1
|
Muñoz B, Atwood BK. Alcohol consumption does not impact delta and kappa opioid receptor-mediated synaptic depression in dorsolateral striatum of adult male mice. Alcohol 2024; 119:89-95. [PMID: 38857678 PMCID: PMC11296933 DOI: 10.1016/j.alcohol.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Many drugs of abuse, including alcohol, disrupt long-term synaptic depression (LTD) at dorsal striatal glutamate synapses. This disruption is common to many forms of LTD that are mediated by G protein coupled receptors (GPCRs) that signal through the inhibitory Gi/o class of G proteins. A loss of LTD is thought to mediate behavioral changes associated with the development of substance use disorders. We have previously shown in multiple studies that LTD mediated by the Gi/o-coupled mu opioid receptor is disrupted by in vivo opioid and alcohol exposure in adolescent and adult mice. One of our previous studies suggested that LTD mediated by delta and kappa opioid receptors was resistant to the LTD-disrupting properties of in vivo opioid exposure. We hypothesized that delta and kappa opioid receptor-mediated LTD would be exceptions to the generalizable observation that forms of dorsal striatal Gi/o-coupled receptor LTD are disrupted by drugs of abuse. Specifically, we predicted that these forms of LTD would be resistant to the deleterious effects of alcohol consumption, just as they were resistant to opioid exposure. Indeed, in adult male mice that drank alcohol for 3 weeks, delta and kappa opioid receptor-mediated LTD at glutamatergic inputs to direct pathway and indirect pathway medium spiny neurons in the dorsolateral striatum was unaffected by alcohol. These data demonstrate that alcohol effects on GPCR-mediated LTD are not generalizable across all types of Gi/o-coupled GPCRs.
Collapse
Affiliation(s)
- Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Busceti CL, Di Menna L, Castaldi S, D'Errico G, Taddeucci A, Bruno V, Fornai F, Pittaluga A, Battaglia G, Nicoletti F. Adaptive Changes in Group 2 Metabotropic Glutamate Receptors Underlie the Deficit in Recognition Memory Induced by Methamphetamine in Mice. eNeuro 2024; 11:ENEURO.0523-23.2024. [PMID: 38969501 PMCID: PMC11298959 DOI: 10.1523/eneuro.0523-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Cognitive dysfunction is associated with methamphetamine use disorder (MUD). Here, we used genetic and pharmacological approaches to examine the involvement of either Group 2 metabotropic glutamate (mGlu2) or mGlu3 receptors in memory deficit induced by methamphetamine in mice. Methamphetamine treatment (1 mg/kg, i.p., once a day for 5 d followed by 7 d of withdrawal) caused an impaired performance in the novel object recognition test in wild-type mice, but not in mGlu2-/- or mGlu3-/- mice. Memory deficit in wild-type mice challenged with methamphetamine was corrected by systemic treatment with selectively negative allosteric modulators of mGlu2 or mGlu3 receptors (compounds VU6001966 and VU0650786, respectively). Methamphetamine treatment in wild-type mice caused large increases in levels of mGlu2/3 receptors, the Type 3 activator of G-protein signaling (AGS3), Rab3A, and the vesicular glutamate transporter, vGlut1, in the prefrontal cortex (PFC). Methamphetamine did not alter mGlu2/3-mediated inhibition of cAMP formation but abolished the ability of postsynaptic mGlu3 receptors to boost mGlu5 receptor-mediated inositol phospholipid hydrolysis in PFC slices. Remarkably, activation of presynaptic mGlu2/3 receptors did not inhibit but rather amplified depolarization-induced [3H]-D-aspartate release in synaptosomes prepared from the PFC of methamphetamine-treated mice. These findings demonstrate that exposure to methamphetamine causes changes in the expression and function of mGlu2 and mGlu3 receptors, which might alter excitatory synaptic transmission in the PFC and raise the attractive possibility that selective inhibitors of mGlu2 or mGlu3 receptors (or both) may be used to improve cognitive dysfunction in individuals affected by MUD.
