1
|
Zhang ZX, Xu YS, Li ZJ, Xu LW, Ma W, Li YF, Guo DS, Sun XM, Huang H. Turning waste into treasure: A new direction for low-cost production of lipid chemicals from Thraustochytrids. Biotechnol Adv 2024; 73:108354. [PMID: 38588906 DOI: 10.1016/j.biotechadv.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Thraustochytrids are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with Thraustochytrids fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of Thraustochytrids in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of Thraustochytrids in converting waste into treasure, providing precise cost reduction strategies for future commercial production.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Feng Li
- Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Jia L, Li T, Wang R, Ma M, Yang Z. Enhancing docosahexaenoic acid production from Schizochytrium sp. by using waste Pichia pastoris as nitrogen source based on two-stage feeding control. BIORESOURCE TECHNOLOGY 2024; 403:130891. [PMID: 38788808 DOI: 10.1016/j.biortech.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
To reduce the cost of docosahexaenoic acid (DHA) production from Schizochytrium sp., the waste Pichia pastoris was successfully used as an alternative nitrogen source to achieve high-density cultivation during the cell growth phase. However, due to the high oxygen consumption feature when implementing high-density cultivation, the control of both the nitrogen source and dissolved oxygen concentration (DO) at each sufficient level was impossible; thus, two realistic control strategies, including "DO sufficiency-nitrogen limitation" and "DO limitation-nitrogen sufficiency", were proposed. When using the strategy of "DO sufficiency-nitrogen limitation", the lowest maintenance coefficient of glucose (12.3 mg/g/h vs. 17.0 mg/g/h) and the highest activities of related enzymes in DHA biosynthetic routes were simultaneously obtained; thus, a maximum DHA concentration of 12.8 ± 1.2 g/L was achieved, which was 1.58-fold greater than that of the control group. Overall, two-stage feeding control for alternative nitrogen sources is an efficient strategy to industrial DHA fermentation.
Collapse
Affiliation(s)
- Luqiang Jia
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| | - Tianyi Li
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Ruoyu Wang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Mengyao Ma
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| |
Collapse
|
3
|
Mariam I, Krikigianni E, Rantzos C, Bettiga M, Christakopoulos P, Rova U, Matsakas L, Patel A. Transcriptomics aids in uncovering the metabolic shifts and molecular machinery of Schizochytrium limacinum during biotransformation of hydrophobic substrates to docosahexaenoic acid. Microb Cell Fact 2024; 23:97. [PMID: 38561811 PMCID: PMC10983653 DOI: 10.1186/s12934-024-02381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Biotransformation of waste oil into value-added nutraceuticals provides a sustainable strategy. Thraustochytrids are heterotrophic marine protists and promising producers of omega (ω) fatty acids. Although the metabolic routes for the assimilation of hydrophilic carbon substrates such as glucose are known for these microbes, the mechanisms employed for the conversion of hydrophobic substrates are not well established. Here, thraustochytrid Schizochytrium limacinum SR21 was investigated for its ability to convert oils (commercial oils with varying fatty acid composition and waste cooking oil) into ω-3 fatty acid; docosahexaenoic acid (DHA). RESULTS Within 72 h SR21 consumed ~ 90% of the oils resulting in enhanced biomass (7.5 g L- 1) which was 2-fold higher as compared to glucose. Statistical analysis highlights C16 fatty acids as important precursors of DHA biosynthesis. Transcriptomic data indicated the upregulation of multiple lipases, predicted to possess signal peptides for secretory, membrane-anchored and cytoplasmic localization. Additionally, transcripts encoding for mitochondrial and peroxisomal β-oxidation along with acyl-carnitine transporters were abundant for oil substrates that allowed complete degradation of fatty acids to acetyl CoA. Further, low levels of oxidative biomarkers (H2O2, malondialdehyde) and antioxidants were determined for hydrophobic substrates, suggesting that SR21 efficiently mitigates the metabolic load and diverts the acetyl CoA towards energy generation and DHA accumulation. CONCLUSIONS The findings of this study contribute to uncovering the route of assimilation of oil substrates by SR21. The thraustochytrid employs an intricate crosstalk among the extracellular and intracellular molecular machinery favoring energy generation. The conversion of hydrophobic substrates to DHA can be further improved using synthetic biology tools, thereby providing a unique platform for the sustainable recycling of waste oil substrates.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Eleni Krikigianni
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Chloe Rantzos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
- Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.
| |
Collapse
|
4
|
Zhang N, Deng C, Hong T, Ren J, Zhang Y, Li F, Dong Z, Hu Z, Huang X, Li C. Transcriptome Analysis Revealed the Advantages of Room Temperature Preservation of Concentrated Oocystis borgei Cultures for Use in Aquaculture. Int J Mol Sci 2023; 24:16225. [PMID: 38003417 PMCID: PMC10671278 DOI: 10.3390/ijms242216225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Oocystis borgei, a microalgae species employed for regulating the quality of aquaculture water, demonstrates the capacity to adsorb noxious substances, curtail the growth of detrimental bacteria, and outcompete blooming cyanobacteria. It can be concentrated by natural sedimentation and stored at room temperature, making it costless and simple to transport and use. To study the mechanism of adaptation to room temperature preservation, O. borgei was concentrated (1.19 × 107-1.21 × 107 cell/mL) and stored for 50 days at low (5 °C, LT), normal (25 °C, NT), and high (35 °C, HT) temperatures, respectively. Polysaccharide content, lipid content, cell survival, and resuscitation were evaluated. RNA-Seq was also used to examine how concentrated O. borgei responded to temperature. During storage, there was an increase in polysaccharide content and a decrease in lipid content, with both being significantly upregulated in the LT and HT groups. Survival and cell density were highest in the NT group. The RNA-Seq analysis revealed extensive differences in transcript levels. ATP synthesis was inhibited in the LT group due to the reduced expression of PsaD, PsaE, PsaF, PsaK, and PsaL. Under HT, the formation of reactive oxygen species (ROS) was facilitated by low levels of redox-related genes (nirA) and high levels of oxidative genes (gdhA, glna, and glts). The findings suggest that storing concentrated O. borgei at room temperature is optimal for microalgae preservation, enhancing theoretical research in this field. Our study provides further theoretical and practical support for the development of O. borgei as a live ecological preparation for aquaculture microalgae ecology management.
Collapse
Affiliation(s)
- Ning Zhang
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| | - Chengcheng Deng
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| | - Ting Hong
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| | - Jiajia Ren
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| | - Yulei Zhang
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| | - Feng Li
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| | - Zhongdian Dong
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhangxi Hu
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| | - Xianghu Huang
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| | - Changling Li
- Lab of Algae Resource Development and Aquaculture Environment Ecological Restoration, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (N.Z.); (C.D.); (T.H.); (J.R.); (Y.Z.); (F.L.); (Z.D.); (Z.H.); (X.H.)
