1
|
Solovchenko A, Lobakova E, Semenov A, Gorelova O, Fedorenko T, Chivkunova O, Parshina E, Maksimov G, Sluchanko NN, Maksimov E. Multimodal non-invasive probing of stress-induced carotenogenesis in the cells of microalga Bracteacoccus aggregatus. PROTOPLASMA 2024; 261:1051-1071. [PMID: 38703269 DOI: 10.1007/s00709-024-01956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Microalgae are the richest source of natural carotenoids-accessory photosynthetic pigments used as natural antioxidants, safe colorants, and nutraceuticals. Microalga Bracteacoccus aggregatus IPPAS C-2045 responds to stresses, including high light, with carotenogenesis-gross accumulation of secondary carotenoids (the carotenoids structurally and energetically uncoupled from photosynthesis). Precise mechanisms of cytoplasmic transport and subcellular distribution of the secondary carotenoids under stress are still unknown. Using multimodal imaging combining micro-Raman imaging (MRI), fluorescent lifetime (τ) imaging (FLIM), and transmission electron microscopy (TEM), we monitored ultrastructural and biochemical rearrangements of B. aggregatus cells during the stress-induced carotenogenesis. MRI revealed a decline in the diversity of molecular surrounding of the carotenoids in the cells compatible with the relocation of the bulk of the carotenoids in the cell from functionally and structurally heterogeneous photosynthetic apparatus to the more homogenous lipid matrix of the oleosomes. Two-photon FLIM highlighted the pigment transformation in the cell during the stress-induced carotenogenesis. The structures co-localized with the carotenoids with shorter τ (mainly chloroplast) shrunk, whereas the structures harboring secondary carotenoids with longer τ (mainly oleosomes) expanded. These changes were in line with the ultrastructural data (TEM). Fluorescence of B. aggregatus carotenoids, either in situ or in acetone extracts, possessed a surprisingly long lifetime. We hypothesize that the extension of τ of the carotenoids is due to their aggregation and/or association with lipids and proteins. The propagation of the carotenoids with prolonged τ is considered to be a manifestation of the secondary carotenogenesis suitable for its non-invasive monitoring with multimodal imaging.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia.
| | - Elena Lobakova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia
| | - Alexey Semenov
- Laboratory of Physics and Chemistry of Biological Membranes, Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russia
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia
| | - Tatiana Fedorenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia
| | - Olga Chivkunova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia
| | - Evgenia Parshina
- Department of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russia
| | - Georgy Maksimov
- Department of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russia
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Av. 33, Moscow, 119071, Russia
| | - Eugene Maksimov
- Laboratory of Physics and Chemistry of Biological Membranes, Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russia
| |
Collapse
|
2
|
Mu YY, Qi WP, Zhang T, Zhang JY, Li M, Mao SY. Changes in Rumen Epithelial Morphology and Transcriptome, Rumen Metabolome, and Blood Biochemical Parameters in Lactating Dairy Cows with Subacute Rumen Acidosis Following Rumen Content Transplantation. J Dairy Sci 2024:S0022-0302(24)00939-1. [PMID: 38908691 DOI: 10.3168/jds.2024-24694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/17/2024] [Indexed: 06/24/2024]
Abstract
Interventions targeting the gut microbiota, such as fecal microbiota transplantation, prove effective in repairing the intestinal barrier and facilitating the recovery of its function and metabolism. However, the regulatory mechanisms governing the remodeling of rumen epithelial morphology and function, rumen metabolism, and host metabolism in cows of subacute ruminal acidosis (SARA) remain poorly understood. Here, we explored the changes in rumen epithelial morphology and transcriptome, rumen metabolome, and blood biochemical parameters in SARA cows following rumen content transplantation (RCT). The entire experiment consisted of 2 periods: the SARA induction period and the RCT period. During the SARA induction period, 12 ruminally cannulated lactating Holstein cows were randomly allocated into 2 groups, fed either a conventional diet [CON; n = 4; 40% concentrate, dry matter (DM) basis] or a high-grain diet (HG; n = 8; 60% concentrate, DM basis). Following the SARA induction period, the RCT period started. The HG cows were randomly assigned to 2 groups: the donor-recipient (DR) group and the self-recipient (SR) group. Rumen contents were entirely removed from both groups before RCT. For the DR group, cows were administered 70% rumen content from the CON cows, paired based on comparable body weight; for the SR group, each cow received 70% self-derived rumen content. The results revealed no significant differences in the thicknesses of the stratum corneum, granulosum, and spinosum/basale layers, as well as the total depth of the epithelium between the SR and DR groups. All these measurements exhibited a decreasing trend and fluctuations over time after the transfer. Notably, these fluctuations tended to stabilize at 13 or 16 d after RCT in the SR group, whereas they tended to stabilize after 8 or 13 d of transfer for the DR group. Transcriptome sequencing revealed that a total of 277 differentially expressed genes (DEGs) were identified between the 2 groups. Enrichment analysis showed that the DEGs were significantly enriched in 11 Gene Ontology biological processes and 14 KEGG pathways. The DEGs corresponding to almost any of these 11 biological process terms and 14 pathways showed mixed up- or downregulation following RCT. Metabolomics analysis indicated that a total of 33 differential metabolites were detected between the SR and DR groups, mainly enriched in 5 key metabolic pathways, including plant polysaccharides and starch degradation, lipid metabolism, amino sugar and nucleotide metabolism, purine metabolism, and Krebs cycle. Among them, the levels of differential metabolites associated with the degradation of plant polysaccharides and starches, metabolism of amino sugars and nucleotides, and purine metabolism pathways were significantly elevated in the DR cows. The results of blood biochemical parameters showed that the triglyceride concentration of the DR cows was increased than that of the SR cows, comparable to the level observed in the CON cows during the SARA induction period. Generally, our findings indicated that RCT facilitated the recovery of rumen epithelial morphological structure but did not promote its function recovery. Moreover, RCT enhanced rumen plant polysaccharide and starch degradation, amino sugar and nucleotide sugar metabolism, as well as purine metabolism. Additionally, it further promoted the recovery of plasma metabolites related to lipid metabolism.
