldehyde dehydrogenase activity available. In adults, this competition also extends to the alcohol dehydrogenase activity. Ethanol-induced developmental defects can be ameliorated by increasing the levels of retinol, retinaldehyde, or retinaldehyde dehydrogenase. Acetaldehyde inhibits the production of retinoic acid by retinaldehyde dehydrogenase, further supporting the competition model. All of the evidence supports the reduction of retinoic acid signaling as the etiological trigger in the induction of FASD.
Collapse
Affiliation(s)
- Yehuda Shabtai
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Abraham Fainsod
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
42
|
Kapur BM, Baber M. FASD: folic acid and formic acid — an unholy alliance in the alcohol abusing mother. Biochem Cell Biol 2018; 96:189-197. [DOI: 10.1139/bcb-2017-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alcohol consumption during pregnancy remains a significant cause of preventable birth defects and developmental disabilities; however, the mechanism of toxicity remains unclear. Methanol is present as a congener in many alcoholic beverages and is formed endogenously. Because ethanol is preferentially metabolized over methanol, it has been found in the sera and cerebro-spinal fluid of alcoholics. Toxicity resulting from methanol has been attributed to formic acid. Formic acid is present in significantly higher quantities in the biofluids of alcoholics. These higher levels can be cytotoxic and cause neuronal cell death. However, the adverse effects can be mitigated by adequate levels of hepatic folic acid, because formic acid elimination depends on folic acid. During pregnancy, folate concentrations are at least 2-fold higher in cord blood then in maternal blood, owing to increased folate requirements. The reverse has been demonstrated in pregnancies with alcohol abuse, suggesting downregulation of folate transporters and low fetal folate levels. Moreover, formic acid can cross the placenta and its adverse effects can be mitigated by folic acid. Thus, the combination of low fetal folate levels and presence of formic acid form a potent cytotoxic combination that may play a significant role in the etiology of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Bhushan M. Kapur
- Department of Clinical Pathology, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marta Baber
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
43
|
Fernandes Y, Buckley DM, Eberhart JK. Diving into the world of alcohol teratogenesis: a review of zebrafish models of fetal alcohol spectrum disorder. Biochem Cell Biol 2018; 96:88-97. [PMID: 28817785 PMCID: PMC7413215 DOI: 10.1139/bcb-2017-0122] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The term fetal alcohol spectrum disorder (FASD) refers to the entire suite of deleterious outcomes resulting from embryonic exposure to alcohol. Along with other reviews in this special issue, we provide insight into how animal models, specifically the zebrafish, have informed our understanding of FASD. We first provide a brief introduction to FASD. We discuss the zebrafish as a model organism and its strengths for alcohol research. We detail how zebrafish has been used to model some of the major defects present in FASD. These include behavioral defects, such as social behavior as well as learning and memory, and structural defects, disrupting organs such as the brain, sensory organs, heart, and craniofacial skeleton. We provide insights into how zebrafish research has aided in our understanding of the mechanisms of ethanol teratogenesis. We end by providing some relatively recent advances that zebrafish has provided in characterizing gene-ethanol interactions that may underlie FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
| | - Desire M Buckley
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
| | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
| |
Collapse
|
44
|
Nonlinear mixed-modelling discriminates the effect of chemicals and their mixtures on zebrafish behavior. Sci Rep 2018; 8:1999. [PMID: 29386525 PMCID: PMC5792435 DOI: 10.1038/s41598-018-20112-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
Zebrafish (Danio rerio) early-life stage behavior has the potential for high-throughput screening of neurotoxic environmental contaminants. However, zebrafish embryo and larval behavioral assessments typically utilize linear analyses of mean activity that may not capture the complexity of the behavioral response. Here we tested the hypothesis that nonlinear mixed-modelling of zebrafish embryo and larval behavior provides a better assessment of the impact of chemicals and their mixtures. We demonstrate that zebrafish embryo photomotor responses (PMRs) and larval light/dark locomotor activities can be fit by asymmetric Lorentzian and Ricker-beta functions, respectively, which estimate the magnitude of activity (e.g., maximum and total activities) and temporal aspects (e.g., duration of the responses and its excitatory periods) characterizing early life-stage zebrafish behavior. We exposed zebrafish embryos and larvae to neuroactive chemicals, including isoproterenol, serotonin, and ethanol, as well as their mixtures, to assess the feasibility of using the nonlinear mixed-modelling to assess behavioral modulation. Exposure to chemicals led to distinct effects on specific behavioral characteristics, and interactive effects on temporal characteristics of the behavioral response that were overlooked by the linear analyses of mean activity. Overall, nonlinear mixed-modelling is a more comprehensive approach for screening the impact of chemicals and chemical mixtures on zebrafish behavior.