| |
Collapse
|
5
|
Ma W, Zhang Z, Yang W, Huang P, Gu Y, Sun X, Huang H. Enhanced docosahexaenoic acid production from cane molasses by engineered and adaptively evolved Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023; 376:128833. [PMID: 36889604 DOI: 10.1016/j.biortech.2023.128833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Cane molasses (CM) is a sugar-rich agro-industrial byproduct. The purpose of this study is to synthesize docosahexaenoic acid (DHA) in Schizochytrium sp. by using CM. The single factor analysis showed that sucrose utilization was the main factor limiting the utilization of CM. Therefore, the endogenous sucrose hydrolase (SH) was overexpressed in Schizochytrium sp., which enhanced the sucrose utilization rate 2.57-fold compared to the wild type. Furthermore, adaptive laboratory evolution was used to further improve sucrose utilization from CM. Comparative proteomics and RT-qPCR were used out to analyze the metabolic differences of evolved strain grown on CM and glucose, respectively. Finally, a constant flow rate CM feeding strategy was implemented, whereby the DHA titer and lipid yield of the final strain OSH-end reached 25.26 g/L and 0.229 g/g sugar, respectively. This study demonstrated the CM is a cost-effective carbon source for industrial DHA fermentation.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China; College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Ziyi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Wenqian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Pengwei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China; College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, China
| |
Collapse
|
6
|
Prabhakaran P, Raethong N, Thananusak R, Nazir MYM, Sapkaew C, Soommat P, Kingkaw A, Hamid AA, Vongsangnak W, Song Y. Revealing holistic metabolic responses associated with lipid and docosahexaenoic acid (DHA) production in Aurantiochytrium sp. SW1. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159306. [PMID: 36907245 DOI: 10.1016/j.bbalip.2023.159306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Aurantiochytrium sp. SW1, a marine thraustochytrid, has been regarded as a potential candidate as a docosahexaenoic acid (DHA) producer. Even though the genomics of Aurantiochytrium sp. are available, the metabolic responses at a systems level are largely unknown. Therefore, this study aimed to investigate the global metabolic responses to DHA production in Aurantiochytrium sp. through transcriptome and genome-scale network-driven analysis. Of a total of 13,505 genes, 2527 differentially expressed genes (DEGs) were identified in Aurantiochytrium sp., unravelling the transcriptional regulations behinds lipid and DHA accumulation. The highest number of DEG were found for pairwise comparison between growth phase and lipid accumulating phase where a total of 1435 genes were down-regulated with 869 genes being up-regulated. These uncovered several metabolic pathways that contributing in DHA and lipid accumulation including amino acid and acetate metabolism which involve in the generation of crucial precursors. Upon applying network-driven analysis, hydrogen sulphide was found as potential reporter metabolite that could be associated with the genes related to acetyl-CoA synthesis for DHA production. Our findings suggest that the transcriptional regulation of these pathways is a ubiquitous feature in response to specific cultivation phases during DHA overproduction in Aurantiochytrium sp. SW1.
Collapse
Affiliation(s)
- Pranesha Prabhakaran
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Mohamed Yusuf Mohamed Nazir
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Department of Food Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, UKM, Bangi, Malaysia
| | - Chakkapan Sapkaew
- Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Panyawarin Soommat
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Genetic Engineering and Bioinformatic Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Aidil Abdul Hamid
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Malaysia.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| | - Yuanda Song
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China.
| |
Collapse
|
7
|
Rau EM, Aasen IM, Bartosova Z, Bruheim P, Ertesvåg H. Utilizing lipidomics and fatty acid synthase inhibitors to explore lipid accumulation in two thraustochytrid species. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Kumar A, Baldia A, Rajput D, Kateriya S, Babu V, Dubey KK. Multiomics and optobiotechnological approaches for the development of microalgal strain for production of aviation biofuel and biorefinery. BIORESOURCE TECHNOLOGY 2023; 369:128457. [PMID: 36503094 DOI: 10.1016/j.biortech.2022.128457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.
Collapse
Affiliation(s)
- Akshay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vikash Babu
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kashyap Kumar Dubey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Ma W, Liu M, Zhang Z, Xu Y, Huang P, Guo D, Sun X, Huang H. Efficient co-production of EPA and DHA by Schizochytrium sp. via regulation of the polyketide synthase pathway. Commun Biol 2022; 5:1356. [PMID: 36494568 PMCID: PMC9734096 DOI: 10.1038/s42003-022-04334-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Presently, the supply of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) traditionally produced by marine fisheries will be insufficient to meet their market demand in food industry. Thus a sustainable alternative source is urgently required. Schizochytrium sp. is an ideal producer of DHA; however, its ability to co-produce DHA and EPA has not yet been proved. Herein, we first described a cobalamin-independent methionine synthase-like (MetE-like) complex, which contains independent acyltransferase and 3-ketoacyl synthase domains, independent of the traditional polyketide synthase (PKS) system. When the MetE-like complex was activated, the EPA content was increased from 1.26% to 7.63%, which is 6.06-folds higher than that in the inactivated condition. Through lipidomics, we find that EPA is more inclined to be stored as triglyceride. Finally, the EPA production was enhanced from 4.19 to 29.83 (mg/g cell dry weight) using mixed carbon sources, and the final yield reached 2.25 g/L EPA and 9.59 g/L DHA, which means that Schizochytrium sp. has great market potential for co-production of EPA and DHA.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Mengzhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Yingshuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Pengwei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, China.
| |
Collapse
|
10
|
Chen Z, Li Q, Zhou P, Li B, Zhao Z. Transcriptome sequencing reveals key metabolic pathways for the synthesis of L-serine from glycerol and glucose in Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Zhang M, Gao Y, Yu C, Wang J, Weng K, Li Q, He Y, Guo Z, Zhang H, Huang J, Li L. Transcriptome analysis of malate-induced Schizochytrium sp. FJU-512 reveals a novel pathway for biosynthesis of docosahexaenoic acid with enhanced expression of genes responsible for acetyl-CoA and NADPH accumulation. Front Microbiol 2022; 13:1006138. [PMID: 36299719 PMCID: PMC9589357 DOI: 10.3389/fmicb.2022.1006138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Schizochytrium is one of the few oleaginous microalgae that produce docosahexaenoic acid (DHA)-rich lipids. In this study, global changes in gene expression levels of Schizochytrium sp. FJU-512 cultured with malate in a 15 l-bioreactor was analyzed using comparative transcriptomics. The changes were found mainly in the genes involved in oxidative phosphorylation, β-oxidation, and pentose phosphate pathways. Consequently, the global changes in genes associated with the pathways could lead to an increase in the influx throughputs of pyruvate, branched-chain amino acids, fatty acids, and vitamin B6. Our transcriptome analysis indicated pyruvate dehydrogenase E2 component and acetolactate synthase I/II/III large subunit as major contributors to acetyl-CoA biosynthesis, whereas glucose-6-phosphate dehydrogenase was indicated as the major contributor to the biosynthesis of NADPH. An increase in DHA titer of up to 22% was achieved with the addition of malate to the fed-batch culture of Schizochytrium sp. FJU-512. This study provides an alternate method to enhance DHA production in Schizochytrium sp. FJU-512 through malate induced upregulation of genes responsible for acetyl-CoA and NADPH biosynthesis.
Collapse
Affiliation(s)
- Mingliang Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - YangLe Gao
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Cui Yu
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jun Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Kexin Weng
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Yongjin He
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Huaidong Zhang,
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Li Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Li Li,
| |
Collapse
|
12
|
Chen L, Liu X, Li C, Li H, Chen W, Li D. Transcriptome analyses reveal the DHA enhancement mechanism in Schizochytrium limacinum LD11 mutant. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Teh KY, Loh SH, Aziz A, Takahashi K, Toda T, Wahid MEA, Cha TS. Transcriptome analysis of mangrove-isolated Chlorella vulgaris UMT-M1 reveals insights for vigorous growth and lipid accumulation through reduced salinity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
14
|
Bao Z, Zhu Y, Zhang K, Feng Y, Zhang M, Li R, Yu L. New insights into phenotypic heterogeneity for the distinct lipid accumulation of Schizochytrium sp. H016. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:33. [PMID: 35337369 PMCID: PMC8957170 DOI: 10.1186/s13068-022-02126-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Schizochytrium sp. is a marine heterotrophic protist and an important sustainable resource for high value-added docosahexaenoic acid in the future. The production of different phenotypes during the continuous subculture of Schizochytrium sp. results in a serious reduction in lipid yield and complicates the used of this strain in scientific research and industrial production. Hence, obtaining an improved understanding of the phenotypic differences and molecular mechanisms underlying the cell-to-cell heterogeneity of Schizochytrium sp. is necessary. RESULTS After continuous culture passage, Schizochytrium sp. H016 differentiated into two subpopulations with different morphologies and showed decreased capacity for lipid production. The presence of cell subpopulations with degraded lipid droplets led to a substantial decrease in overall lipid yield. Here, a rapid screening strategy based on fluorescence-activated cell sorting was proposed to classify and isolate subpopulations quickly in accordance with their lipid-producing capability. The final biomass and lipid yield of the subpopulation with high cell lipid content (i.e., H016-H) were 38.83 and 17.22 g/L, respectively, which were 2.07- and 5.38-fold higher than those of the subpopulation with low lipid content (i.e., H016-L), respectively. Subsequently, time‑resolved transcriptome analysis was performed to elucidate the mechanism of phenotypic heterogeneity in different subpopulations. Results showed that the expression of genes related to the cell cycle and lipid degradation was significantly upregulated in H016-L, whereas the metabolic pathways related to fatty acid synthesis and glyceride accumulation were remarkably upregulated in H016-H. CONCLUSION This study innovatively used flow cytometry combined with transcriptome technology to provide new insights into the phenotypic heterogeneity of different cell subpopulations of Schizochytrium sp. Furthermore, these results lay a strong foundation for guiding the breeding of oleaginous microorganisms with high lipid contents.