Collapse
Affiliation(s)
- Y Y Mu
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - W P Qi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - T Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - J Y Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - M Li
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - S Y Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Zhang Z, Xu M, Fan Y, Zhang L, Wang H. Using microalgae to reduce the use of conventional fertilizers in hydroponics and soil-based cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169424. [PMID: 38128652 DOI: 10.1016/j.scitotenv.2023.169424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The intensive use of agrochemicals has led to nutrient loss, greenhouse gas emissions, and resource depletion, thus the development of sustainable agricultural solutions is required. Microalgal biomass has the potential to provide nutrients such as nitrogen, phosphorus, and potassium, along with various plant growth promoters, to enhance crop productivity and impart disease resistance. This study provides a comprehensive assessment of the potential applications of microalgal extracts and biomass in the contexts of seed germination, hydroponic systems, and soil-based crop cultivation. The results revealed that the extracts from Chlorella sp. and Anabaena sp. have no significant impact on the germination of wheat seeds. High concentrations of Chlorella sp. and Anabaena sp. cell extracts in hydroponics enhanced the length of cucumber seedling stems by 81.7 % and 58.3 %, respectively. Additionally, the use of microalgal cell extracts hindered root elongation while stimulating the growth of lateral and fibrous roots. Furthermore, the study compared the performance of 5 different fertilizers: 1) inorganic fertilizer (IF), 2) organic fertilizer (OF), 3) microalgae-based biofertilizer (MF), 4) inorganic fertilizer + microalgae-based biofertilizer (IM), 5) organic fertilizer + microalgae-based biofertilizer (OM). The findings indicate that the plant growth and soil physicochemical properties in the groups supplied with different fertilizers are comparable and significantly higher than those in the control group. The levels of protein, chlorophyll A, and chlorophyll B in the MF group increased significantly by 40 %, 29.2 %, and 33.5 %, respectively, compared to the control group. However, it remained notably lower compared to groups supplied with inorganic and organic fertilizers (p < 0.05). Combining microalgae with organic fertilizer can simultaneously enhance the yield and quality of Chinese cabbage, representing a promising source of crop nutrition. In conclusion, this study suggests that it is promising to use microalgae to reduce the use of conventional fertilizers in hydroponics and soil-based cultivation.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Mei Xu
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Yong Fan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Lunyu Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Hui Wang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China; Shandong Energy Research Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
4
|
Pavan ME, Movilla F, Pavan EE, Di Salvo F, López NI, Pettinari MJ. Guanine crystal formation by bacteria. BMC Biol 2023; 21:66. [PMID: 37013555 PMCID: PMC10071637 DOI: 10.1186/s12915-023-01572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Guanine crystals are organic biogenic crystals found in many organisms. Due to their exceptionally high refractive index, they contribute to structural color and are responsible for the reflective effect in the skin and visual organs in animals such as fish, reptiles, and spiders. Occurrence of these crystals in animals has been known for many years, and they have also been observed in eukaryotic microorganisms, but not in prokaryotes. RESULTS In this work, we report the discovery of extracellular crystals formed by bacteria and reveal that they are composed of guanine monohydrate. This composition differs from that of biogenic guanine crystals found in other organisms, mostly composed of β anhydrous guanine. We demonstrate the formation of these crystals by Aeromonas and other bacteria and investigate the metabolic traits related to their synthesis. In all cases studied, the presence of the bacterial guanine crystals correlates with the absence of guanine deaminase, which could lead to guanine accumulation providing the substrate for crystal formation. CONCLUSIONS Our finding of the hitherto unknown guanine crystal occurrence in prokaryotes extends the range of organisms that produce these crystals to a new domain of life. Bacteria constitute a novel and more accessible model to study the process of guanine crystal formation and assembly. This discovery opens countless chemical and biological questions, including those about the functional and adaptive significance of their production in these microorganisms. It also paves the road for the development of simple and convenient processes to obtain biogenic guanine crystals for diverse applications.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Movilla
- Departamento de Química Inorgánica, Analítica y Química Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban E Pavan
- Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Florencia Di Salvo
- Departamento de Química Inorgánica, Analítica y Química Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Sasaki R, Toda S, Sakamoto T, Sakuradani E, Shigeto S. Simultaneous Imaging and Characterization of Polyunsaturated Fatty Acids, Carotenoids, and Microcrystalline Guanine in Single Aurantiochytrium limacinum Cells with Linear and Nonlinear Raman Microspectroscopy. J Phys Chem B 2023; 127:2708-2718. [PMID: 36920390 PMCID: PMC10068736 DOI: 10.1021/acs.jpcb.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Thraustochytrids are heterotrophic marine protists known for their high production capacity of various compounds with health benefits, such as polyunsaturated fatty acids and carotenoids. Although much effort has been focused on developing optimal cultivation methods for efficient microbial production, these high-value compounds and their interrelationships are not well understood at the single-cell level. Here we used spontaneous (linear) Raman and multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy to visualize and characterize lipids (e.g., docosahexaenoic acid) and carotenoids (e.g., astaxanthin) accumulated in single living Aurantiochytrium limacinum cells. Spontaneous Raman imaging with the help of multivariate curve resolution-alternating least-squares enabled us to make unambiguous assignments of the molecular components we detected and derive their intracellular distributions separately. Near-IR excited CARS imaging yielded the Raman images at least an order of magnitude faster than spontaneous Raman imaging, with suppressed contributions of carotenoids. As the culture time increased from 2 to 5 days, the lipid amount increased by a factor of ∼7, whereas the carotenoid amount did not change significantly. Furthermore, we observed a highly localized component in A. limacinum cells. This component was found to be mixed crystals of guanine and other purine derivatives. The present study demonstrates the potential of the linear-nonlinear Raman hybrid approach that allows for accurate molecular identification and fast imaging in a label-free manner to link information derived from single cells with strategies for mass culture of useful thraustochytrids.
Collapse
Affiliation(s)
- Risa Sasaki
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Shogo Toda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Takaiku Sakamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Eiji Sakuradani
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Shinsuke Shigeto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
6
|
Massive Accumulation of Strontium and Barium in Diplonemid Protists. mBio 2023; 14:e0327922. [PMID: 36645306 PMCID: PMC9972996 DOI: 10.1128/mbio.03279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Barium and strontium are often used as proxies of marine productivity in palaeoceanographic reconstructions of global climate. However, long-searched biological drivers for such correlations remain unknown. Here, we report that taxa within one of the most abundant groups of marine planktonic protists, diplonemids (Euglenozoa), are potent accumulators of intracellular barite (BaSO4), celestite (SrSO4), and strontiobarite (Ba,Sr)SO4. In culture, Namystinia karyoxenos accumulates Ba2+ and Sr2+ 42,000 and 10,000 times higher than the surrounding medium, forming barite and celestite representing 90% of the dry weight, the greatest concentration in biomass known to date. As heterotrophs, diplonemids are not restricted to the photic zone, and they are widespread in the oceans in astonishing abundance and diversity, as their distribution correlates with environmental particulate barite and celestite, prevailing in the mesopelagic zone. We found diplonemid predators, the filter-feeding zooplankton that produces fecal pellets containing the undigested celestite from diplonemids, facilitating its deposition on the seafloor. To the best of our knowledge, evidence for diplonemid biomineralization presents the strongest explanation for the occurrence of particulate barite and celestite in the marine environment. Both structures of the crystals and their variable chemical compositions found in diplonemids fit the properties of environmentally sampled particulate barite and celestite. Finally, we propose that diplonemids, which emerged during the Neoproterozoic era, qualify as impactful players in Ba2+/Sr2+ cycling in the ocean that has possibly contributed to sedimentary rock formation over long geological periods. IMPORTANCE We have identified that diplonemids, an abundant group of marine planktonic protists, accumulate conspicuous amounts of Sr2+ and Ba2+ in the form of intracellular barite and celestite crystals, in concentrations that greatly exceed those of the most efficient Ba/Sr-accumulating organisms known to date. We propose that diplonemids are potential players in Ba2+/Sr2+ cycling in the ocean and have possibly contributed to sedimentary rock formation over long geological periods. These organisms emerged during the Neoproterozoic era (590 to 900 million years ago), prior to known coccolithophore carbonate biomineralization (~200 million years ago). Based on reported data, the distribution of diplonemids in the oceans is correlated with the occurrence of particulate barite and celestite. Finally, diplonemids may provide new insights into the long-questioned biogenic origin of particulate barite and celestite and bring more understanding of the observed spatial-temporal correlation of the minerals with marine productivity used in reconstructions of past global climate.