Collapse
Affiliation(s)
| | - Luisa Di Menna
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
| | - Sonia Castaldi
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Giovanna D'Errico
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
| | - Alice Taddeucci
- Department of Pharmacy, University of Genova, Genova 16148, Italy
| | - Valeria Bruno
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Francesco Fornai
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genova, Genova 16148, Italy
- IRCCS Ospedale Policlinico San Martino, Genova 16145, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| |
Collapse
|
3
|
Brockway DF, Crowley NA. Emerging pharmacological targets for alcohol use disorder. Alcohol 2024; 121:103-114. [PMID: 39069210 DOI: 10.1016/j.alcohol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; however new technology in drug delivery and advancements in pharmacology have paved the way for discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer new options for the management of AUD, focusing on the potential of somatostatin (SST), vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), nociceptin (NOP), and neuropeptide S (NPS). These targets have been selected based on recent advancements in preclinical and clinical research, which suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for treating AUD and various related comorbidities. VIP neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for addressing alcohol exposure at various stages of development. GLP-1 interacts with the dopaminergic reward system and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. This review aims to synthesize the current understanding of these targets, highlighting their potential in developing more effective and personalized AUD therapies, and underscores the importance of continued research in identifying and validating novel targets for treatment of AUD and comorbid conditions.
Collapse
Affiliation(s)
- Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Yalniz Y, Yunusoğlu O, Berköz M, Demirel ME. Effects of fisetin on ethanol-induced rewarding properties in mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:75-83. [PMID: 38235981 DOI: 10.1080/00952990.2023.2292976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Background: Alcohol use disorder (AUD) is a chronic relapsing disorder associated with compulsive drinking of alcohol. Natural flavonoid fisetin affects a variety of transmitter systems relevant to AUD, such as aminobutyric acid, N-methyl-D-aspartate, and dopamine, as well as peroxisome proliferator-activated receptors.Objectives: This study investigated fisetin's impact on the motivational properties of ethanol using conditioned place preference (CPP) in mice (n = 50).Methods: Mice were conditioned with ethanol (2 g/kg, i.p.) or saline on alternating days for 8 consecutive days and were given intragastric (i.g.) fisetin (10, 20, or 30 mg/kg, i.g.), 45 min before ethanol conditioning. During extinction, physiological saline was injected to the control and ethanol groups, and fisetin was administered to the fisetin groups. To evaluate the effect of fisetin on the reinstatement of ethanol-induced CPP, fisetin was given 45 min before a priming dose of ethanol (0.4 g/kg, i.p.; reinstatement test day).Results: Fisetin decreased the acquisition of ethanol-induced CPP (30 mg/kg, p < .05) and accelerated extinction (20 and 30 mg/kg, p < .05). Furthermore, fisetin attenuated reinstatement of ethanol-induced CPP (30 mg/kg, p < .05).Conclusions: Fisetin appears to diminish the rewarding properties of ethanol, as indicated by its inhibitory effect and facilitation of extinction in ethanol-induced CPP. These findings imply a potential therapeutic application of fisetin in preventing ethanol-seeking behavior, promoting extinction, and reducing the risk of relapse.
Collapse
Affiliation(s)
- Yasin Yalniz
- Department of Pharmacology, Faculty of Medicine, Bolu Izzet Baysal University, Bolu, Turkey
| | - Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Bolu Izzet Baysal University, Bolu, Turkey
| | - Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yıl University, Van, Turkey
| | - Mustafa Enes Demirel
- Emergency Department, School of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
5
|
Nufer TM, Wu BJ, Boyce Z, Steffensen SC, Edwards JG. Ethanol blocks a novel form of iLTD, but not iLTP of inhibitory inputs to VTA GABA neurons. Neuropsychopharmacology 2023; 48:1396-1408. [PMID: 36899030 PMCID: PMC10354227 DOI: 10.1038/s41386-023-01554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
The ventral tegmental area (VTA) is an essential component of the mesocorticolimbic dopamine (DA) circuit that processes reward and motivated behaviors. The VTA contains DA neurons essential in this process, as well as GABAergic inhibitory cells that regulate DA cell activity. In response to drug exposure, synaptic connections of the VTA circuit can be rewired via synaptic plasticity-a phenomenon thought to be responsible for the pathology of drug dependence. While synaptic plasticity to VTA DA neurons as well as prefrontal cortex to nucleus accumbens GABA neurons are well studied, VTA GABA cell plasticity, specifically inhibitory inputs to VTA GABA neurons, is less understood. Therefore, we investigated the plasticity of these inhibitory inputs. Using whole cell electrophysiology in GAD67-GFP mice to identify GABA cells, we observed that these VTA GABA cells experience either inhibitory GABAergic long-term potentiation (iLTP) or inhibitory long-term depression (iLTD) in response to a 5 Hz stimulus. Paired pulse ratios, coefficient of variance, and failure rates suggest a presynaptic mechanism for both plasticity types, where iLTP is NMDA receptor-dependent and iLTD is GABAB receptor-dependent-this being the first report of iLTD onto VTA GABA cells. As illicit drug exposure can alter VTA plasticity, we employed chronic intermittent exposure (CIE) to ethanol (EtOH) vapor in male and female mice to examine its potential impact on VTA GABA input plasticity. Chronic EtOH vapor exposure produced measurable behavioral changes illustrating dependence and concomitantly prevented previously observed iLTD, which continued in air-exposed controls, illustrating the impact of EtOH on VTA neurocircuitry and suggesting physiologic mechanisms at play in alcohol use disorder and withdrawal states. Taken together, these novel findings of unique GABAergic synapses exhibiting either iLTP or iLTD within the mesolimbic circuit, and EtOH blockade specifically of iLTD, characterize inhibitory VTA plasticity as a malleable, experience-dependent system modified by EtOH.