Collapse
Affiliation(s)
- Zhendong Bao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Kai Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Yumei Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Ruili Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China. .,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China. .,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China.
| |
Collapse
|
15
|
Zhang H, Zhao X, Zhao C, Zhang J, Liu Y, Yao M, Liu J. Effects of glycerol and glucose on docosahexaenoic acid synthesis in Aurantiochyrium limacinum SFD-1502 by transcriptome analysis. Prep Biochem Biotechnol 2022; 53:81-92. [PMID: 35289738 DOI: 10.1080/10826068.2022.2042820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Docosahexaenoic acid (DHA) has numerous functions in adjusting the organic health and pragmatic value in medicine and food field. In this study, we compared glycerol and glucose as the only carbon source for DHA production by Aurantiochytrium. When the glycerol concentration was 120 g/L, the maximum DHA yield was 11.08 g/L, and the DHA yield increased significantly, reaching 47.67% of the total lipid content. When the cells grew in glucose, the DHA proportion was 37.39%. Transcriptome data showed that the glycolysis pathway and tricarboxylic acid cycle in Aurantiochytrium were significantly inhibited during glycerol culture, which promoted the tricarboxylic acid transport system and was conducive to the synthesis of fatty acids by acetyl coenzyme A; glucose as substrate activated fatty acid synthesis (FAS)pathway and produced more saturated fatty acids, while glycerol as substrate activated polyketide synthase (PKS)pathway and produced more long-chain polyunsaturated fatty acids. This laid a foundation for fermentation metabolism regulation and molecular transformation.
Collapse
Affiliation(s)
- Huaqiu Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Xiangying Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Jiaxiang Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Mingjing Yao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Jianjun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
16
|
Bao Z, Zhu Y, Feng Y, Zhang K, Zhang M, Wang Z, Yu L. Enhancement of lipid accumulation and docosahexaenoic acid synthesis in Schizochytrium sp. H016 by exogenous supplementation of sesamol. BIORESOURCE TECHNOLOGY 2022; 345:126527. [PMID: 34896539 DOI: 10.1016/j.biortech.2021.126527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Schizochytrium sp. is one of the most promising marine oleaginous microorganisms for industrial production of docosahexaenoic acid (DHA). In this study, the exogenous supplementation of 1 mM sesamol to the fermentation medium effectively prevented the peroxidation of polyunsaturated fatty acids in the fermentation process, which thereby significantly increasing the lipid and DHA yield by 53.52% and 78.30%, respectively. The addition of sesamol also increased the total antioxidant capacity of cells and induce the gene expression of polyketide synthase and antioxidant enzyme system. Moreover, the supply of nicotinamide adenine dinucleotide phosphate was regulated by sesamol by inhibiting the malic enzyme activity and promoting the glucose-6-phosphate dehydrogenase activity. Finally, fed-batch fermentation showed that the addition of sesamol significantly enhanced the DHA yield by 90.76%. This study provides an important reference for enhancing the DHA productivity of Schizochytrium sp. in industrial fermentation.
Collapse
Affiliation(s)
- Zhendong Bao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yumei Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Kai Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Zhikuan Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China.
| |
Collapse
|
17
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
18
|
Li Z, Meng T, Hang W, Cao X, Ni H, Shi Y, Li Q, Xiong Y, He N. Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Bao Z, Zhu Y, Zhang K, Feng Y, Chen X, Lei M, Yu L. High-value utilization of the waste hydrolysate of Dioscorea zingiberensis for docosahexaenoic acid production in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2021; 336:125305. [PMID: 34044242 DOI: 10.1016/j.biortech.2021.125305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The starch saccharification liquid of Dioscorea zingiberensis tubers (SSLD) is a glucose-rich agro-industrial waste. Herein, SSLD was used as a novel potential carbon source for the biosynthesis of docosahexaenoic acid (DHA) in Schizochytrium sp. to achieve waste recycling and high-value utilization. Component analysis showed that SSLD contains abundant nutrients, such as glucose, amino acids, phenolics and flavonoids. When the total sugar concentration in SSLD was optimized to 90 g/L, the biomass and DHA yield reached 44.85 and 6.60 g/L, respectively, which were 32.1% and 36.92% higher than that at pure glucose culture condition. Fermentation characteristics and gene expression analysis showed that SSLD could remarkably improve cell antioxidant capacity, which is beneficial to scavenge intracellular reactive oxygen species and increase the gene expression of antioxidant enzymes in Schizochytrium sp. Hence, SSLD is an effective and economic carbon source for DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Zhendong Bao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Kai Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yumei Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Xuemin Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Mengjie Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China.
| |
Collapse
|
20
|
Wu J, Gu X, Yang D, Xu S, Wang S, Chen X, Wang Z. Bioactive substances and potentiality of marine microalgae. Food Sci Nutr 2021; 9:5279-5292. [PMID: 34532034 PMCID: PMC8441504 DOI: 10.1002/fsn3.2471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/30/2021] [Accepted: 06/12/2021] [Indexed: 02/05/2023] Open
Abstract
Microalgae is one of the most important components in the aquatic ecosystem, and they are increasingly used in food and medicine production for human consumption due to their rapid growth cycle and survival ability in the harsh environment. Now, the exploration of microalgae has been gradually deepening, mainly focused on the field of nutrition, medicine, and cosmetics. A great deal of studies has shown that microalgae have a variety of functions in regulating the body health and preventing disease, such as nitrogen fixation, antitumor, antivirus, antioxidation, anti-inflammatory, and antithrombotic. Furthermore, microalgae can synthesize various high-valued bioactive substances, such as proteins, lipids, polysaccharides, and pigments. In this paper, we have briefly reviewed the research progress of main bioactive components in microalgae, proteins, lipids, polysaccharides, pigments, and other nutrients included, as well as their present application situation. This paper can provide the guidance for research and development of industrial production of microalgae.