Collapse
|
7
|
Pilátová J, Pánek T, Oborník M, Čepička I, Mojzeš P. Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. THE ISME JOURNAL 2022; 16:2290-2294. [PMID: 35672454 PMCID: PMC9381591 DOI: 10.1038/s41396-022-01264-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Despite the widespread occurrence of intracellular crystalline inclusions in unicellular eukaryotes, scant attention has been paid to their composition, functions, and evolutionary origins. Using Raman microscopy, we examined >200 species from all major eukaryotic supergroups. We detected cellular crystalline inclusions in 77% species out of which 80% is composed of purines, such as anhydrous guanine (62%), guanine monohydrate (2%), uric acid (12%) and xanthine (4%). Our findings shifts the paradigm assuming predominance of calcite and oxalates. Purine crystals emerge in microorganisms in all habitats, e.g., in freshwater algae, endosymbionts of reef-building corals, deadly parasites, anaerobes in termite guts, or slime molds. Hence, purine biocrystallization is a general and ancestral eukaryotic process likely present in the last eukaryotic common ancestor (LECA) and here we propose two proteins omnipresent in eukaryotes that are likely in charge of their metabolism: hypoxanthine-guanine phosphoribosyl transferase and equilibrative nucleoside transporter. Purine crystalline inclusions are multifunctional structures representing high-capacity and rapid-turnover reserves of nitrogen and optically active elements, e.g., used in light sensing. Thus, we anticipate our work to be a starting point for further studies spanning from cell biology to global ecology, with potential applications in biotechnologies, bio-optics, or in human medicine.
Collapse
Affiliation(s)
- Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic
| |
Collapse
|
8
|
Shrestha RC, Ghazaryan L, Poodiack B, Zorin B, Gross A, Gillor O, Khozin-Goldberg I, Gelfand I. The effects of microalgae-based fertilization of wheat on yield, soil microbiome and nitrogen oxides emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151320. [PMID: 34743875 DOI: 10.1016/j.scitotenv.2021.151320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Overuse of agrochemicals is linked to nutrient loss, greenhouse gases (GHG) emissions, and resource depletion thus requiring the development of sustainable agricultural solutions. Cultivated microalgal biomass could provide such a solution. The environmental consequences of algal biomass application in agriculture and more specifically its effect on soil GHG emissions are understudied. Here we report the results of a field experiment of wheat grown on three different soil types under the same climatic conditions and fertilized by urea or the untreated biomass of fresh-water green microalga (Coelastrella sp.). The results show that neither soil type nor fertilization types impacted the aboveground wheat biomass, whereas, soil microbiomes differed in accordance with soil but not the fertilizer type. However, wheat grain nitrogen (N) content and soil N oxides emissions were significantly lower in plots fertilized by algal biomass compared to urea. Grain N content in the wheat grain that was fertilized by algal biomass was between 1.3%-1.5% vs. 1.6%-2.0% in the urea fertilized wheat. Cumulative soil nitric oxide (NO) emissions were 2-5 fold lower, 313-726 g N ha-1 season-1 vs. 909-3079 g N ha-1 season-1. Cumulative soil nitrous oxide (N2O) emissions were 2-fold lower, 90-348 g N ha-1 season-1 vs. 147-761 g N ha-1 season-1. The lower emissions resulted in a 4-11 fold lower global warming impact of the algal fertilized crops. This calculation excluded the CO2 cost from the algae biomass production. Once included algal fertilization had a similar, or 40% higher, climatic impact compared to the urea fertilization.
Collapse
Affiliation(s)
- Ram Chandra Shrestha
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Lusine Ghazaryan
- Zukerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Ben Poodiack
- Zukerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Boris Zorin
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Avner Gross
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Osnat Gillor
- Zukerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Inna Khozin-Goldberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Ilya Gelfand
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel.
| |
Collapse
|
9
|
Heidari Baladehi M, Hekmatara M, He Y, Bhaskar Y, Wang Z, Liu L, Ji Y, Xu J. Culture-Free Identification and Metabolic Profiling of Microalgal Single Cells via Ensemble Learning of Ramanomes. Anal Chem 2021; 93:8872-8880. [PMID: 34142549 DOI: 10.1021/acs.analchem.1c01015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microalgae are among the most genetically and metabolically diverse organisms on earth, yet their identification and metabolic profiling have generally been slow and tedious. Here, we established a reference ramanome database consisting of single-cell Raman spectra (SCRS) from >9000 cells of 27 phylogenetically diverse microalgal species, each under stationary and exponential states. When combined, prequenching ("pigment spectrum" (PS)) and postquenching ("whole spectrum" (WS)) signals can classify species and states with 97% accuracy via ensemble machine learning. Moreover, the biosynthetic profile of Raman-sensitive metabolites was unveiled at single cells, and their interconversion was detected via intra-ramanome correlation analysis. Furthermore, not-yet-cultured cells from the environment were functionally characterized via PS and WS and then phylogenetically identified by Raman-activated sorting and sequencing. This PS-WS combined approach for rapidly identifying and metabolically profiling single cells, either cultured or uncultured, greatly accelerates the mining of microalgae and their products.