Collapse
|
45
|
Zhang D, Jing H, Dou C, Zhang L, Wu X, Wu Q, Song H, Li D, Wu F, Liu Y, Li W, Wang R. Supplement of Betaine into Embryo Culture Medium Can Rescue Injury Effect of Ethanol on Mouse Embryo Development. Sci Rep 2018; 8:1761. [PMID: 29379082 PMCID: PMC5789050 DOI: 10.1038/s41598-018-20175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Mammal embryos can be impaired by mother’s excessive ethanol uptake, which induces a higher level of reactive oxygen species (ROS) and interferes in one carbon unit metabolism. Here, our analysis by in vitro culture system reveals immediate effect of ethanol in medium on mouse embryo development presents concentration dependent. A preimplantation embryo culture using medium contained 1% ethanol could impact greatly early embryos development, and harmful effect of ethanol on preimplantation embryos would last during the whole development period including of reducing ratio of blastocyst formation and implantation, and deteriorating postimplantation development. Supplement of 50 μg/ml betaine into culture medium can effectively reduce the level of ROS caused by ethanol in embryo cells and rescue embryo development at each stage damaged by ethanol, but supplement of glycine can’t rescue embryo development as does betaine. Results of 5-methylcytosine immunodetection indicate that supplement of betaine into medium can reduce the rising global level of genome DNA methylation in blastocyst cells caused by 1% ethanol, but glycine can’t play the same impact. The current findings demonstrate that betaine can effectively rescue development of embryos harmed by ethanol, and possibly by restoring global level of genome DNA methylation in blastocysts.
Collapse
Affiliation(s)
- Di Zhang
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China. .,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China.
| | - Huaijiang Jing
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Changfeng Dou
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Ling Zhang
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Xiaoqing Wu
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Qingqing Wu
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Haoyang Song
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Dengkun Li
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Fengrui Wu
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Yong Liu
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Wenyong Li
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Rong Wang
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China. .,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China.
| |
Collapse
|
46
|
Embryonic Ethanol Exposure Affects Early- and Late-Added Cardiac Precursors and Produces Long-Lasting Heart Chamber Defects in Zebrafish. TOXICS 2017; 5:toxics5040035. [PMID: 29194345 PMCID: PMC5750563 DOI: 10.3390/toxics5040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/28/2022]
Abstract
Drinking mothers expose their fetuses to ethanol, which produces birth defects: craniofacial defects, cognitive impairment, sensorimotor disabilities and organ deformities, collectively termed as fetal alcohol spectrum disorder (FASD). Various congenital heart defects (CHDs) are present in FASD patients, but the mechanisms of alcohol-induced cardiogenesis defects are not completely understood. This study utilized zebrafish embryos and older larvae to understand FASD-associated CHDs. Ethanol-induced cardiac chamber defects initiated during embryonic cardiogenesis persisted in later zebrafish life. In addition, myocardial damage was recognizable in the ventricle of the larvae that were exposed to ethanol during embryogenesis. Our studies of the pathogenesis revealed that ethanol exposure delayed differentiation of first and second heart fields and reduced the number of early- and late-added cardiomyocytes in the heart. Ethanol exposure also reduced the number of endocardial cells. Together, this study showed that ethanol-induced heart defects were present in late-stage zebrafish larvae. Reduced numbers of cardiomyocytes partly accounts for the ethanol-induced zebrafish heart defects.