Collapse
Affiliation(s)
- Jinhong Wu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation & UtilizationMinistry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xinzhe Gu
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Danlu Yang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shannan Xu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation & UtilizationMinistry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Scientific Observation and Research Field Station of Pearl River Estuary EcosystemGuangzhouChina
- Southern Marine Science and Engineering
Guangdong LaboratoryGuangzhouChina
| | - Shaoyun Wang
- College of Biological Science and TechnologyFuzhou UniversityFuzhouChina
| | - Xu Chen
- College of Biological Science and TechnologyFuzhou UniversityFuzhouChina
| | - Zhengwu Wang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
21
|
Optimization of docosahexaenoic acid production by Schizochytrium SP. – A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Mariam I, Kareya MS, Nesamma AA, Jutur PP. Delineating metabolomic changes in native isolate Aurantiochytrium for production of docosahexaenoic acid in presence of varying carbon substrates. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Wang Q, Han W, Jin W, Gao S, Zhou X. Docosahexaenoic acid production by Schizochytrium sp.: review and prospect. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1908900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qing Wang
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wei Han
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shuhong Gao
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
24
|
Du F, Wang YZ, Xu YS, Shi TQ, Liu WZ, Sun XM, Huang H. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol Adv 2021; 48:107725. [PMID: 33727145 DOI: 10.1016/j.biotechadv.2021.107725] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
As fungus-like protists, thraustochytrids have been increasingly studied for their faster growth rates and high lipid content. In the 1990s, thraustochytrids were used as docosahexaenoic acid (DHA) producers for the first time. Thraustochytrids genera, such as Thraustochytrium, Schizochytrium, and Aurantiochytrium have been developed and patented as industrial strains for DHA production. The high DHA yield is attributed to its unique and efficient polyketide-like synthase (PKS) pathway. Moreover, thraustochytrids possess a completed mevalonate (MVA) pathway, so it can be used as host for terpenoid production. In order to improve strain performance, the metabolic engineering strategies have been applied to promote or disrupt intracellular metabolic pathways, such as genetic engineering and addition of chemical activators. However, it is difficult to realize industrialization only by improving strain performance. Various operation strategies were developed to enlarge the production quantities from the laboratory-scale, including two-stage cultivation strategies, scale-up technologies and bioreactor design. Moreover, an economical and effective downstream process is also an important consideration for the industrial application of thraustochytrids. Downstream costs accounts for 20-60% of the overall process costs, which represents an attractive target for increasing the cost-competitiveness of thraustochytrids, including how to improve the efficiency of lipid extraction and the further application of biomass residues. This review aims to overview the whole lipid biotechnology of thraustochytrids to provide the background information for researchers.
Collapse
Affiliation(s)
- Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Zheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Bartosova Z, Ertesvåg H, Nyfløt EL, Kämpe K, Aasen IM, Bruheim P. Combined Metabolome and Lipidome Analyses for In-Depth Characterization of Lipid Accumulation in the DHA Producing Aurantiochytrium sp. T66. Metabolites 2021; 11:metabo11030135. [PMID: 33669117 PMCID: PMC7996494 DOI: 10.3390/metabo11030135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Thraustochytrids are marine heterotrophic microorganisms known for their potential to accumulate docosahexaenoic acid (DHA)-enriched lipids. There have been many attempts to improve thraustochytrid DHA bioprocesses, especially through traditional optimization of cultivation and media conditions. Nevertheless, thraustochytrid-based bioprocesses are still not commercially competitive for high volume-low cost production of DHA. Thus, it is realized that genetic and metabolic engineering strategies are needed for the development of commercially competitive thraustochytrid DHA cell factories. Here, we present an analytical workflow for high resolution phenotyping at metabolite and lipid levels to generate deeper insight into the thraustochytrid physiology, with particular focus on central carbon and redox metabolism. We use time-series sampling during unlimited growth and nitrogen depleted triggering of DHA synthesis and lipid accumulation (LA) to show-case our methodology. The mass spectrometric absolute quantitative metabolite profiling covered glycolytic, pentose phosphate pathway (PPP) and tricarboxylic acid cycle (TCA) metabolites, amino acids, complete (deoxy)nucleoside phosphate pools, CoA and NAD metabolites, while semiquantitative high-resolution supercritical fluid chromatography MS/MS was applied for the lipid profiling. Interestingly, trace amounts of a triacylglycerols (TG) with DHA incorporated in all three acyl positions was detected, while TGs 16:0_16:0_22:6 and 16:0_22:6_22:6 were among the dominant lipid species. The metabolite profiling data indicated that lipid accumulation is not limited by availability of the acyl chain carbon precursor acetyl-CoA nor reducing power (NADPH) but rather points to the TG head group precursor glycerol-3-phosphate as the potential cause at the metabolite level for the gradual decline in lipid production throughout the cultivation. This high-resolution phenotyping provides new knowledge of changes in the central metabolism during growth and LA in thraustochytrids and will guide target selection for metabolic engineering needed for further improvements of this DHA cell factory.
Collapse
Affiliation(s)
- Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Eirin Lishaugen Nyfløt
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Kristoffer Kämpe
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Inga Marie Aasen
- Biotechnology and Nanomedicine, SINTEF Industry, 4730 Trondheim, Norway;
| | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
- Correspondence:
| |
Collapse
|
26
|
Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. Mar Drugs 2020; 18:md18120612. [PMID: 33271856 PMCID: PMC7760700 DOI: 10.3390/md18120612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1–50 mM) or urea (1–50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp.
Collapse
|
27
|
Chen X, He Y, Ye H, Xie Y, Sen B, Jiao N, Wang G. Different carbon and nitrogen sources regulated docosahexaenoic acid (DHA) production of Thraustochytriidae sp. PKU#SW8 through a fully functional polyunsaturated fatty acid (PUFA) synthase gene (pfaB). BIORESOURCE TECHNOLOGY 2020; 318:124273. [PMID: 33099103 DOI: 10.1016/j.biortech.2020.124273] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Docosahexaenoic acid (DHA, C22:6) production in thraustochytrids is known to be mediated independently through polyunsaturated fatty acid (PUFA) synthase and fatty acid synthase systems. This study elucidates the unresolved effects of different carbon and nitrogen sources on the functionality of PUFA synthase subunit B (pfaB) and corresponding DHA production in Thraustochytriidae sp. PKU#SW8. Carbon and nitrogen sources showed significant effect on the pfaB gene expression and DHA production patterns, but these patterns did not correspond with each other, suggesting the strong role of substrates in differential induction of the two synthase systems. Nitrogen starvation increased DHA yield in parallel with upregulated gene expression, showing strong indication of PUFA synthase activity in N-deficient culture. The fully functional catalytic activity of PfaB subunit from strain PKU#SW8 in a heterologous host was also demonstrated. This study provides the direct evidence of pfaB gene actively for DHA biosynthesis in Thraustochytriidae sp. PKU#SW8.
Collapse
Affiliation(s)
- Xiaohong Chen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huike Ye
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yunxuan Xie
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Nanzhi Jiao
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute for Ocean Technology of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
28
|
Lin HC, Li WH, Chen CC, Cheng TH, Lan YH, Huang MD, Chen WM, Chang JS, Chang HY. Diverse Enzymes With Industrial Applications in Four Thraustochytrid Genera. Front Microbiol 2020; 11:573907. [PMID: 33193181 PMCID: PMC7641610 DOI: 10.3389/fmicb.2020.573907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022] Open
Abstract
Thraustochytrids are heterotrophic fungus-like protists that can dissolve organic matters with enzymes. Four strains, AP45, ASP1, ASP2, and ASP4, were isolated from the coastal water of Taiwan, and respectively identified as Aurantiochytrium sp., Schizochytrium sp., Parietichytrium sp., and Botryochytrium sp. based on 18S rRNA sequences. Transcriptome datasets of these four strains at days 3-5 were generated using Next Generation Sequencing technology, and screened for enzymes with potential industrial applications. Functional annotations based on KEGG database suggest that many unigenes of all four strains were related to the pathways of industrial enzymes. Most of all four strains contained homologous genes for 15 out of the 17 targeted enzymes, and had extra- and/or intra-cellular enzymatic activities, including urease, asparaginase, lipase, glucosidase, alkaline phosphatase and protease. Complete amino sequences of the first-time identified L-asparaginase and phytase in thraustochytrids were retrieved, and respectively categorized to the Type I and BPPhy families based on phylogenetic relationships, protein structural modeling and active sites. Milligram quantities of highly purified, soluble protein of urease and L-asparaginase were successfully harvested and analyzed for recombinant enzymatic activities. These analytical results highlight the diverse enzymes for wide-range applications in thraustochytrids.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Hao Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chi-Chih Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tien-Hsing Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Hsuan Lan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Ming Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan.,Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Hu F, Clevenger AL, Zheng P, Huang Q, Wang Z. Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:172. [PMID: 33088342 PMCID: PMC7565746 DOI: 10.1186/s13068-020-01811-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/06/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Schizochytrium species are known for their abundant production of docosahexaenoic acid (DHA). Low temperatures can promote the biosynthesis of polyunsaturated fatty acids (PUFAs) in many species. This study investigates low-temperature effects on DHA biosynthesis in Schizochytrium sp. TIO01 and its underlying mechanism. RESULTS The Schizochytrium fatty acid biosynthesis pathway was evaluated based on de novo genome assembly (contig N50 = 2.86 Mb) and iTRAQ-based protein identification. Our findings revealed that desaturases, involved in DHA synthesis via the fatty acid synthase (FAS) pathway, were completely absent. The polyketide synthase (PKS) pathway and the FAS pathway are, respectively, responsible for DHA and saturated fatty acid synthesis in Schizochytrium. Analysis of fatty acid composition profiles indicates that low temperature has a significant impact on the production of DHA in Schizochytrium, increasing the DHA content from 43 to 65% of total fatty acids. However, the expression levels of PKS pathway genes were not significantly regulated as the DHA content increased. Further, gene expression analysis showed that pathways related to the production of substrates (acetyl-CoA and NADPH) for fatty acid synthesis (the branched-chain amino acid degradation pathway and the pentose phosphate pathway) and genes related to saturated fatty acid biosynthesis (the FAS pathway genes and malic enzyme) were, respectively, upregulated and downregulated. These results indicate that low temperatures increase the DHA content by likely promoting the entry of relatively large amounts of substrates into the PKS pathway. CONCLUSIONS In this study, we provide genomic, proteomic, and transcriptomic evidence for the fatty acid synthesis pathway in Schizochytrium and propose a mechanism by which low temperatures promote the accumulation of DHA in Schizochytrium. The high-quality and nearly complete genome sequence of Schizochytrium provides a valuable reference for investigating the regulation of polyunsaturated fatty acid biosynthesis and the evolutionary characteristics of Thraustochytriidae species.