Collapse
Affiliation(s)
- Mohammadhadi Heidari Baladehi
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266101 Shandong, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maryam Hekmatara
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266101 Shandong, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuehui He
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266101 Shandong, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yogendra Bhaskar
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266101 Shandong, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengbin Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266101 Shandong, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266101 Shandong, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266101 Shandong, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266101 Shandong, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Liu Y, Chen F, Guo D, Ma Y. One-dimensional assembly of β-form anhydrous guanine microrods. SOFT MATTER 2021; 17:1955-1962. [PMID: 33427846 DOI: 10.1039/d0sm01717e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biogenic guanine crystals exhibit excellent optical properties owing to their extremely high refractive index. However, there is no report related to the highly-ordered guanine assemblies in the synthetic systems. Herein, β-phase anhydrous guanine (β-AG) microrods were formed in mixed solvents of formamide and water in the presence of small organic molecules such as uric acid, pyrrole (Py), N-methyl-2-pyrrolidone (NMP), N-vinyl-2-pyrrolidone (NVP). The one-dimensional (1D) assembly of β-AG microrods form spontaneously in water, which is the first reported highly ordered 1D assembly of organic micro- or nanocrystals in the solution. The obtained β-AG microrods obtained in Py system can form reversible 1D assembly in water after being treated in organic solvents such as ethanol, acetone and isopropanol, which have high solubility in water. However, no reversible 1D assembly but only dispersed or aggregated guanine microrods formed in water after similar treatment in the other three organic solvents such as n-hexane, dichloroethane and petroleum ether with low solubility in water. Similar reversible assembly features can also be observed in other three systems, standard system, and NVP and NMP systems. The reversible 1D assemblies of guanine microrods in water and organic solvents with high solubility in water indicate that there is a strong interaction between the (100) planes of β-AG microrods in water. The oriented 1D assembly of guanine microrods with long axes perpendicular to the horizontal magnetic field can form in water under magnetic field.
Collapse
Affiliation(s)
- Yanan Liu
- MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Fenghua Chen
- MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China. and School of Resources and Chemical Engineering, Sanming University, Jingdong Road 25, Sanming, 365004, China
| | - Dongmei Guo
- MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yurong Ma
- MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
11
|
Mau L, Kant J, Walker R, Kuchendorf CM, Schrey SD, Roessner U, Watt M. Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer. FRONTIERS IN PLANT SCIENCE 2021; 12:631314. [PMID: 33584779 PMCID: PMC7879783 DOI: 10.3389/fpls.2021.631314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 05/05/2023]
Abstract
Algae can efficiently take up excess nutrients from waterways, making them a valuable resource potentially capable of replacing synthesized and mined fertilizers for agriculture. The capacity of algae to fertilize crops has been quantified, but it is not known how the algae-derived nutrients become available to plants. We aimed to address this question: what are the temporal dynamics of plant growth responses to algal biomass? to better propose mechanisms by which plants acquire nutrients from algal biomass and thereby study and promote those processes in future agricultural applications. Data from various sources were transformed and used to reconstruct the nutrient release from the algae Chlorella vulgaris and subsequent uptake by wheat (Triticum aestivum L.) (as reported in Schreiber et al., 2018). Plants had received 0.1x or 1x dried algae or wet algae, or zero, 0.1x or 1x mineral fertilizer calculated from agricultural practices for P application and grown to 55 days in three soils. Contents of P and other nutrients acquired from algae were as high as from mineral fertilizer, but varied based on moisture content and amount of algae applied to soils (by 55 days after sowing plants with 1x mineral fertilizer and 1x dried algae had 5.6 mg P g DWshoot; 2.2-fold more than those with 0 or 0.1x mineral fertilizer, 0.1x dried algae and wet algae, and 1x wet algae). Absolute and relative leaf area growth and estimated P uptake rates showed similar dynamics, indicating that wheat acquires P from algae quickly. A model proposes that algal fertilizer promotes wheat growth after rapid transformation in soil to inorganic nutrients. We conclude theoretically that phosphorus from algal biomass is available to wheat seedlings upon its application and is released gradually over time with minor differences related to moisture content on application. The growth and P uptake kinetics hint at nutrient forms, including N, and biomass stimulation worthy of research to further exploit algae in sustainable agriculture practices. Temporal resolved phenotype analyses in combination with a mass-balance approach is helpful for understanding resource uptake from recycled and biofertilizer sources by plants.
Collapse
Affiliation(s)
- Lisa Mau
- Institute of Bio- and Geoscience - IBG-2: Plant Science, Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Josefine Kant
- Institute of Bio- and Geoscience - IBG-2: Plant Science, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Robert Walker
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Christina M. Kuchendorf
- Institute of Bio- and Geoscience - IBG-2: Plant Science, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Silvia D. Schrey
- Institute of Bio- and Geoscience - IBG-2: Plant Science, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Michelle Watt
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Moudříková Š, Ivanov IN, Vítová M, Nedbal L, Zachleder V, Mojzeš P, Bišová K. Comparing Biochemical and Raman Microscopy Analyses of Starch, Lipids, Polyphosphate, and Guanine Pools during the Cell Cycle of Desmodesmus quadricauda. Cells 2021; 10:cells10010062. [PMID: 33401566 PMCID: PMC7824393 DOI: 10.3390/cells10010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022] Open
Abstract
Photosynthetic energy conversion and the resulting photoautotrophic growth of green algae can only occur in daylight, but DNA replication, nuclear and cellular divisions occur often during the night. With such a light/dark regime, an algal culture becomes synchronized. In this study, using synchronized cultures of the green alga Desmodesmus quadricauda, the dynamics of starch, lipid, polyphosphate, and guanine pools were investigated during the cell cycle by two independent methodologies; conventional biochemical analyzes of cell suspensions and confocal Raman microscopy of single algal cells. Raman microscopy reports not only on mean concentrations, but also on the distribution of pools within cells. This is more sensitive in detecting lipids than biochemical analysis, but both methods—as well as conventional fluorescence microscopy—were comparable in detecting polyphosphates. Discrepancies in the detection of starch by Raman microscopy are discussed. The power of Raman microscopy was proven to be particularly valuable in the detection of guanine, which was traceable by its unique vibrational signature. Guanine microcrystals occurred specifically at around the time of DNA replication and prior to nuclear division. Interestingly, guanine crystals co-localized with polyphosphates in the vicinity of nuclei around the time of nuclear division.
Collapse
Affiliation(s)
- Šárka Moudříková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic; (Š.M.); (P.M.)
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany;
| | - Ivan Nedyalkov Ivanov
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, CZ-37981 Třeboň, Czech Republic; (I.N.I.); (M.V.); (V.Z.)
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, CZ-37981 Třeboň, Czech Republic; (I.N.I.); (M.V.); (V.Z.)
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany;
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, CZ-37981 Třeboň, Czech Republic; (I.N.I.); (M.V.); (V.Z.)
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic; (Š.M.); (P.M.)