Collapse
|
47
|
Expression and characterization of the zebrafish orthologue of the human FOLR1 gene during embryogenesis. Gene Expr Patterns 2017; 25-26:159-166. [PMID: 28826993 DOI: 10.1016/j.gep.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
It has been well established that many types of rapidly dividing normal and diseased cells require an increased amount of folate for DNA replication and repair as well as cellular metabolism. Thus one of folate's cognate receptors, Folate Receptor 1 (FOLR1) is usually up-regulated in rapidly dividing cells, including many types of cancerous tumors. Because zebrafish have become a model organism for understanding conserved vertebrate cellular pathways and human disease, there has been an increased need to identify and elucidate orthologous zebrafish genes that are central to known human maladies. The cells of all early animal embryos go through a phase of rapid division (cleavage) where particular cell cycle checkpoints are skipped until a specification event occurs directing these embryonic stem cells to their fated germ layer cell type. Interestingly, this rapid cell division that ignores cell cycle checkpoints is also observed in many cancers. Developing blastula and tumor cells both require folr1 expression to obtain folate. In this report we have identified the expression pattern of the zebrafish gene zgc:165502, located on chromosome 15. Using computational and comparative methods and molecular biology techniques such as reverse transcription polymerase chain reaction (RT-PCR) and whole mount in situ hybridization (WISH) during embryogenesis, we demonstrate that zgc:165502 is the zebrafish orthologue of the human FOLR1 gene. Understanding when and where FOLR1 orthologues are expressed in different biomedical model organisms such as the zebrafish will help researchers design better experiments to study the endogenous FOLR1 activity.
Collapse
|
48
|
Muralidharan P, Connors CT, Mohammed AS, Sarmah S, Marrs K, Marrs JA, Chism GW. Turmeric Extract Rescues Ethanol-Induced Developmental Defect in the Zebrafish Model for Fetal Alcohol Spectrum Disorder (FASD). J Food Sci 2017; 82:2221-2225. [PMID: 28796310 DOI: 10.1111/1750-3841.13830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/03/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
Abstract
Prenatal ethanol exposure causes the most frequent preventable birth disorder, fetal alcohol spectrum disorder (FASD). The effect of turmeric extracts in rescuing an ethanol-induced developmental defect using zebrafish as a model was determined. Ethanol-induced oxidative stress is one of the major mechanisms underlying FASD. We hypothesize that antioxidant inducing properties of turmeric may alleviate ethanol-induced defects. Curcuminoid content of the turmeric powder extract (5 mg/mL turmeric in ethanol) was determined by UPLC and found to contain Curcumin (124.1 ± 0.2 μg/mL), Desmethoxycurcumin (43.4 ± 0.1 μg/mL), and Bisdemethoxycurcumin (36.6 ± 0.1 μg/mL). Zebrafish embryos were treated with 100 mM (0.6% v/v) ethanol during gastrulation through organogenesis (2 to 48 h postfertilization (hpf)) and supplemented with turmeric extract to obtain total curcuminoid concentrations of 0, 1.16, 1.72, or 2.32 μM. Turmeric supplementation showed significant rescue of the body length at 72 hpf compared to ethanol-treated embryos. The mechanism underlying the rescue remains to be determined.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Craig T Connors
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Arooj S Mohammed
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Swapnalee Sarmah
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Kathleen Marrs
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - James A Marrs
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Grady W Chism
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| |
Collapse
|
49
|
Eason J, Williams AL, Chawla B, Apsey C, Bohnsack BL. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome. Birth Defects Res 2017; 109:1212-1227. [PMID: 28681995 DOI: 10.1002/bdr2.1069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ethanol (ETOH) exposure during pregnancy is associated with craniofacial and neurologic abnormalities, but infrequently disrupts the anterior segment of the eye. In these studies, we used zebrafish to investigate differences in the teratogenic effect of ETOH on craniofacial, periocular, and ocular neural crest. METHODS Zebrafish eye and neural crest development was analyzed by means of live imaging, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, immunostaining, detection of reactive oxygen species, and in situ hybridization. RESULTS Our studies demonstrated