Collapse
Affiliation(s)
- Fan Hu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - April L. Clevenger
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK USA
| | - Peng Zheng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065 China
| | - Qiongye Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - Zhaokai Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| |
Collapse
|
30
|
Xu X, Huang C, Xu Z, Xu H, Wang Z, Yu X. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: from biochemical to genetic respects. Appl Microbiol Biotechnol 2020; 104:9433-9447. [PMID: 32978687 DOI: 10.1007/s00253-020-10927-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
The marine oleaginous protist Aurantiochytrium sp. (Schizochytrium sp.) is a well-known docosahexaenoic acid (DHA) producer and its different DHA products are the ideal substitute for the traditional fish oil resource. However, the cost of the DHA products derived from Aurantiochytrium sp. (Schizochytrium sp.) is still high, limiting their wide applications. In order to reduce the cost or improve the productivity of DHA from the microbial resource, many researches are focusing on exploring the renewable and low-cost materials as feedbacks, and/or the stimulators for biomass and DHA production. In addition, the genetic engineering is also being used in the Aurantiochytrium sp. (Schizochytrium sp.) system for further improvement. These break the bottleneck of the DHA production by Aurantiochytrium sp. (Schizochytrium sp.) in some degree. In this review, the strategies used currently to reduce cost and improve DHA productivity, mainly from the utilizations of low-cost materials and effective stimulators to the genetic engineering perspectives, are summarized, and the availabilities from the cost perspective are also evaluated. This review provides an overview about the strategies to revolve the production cost and yield of the DHA by Aurantiochytrium sp. (Schizochytrium sp.), a theoretical basis for genetic modification of Aurantiochytrium sp. (Schizochytrium sp.), and a practical basis for the development of DHA industry. KEY POINTS : • Utilizations of various low-cost materials for DHA production • Inducing the growth and DHA biosynthesis by the effective stimulators • Reducing cost and improving DHA productivity by genetic modification • The availability from cost perspective is evaluated.
Collapse
Affiliation(s)
- Xiaodan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Changyi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhexian Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Huixia Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
31
|
Ding N, Wang L, Kang Y, Luo K, Zeng D, Man YB, Zhang Q, Zeng L, Luo J, Jiang F. The comparison of transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) and 4-n-nonylphenol. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2881-2894. [PMID: 32026273 DOI: 10.1007/s10653-020-00526-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) (Cd) and 4-n-nonylphenol (4-n-NP) was compared in the present study. Cd and 4-n-NP exposure showed a similar pattern of dys-regulated pathways. The photosystem was affected due to suppression of chlorophyll biosynthesis via down-regulation of Mg-protoporphyrin IX chelatase subunit ChlD (CHLD) and divinyl chlorophyllide a 8-vinyl-reductase (DVR) in Cd group and via down-regulation of DVR in 4-n-NP group. Furthermore, the reactive oxygen species (ROS) could be induced through down-regulation of solanesyl diphosphate synthase 1 (SPS1) and homogentisate phytyltransferase (HPT) in Cd group and via down-regulation of HPT in 4-n-NP group. Additionally, Cd and 4-n-NP would both cause the dys-regulation of carbohydrate metabolism and protein synthesis. On the other hand, there are some different responses or detoxification mechanism of C. sorokiniana to 4-n-NP stress compared to Cd exposure. The increased ROS would cause the DNA damage and protein destruction in Cd exposure group. Simultaneously, the RNA transcription was dys-regulated and a series of changes in gene expressions were observed. This included lipid metabolism, protein modification, and DNA repair, which involved in response of C. sorokiniana to Cd stress or detoxification of Cd. For 4-n-NP exposure, no effect on lipid metabolism and DNA repair was observed. The nucleotide metabolism including pyrimidine metabolism and purine metabolism was significantly up-regulated in the 4-n-NP exposure group, but not in the Cd exposure group. In addition, 4-n-NP would induce the ubiquitin-mediated proteolysis and proteasomal degradation to diminish the misfolded protein caused by ROS and down-regulation of heat shocking protein 40. In sum, the Cd and 4-n-NP could cause the same toxicological effects via the common pathways and possess similar detoxification mechanism. They also showed different responses in nucleotide metabolism, lipid metabolism, and DNA repair.
Collapse
Affiliation(s)
- Na Ding
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Lu Wang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Diya Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, People's Republic of China.
| | - Qiuyun Zhang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Feng Jiang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
32
|
Zhang LS, Chu MY, Zong MH, Yang JG, Lou WY. Carbon source modify lipids composition of Rhodococcus opacus intended for infant formula. J Biotechnol 2020; 319:8-14. [PMID: 32470464 DOI: 10.1016/j.jbiotec.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
Human milk fat substitutes (HMFSs) are the structured lipids intended for infant formula. It provides energy and essential fatty acid for infant. HMFSs are mainly prepared by enzymatic method. In this study, we aim to explore the potential for producing HMFSs by fermentation using R. opacus. The results indicated that different compounds with chain length from 12 to 18, used as carbon source, could be incorporated into triacylglycerols directly. Polyunsaturated fatty acids in term of ARA, EPA, DHA could enter the kennedy pathway directly and involved in the biosynthesis of triacylglycerols. GC, UPLC-MS and 13C-NMR analysis demonstrated that typical structured lipids β-OPL (40.09%) was synthesized in R. opacus. Transcriptome analysis revealed that β-oxidation, fatty acid elongation and kennedy pathways existed in R. opacus. It was concluded that fatty acid supplied as carbon source could enter the kennedy pathways directly or via the de novo fatty acid biosynthesis pathway depending on the chain length, thus, affect the triacylglycerol species formed in the Rhodococcus opacus.