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany;
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, CZ-37981 Třeboň, Czech Republic; (I.N.I.); (M.V.); (V.Z.)
- Correspondence: ; Tel.: +420-384-340-485
| |
Collapse
|
13
|
Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci U S A 2020; 117:32722-32730. [PMID: 33293415 DOI: 10.1073/pnas.2005460117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N) is an essential macronutrient for microalgae, influencing their productivity, composition, and growth dynamics. Despite the dramatic consequences of N starvation, many free-living and endosymbiotic microalgae thrive in N-poor and N-fluctuating environments, giving rise to questions about the existence and nature of their long-term N reserves. Our understanding of these processes requires a unequivocal identification of the N reserves in microalgal cells as well as their turnover kinetics and subcellular localization. Herein, we identified crystalline guanine as the enigmatic large-capacity and rapid-turnover N reserve of microalgae. The identification was unambiguously supported by confocal Raman, fluorescence, and analytical transmission electron microscopies as well as stable isotope labeling. We discovered that the storing capacity for crystalline guanine by the marine dinoflagellate Amphidinium carterae was sufficient to support N requirements for several new generations. We determined that N reserves were rapidly accumulated from guanine available in the environment as well as biosynthesized from various N-containing nutrients. Storage of exogenic N in the form of crystalline guanine was found broadly distributed across taxonomically distant groups of microalgae from diverse habitats, from freshwater and marine free-living forms to endosymbiotic microalgae of reef-building corals (Acropora millepora, Euphyllia paraancora). We propose that crystalline guanine is the elusive N depot that mitigates the negative consequences of episodic N shortage. Guanine (C5H5N5O) may act similarly to cyanophycin (C10H19N5O5) granules in cyanobacteria. Considering the phytoplankton nitrogen pool size and dynamics, guanine is proposed to be an important storage form participating in the global N cycle.
Collapse
|
14
|
Orlanducci S, Fulgenzi G, Margonelli A, Rea G, Antal TK, Lambreva MD. Mapping Single Walled Carbon Nanotubes in Photosynthetic Algae by Single-Cell Confocal Raman Microscopy. MATERIALS 2020; 13:ma13225121. [PMID: 33202863 PMCID: PMC7698160 DOI: 10.3390/ma13225121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) are among the most exploited carbon allotropes in the emerging technologies of molecular sensing and bioengineering. However, the advancement of algal nanobiotechnology and nanobionics is hindered by the lack of methods for the straightforward visualization of the CNTs inside the cell. Herein, we present a handy and label-free experimental strategy based on visible Raman microscopy to assess the internalization of single-walled carbon nanotubes (SWCNTs) using the model photosynthetic alga Chlamydomonas reinhardtii as a recipient. The relationship between the properties of SWCNTs and their biological behavior was demonstrated, along with the occurrence of excitation energy transfer from the excited chlorophyll molecules to the SWCNTs. The non-radiative deactivation of the chlorophyll excitation promoted by the SWCNTs enables the recording of Raman signals originating from cellular compounds located near the nanotubes, such as carotenoids, polyphosphates, and starch. Furthermore, the outcome of this study unveils the possibility to exploit SWCNTs as spectroscopic probes in photosynthetic and non-photosynthetic systems where the fluorescence background hinders the acquisition of Raman scattering signals.
Collapse
Affiliation(s)
- Silvia Orlanducci
- Department of Chemical Science and Technology, University of Rome ‘‘Tor Vergata’’, 00133 Rome, Italy
- Institute of Crystallography, National Research Council of Italy, 00015 Monterotondo Stazione, Italy; (A.M.); (G.R.)
- Correspondence: (S.O.); (M.D.L.)
| | - Gianluca Fulgenzi
- Department of Molecular and Clinical Sciences, Faculty of Medicine and Surgery, Marche Polytechnic University, 60126 Ancona, Italy;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Andrea Margonelli
- Institute of Crystallography, National Research Council of Italy, 00015 Monterotondo Stazione, Italy; (A.M.); (G.R.)
| | - Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, 00015 Monterotondo Stazione, Italy; (A.M.); (G.R.)
| | - Taras K. Antal
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russian;
- Laboratory of Integrated Environmental Research, Pskov State University, 180000 Pskov, Russian
| | - Maya D. Lambreva
- Institute of Crystallography, National Research Council of Italy, 00015 Monterotondo Stazione, Italy; (A.M.); (G.R.)
- Correspondence: (S.O.); (M.D.L.)
| |
Collapse
|
15
|
Liu YJ, Kyne M, Wang C, Yu XY. Data mining in Raman imaging in a cellular biological system. Comput Struct Biotechnol J 2020; 18:2920-2930. [PMID: 33163152 PMCID: PMC7595934 DOI: 10.1016/j.csbj.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/30/2022] Open
Abstract
Working flow of data mining in Raman imaging of cell system described. Pre-processing, pattern recognition and validation discussed. Machine learning methods applied at each step discussed. Single-cell visualization, cell type classification and quantification applications.