that foxd3-positive neural crest cells in the periocular mesenchyme and developing eye were less sensitive to ETOH than sox10-positive craniofacial neural crest cells that form the pharyngeal arches and jaw. ETOH increased apoptosis in the retina, but did not affect survival of periocular and ocular neural crest cells. ETOH also did not increase reactive oxygen species within the eye. In contrast, ETOH increased ventral neural crest apoptosis and reactive oxygen species production in the facial mesenchyme. In the eye and craniofacial region, sod2 showed high levels of expression in the anterior segment and in the setting of Sod2 knockdown, low levels of ETOH decreased migration of foxd3-positive neural crest cells into the developing eye. However, ETOH had minimal effect on the periocular and ocular expression of transcription factors (pitx2 and foxc1) that regulate anterior segment development. CONCLUSION Neural crest cells contributing to the anterior segment of the eye exhibit increased ability to withstand ETOH-induced oxidative stress and apoptosis. These studies explain the rarity of anterior segment dysgenesis despite the frequent craniofacial abnormalities in fetal alcohol syndrome. Birth Defects Research 109:1212-1227, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Eason
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Bahaar Chawla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Christian Apsey
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Bradford YM, Toro S, Ramachandran S, Ruzicka L, Howe DG, Eagle A, Kalita P, Martin R, Taylor Moxon SA, Schaper K, Westerfield M. Zebrafish Models of Human Disease: Gaining Insight into Human Disease at ZFIN. ILAR J 2017; 58:4-16. [PMID: 28838067 PMCID: PMC5886338 DOI: 10.1093/ilar/ilw040] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
The Zebrafish Model Organism Database (ZFIN; https://zfin.org) is the central resource for genetic, genomic, and phenotypic data for zebrafish (Danio rerio) research. ZFIN continuously assesses trends in zebrafish research, adding new data types and providing data repositories and tools that members of the research community can use to navigate data. The many research advantages and flexibility of manipulation of zebrafish have made them an increasingly attractive animal to model and study human disease.To facilitate disease-related research, ZFIN developed support to provide human disease information as well as annotation of zebrafish models of human disease. Human disease term pages at ZFIN provide information about disease names, synonyms, and references to other databases as well as a list of publications reporting studies of human diseases in which zebrafish were used. Zebrafish orthologs of human genes that are implicated in human disease etiology are routinely studied to provide an understanding of the molecular basis of disease. Therefore, a list of human genes involved in the disease with their corresponding zebrafish ortholog is displayed on the disease page, with links to additional information regarding the genes and existing mutations. Studying human disease often requires the use of models that recapitulate some or all of the pathologies observed in human diseases. Access to information regarding existing and published models can be critical, because they provide a tractable way to gain insight into the phenotypic outcomes of the disease. ZFIN annotates zebrafish models of human disease and supports retrieval of these published models by listing zebrafish models on the disease term page as well as by providing search interfaces and data download files to access the data. The improvements ZFIN has made to annotate, display, and search data related to human disease, especially zebrafish models for disease and disease-associated gene information, should be helpful to researchers and clinicians considering the use of zebrafish to study human disease.
Collapse
Affiliation(s)
- Yvonne M. Bradford
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sabrina Toro
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sridhar Ramachandran
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Leyla Ruzicka
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Douglas G. Howe
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Anne Eagle
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Patrick Kalita
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Ryan Martin
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sierra A. Taylor Moxon
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Kevin Schaper
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Monte Westerfield
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| |
Collapse
|