Collapse
Affiliation(s)
- Teresa M Nufer
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | - Bridget J Wu
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA
| | - Zachary Boyce
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | | | - Jeffrey G Edwards
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA.
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA.
| |
Collapse
|
6
|
Matthews DB, Rossmann G. Using animal models to identify clinical risk factors in the older population due to alcohol use and misuse. Alcohol 2023; 107:38-43. [PMID: 35659578 DOI: 10.1016/j.alcohol.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023]
Abstract
The number of people over the age of 65 years old is increasing and understanding health risks associated with the aged population is important. Recent research has revealed that alcohol (ethanol) consumption levels in older demographics remains elevated and often occurs in a dangerous binge pattern. Given ethical constraints on investigating high level or binge pattern alcohol consumption in humans, animal models are often used to study the effects of ethanol. The current review highlights ongoing work revealing that aged rats are often more sensitive to the effects of acute ethanol compared to younger rats. Specifically, aged rats are more sensitive to the motor impairing, hypnotic, hypothermic, and often the cognitive effects of ethanol compared to younger rats. In addition, the development of ethanol tolerance following chronic exposure may have a different temporal pattern in aged rats compared to younger rats. However, the neurobiological mechanisms that cause the increased sensitivity to ethanol in aged animals have yet to be identified. Furthermore, the differential age effects of ethanol highlight clinical risk factors for alcohol misuse in the older human population. Future work is needed to determine underlying CNS mechanisms producing altered effects of ethanol in aged subjects and also the development of educational material concerning ethanol's effects across ages for health care providers working with the aged population.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin, Eau Claire, WI 54701, United States.
| | - Gillian Rossmann
- Department of Psychology, University of Wisconsin, Eau Claire, WI 54701, United States
| |
Collapse
|
7
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. The present chapter is an update of our previous Lovinger and Roberto (Curr Top Behav Neurosci 13:31-86, 2013) chapter and reviews the literature describing these acute and chronic synaptic effects of EtOH with a focus on adult animals and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Rockville, MD, USA
| | - Marisa Roberto
- Molecular Medicine Department, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
8
|
Guo Y, Yan M, Li L, Zhao L, Li Y. Treadmill Exercise Prevents Cognitive Impairments in Adolescent Intermittent Ethanol Rats by Reducing the Excessive Activation of Microglia Cell in the Hippocampus. Int J Mol Sci 2022; 23:ijms232314701. [PMID: 36499029 PMCID: PMC9740642 DOI: 10.3390/ijms232314701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The excessive activation of microglia cell induced by adolescent intermittent ethanol (AIE) leads to neuroinflammation in the hippocampus. The endocannabinoid system plays a key role in the modulation of microglia activation. Accumulating evidence suggests that regular exercise improves learning and memory deficits in AIE models. The purpose of this study was to explore the effects of treadmill exercise intervention on the cognitive performance, activation of microglia cells and the expression of monoacylglycerol lipase (MAGL), cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R) in the hippocampus of AIE rats. Here, we show that AIE rats exhibited cognitive impairments, whereas the treadmill exercise improves the cognitive performance in AIE rats. In order to explore the possible mechanisms for the exercise-induced attenuation of cognitive disorder, we examined the neuroinflammation in the hippocampus. We