The distribution and dynamics of biomolecules in the cell is of critical interest in biological research. Raman imaging techniques have expanded our knowledge of cellular biological systems significantly. The technological developments that have led to the optimization of Raman instrumentation have helped to improve the speed of the measurement and the sensitivity. As well as instrumental developments, data mining plays a significant role in revealing the complicated chemical information contained within the spectral data. A number of data mining methods have been applied to extract the spectral information and translate them into biological information. Single-cell visualization, cell classification and biomolecular/drug quantification have all been achieved by the application of data mining to Raman imaging data. Herein we summarize the framework for Raman imaging data analysis, which involves preprocessing, pattern recognition and validation. There are multiple methods developed for each stage of analysis. The characteristics of these methods are described in relation to their application in Raman imaging of the cell. Furthermore, we summarize the software that can facilitate the implementation of these methods. Through its careful selection and application, data mining can act as an essential tool in the exploration of information-rich Raman spectral data.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Michelle Kyne
- School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| |
Collapse
|
16
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Wood NJ, Camargo-Valero MA, Baker A. Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates. FRONTIERS IN PLANT SCIENCE 2020; 11:982. [PMID: 32695134 PMCID: PMC7339613 DOI: 10.3389/fpls.2020.00982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Phosphorus (P), in the form of phosphate derived from either inorganic (Pi) or organic (Po) forms is an essential macronutrient for all life. P undergoes a biogeochemical cycle within the environment, but anthropogenic redistribution through inefficient agricultural practice and inadequate nutrient recovery at wastewater treatment works have resulted in a sustained transfer of P from rock deposits to land and aquatic environments. Our present and near future supply of P is primarily mined from rock P reserves in a limited number of geographical regions. To help ensure that this resource is adequate for humanity's food security, an energy-efficient means of recovering P from waste and recycling it for agriculture is required. This will also help to address excess discharge to water bodies and the resulting eutrophication. Microalgae possess the advantage of polymeric inorganic polyphosphate (PolyP) storage which can potentially operate simultaneously with remediation of waste nitrogen and phosphorus streams and flue gases (CO2, SOx, and NOx). Having high productivity in photoautotrophic, mixotrophic or heterotrophic growth modes, they can be harnessed in wastewater remediation strategies for biofuel production either directly (biodiesel) or in conjunction with anaerobic digestion (biogas) or dark fermentation (biohydrogen). Regulation of algal P uptake, storage, and mobilization is intertwined with the cellular status of other macronutrients (e.g., nitrogen and sulphur) in addition to the manufacture of other storage products (e.g., carbohydrate and lipids) or macromolecules (e.g., cell wall). A greater understanding of controlling factors in this complex interaction is required to facilitate and improve P control, recovery, and reuse from waste streams. The best understood algal genetic model is Chlamydomonas reinhardtii in terms of utility and shared resources. It also displays mixotrophic growth and advantageously, species of this genus are often found growing in wastewater treatment plants. In this review, we focus primarily on the molecular and genetic aspects of PolyP production or turnover and place this knowledge in the context of wastewater remediation and highlight developments and challenges in this field.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Wood
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Centre for Doctoral Training in Bioenergy, School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
17
|
Amorim ML, Soares J, Coimbra JSDR, Leite MDO, Albino LFT, Martins MA. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr 2020; 61:1976-2002. [PMID: 32462889 DOI: 10.1080/10408398.2020.1768046] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many countries have been experienced an increase in protein consumption due to the population growth and adoption of protein-rich dietaries. Unfortunately, conventional-based protein agroindustry is associated with environmental impacts that might aggravate as the humankind increase. Thus, it is important to screen for novel protein sources that are environmentally friendly. Microalgae farming is a promising alternative to couple the anthropic emissions with the production of food and feed. Some microalgae show protein contents two times higher than conventional protein sources. The use of whole microalgae biomass as a protein source in food and feed is simple and well-established. Conversely, the production of microalgae protein supplements and isolates requires the development of feasible and robust processes able to fractionate the microalgae biomass in different value-added products. Since most of the proteins are inside the microalgae cells, several techniques of disruption have been proposed to increase the efficiency to extract them. After the disruption of the microalgae cells, the proteins can be extracted, concentrated, isolated or purified allowing the development of different products. This critical review addresses the current state of the production of microalgae proteins for multifarious applications, and possibilities to concatenate the production of proteins and advanced biofuels.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
18
|
Draft Genome Sequence of the Biofuel-Relevant Microalga Desmodesmus armatus. Microbiol Resour Announc 2020; 9:9/6/e00896-19. [PMID: 32029566 PMCID: PMC7005114 DOI: 10.1128/mra.00896-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A draft genome of 906 scaffolds of 115.8 Mb was assembled for Desmodesmus armatus, a diploid, lipid- and storage carbohydrate-accumulating microalga proven relevant for large-scale, outdoor cultivation, and serves as a model alga platform for improving photosynthetic efficiency and carbon assimilation for next-generation bioenergy production. A draft genome of 906 scaffolds of 115.8 Mb was assembled for Desmodesmus armatus, a diploid, lipid- and storage carbohydrate-accumulating microalga proven relevant for large-scale, outdoor cultivation, and serves as a model alga platform for improving photosynthetic efficiency and carbon assimilation for next-generation bioenergy production.
Collapse
|
19
|
Barcytė D, Pilátová J, Mojzeš P, Nedbalová L. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) Green Algae are Genetically and Morphologically Diverse and Exhibit Effective Accumulation of Polyphosphate. JOURNAL OF PHYCOLOGY 2020; 56:217-232. [PMID: 31610035 DOI: 10.1111/jpy.12931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The green algal genus Cylindrocystis is widespread in various types of environments, including extreme habitats. However, very little is known about its diversity, especially in polar regions. In the present study, we isolated seven new Cylindrocystis-like strains from terrestrial and freshwater habitats in Svalbard (High Arctic). We aimed to compare the new isolates on a molecular (rbcL and 18S rDNA), morphological (light and confocal laser scanning microscopy), and cytological (Raman microscopy) basis. Our results demonstrated that the Arctic Cylindrocystis were not of a monophyletic origin and that the studied strains clustered within two clades (tentatively named the soil and freshwater/glacier clades) and four separate lineages. Morphological data (cell size, shape, and chloroplast morphology) supported the presence of several distinct taxa among the new isolates. Moreover, the results showed that the Arctic Cylindrocystis strains were closely related to strains originating from the temperate zone, indicating high ecological versatility and successful long-distance dispersal of the genus. Large amounts of inorganic polyphosphate (polyP) grains were detected within the chloroplasts of the cultured Arctic Cylindrocystis strains, suggesting effective luxury uptake of phosphorus. Additionally, various intracellular structures were identified using Raman microscopy and cytochemical and fluorescent staining. This study represents the first attempt to combine molecular, morphological, ecological, and biogeographical data for Arctic Cylindrocystis. Our novel cytological observations partially explain the success of Cylindrocystis-like microalgae in polar regions.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-128 44, Czech Republic
| | - Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague 2, CZ-128 44, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-128 44, Czech Republic
| |
Collapse
|
20
|
Jantschke A, Pinkas I, Schertel A, Addadi L, Weiner S. Biomineralization pathways in calcifying dinoflagellates: Uptake, storage in MgCaP-rich bodies and formation of the shell. Acta Biomater 2020; 102:427-439. [PMID: 31785382 DOI: 10.1016/j.actbio.2019.11.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/17/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
Little is known about shell formation of calcareous dinoflagellates, despite the fact that they are one of the major calcifying organisms of the phytoplankton. Here, calcitic cyst formation in two representative members of calcareous dinoflagellates is investigated using cryo-electron microscopy (cryo-SEM and cryo-FIB-SEM) in combination with micro-Raman and infrared spectroscopy. Only calcein-AM and not calcein enters these cells, indicating active uptake of calcium and other divalent cations. Multifunctional vacuoles containing crystalline inclusions are observed, and the crystals are identified as anhydrous guanine in the β-form. The same vacuolar enclosures contain dense magnesium-, calcium-, and phosphorous-rich mineral bodies. These bodies are presumably secreted into the outer matrix where calcite forms. Calcite formation occurs via multiple independent nucleation events, and the different crystals grow with preferred orientation into a dense reticular network that forms the mature calcitic shell. We suggest a biomineralization pathway for calcareous dinoflagellates that includes (1) active uptake of calcium through the membranes, (2) deposition of Mg2+- and Ca2+-ions inside disordered MgCaP-rich mineral bodies, (3) secretion of these bodies to the inter-membrane space, and (4) Formation and growth of calcite into a dense reticulate network. This study provides new insights into calcium uptake, storage and transport in calcifying dinoflagellates. STATEMENT OF SIGNIFICANCE: Little is known about the shell formation of calcareous dinoflagellates, despite the fact that they are one of the major calcifying organisms of the phytoplankton. We used state-of-the-art cryo-electron microscopy (cryo-SEM and cryo-FIB-SEM) in combination with micro-Raman spectroscopy to provide new insights into mineral formation in calcifying dinoflagellates. To date, intracellular crystalline calcite was assumed to be involved in calcite shell formation. Surprisingly, we identify these crystalline inclusions as anhydrous guanine suggesting that they are not involved in biomineralization. Instead, a key finding is that MgCaP-rich bodies are probably secreted into the outer matrix where the calcite shell is formed. We suggest that these bodies are an essential part of Ca-uptake, -storage and -transport and propose a new biomineralization model.