Collapse
Affiliation(s)
- Lin-Shang Zhang
- School of Food Science and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China
| | - Mei-Yun Chu
- School of Food Science and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China
| | - Ji-Guo Yang
- South China Institute of Collaborative Innovation, Xincheng Road, Dongguan 523808, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China.
| |
Collapse
|
33
|
Use of Biofuel Industry Wastes as Alternative Nutrient Sources for DHA-Yielding Schizochytrium limacinum Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The simultaneous use of crude glycerol and effluent from anaerobic digestate, both wastes derived from the biofuel industry, were tested in the frame of circular economy concept, as potential low-cost nutrient sources for the cultivation of rich in docosahexaenoic acid (DHA) oil microalgae strain Schizochytrium limacinum SR21. Initially, the optimal carbon and nitrogen concentration levels for high S. limacinum biomass and lipids production were determined, in a culture media containing conventional, high cost, organic nitrogen sources (yeast extract and peptone), micronutrients and crude glycerol at varying concentrations. Then, the effect of a culture media composed of crude glycerol (as carbon source) and effluent digestate at varying proportions on biomass productivity, lipid accumulation, proximate composition, carbon assimilation and fatty acid content were determined. It was shown that the biomass and total lipid content increased considerably with varying effluent concentrations reaching 49.2 g L−1 at 48% (v/v) of effluent concentration, while the lipid yield at the same effluent concentration reached 10.15 g L−1, compared to 17.0 g L−1 dry biomass and 10.2 g L−1 lipid yield when yeast extract and peptone medium with micronutrients was used. Compared to the control treatment, the above production was obtained with 48% less inorganic salts, which are needed for the preparation of the artificial sea water. It was shown that Schizochytrium limacinum SR21 was able to remediate 40% of the total organic carbon content of the biofuel wastes, while DHA productivity remained at low levels with saturated fatty acids comprising the main fraction of total fatty acid content. The results of the present study suggest that the simultaneous use of two waste streams from the biofuel industry can serve as potential nutrient sources for the growth of Schizochytrium limacinum SR21, replacing the high cost organic nutrients and up to one half the required artificial sea water salts, but upregulation of DHA productivity through optimization of the abiotic environment is necessary for industrial application, including aqua feed production.
Collapse
|
34
|
Comparative Transcriptomic Analysis Uncovers Genes Responsible for the DHA Enhancement in the Mutant Aurantiochytrium sp. Microorganisms 2020; 8:microorganisms8040529. [PMID: 32272666 PMCID: PMC7232246 DOI: 10.3390/microorganisms8040529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/17/2022] Open
Abstract
Docosahexaenoic acid (DHA), a n-3 long-chain polyunsaturated fatty acid, is critical for physiological activities of the human body. Marine eukaryote Aurantiochytrium sp. is considered a promising source for DHA production. Mutational studies have shown that ultraviolet (UV) irradiation (50 W, 30 s) could be utilized as a breeding strategy for obtaining high-yield DHA-producing Aurantiochytrium sp. After UV irradiation (50 W, 30 s), the mutant strain X2 which shows enhanced lipid (1.79-fold, 1417.37 mg/L) and DHA (1.90-fold, 624.93 mg/L) production, was selected from the wild Aurantiochytrium sp. Instead of eicosapentaenoic acid (EPA), 9.07% of docosapentaenoic acid (DPA) was observed in the mutant strain X2. The comparative transcriptomic analysis showed that in both wild type and mutant strain, the fatty acid synthesis (FAS) pathway was incomplete with key desaturases, but genes related to the polyketide synthase (PKS) pathway were observed. Results presented that mRNA expression levels of CoAT, AT, ER, DH, and MT down-regulated in wild type but up-regulated in mutant strain X2, corresponding to the increased intercellular DHA accumulation. These findings indicated that CoAT, AT, ER, DH, and MT can be exploited for high DHA yields in Aurantiochytrium.
Collapse
|
35
|
Ye H, He Y, Xie Y, Sen B, Wang G. Fed-batch fermentation of mixed carbon source significantly enhances the production of docosahexaenoic acid in Thraustochytriidae sp. PKU#Mn16 by differentially regulating fatty acids biosynthetic pathways. BIORESOURCE TECHNOLOGY 2020; 297:122402. [PMID: 31761627 DOI: 10.1016/j.biortech.2019.122402] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
This study reports comparative evaluation of the growth and DHA productivity of the thraustochytrid strain Thraustochytriidae PKU#Mn16 fermented with seven different substrate feeding strategies. Of these strategies, fed-batch fermentation of the mixed substrate (glucose & glycerol) yielded the maximum growth (52.2 ± 1.5 g/L), DHA yield (Yp/s: 8.65) and productivity (100.7 ± 2.9 mg/L-h), comparable with those of previously reported Aurantiochytrium strains. Transcriptomics analyses revealed that glucose upregulated some genes of the fatty acid synthase pathway whereas glycerol upregulated a few genes of the polyketide synthase pathway. Co-fermentation of the mixed substrate differentially regulated genes of these two pathways and significantly enhanced the DHA productivity. Furthermore, some genes involved in DNA replication, phagosome, carbon metabolism, and β-oxidation were also found to alter significantly during the mixed-substrate fermentation. Overall, this study provides a unique strategy for enhancing growth and DHA productivity of the strain PKU#Mn16 and the first insight into the mechanisms underlying mixed-substrate fermentation.
Collapse
Affiliation(s)
- Huike Ye
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
36
|
Bernaerts TM, Gheysen L, Foubert I, Hendrickx ME, Van Loey AM. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol Adv 2019; 37:107419. [DOI: 10.1016/j.biotechadv.2019.107419] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
|
37
|
Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in Schizochytrium limacinum B4D1. Appl Environ Microbiol 2019; 85:AEM.01243-19. [PMID: 31375482 DOI: 10.1128/aem.01243-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Schizochytrium is a promising source for the production of docosahexaenoic acid and astaxanthin. The effects of different methanol concentrations on astaxanthin, biomass, and production of the lipids, squalene, and total sterol in Schizochytrium limacinum B4D1 were investigated. Astaxanthin began to accumulate when the methanol concentration reached 3.2% and peaked at 5.6% methanol, with a 2,000-fold increase over that in the control. However, under cultivation with 5.6% methanol, the biomass, lipids, squalene, and total sterol decreased to various degrees. Transcriptomic analysis was performed to explore the effects of different methanol concentrations (0%, 3.2%, and 5.6%) on the expression profile of B4D1. Three key signaling pathways were found to play important roles in regulating cell growth and metabolism under cultivation with methanol. Five central carbon metabolism-associated genes were significantly downregulated in response to 5.6% methanol and thus were expected to result in less ATP and NADPH being available for cell growth and synthesis. High methanol conditions significantly downregulated three genes involved in fatty acid and squalene/sterol precursor biosynthesis but significantly upregulated geranylgeranyl diphosphate synthase, lycopene β-cyclase, and β-carotene 3-hydroxylase, which are involved in astaxanthin synthesis, thus resulting in an increase in the levels of precursors and the final production of astaxanthin. Additionally, the transcriptional levels of three stress response genes were upregulated. This study investigates gene expression profiles in the astaxanthin producer Schizochytrium when grown under various methanol concentrations. These results broaden current knowledge regarding genetic expression and provide important information for promoting astaxanthin biosynthesis in Schizochytrium IMPORTANCE Schizochytrium strains are usually studied as oil-producing strains, but they can also synthesize other secondary metabolites, such as astaxanthin. In this study, methanol was used as an inducer, and we explored its effects on the production of astaxanthin, a highly valuable substance in Schizochytrium Methanol induced Schizochytrium to synthesize large amounts of astaxanthin. Transcriptomic analysis was used to investigate the regulation of signaling and metabolic pathways (mainly relative gene expression) in Schizochytrium grown in the presence of various concentrations of methanol. These results contribute to the understanding of the underlying molecular mechanisms and may aid in the future optimization of Schizochytrium for astaxanthin biosynthesis.