found that treadmill exercise led to the decrease in the level of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and the increase in the level of anti-inflammatory cytokine (IL-10). In addition, we found that treadmill exercise reduced the excessive activation of the microglia cell in the hippocampus of AIE rats. Finally, we found that AIE led to a decrease in the expression of CB1R and CB2R in the hippocampus; however, the treadmill exercise further decreased the expression of CB2R in the hippocampus of AIE rats. Our results suggest that treadmill exercise attenuates AIE-induced neuroinflammation and the excessive activation of hippocampus microglial cells, which may contribute to the exercise-induced improvement of cognitive performance in AIE rats.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Min Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
9
|
Haggerty DL, Munoz B, Pennington T, Viana Di Prisco G, Grecco GG, Atwood BK. The role of anterior insular cortex inputs to dorsolateral striatum in binge alcohol drinking. eLife 2022; 11:e77411. [PMID: 36098397 PMCID: PMC9470166 DOI: 10.7554/elife.77411] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
How does binge drinking alcohol change synaptic function, and do these changes maintain binge consumption? The anterior insular cortex (AIC) and dorsolateral striatum (DLS) are brain regions implicated in alcohol use disorder. In male, but not female mice, we found that binge drinking alcohol produced glutamatergic synaptic adaptations selective to AIC inputs within the DLS. Photoexciting AIC→DLS circuitry in male mice during binge drinking decreased alcohol, but not water consumption and altered alcohol drinking mechanics. Further, drinking mechanics alone from drinking session data predicted alcohol-related circuit changes. AIC→DLS manipulation did not alter operant, valence, or anxiety-related behaviors. These findings suggest that alcohol-mediated changes at AIC inputs govern behavioral sequences that maintain binge drinking and may serve as a circuit-based biomarker for the development of alcohol use disorder.
Collapse
Affiliation(s)
- David L Haggerty
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Braulio Munoz
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Taylor Pennington
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Gonzalo Viana Di Prisco
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Gregory G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Medical Scientist Training Program, Indiana University School of MedicineIndianapolisUnited States
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| |
Collapse
|
10
|
Shipman ML, Corbit LH. Diet-induced deficits in goal-directed control are rescued by agonism of group II metabotropic glutamate receptors in the dorsomedial striatum. Transl Psychiatry 2022; 12:42. [PMID: 35091538 PMCID: PMC8799694 DOI: 10.1038/s41398-022-01807-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Many overweight or obese people struggle to sustain the behavioural changes necessary to achieve and maintain weight loss. In rodents, obesogenic diet can disrupt goal-directed control of responding for food reinforcers, which may indicate that diet can disrupt brain regions associated with behavioural control. We investigated a potential glutamatergic mechanism to return goal-directed control to rats who had been given an obesogenic diet prior to operant training. We found that an obesogenic diet reduced goal-directed control and that systemic injection of LY379268, a Group II metabotropic glutamate receptor (mGluR2/3) agonist, returned goal-directed responding in these rats. Further, we found that direct infusion of LY379268 into the dorsomedial striatum, a region associated with goal-directed control, also restored goal-directed responding in the obesogenic-diet group. This indicates that one mechanism through which obesogenic diet disrupts goal-directed control is glutamatergic, and infusion of a mGluR2/3 agonist into the DMS is sufficient to ameliorate deficits in goal-directed control.