Collapse
|
21
|
Kokabi K, Gorelova O, Zorin B, Didi-Cohen S, Itkin M, Malitsky S, Solovchenko A, Boussiba S, Khozin-Goldberg I. Lipidome Remodeling and Autophagic Respose in the Arachidonic-Acid-Rich Microalga Lobosphaera incisa Under Nitrogen and Phosphorous Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:614846. [PMID: 33329680 PMCID: PMC7728692 DOI: 10.3389/fpls.2020.614846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
The green microalga Lobosphaera incisa accumulates triacylglycerols (TAGs) with exceptionally high levels of long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid (ARA) under nitrogen (N) deprivation. Phosphorous (P) deprivation induces milder changes in fatty acid composition, cell ultrastructure, and growth performance. We hypothesized that the resource-demanding biosynthesis and sequestration of ARA-rich TAG in lipid droplets (LDs) are associated with the enhancement of catabolic processes, including membrane lipid turnover and autophagic activity. Although this work focuses mainly on N deprivation, a comparative analysis of N and P deprivation responses is included. The results of lipidomic profiling showed a differential impact of N and P deprivation on the reorganization of glycerolipids. The formation of TAG under N deprivation was associated with the enhanced breakdown of chloroplast glycerolipids and the formation of lyso-lipids. N-deprived cells displayed a profound reorganization of cell ultrastructure, including internalization of cellular material into autophagic vacuoles, concomitant with the formation of LDs, while P-deprived cells showed better cellular ultrastructural integrity. The expression of the hallmark autophagy protein ATG8 and the major lipid droplet protein (MLDP) genes were coordinately upregulated, but to different extents under either N or P deprivation. The expression of the Δ5-desaturase gene, involved in the final step of ARA biosynthesis, was coordinated with ATG8 and MLDP, exclusively under N deprivation. Concanamycin A, the inhibitor of vacuolar proteolysis and autophagic flux, suppressed growth and enhanced levels of ATG8 and TAG in N-replete cells. The proportions of ARA in TAG decreased with a concomitant increase in oleic acid under both N-replete and N-deprived conditions. The photosynthetic apparatus's recovery from N deprivation was impaired in the presence of the inhibitor, along with the delayed LD degradation. The GFP-ATG8 processing assay showed the release of free GFP in N-replete and N-deprived cells, supporting the existence of autophagic flux. This study provides the first insight into the homeostatic role of autophagy in L. incisa and points to a possible metabolic link between autophagy and ARA-rich TAG biosynthesis.
Collapse
Affiliation(s)
- Kamilya Kokabi
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
| | - Boris Zorin
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Shoshana Didi-Cohen
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Tambov, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
22
|
Zhang G, Hirsch A, Shmul G, Avram L, Elad N, Brumfeld V, Pinkas I, Feldman Y, Ben Asher R, Palmer BA, Kronik L, Leiserowitz L, Weiner S, Addadi L. Guanine and 7,8-Dihydroxanthopterin Reflecting Crystals in the Zander Fish Eye: Crystal Locations, Compositions, and Structures. J Am Chem Soc 2019; 141:19736-19745. [DOI: 10.1021/jacs.9b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gan Zhang
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anna Hirsch
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guy Shmul
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raz Ben Asher
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin A. Palmer
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Leslie Leiserowitz
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Jantschke A, Pinkas I, Hirsch A, Elad N, Schertel A, Addadi L, Weiner S. Anhydrous β-guanine crystals in a marine dinoflagellate: Structure and suggested function. J Struct Biol 2019; 207:12-20. [DOI: 10.1016/j.jsb.2019.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
|
24
|
Kokabi K, Gorelova O, Ismagulova T, Itkin M, Malitsky S, Boussiba S, Solovchenko A, Khozin-Goldberg I. Metabolomic foundation for differential responses of lipid metabolism to nitrogen and phosphorus deprivation in an arachidonic acid-producing green microalga. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:95-115. [PMID: 31128719 DOI: 10.1016/j.plantsci.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/05/2019] [Accepted: 02/11/2019] [Indexed: 05/08/2023]
Abstract
The green oleaginous microalga Lobosphaera incisa accumulates storage lipids triacylglycerols (TAG) enriched in the long-chain polyunsaturated fatty acid arachidonic acid under nitrogen (N) deprivation. In contrast, under phosphorous (P) deprivation, the production of the monounsaturated oleic acid prevails. We compared physiological responses, ultrastructural, and metabolic consequences of L. incisa acclimation to N and P deficiency to provide novel insights into the key determinants of ARA accumulation. Differential responses to nutrient deprivation on growth performance, carbon-to-nitrogen stoichiometry, membrane lipid composition and TAG accumulation were demonstrated. Ultrastructural analyses suggested a dynamic role for vacuoles in sustaining cell homeostasis under conditions of different nutrient availability and their involvement in autophagy in L. incisa. Paralleling ARA-rich TAG accumulation in lipid droplets, N deprivation triggered intensive chloroplast dismantling and promoted catabolic processes. Metabolome analysis revealed depletion of amino acids and pyrimidines, and repression of numerous biosynthetic hubs to favour TAG biosynthesis under N deprivation. Under P deprivation, despite the relatively low growth penalties, the presence of the endogenous P reserves and the characteristic lipid remodelling, metabolic signatures of energy deficiency were revealed. Metabolome adjustments to P deprivation included depletion in ATP and phosphorylated nucleotides, increased levels of TCA-cycle intermediates and osmoprotectants. We conclude that characteristic cellular and metabolome adjustments tailor the adaptive responses of L. incisa to N and P deprivation modulating its LC-PUFA production.