Collapse
|
38
|
Yue XH, Chen WC, Wang ZM, Liu PY, Li XY, Lin CB, Lu SH, Huang FH, Wan X. Lipid Distribution Pattern and Transcriptomic Insights Revealed the Potential Mechanism of Docosahexaenoic Acid Traffics in Schizochytrium sp. A-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9683-9693. [PMID: 31379160 DOI: 10.1021/acs.jafc.9b03536] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Schizochytrium sp. A-2 is a heterotrophic marine fungus used for the commercial production of docosahexaenoic acid (DHA). However, the pattern of the distribution of DHA and how DHA is channeled into phospholipid (PL) and triacylglycerol (TAG) are unknown. In this study, we systematically analyzed the distribution of DHA in TAG and PL during the growth of the cell. The migration of DHA from PL to TAG was presumed during the fermentation cycle. DHA and docosapentaenoic acid were accumulated in both TAG and phosphatidylcholine (PC), whereas eicosapentaenoic acid was mainly deposited in PC. RNA seq revealed that malic enzyme may provide lipogenic NADPH. In addition, long-chain acyl-CoA synthase and acyl-CoA:lysophosphatidylcholine acyltransferase may participate in the accumulation of DHA in PL. No phosphatidylcholine:diacylglycerol cholinephosphotransferase was identified from the genome sequence. In contrast, phospholipid:diacylglycerol acyltransferase-mediated acyl-CoA-independent TAG synthesis pathway and phospholipase C may contribute to the channeling of DHA from PC to TAG.
Collapse
Affiliation(s)
- Xiu-Hong Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan 430062 , P. R. China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan 430062 , P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , P. R. China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory , Wuhan 430062 , P. R. China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition , Wuhan 430062 , P. R. China
| | - Zhi-Ming Wang
- CABIO Biotech (Wuhan) Co., Ltd , Wuhan 430223 , P. R. China
| | - Peng-Yang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan 430062 , P. R. China
| | - Xiang-Yu Li
- CABIO Biotech (Wuhan) Co., Ltd , Wuhan 430223 , P. R. China
| | - Chu-Bin Lin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan 430062 , P. R. China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co., Ltd , Wuhan 430223 , P. R. China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan 430062 , P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , P. R. China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory , Wuhan 430062 , P. R. China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition , Wuhan 430062 , P. R. China
| | - Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan 430062 , P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , P. R. China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory , Wuhan 430062 , P. R. China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition , Wuhan 430062 , P. R. China
| |
Collapse
|
39
|
Salama ES, Govindwar SP, Khandare RV, Roh HS, Jeon BH, Li X. Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress? TRENDS IN PLANT SCIENCE 2019; 24:611-624. [PMID: 31085124 DOI: 10.1016/j.tplants.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Microalgae hold the promise of an inexpensive and sustainable source of biofuels. The existing microalgal cultivation technologies need significant improvement to outcompete other biofuel sources such as terrestrial plants. Application of 'algomics' approaches under different abiotic stress conditions could be an effective strategy for optimization of microalgal growth and production of high-quality biofuels. In this review, we discuss the roles of omics in understanding genome structure and biocomponents metabolism in various microalgal species to optimize sustainable biofuel production. Application of individual and integrated omics revealed that genes and metabolic pathways of microalgae have been altered under multiple stress conditions, resulting in an increase in biocomponents, providing a research platform for expansion of genetic engineering studies in microalgal strains.
Collapse
Affiliation(s)
- El-Sayed Salama
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Rahul V Khandare
- Amity Institute of Biotechnology, Amity University, Mumbai, 410206, India
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
40
|
Yu XJ, Chen H, Huang CY, Zhu XY, Wang ZP, Wang DS, Liu XY, Sun J, Zheng JY, Li HJ, Wang Z. Transcriptomic Mechanism of the Phytohormone 6-Benzylaminopurine (6-BAP) Stimulating Lipid and DHA Synthesis in Aurantiochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5560-5570. [PMID: 30901205 DOI: 10.1021/acs.jafc.8b07117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The phytohormone 6-benzylaminopurine (6-BAP) significantly improves lipid synthesis of oleaginous microorganisms with the great potential applied in lipid production. In the current study, the lipid and DHA productions in oleaginous Aurantiochytrium sp. were found to be improved by 48.7% and 55.3%, respectively, induced by 6-BAP treatments. Then, using high-throughput RNA-seq technology, the overall de novo assembly of the cDNA sequence data generated 53871 unigenes, and 15902 of these were annotated in at least one database. The comparative transcriptomic profiles of cells with and without 6-BAP treatments revealed that a total of 717 were differently expressed genes (DE), with 472 upregulated and 245 downregulated. Further annotation and categorization indicated that some DE genes were involved in pathways crucial to lipid and DHA productions, such as fatty acid synthesis, central carbon metabolism, transcriptional factor, signal transduction, and mevalonate pathway. A regulation mode of 6-BAP, in turn, perception and transduction of 6-BAP signal, transcription factor, expression regulations of the downstream genes, and metabolic changes, respectively, was put forward for the first time in the present study. This research illuminates the transcriptomic mechanism of phytohormone stimulation of lipid and DHA production in an oleaginous microorganism and provides the potential targets modified using genetic engineering for improving lipid and DHA productivity.
Collapse
Affiliation(s)
- Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Hong Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Chang-Yi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Xiao-Yu Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , Shandong , People's Republic of China
| | - Dong-Sheng Wang
- Institute of Biological Resources , Jiangxi Academy of Sciences , Nanchang 330096 , Jiangxi , People's Republic of China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology , Huaiyin Normal University , Huaian 223300 , People's Republic of China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Jian-Yong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Hui-Juan Li
- Department of Bioengineering, College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| |
Collapse
|
41
|
Enhancement of docosahexaenoic acid (DHA) and beta-carotene production in Schizochytrium sp. using symbiotic relationship with Rhodotorula glutinis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Liang Y, Liu Y, Tang J, Ma J, Cheng JJ, Daroch M. Transcriptomic Profiling and Gene Disruption Revealed that Two Genes Related to PUFAs/DHA Biosynthesis May be Essential for Cell Growth of Aurantiochytrium sp. Mar Drugs 2018; 16:md16090310. [PMID: 30200435 PMCID: PMC6164183 DOI: 10.3390/md16090310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Aurantiochytrium sp. PKU#SW7 is a thraustochytrid strain that was found to exhibit high potential for docosahexaenoic acid (DHA, C22:6n-3) production. In this work, the transcriptome of Aurantiochytrium sp. PKU#SW7 was analyzed for the study of genes involved in basic metabolic functions and especially in the mechanisms of DHA biosynthesis. Sequence annotation and functional analysis revealed that the strain contains components of fatty acid synthesis (FAS) and polyketide synthase (PKS) pathways. Fatty acid desaturases and elongases were identified as components of FAS pathway, whilst key components of PKS pathway were also found in the cDNA library. The relative contribution of the two pathways to the synthesis of DHA was unknown, as both pathways appeared to be lacking full complement of genes for standalone synthesis of DHA. Further analysis of two putative genes encoding the very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase and dehydrase/isomerase involved in FAS and PKS pathways, respectively, revealed that under various salinity conditions, their relative expression levels changed corresponding to the variation of DHA content in Aurantiochytrium sp. Independent knock outs of these genes in Aurantiochytrium sp. resulted in poor cell growth, probably due to little or no intracellular DHA accumulation. Hence, it can be speculated that both genes are engaged in DHA biosynthesis and DHA in Aurantiochytrium sp. could be produced by jointed actions of both FAS and PKS systems.