Collapse
Affiliation(s)
- Megan L Shipman
- University of Toronto Department of Psychology, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laura H Corbit
- University of Toronto Department of Psychology, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
11
|
Towner TT, Spear LP. Rats exposed to intermittent ethanol during late adolescence exhibit enhanced habitual behavior following reward devaluation. Alcohol 2021; 91:11-20. [PMID: 33031883 DOI: 10.1016/j.alcohol.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
The brain undergoes substantial maturation during adolescence, and repeated exposure to ethanol at this time has been shown to result in long-lasting behavioral and neural consequences. During the broad period of adolescence, different neuronal populations and circuits are refined between early and late adolescence, suggesting the possibility that ethanol exposure at these differing times may lead to differential outcomes. The goal of the current study was to evaluate the impact of adolescent intermittent ethanol (AIE) during early and late adolescence on the formation of goal-directed and habitual behavior in adulthood. Male and female Sprague-Dawley rats were exposed to ethanol via intragastric gavage (4.0 g/kg, 25% v/v) every other day from postnatal day (P) 25-45 or P45-65, considered early and late adolescence, respectively. In adulthood (~P70 early or ~ P90 late), rats were gradually food-restricted and began operant training on a fixed ratio 1 schedule. Rats were then transitioned onto random interval schedules and eventually underwent a sensory-specific satiation procedure as a model of reward devaluation. Few differences as a result of adolescent ethanol exposure were found during instrumental training. Following reward devaluation, rats exposed to water and ethanol during early adolescence exhibited reductions in lever pressing, suggestive of a goal-directed response pattern. In contrast, late AIE males and females demonstrated persistent responding following both devalued and non-devalued trials, findings representative of a habitual behavior pattern. The shifts from goal-directed to habitual behavior noted only following late AIE contribute to the growing literature identifying specific behavioral consequences as a result of ethanol exposure during distinct developmental periods within adolescence. More work is needed to determine whether the greater habit formation following late AIE is also associated with elevated habitual ethanol consumption.
Collapse
Affiliation(s)
- Trevor Theodore Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, United States.
| | - Linda Patia Spear
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, United States
| |
Collapse
|
12
|
Zhang D, Dong X, Liu X, Ye L, Li S, Zhu R, Ye Y, Jiang Y. Proteomic Analysis of Brain Regions Reveals Brain Regional Differences and the Involvement of Multiple Keratins in Chronic Alcohol Neurotoxicity. Alcohol Alcohol 2020; 55:147-156. [PMID: 32047899 DOI: 10.1093/alcalc/agaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS Alcohol abuse has attracted public attention and chronic alcohol exposure can result in irreversible structural changes in the brain. The molecular mechanisms underlying alcohol neurotoxicity are complex, mandating comprehensive mining of spatial protein expression profile. METHODS In this study, mice models of chronic alcohol intoxication were established after 95% alcohol vapor administration for 30 consecutive days. On Day 30, striatum (the dorsal and ventral striatum) and hippocampus, the two major brain regions responsible for learning and memorizing while being sensitive to alcohol toxicity, were collected. After that, isobaric tags for relative and absolute quantitation -based quantitative proteomic analysis were carried out for further exploration of the novel mechanisms underlying alcohol neurotoxicity. RESULTS Proteomic results showed that in the striatum, 29 proteins were significantly up-regulated and 17 proteins were significantly down-regulated. In the hippocampus, 72 proteins were significantly up-regulated, while 2 proteins were significantly down-regulated. Analysis of the overlay proteins revealed that a total of 102 proteins were consistently altered (P < 0.05) in both hippocampus and striatum regions, including multiple keratins such as Krt6a, Krt17 and Krt5. Ingenuity pathway analysis revealed that previously reported diseases/biofunctions such as dermatological diseases and developmental disorders were enriched in those proteins. Interestingly, the glucocorticoid receptor (GR) signaling was among the top enriched pathways in both brain regions, while multiple keratins from the GR signaling such as Krt1 and Krt17 exhibited significantly opposite expression patterns in the two brain nuclei. Moreover, there are several other involved pathways significantly differed between the hippocampus and striatum. CONCLUSIONS Our data revealed brain regional differences upon alcohol consumption and indicated the critical involvement of keratins from GR signaling in alcohol neurotoxicity. The differences in proteomic results between the striatum and hippocampus suggested a necessity of taking into consideration brain regional differences and intertwined signaling pathways rather than merely focusing on single nuclei or molecule during the study of drug-induced neurotoxicity in the future.