Collapse
Affiliation(s)
- Kamilya Kokabi
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Tatiana Ismagulova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia; Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel.
| |
Collapse
|
25
|
Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. Int J Biol Macromol 2019; 129:152-161. [PMID: 30711564 DOI: 10.1016/j.ijbiomac.2019.01.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
Optimal conditions for maximal biomass and starch production by the marine red microalgae Porphyridium marinum were investigated. Box-Behnken Design was used to model the effect of light intensity, NaNO3 concentration and salinity on the growth of microalgae but also on their starch and protein contents. These three factors increased biomass production by 13.6% in optimized conditions. A maximum starch production (140.21 μg·mL-1), 30.6% higher than that of the control, was attained at a light intensity of 100 μmol photons·m-2·s-1, a NaNO3 concentration of 1 g·L-1 and a NaCl concentration of 20 g·L-1. FT-IR spectroscopy was used to estimate the biochemical composition (carbohydrate accumulation) of P. marinum and revealed significant changes (P < 0.05) depending on culture conditions. FT-IR analysis highlighted also that the culture conditions leading to highest starch production by P. marinum corresponded to lowest sulfated polysaccharide and protein contents.
Collapse
|
26
|
Ismagulova T, Shebanova A, Gorelova O, Baulina O, Solovchenko A. A new simple method for quantification and locating P and N reserves in microalgal cells based on energy-filtered transmission electron microscopy (EFTEM) elemental maps. PLoS One 2018; 13:e0208830. [PMID: 30533056 PMCID: PMC6289464 DOI: 10.1371/journal.pone.0208830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
We established a new simple approach to study phosphorus (P) and nitrogen (N) reserves at subcellular level potentially applicable to various types of cells capable of accumulating P- and/or N-rich inclusions. Here, we report on using this approach for locating and assessing the abundance of the P and N reserves in microalgal and cyanobacterial cells. The approach includes separation of the signal from P- or N-rich structures from noise on the energy-filtered transmission electron microscopy (EFTEM) P- or N-maps. The separation includes (i) relative entropy estimation for each pixel of the map, (ii) binary thresholding of the map, and (iii) segmenting the image to assess the inclusion relative area and localization in the cell section. The separation is based on comparing the a posteriori probability that a pixel of the map contains information about the sample vs. Gaussian a priori probability that the pixel contains noise. The difference is expressed as relative entropy value for the pixel; positive values are characteristic of the pixels containing the payload information about the sample. This is the first known method for quantification and locating at a subcellular level P-rich and N-rich inclusions including tiny (< 180 nm) structures. We demonstrated the applicability of the proposed method both to the cells of eukaryotic green microalgae and cyanobacteria. Using the new method, we elucidated the heterogeneity of the studied cells in accumulation of P and N reserves across different species. The proposed approach will be handy for any cytological and microbiological study requiring a comparative assessment of subcellular distribution of cyanophycin, polyphosphates or other type of P- or N-rich inclusions. An added value is the potential of this approach for automation of the data processing and evaluation enabling an unprecedented increase of the EFTEM analysis throughput.
Collapse
Affiliation(s)
- Tatiana Ismagulova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Anastasia Shebanova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Baulina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Eurasian Centre for Food Security, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
27
|
Zachleder V, Vítová M, Hlavová M, Moudříková Š, Mojzeš P, Heumann H, Becher JR, Bišová K. Stable isotope compounds - production, detection, and application. Biotechnol Adv 2018; 36:784-797. [PMID: 29355599 DOI: 10.1016/j.biotechadv.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
Stable isotopes are used in wide fields of application from natural tracers in biology, geology and archeology through studies of metabolic fluxes to their application as tracers in quantitative proteomics and structural biology. We review the use of stable isotopes of biogenic elements (H, C, N, O, S, Mg, Se) with the emphasis on hydrogen and its heavy isotope deuterium. We will discuss the limitations of enriching various compounds in stable isotopes when produced in living organisms. Finally, we overview methods for measuring stable isotopes, focusing on methods for detection in single cells in situ and their exploitation in modern biotechnologies.
Collapse
Affiliation(s)
- Vilém Zachleder
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Milada Vítová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Monika Hlavová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Šárka Moudříková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | | | | | - Kateřina Bišová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic.
| |
Collapse
|
28
|
Moudříková Š, Sadowsky A, Metzger S, Nedbal L, Mettler-Altmann T, Mojzeš P. Quantification of Polyphosphate in Microalgae by Raman Microscopy and by a Reference Enzymatic Assay. Anal Chem 2017; 89:12006-12013. [PMID: 29099580 DOI: 10.1021/acs.analchem.7b02393] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polyphosphates have occurred in living cells early in evolution and microalgae contain these important polymers in their cells. Progress in research of polyphosphate metabolism of these ecologically as well as biotechnologically important microorganisms is hampered by the lack of rapid quantification methods. Experiments with the green alga Chlorella vulgaris presented here compared polyphosphate extraction in water, methanol-chloroform, and phenol-chloroform followed by polyphosphate purification by binding to silica columns or ethanol precipitation. The phenol-chloroform extraction of C. vulgaris followed by ethanol precipitation of polyphosphate was shown to be superior to the other tested method variants. Recovery test of added polyphosphate standard to algal biomass showed that the method is accurate. Using this biochemical assay as a validated reference, we show that 2-dimensional, confocal Raman microscopy can serve as a linear proxy for polyphosphate in C. vulgaris with R2 up to 0.956. With this, polyphosphate quantification can be shortened by use of Raman microscopy from days to hours and, additionally, information about intracellular distribution of polyphosphate and heterogeneity among individual cells in algal culture can be obtained. This offers new insights into the dynamics and role of these polymers crucial for phosphorus uptake and storage. This analytical capability is of particular practical importance because algae aid phosphorus sequestration from wastewater and the thus enriched biomass may serve as organic fertilizer. Both these applications have a strong potential in a future sustainable, circular bioeconomy.
Collapse
Affiliation(s)
- Šárka Moudříková
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich , Wilhelm-Johnen-Straße, D-52428 Jülich, Germany.,Institute of Physics, Faculty of Mathematics and Physics, Charles University , Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Andres Sadowsky
- CEPLAS Plant Metabolism and Metabolomics Laboratory, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf , Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Sabine Metzger
- CEPLAS Plant Metabolism and Metabolomics Laboratory, Botanical Institute, University of Cologne , Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Ladislav Nedbal
- Institute of Physics, Faculty of Mathematics and Physics, Charles University , Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Tabea Mettler-Altmann
- CEPLAS Plant Metabolism and Metabolomics Laboratory, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf , Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Peter Mojzeš
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich , Wilhelm-Johnen-Straße, D-52428 Jülich, Germany.,Institute of Physics, Faculty of Mathematics and Physics, Charles University , Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|