Collapse
Affiliation(s)
- Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Ying Liu
- Guangdong Engineering Research Centre for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Jiong Ma
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jay J Cheng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
43
|
Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Bi ZQ, Ren LJ, Hu XC, Sun XM, Zhu SY, Ji XJ, Huang H. Transcriptome and gene expression analysis of docosahexaenoic acid producer Schizochytrium sp. under different oxygen supply conditions. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:249. [PMID: 30245741 PMCID: PMC6142690 DOI: 10.1186/s13068-018-1250-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/06/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Schizochytrium sp. is a promising strain for the production of docosahexaenoic acid (DHA)-rich oil and biodiesel, and has been widely used in the food additive and bioenergy industries. Oxygen is a particularly important environmental factor for cell growth and DHA synthesis. In general, higher oxygen supply favors lipid accumulation, but could lead to a reduction of the DHA percentage in total fatty acids in Schizochytrium sp. To tackle this problem, it is essential to understand the mechanisms regulating the response of Schizochytrium sp. to oxygen. In this study, we aimed to explore the acclimatization of this DHA producer to different oxygen supply conditions by examining the transcriptome changes. RESULTS Two different fermentation processes, namely normal oxygen supply condition (shift agitation speeds from 400 rpm to 300 rpm) and high oxygen supply condition (constant agitation speeds: 400 rpm), were designed to study how the fermentation characteristics of Schizochytrium sp. HX-308 were affected by different oxygen supply conditions. The results indicated that high oxygen supply condition resulted in 49% and 37.5% improvement in the maximum cell dry weight (CDW) and total lipid concentration, respectively. However, the DHA percentage in total fatty acids decreased to 35%, which was 31.4% lower than that produced by normal oxygen supply condition. Moreover, transcriptome analysis was performed to explore the effect of the oxygen supply condition on genetic expression and metabolism. The results showed that glycolysis and pentose phosphate pathway metabolism-associated genes (hexokinase, phosphofructokinase, fructose-bisphosphate aldolase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) were substantially upregulated in response to high oxygen supply, resulting in more NADPH was available for Schizochytrium. Specially, high oxygen supply condition also led to genes (Δ6 desaturase, Δ12 desaturase, FAS, ORFA, ORFB, and ORFC) involved in fatty acid biosynthesis upregulation. In addition, a transcriptional upregulation of catalase (CAT) became apparent under high oxygen supply condition, while superoxide dismutase (SOD) and ascorbate peroxidase (APX) were found to be down-regulated. CONCLUSIONS This study is the first to investigate the differences of gene expression at different levels of oxygen availability in the DHA producer Schizochytrium. The results of transcriptome analyses indicated that high oxygen supply condition resulting in more NADPH and acetyl-CoA production for cell growth and lipid synthesis in Schizochytrium. Δ12 desaturase and ORFC showed higher expression levels at high oxygen supply condition, which might be the key regulators for enhancing fatty acid biosynthesis in the future. These results enrich the current knowledge regarding genetic expression and provide important information to enhance DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Zhi-Qian Bi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xue-Chao Hu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Si-Yu Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
45
|
Xie Y, Sen B, Wang G. Mining terpenoids production and biosynthetic pathway in thraustochytrids. BIORESOURCE TECHNOLOGY 2017; 244:1269-1280. [PMID: 28549813 DOI: 10.1016/j.biortech.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 05/26/2023]
Abstract
Terpenoids are major bioactive compounds produced by microalgae and other eukaryotic microorganisms. Mining metabolic potential of marine microalgae for commercial production of terpenoids suggest thraustochytrids as one of the promising cell factories. The identification of potential thraustochytrid strains and relevant laboratory scale bioprocesses has been pursued largely. Further investigations in the improvement of terpenoids biosynthesis expect relevant molecular mechanisms to be understood directing metabolic engineering of the pathways. In this review, fermentative and mechanistic studies to identify key enzymes and pathways that are associated to terpenoids biosynthesis in thraustochytrids are discussed. Exploration of biosynthesis mechanisms in other model organisms facilitated identification of potential molecular targets for engineering terpenoids biosynthetic pathway in thraustochytrids. In addition, the preliminary genetic manipulation and in silico analysis in this review provides a platform for system-level metabolic engineering towards thraustochytrid strains improvement. Overall, the review contributes comprehensive information to allow better terpenoids productivity in thraustochytrids.
Collapse
Affiliation(s)
- Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
46
|
Ma Z, Tian M, Tan Y, Cui G, Feng Y, Cui Q, Song X. Response mechanism of the docosahexaenoic acid producer Aurantiochytrium under cold stress. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Ren L, Hu X, Zhao X, Chen S, Wu Y, Li D, Yu Y, Geng L, Ji X, Huang H. Transcriptomic Analysis of the Regulation of Lipid Fraction Migration and Fatty Acid Biosynthesis in Schizochytrium sp. Sci Rep 2017; 7:3562. [PMID: 28620184 PMCID: PMC5472558 DOI: 10.1038/s41598-017-03382-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/27/2017] [Indexed: 11/26/2022] Open
Abstract
Schizochytrium sp. is the main source of docosahexaenoic acid-rich oil, which is widely used in food additive and pharmaceutical industry. In this study, using RNA-seq, comparative transcriptomic analyses were performed at four stages of DHA fermentation by Schizochytrium sp to get potential genes related to cell transition from cell growth to lipid accumulation and then to lipid turnover. 1406, 385, 1384 differently expressed genes were identified by comparisons in pairs of S2 vs S1, S3 vs S2 and S4 vs S3. Functional analysis revealed that binding and single-organism process might be involve in the cell transition from cell growth to lipid accumulation while oxidation-reduction process played an important role in the transition from lipid accumulation to lipid turnover. pfaC in the PKS pathway showed higher sensitivity to the environmental change, which might be the key regulator for enhancing PUFA biosynthesis in the future. Some other genes in signal transduction and cell transport were revealed to be related to lipid turnover, which would enrich the current knowledge regarding lipid metabolism and help to enhance the DHA production and enrich different lipid fractions by Schizochytrium in the future.
Collapse
Affiliation(s)
- Lujing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaoyan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Shenglan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Yi Wu
- Xiamen Kingdomway Group company, No. 299 West Yangguang Road, Haicang, Xiamen, 361022, China
| | - Dan Li
- Xiamen Kingdomway Group company, No. 299 West Yangguang Road, Haicang, Xiamen, 361022, China
| | - Yadong Yu
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lingjun Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaojun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
48
|
Guo DS, Ji XJ, Ren LJ, Li GL, Huang H. Improving docosahexaenoic acid production by Schizochytrium
sp. using a newly designed high-oxygen-supply bioreactor. AIChE J 2017. [DOI: 10.1002/aic.15783] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Gan-Lu Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - He Huang
- School of Pharmaceutical Sciences; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No. 5 Xinmofan Road Nanjing 210009 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| |
Collapse
|
49
|
Fu J, Chen T, Lu H, Lin Y, Xie X, Tian H, Zheng C, He D. Enhancement of docosahexaenoic acid production by low-energy ion implantation coupled with screening method based on Sudan black B staining in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2016; 221:405-411. [PMID: 27660991 DOI: 10.1016/j.biortech.2016.09.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 05/22/2023]
Abstract
Schizochytrium sp. is a hopeful docosahexaenoic acid (DHA) producing candidate due to its rapid growth rate and high DHA proportion in total lipid content. In this study, low-energy ion implantation was applied to Schizochytrium sp. to induce high DHA-producing mutants. Screening these mutants by Sudan black B staining, a mutant strain S1 which showed a 61% improvement in DHA production than that of the parent strain was successfully selected. Subsequently, parameters of DHA production of mutant strain S1 were optimized in a 500-mL Erlenmeyer flask. Under the optimum fermentation conditions, the production of DHA and the percentage of DHA in total lipid of mutant strain S1 were 6.52g/L and 46.2%, respectively. This study provides an effective breeding strategy for improved DHA production of Schizochytrium sp. through combination of the novel mutagenesis technology, the effective screening method and fermentation optimization.
Collapse
Affiliation(s)
- Jie Fu
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan, Hubei 430023, PR China
| | - Tao Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan, Hubei 430071, PR China
| | - Hao Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan, Hubei 430023, PR China
| | - Yuanfeng Lin
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan, Hubei 430023, PR China
| | - Xinlei Xie
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan, Hubei 430023, PR China
| | - Hua Tian
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan, Hubei 430023, PR China
| | - Cao Zheng
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan, Hubei 430023, PR China.
| | - Dongping He
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan, Hubei 430023, PR China
| |
Collapse
|