Collapse
Affiliation(s)
- Dingang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaochen Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rongzhe Zhu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghong Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Pharmacological activation of CB2 receptor protects against ethanol-induced myocardial injury related to RIP1/RIP3/MLKL-mediated necroptosis. Mol Cell Biochem 2020; 474:1-14. [PMID: 32681290 DOI: 10.1007/s11010-020-03828-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Chronic ethanol abuse can lead to harmful consequences for the heart, resulting in systolic dysfunction, variability in the heart rate, arrhythmia, and cardiac remodelling. However, the precise molecular mechanism responsible for ethanol-induced cardiomyopathy is poorly understood. In this regard, the present study aimed to describe the RIP1/RIP3/MLKL-mediated necroptotic cell death that may be involved in ethanol-induced cardiomyopathy and characterize CBR-mediated effects on the signalling pathway and myocardial injury. We performed an ethanol vapour administration experiment to analyse the effects of ethanol on cardiac structure and function in male C57BL/6J mice. Ethanol induced a significant decline in the cardiac structure and function, as evidenced by a decline in ejection fraction and fractional shortening, and an increase in serum Creatine Kinase levels, myocardial collagen content, and inflammatory reaction. Furthermore, ethanol also upregulated the expression levels of necroptosis-related markers such as p-RIP1, p-RIP3, and p-MLKL in the myocardium. Nec-1 treatment exerted significant cardioprotective effects by salvaging the heart tissue, improving the cardiac function, and mitigating inflammation and necroptosis. In addition, ethanol abuse caused an imbalance in the endocannabinoid system and regulated two cannabinoid receptors (CB1R and CB2R) in the myocardium. Treatment with selective CB2R agonists, JWH-133 or AM1241, markedly improved the cardiac dysfunction and reduced the ethanol-induced necroptosis in the myocardium. Altogether, our data provide evidence that ethanol abuse-induced cardiotoxicity can possibly be attributed to the RIP1/RIP3/MLKL-mediated necroptosis. Moreover, pharmacological activation of CB2R may represent a new cardioprotective strategy against ethanol-induced cardiotoxicity.
Collapse
|
14
|
Synapse-specific expression of mu opioid receptor long-term depression in the dorsomedial striatum. Sci Rep 2020; 10:7234. [PMID: 32350330 PMCID: PMC7190836 DOI: 10.1038/s41598-020-64203-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
The dorsal striatum is a brain region involved in action control, with dorsomedial striatum (DMS) mediating goal-directed actions and dorsolateral striatum (DLS) mediating habitual actions. Presynaptic long-term synaptic depression (LTD) plasticity at glutamatergic inputs to dorsal striatum mediates many dorsal striatum-dependent behaviors and disruption of LTD influences action control. Our previous work identified mu opioid receptors (MORs) as mediators of synapse-specific forms of synaptic depression at a number of different DLS synapses. We demonstrated that anterior insular cortex inputs are the sole inputs that express alcohol-sensitive MOR-mediated LTD (mOP-LTD) in DLS. Here, we explore mOP-LTD in DMS using mouse brain slice electrophysiology. We found that contrary to DLS, DMS mOP-LTD is induced by activation of MORs at inputs from both anterior cingulate and medial prefrontal cortices as well as at basolateral amygdala inputs and striatal cholinergic interneuron synapses on to DMS medium spiny neurons, suggesting that MOR synaptic plasticity in DMS is less synapse-specific than in DLS. Furthermore, only mOP-LTD at cortical inputs was sensitive to alcohol's deleterious effects. These results suggest that alcohol-induced neuroadaptations are differentially expressed in a synapse-specific manner and could be playing a role in alterations of goal-directed and habitual behaviors.
Collapse
|
15
|
Johnson KA, Lovinger DM. Allosteric modulation of metabotropic glutamate receptors in alcohol use disorder: Insights from preclinical investigations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:193-232. [PMID: 32416868 DOI: 10.1016/bs.apha.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are family C G protein-coupled receptors (GPCRs) that modulate neuronal excitability and synaptic transmission throughout the nervous system. Owing to recent advances in development of subtype-selective allosteric modulators of mGlu receptors, individual members of the mGlu receptor family have been proposed as targets for treating a variety of neurological and psychiatric disorders, including substance use disorders. In this chapter, we highlight preclinical evidence that allosteric modulators of mGlu receptors could be useful for reducing alcohol consumption and preventing relapse in alcohol use disorder (AUD). We begin with an overview of the preclinical models that are used to study mGlu receptor involvement in alcohol-related behaviors. Alcohol exposure causes adaptations in both expression and function of various mGlu receptor subtypes, and pharmacotherapies aimed at reversing these adaptations have the potential to reduce alcohol consumption and seeking. Positive allosteric modulators (PAMs) of mGlu2 and negative allosteric modulators of mGlu5 show particular promise for reducing alcohol intake and/or preventing relapse. Finally, this chapter discusses important considerations for translating preclinical findings toward the development of clinically useful drugs, including the potential for PAMs to avoid tolerance issues that are frequently observed with repeated administration of GPCR agonists.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, United States
| |
Collapse
|